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Major Goals:  The objective of this project is to investigate fundamental phase transition properties of photonic 
materials with the foundation in quantum mechanics and mathematical physics, considering both non-Hermtian and 
topological symmetries, for unprecedented robust light manipulation.



The major goals are focused on the demonstration of novel interface light states enabled by quantum phase 
transition on the silicon-on-insulator and III-V semiconductor platforms. The project is conducted in 4 Thrusts: 



Thrust I: An important objective is to construct theoretical models for novel topological photonic states. The related 
theoretical studies can be used to effectively characterize the related topological symmetries of the photonic 
structures and develop a structure of multiple quantum numbers. The quantum and topological phase transitions 
can be flexibly realized by switching the structure from one quantum number to the other.



Thrust II: Until now, a majority of experimentally and theoretically studied non-Hermitian photonic materials were 
based on single-phase photonic structures, in either symmetric or broken PT, but not on both. In other words, the 
unique genus of quantum phase invariant with respect to phase transitions has not been effectively utilized and 
explored. In this project, we have demonstrated the non-Hermitian topological light state and better understand how 
the interface state emerges as a function of non-Hermiticity.   



Thrust III: One important characteristic of the demonstrated topological interface state is that it is protected by the 
particle-hole symmetry, producing a robust photonic zero mode. It is therefore important to verify the robustness of 
the interface light state against topological defects and investigate the robust transport characteristics of this 
interface state. Potential advantages include fault-tolerant light transport against a variety of impurities, defects, and 
structural disorders.



Thrust IV: Another particular interest on non-Hermitian photonic materials is to strategically utilize optical non-
Hermiticity to design the interplay between gain and loss in laser cavities, enabling ultrastable lasing emission 
immune to a variety of environmental variations. By exploiting the robust light state, ultrastable lasing radiation can 
be envisioned with a high amplification rate and elimination of undesired mode hopping. The associated dynamics 
of the light-matter interaction and emission control by the robust light state can be experimentally studied.

Accomplishments:  In this project, we have successfully advanced the fundamental relation of topological 
symmetries and their couplings with non-Hermitian symmetries, which enriched topological physics and delivered 
novel topological photonic states. According to the 4 proposed research thrusts, we have theoretically and 
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experimentally accomplished: 1) Photonic lattices of multiple topological quantum numbers; 2) Non-Hermitian-
induced robust topological photonic states, and 3) Topological microring laser arrays. 
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Photonic Lattices of Multiband Topology 
 
Topology, which originates from mathematics and deals with quantities that preserve their values during 
any continuous deformation, has firmly emerged as a new paradigm for describing new phases of matter 
since its first applications to condensed matter systems over three decades ago. To date, the SSH 
Hamiltonian serves as an archetypical model for describing topological physics and designing practical 
structures. However, the topological features of this conventional model are limited to only two dispersion 
bands, thereby permitting only a limited range of quantum numbers and consequently restricting the 
accessible nontrivial phases. Much can be gained from richer models with a large range of nontrivial phases 
that can be manipulated systematically to control the formation of independent topological states. Here, we 
demonstrate the formation and control of topological edge states associated with multiple topological 
quantum numbers in a discrete photonic lattice.    

Our studies have delivered a 
topological photonic superlattice that can 
support multiple independent topological 
states. Instead of the simple dimer model in 
the classical SSH model, our Dirac 
procedure after iterations leads to a 
multicomponent unit cell (the number of 
sites in each unit cell is J) where the 
neighboring couplings between two 
adjacent components are strategically 
distributed (Fig. 1a), corresponding to a 1D 
multiband system where multiple 
topological states are found in different 
band gaps (Fig. 1). In this case, the 
spectrum of the system appears in two 
distinct forms: spectrum with (Fig. 1c, e, g) 
/without (Fig. 1b, d, f) topological states 
inside all the (J − 1) energy gaps when the 
intercell coupling τ is greater (less) than 
intracell couplings. Note that different 
topological states feature multiple quantum 
numbers.  

We have further designed a 
photonic waveguide lattice that can feature 
such multiband topology and 
experimentally verified the phase transition 
from one topological quantum number to 
another., The multiband topological lattice (Fig. 2a) provides controls to design different Bloch eigenstates 
formed through hybridizations of the supermodes associated with the dimers/waveguides. As shown in Fig. 
2b, with the nonvanishing detuning Δ𝛽 of the propagation constants between the large and small waveguide 
in each of the dimer, the supermodes are highly localized in the large (base) or small (vertex) waveguides. 
Two supermodes each are close to resonance, experiencing effective coupling strengths alternating between 
strong and weak. This effect can be viewed as two SSH Hamiltonians (SSH ூ and SSH ூூ) occupying the 
same space yet having independent topological quantum numbers.  As each SSH model creates two 
eigenvalues 𝜆േ, the designed bowtie lattice is expected to demonstrate four dispersion bands, which is 
indeed borne out by direct modelling [Fig. 2c]. The coupling strengths and propogation constants are 
engineered to demonstrate different topological phases and thus control the related edge states. In the top 

 
Figure 1. Multiband superlattices. (a) A schematic of a photonic 
superlattice with J elements in each unit cell. tj and τ are intracell 
and intercell couplings, respectively. (b)–(g) Eigenspectrum β of 
superlattices with (b),(c) J = 3, (d),(e) J = 5, and (f),(g) J = 6 
elements in a unit cell. The emergence of bound states inside the 
energy gap is seen in (c), (e), and (g), if the intercell and intracell 
couplings are properly designed. [16] 



panel of Fig. 1(c), the design parameters were chosen to be �̃� ൌ 1, 𝜅 ൌ 0.5 and 𝛽ଵ ൌ െ𝛽ଶ ൌ 1. As expected 
from the previous discussion, the system resembles two separate SSH Hamiltonians giving rise to two upper 
(SSH ூ) and two lower (SSH ூூ) bands. The two isolated eigenvalues in the spectrum (one in the upper and 
another in the lower band gaps) correspond to states localized at the left and right edge state. This is in 
contrast to the conventional SSH model, for which the two edge states would lie in the same gap. The 
middle and lower panels of Fig. 1(c) highlight a crucial additional feature of this model—the existence of 
a third, central gap that separates the two effective SSH models. The design parameters are the same as 

used in the top panel, but for 𝜅 ൌ √2 and 2, respectively. The central gap closes at 𝜅 ൌ √2 while in the 
lower panel the gap is again opened. This band inversion gives rise to an additional pair of isolated 
eigenvalues, which are accompanied by the emergence of two new edge states. These edge states are 
associated with the spectral symmetry of the bowtie chain, which induces an additional topological quantum 
number - a feature that can be understood by inspecting the Zak phase and Witten index associated with 
each bulk band and each bandgap, respectively. In a continuum approximation, the two low-energy 
solutions at 𝑘 ൌ 0 give rise to two slowly varying fields that can be grouped into a spinor 𝜑. Its evolution 
takes the form of a Jackiw-Rebbi model 𝑖𝑑𝜑/𝑑𝑧 ൌ 𝐻ୣ𝜑 with an effective Hamiltonian 𝐻ୣ ൌ 𝑚𝜎௭ 
𝑣ி𝜎௬�̂�௫, again in complete analogy with the SSH model. All three effective models are therefore associated 

with a chiral symmetry 𝜎௫𝐻ୣ𝜎௫ ൌ െ𝐻ୣ guaranteeing topological physics in each gap. By controlling 

the inter-dimer and intra-dimer coupling strengths in the designed bowtie photonic lattice, we are able to 
independently switch the topological phases of these three coexisting models and can control the 
corresponding edge states on demand. 

 

 
Figure 2. Bowtie topological lattice supporting two quantum numbers. (a) Two-legged ladder model having identical 
sites (top panel). Single and double lines represent couplings of different strength; the dashed lines signify couplings 
of opposite sign from the solid lines. Taking the square root and a Z2 gauge transformation of this model results in the 
bowtie chain shown in the lower panel, with alternating couplings 𝜅, �̃� and staggered sequence of onsite energies 
𝛽ଵ, 𝛽ଶ, 𝛽ଶ, 𝛽ଵ, …. As indicated, this can be interpreted as a sequence of oppositely orientated dimers, labelled by L and 
R. (b)  Implementation of the bowtie lattice using silicon waveguides embedded in silica cladding. (c) Band structures 
of bowtie arrays with �̃� ൌ 1, 𝛽ଵ ൌ െ𝛽ଶ ൌ 1 and different values of 𝜅.  

 



For the experiments, we fabricated three different 
samples of the photonic lattice with controlled physical 
parameters corresponding to different configurations I, II 
and III as defined in Fig. 2c. On an SOI platform, each 
sample consisted of 18 guiding channels. The scanning 
electron microscope pictures corresponding to 
configuration III are shown in Fig. 3. 

We applied the time-resolved spatial-heterodyne 
imaging technique, which provides the spatial 
distribution of the light versus time. Thus, we could 
characterize the ultrafast transport dynamics in the observed edge states (Fig. 4). These ultrafast temporal 
measurements provide access to quantitative characteristics of the edge state. 

 

 
Figure 4. Measured ultrafast transport dynamics in the bowtie topological waveguide lattices. Temporal evolution of 
spatial intensity of the wave packet is captured with a time delay of ~66.6 fs for configurations I, II and III (top, middle, 
and bottom panels, respectively). Images are normalized with the same input power, assuming a lossless propagation 
in the z direction. Field intensity spatial maps in left, middle, and right colums correspond to different time delays at 
∆𝑇 ൌ 0, 666, and 1333 fs, respectively, showing the wave packet entering the lattice, the formation of the edge states 
at the beginning of the lattice, and the transport of the edge states in the lattice.  

 
All the edge states are associated with distinct dynamical properties encoded in the effective group 

and phase indices, which provide additional quantitative assessments of each state. In configuration I, the 
group index  𝑛 ൌ 3.30 േ 0.012  (calculation details can be found in supporting information) can be 
retrieved through pulse positions traveled at different time delays, corresponding to an effective index of 
𝑛 ൌ 1.67 േ 0.012 that agrees well with the simulation 𝑛 ൌ 1.72. For configuration II, it is clearly 
demonstrated that the dynamical transport of the single edge state is accompanied by a secondary emission, 
revealing the closure of the central bandgap. Their interference, while weak, slightly distorts the field 
distribution and the propagation of the wave packet in the launching channel. The measured group index is 
consistently lower than configuration I, 𝑛 ൌ 3.23 േ 0.011 with 𝑛 ൌ 1.66 േ 0.011. For configuration 
III, the dynamical evolution of the wave packet is revealed by the interference beating due to the co-
propagation of two topological edge states with distinct propagation constants measured group index  𝑛 ൌ
3.18 േ 0.015  in this case is the averaged group index of the two edge states. Their respective effective 
indices are 𝑛,ଵ ൌ 1.70 േ 0.015 and 𝑛,ଶ ൌ 1.65 േ 0.015. In contrast, a uniformly arranged trivial 
waveguide array shows a diffraction pattern corresponding to free spreading and reflection of the wave 
packet across the whole array. This is distinct from the topological edge modes observed in the previous 3 
configurations.  

 
Figure 3. Scanning electron microscope pictures 
of the device (configuration III) 



In summary, with the multiband topological model, we designed and experimentally demonstrated 
a versatile photonic lattice with multi-band topology. Compared with the conventional Su-Schrieffer 
Heeger and Rice-Mele models, the lattice offers additional spectral symmetries that enrich the topological 
features and enable to induce independently tuned edge states. We experimentally investigated the ultrafast 
beam transport dynamics to validate the supported topological characteristics. Through systematically 
manipulating the couplings in the lattice, the topological nature of multiple dispersion bands can be 
effectively engineered with a desired Witten index in different energy bandgaps, enabling the versatile 
realization of topologically-induced edge state dynamics. 

 
 
Novel Non-Hermitian-Governed Topological Interface State 
 
Topological zero states are expected play an important role in fault-tolerant quantum computation. In 
conventional Hermitian quantum systems, however, such zero states are vulnerable and even become 
vanishing if couplings with surroundings are of the same topological nature. Here, we demonstrate a robust 
photonic zero mode sustained by a spatial non-Hermitian phase transition in a parity-time (PT) symmetric 
lattice, despite the same topological order across the entire system. The non-Hermitian-enhanced 
topological protection ensures the re-emergence of the zero mode at the phase transition interface when the 
two semi-lattices under different PT phases are decoupled effectively in their real spectra. Residing at the 
mid-gap level of the PT symmetric spectrum, the zero mode is topologically protected against topological 
disorder.  
 The design of the zero mode is based on a non-Hermitian extension of the Su-Schrieffer-Heeger 
(SSH) model, where the tight-binding sites are modulated with alternating losses to construct a passive PT 
system, which has similar PT phase transition in a gain/loss balanced system. We realize a quantum phase 
transition interface (i.e. from PT symmetric phase to PT broken phase) between two semi-infinite lattices 
with a uniform topological order, as shown in Fig. 5a. Due to the lack of paired state from the left lattice to 
compensate the energy splitting in the right lattice, the edge state in the right lattice emerges as a localized 
zero mode at the interface site, as shown in the left panel of Fig. 5b. Recovered by the enhanced non-
Hermiticity in the PT-broken lattice, the zero mode appears as a topologically isolated state and acquires 
protection against perturbation. The right panel in Fig. 5b shows the robustness of the zero mode against 
random perturbations of the coupling strengths at the interface site. Due to the similarities between the time-
dependent Schrödinger equation and the paraxial wave functions, the tight-bind model can be approximated 
by a coupled waveguide array, in which the coupling strengths are defined by the spacing between adjacent 
waveguides. The onsite loss contrasts are effectively determined by the different amount of metal deposition 
on the top of the waveguide. As a result, a robust photonic zero mode with strong field localization emerges 
at the interface waveguide, shown in the background of Fig. 5c.   

To reveal the zero-energy characteristics of the interface state, a control study was performed on 
the interface waveguide array together with a single waveguide as the reference by the heterodyne ultrafast 
measurements. The field images were reconstructed in Fig. 6a under same wave packet excitation to 
characterize the pulse propagation in the waveguide array (top panels) and the reference waveguide (bottom 
panels). Fig. 6b tracks the centers of the wave packets travelling in time for both the interface state and the 
single waveguide mode, which indicates the same propagation speed of the wave packets. The measured 
group index for the interface state is approximately ng = 3.97, corresponding to an effective phase index of 
neff = 2.37 at 1550nm, which are almost identical to the group and phase indices of the single waveguide of 
approximately ng = 3.97 and neff = 2.37, respectively, evidently showing the zero-energy properties.  
 
 
 
 
 



Figure 5. Implementation of the photonic zero mode. (a) Schematic of an interface formed by two different loss 
contrast over a uniform topology-ordered lattice. (b) Eigenvalue analysis of the system: amplitude distribution of the 
zero-energy interface state (left panel), and the robustness of the zero mode (red line) under random perturbations to 
the coupling strengths at the interface site. (c) Normalized electric field distribution of the photonic zero mode in a 
coupled waveguide array. The coupling strength and the onsite loss are defined by waveguide spacing distance and 
amount of Chromium (Cr) deposition respectively. 

 

 

Figure 6. Ultrafast measurements of the photonic zero mode. (a) Reconstructed electric field images at 166fs, 266fs, 
and 366fs of the photonic zero mode (top panels) and the reference single waveguide (bottom panels) under the same 
excitation. (b) Heterodyne measurement results clearly show the zero-energy propagation the zero mode.  

To test the robustness of the zero mode, the local topological perturbation is intentionally 
introduced to the interface waveguide, as shown in Fig. 7a. The interface waveguide is shifted by 100 nm 
towards the adjacent dimer in the PT symmetric semi-lattice. In this case, therefore, the local topological 
order is reversed. To enable the adiabatic transition between two opposite local topological orders, the shift 
of the interface waveguide gradually completes over a distance of 5 µm in the z direction. The zoom-in 
picture of the sample clearly confirms the implementation of this topology-transition region along the 



interface waveguide (Fig. 7b). Here, we performed both numerical simulations (Fig. 7c) and heterodyne 
measurements (Fig. 7d) to characterize a wave packet propagation supported by the zero mode, showing 
the pulse entering, propagating, and exiting around the topology-transition region. With the same single-
waveguide excitation launched at the interface, the original zero mode is well formed in the interface 
waveguide. While the local topology varies after the wave packet enters the transition region, the zero mode 
persists with strong light localization at the interface. It is clear that the shape and dispersion of the wave 
packet after exiting the transition region remain almost unaffected, indicating the robust light transport 
carried by the zero mode. This is because the zero mode is protected under the PT symmetry invariants, 
even though the local topological order is completely reversed. The quantitative evaluation in experiments 
further confirms the robustness of the zero mode: the average group and phase indices during the topology 
transition are approximately ng = 3.97 and neff = 2.37, which are almost identical to their counterparts of the 
zero mode without any disorder and perturbation. 

 

 
Figure 7. Experimental validation of the robustness of the zero mode. (a) The interface waveguide is adiabatically 
shifted 100 nm towards the PT symmetric semi-lattice over a distance of 5 µm in the z direction, reversing the local 

topological order around the interface from 5.2/ BA tt  to 8.0/ BA  tt . (b) SEM picture of the topology-

transition region implemented in the Si waveguide array, where pseudo yellow color denotes the Cr depositions. (c) 
and (d) are numerically simulated (c) and experimentally (d) measured ultrafast dynamics of the zero mode to probe 
its robustness against topological disorders. Snapshots at different time delays show the pulse entering, propagating, 
and exiting around the topology-transition region. 

 

In summary, we have demonstrated experimentally a novel photonic zero mode spatially localized 
at the interface separating broken and unbroken PT phases. Through this non-Hermitian engineering, the 
interface state emerges as a dominant zero mode in the system of a uniform topological order. The 
restoration of topological protection of edge states in the lattice with a uniform topological order is enabled 
by the spatial quantum phase transition and enhanced by non-Hermitian loss engineering in the semi-
lattices. Our strategic quantum phase manipulation thus provides a genuine new route toward the creation 
and manipulation of topological protected states in non-Hermitian photonics and beyond.  



 

Non-Hermitian Modulated Topological Interface State Lasing  
 
The discovery of topological band theory has ushered in a new era in condensed matter physics, providing 
intriguing insights into the world of low-dimensional quantum systems. Inspired by this groundbreaking 
work, topological mechanisms of optical mode formation have been proposed. The subsequent 
investigations of passive topological photonic systems have facilitated unidirectional transport channels. 
However, these pioneering studies have been limited in scope, exploring only a small subset of the full 
design parameter space. Active optical systems involving feedback mechanisms provide a much wider 
arena in which topological robustness collides with other physical considerations, posing diverse 
unexplored fundamental questions about the interplay between topological features and non-Hermitian 
physics. The answers to these questions transform our understanding of topological robustness by revealing 
unique connections between topology and other types of fundamental symmetries arising from non-
Hermiticity. This new paradigm dictates a fresh look at the basic notion of topological protection in order 
to take into account the expanded design parameters space and establish a connection between topological 
physics and various separate activities on non-Hermitian photonic systems. 

 

 

Figure 8. Non-Hermitian modulated zero state lasing. (a) Schematic of a topological laser array made of 9 microring 
resonators with alternating weak and strong couplings. A layer of 10-nm Cr (shown in yellow) is deposited on top of 
every second element to introduce distributed gain and loss. The red halos represent the intensity profile of the 
oscillating zero-mode. (b) Multimode lasing from an identically-sized microlaser array, but without on-top Cr 
deposition on every second ring to introduce the distributed gain/loss profile. (c) Single-supermode lasing from the 
topological microlaser with spatially distributed gain/loss. Emission spectra (top panels) and lasing mode profiles 
(lower panels) are measured for both laser arrays. 

Here, we experimentally explore the utility of topological concepts to active systems and 
demonstrate an on-chip hybrid silicon microlaser whose mode competition naturally favors robust laser 
action arising from a topological defect. Our topological laser structure is an array of coupled InGaAsP-
silicon microring resonators on a silicon-on-insulator (SOI) substrate (Fig. 8a), whose topological features 
arise from a sequence of alternating couplings precisely controlled by the separations between adjacent 
rings in an alternative fashion. A spacing defect in the center of the array creating a topological zero-mode 



that decays exponentially away from the defect, and only populates every other resonator. Spectrally, the 
topologically-protected zero-mode resides at the center of a band gap, where the symmetric features of the 
passive band structure arise from a chiral symmetry—a symmetry which maps the two symmetric bands 
onto each other. This symmetry is specifically related to inverting the sign of the couplings, which forces 
the zero-mode onto one “bright” sublattice. The distributed gain and loss respect a non-Hermitian charge-
conjugation symmetry, leading to a response that robustly discriminates between the topological and non-
topological states. In the complex frequency plane, this directly translates into an enhanced gain of the 
topological zero-mode state, therefore favoring it over other states throughout the nonlinear mode 
competition process.  

In our experiment, we intentionally design a large-area single-mode laser with the transverse 
dimension of the hybrid ring being 1 µm wide and 720 nm thick (500 nm InGaAsP and 220 nm silicon). In 
this regard, while each ring supports several transverse modes, the fundamental transverse mode selected 
for the zero-mode occupies a much larger area of gain compared with the array of single-transverse-mode 
rings. In order to confirm the role of topological features in the mode selection process, a control experiment 
was conducted using an identically-sized microlaser array without the designed distributed gain/loss profile. 
As expected, the hybridization through couplings of all the transverse and longitudinal modes under the 
uniform pumping scenario displays a broader emission spectrum with multiple peaks and a reduced peak 
intensity, with the total emission homogeneously distributed over the entire structure (Fig. 8b). In contrast, 
the zero-mode lasing in the topological array is highly reliable, despite the mode competition in each ring 
and across rings (Fig. 8c), which is a direct outcome of the interplay between the topological mode 
hybridization and non-Hermiticity.   

 

 

Figure 9. Robust zero mode laser action. (a) SEM of the perturbed topological laser array by depositing a thick layer 
of polymer covering the corresponding ring. (b) Measured emission spectrum of single-mode lasing from the perturbed 
laser array. (c) Measured intensity profile featuring the robustness of the topologically-protected zero-mode lasing 
against the introduced onsite perturbation.  

 
One of the most important features of topological states is their robustness against defects and 

disorders. In particular, the spectral features of the zero-mode are known to be insensitive to off-diagonal 
perturbations represented by the coupling coefficients. Moreover, we find that the active system can still 
display a certain level of immunity against diagonal perturbations. In other words, the zero-mode lasing 
can well survive with onsite perturbations despite a slight spectral shift of the mode energy. To confirm this 
prediction experimentally, we introduced a polymer layer on top of the third ring resonator from the right 
to introduce a shift in its resonant frequency (Fig. 9a) and measured the emission spectrum (Fig. 9b). It is 
evident that the zero-mode lasing still persists with a high extinction ratio, without appreciable change in 



the spatial emission profile (Fig. 9c) apart from very small intensities leaking to the otherwise dark 
sublattice.  

In summary, we have presented the demonstration of a topologically robust single-mode hybrid 
silicon microlaser. The interplay between topology and non-Hermitian symmetries equips the emerging 
topological zero-mode with a distinct mode profile that enables it to fully exploit the distributed gain 
domains, while simultaneously spoiling other states through deliberately introduced optical absorption. The 
demonstrated laser action is stable and immune to moderate perturbations since the zero-mode is 
topologically protected by the applied symmetries. Realized in a hybrid III-V/silicon platform, our 
accomplished topological hybrid silicon microlaser supports large-area single-supermode operation, 
promising a highly-efficient optical source for integrated silicon photonics to robustly feed power for chip-
scale communication and computing. 


