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1. Introduction

The default treatment of mixed-cell properties, in the absence of a more compelling
model, is often taken via “volume averaging”, in which the averaged (or effective)
quantity κ̄, is obtained by weighing the species-component property values, κ j, by
their respective volume fractions, v j, for each of the n species found in the cell:

κ̄ =

n∑
j=1

v j κ j . (1)

With such an approach, the value of κ̄, for a two-species mixture, for example, will
vary linearly between κ2 and κ1, as v1 changes from 0 to 1, respectively.

The model set forth in ARL-TR-89791 provides an alternative approach to estimat-
ing the electrical conductivity of a mixed cell. One of the hallmarks of the model is
that it employs a statistical function F( f̂ ), which provides the likelihood of estab-
lishing point-to-point cross-cell connectivity as a function of the volume fraction of
conducting material in the domain.2

This F function is used to estimate the fraction of viable conducting pathways
through the cell that are associated with each combination of material species
present. While, on one hand, there is a preference for pathways that possess a higher
conductivity (relative to other pathways), the number of pathways available for a
given species combination is limited, on the other hand, by the combined volume
fraction of those species composing the pathway, through the application of the F

function.

2. Origins of the Functions F( f̂ ) and F( f )

The function F( f̂ ) provides the likelihood F that point-to-point cross-cell connec-
tivity can be established, given f̂ volume fraction of conducting material in the
cell. The derivation2 of the F function was made by metaphorically representing
the heterogeneous computational domain as an equivalent square network, com-
prising randomly distributed conducting and insulating linkages. The F function,
for a mixed cell that is idealized as a square 4×4 network of randomly distributed
conductors and insulators, is shown in Fig. 1b. In the original treatment, various
sizes of square network were considered (2×2, 3×3, 4×4, and a clipped 5×5), of
which the 4×4 shown in Fig. 1a is merely a representative example.
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Fig. 1 For a) the given 4×4 network, b) the likelihood of O-to-X network connectivity F, ex-
pressed as a function of either the local conduction probability f or the global conducting
fraction f̂ of the network links

Each m × m network representation has its own unique F( f̂ ) function. However,
they all share an S-shape similar to that seen in Fig. 1b. This S -shape represents
threshold behavior, in which the likelihood of connectivity remains very small until
the volume fraction of conducting material reaches a threshold. At the threshold, the
likelihood of connectivity changes rapidly. Beyond the threshold, the likelihood of
connectivity is very high, rapidly approaching a certainty of connection (i.e., F →

1).

The function F( f ), also derived in ARL-TR-8899 and shown in Fig. 1b, is closely
related to F( f̂ ). Whereas f̂ represents the proportion of total linkages in the network
that are conducting (and is, therefore, not a continuous domain for a finite network),
the term f instead represents a probability that any given linkage in the network is
conducting. As the number of linkages in the network grows without bound, the
two functions F( f̂ ) and F( f ) become indistinguishable. However, for small finite
networks, the F( f̂ ) function becomes sparsely populated and is less closely aligned
with F( f ), as seen, for example, in the 2×2 network2 of Fig. 2. Technically, the
F( f̂ ) function is only defined at the solid dots of Fig. 2b—the dashed lines are
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merely linear interpolations between the defined domain points of f̂ (with only four
linkages in the 2×2 network, the fraction f̂ of conducting linkages can only be the
five discrete values of 0/4, 1/4, 2/4, 3/4, or 4/4).
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Fig. 2 For a) the 2×2 square network shown, b) the probability of network connectivity, F,
with either f or f̂ as the independent variable

3. The Question of Volume Averaging

The curious question, which is the subject of this note, arises as to whether the
proposed electrical conductivity model of ARL-TR-8979 can, with the appropri-
ate set of assumptions and/or constraints, reduce to a volume-averaged equivalent
model, comparable to Eq. 1? The answer to this question is “yes”, provided that
two assumptions associated with that model1 are suitably revised. The first required
assumption concerns the type of network being used to approximate the morpho-
logical connectivity of the mixed cell. The second constraint necessary to achieve
the volume-averaging result concerns restricting the variety of material pathways
that can carry current in the mixed cell.

3.1 Mixed-Cell Network Morphology

The first step in getting the model of ARL-TR-89791 to mimic the response of
volume averaging is to choose a different network to metaphorically represent the

3



connectivity in a mixed cell. The m × m network topographies that were examined
in ARL-TR-88992 serve the useful purpose of creating a wide number of possible
circuits that traverse from points O to X, located on opposite sides of the network.
For example, the 4×4 network of Fig. 1a has 184 distinct pathways for moving
current from point O to X, should the paths prove conductive. Such a possibility
confirms our innate understanding of how current may travel across a heterogeneous
solid—a variety of pathways exist, but some of them may be preferred over others
based on their relative conductivities.

To take the first step in recovering a model behavior equivalent to volumetric aver-
aging, we need to simplify the network that is taken as the metaphorical equivalent
of our mixed cell. In particular, we must adopt the simplest of all networks, the
2×1 network, as depicted in Fig. 3, consisting of a single linkage between points O

and X and providing just a single pathway.
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Fig. 3 For a) the 2×1 network that constitutes a revised assumption to the model of ARL-TR-
8979, b) the probability of network connectivity, F, as a function of either f or f̂

Here, the F( f̂ ) function consists of two points, (0, 0) and (1, 1). This condition
merely recognizes the fact that, with a single linkage in the network, the fraction
of conducting linkages, f̂ , will either be exactly 0 or 1 and that the connectivity
of the network, F, hinges completely on the state of that single link. Therefore, it
makes sense to turn instead to F( f ) as the probabilistic descriptor required by the
model. The straight line depicted in Fig. 3b merely reflects the fact that, if the like-
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lihood of the single linkage being conductive is given by f , then the probability of
establishing connectivity across the 2×1 network is, likewise,

F( f ) = f (revised assumption/constraint). (2)

With this replacement to the F function, the result may be calculated employing the
method described in ARL-TR-8979.1 The resulting mixed-cell electrical conductiv-
ity, both with the originally adopted F function and with the simplified replacement,
is shown in Fig. 4. The result in Fig. 4b, while much closer to a fully linear result
associated with volume averaging, still possesses a small amount of nonlinearity.
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Fig. 4 Electrical conductivity of a two-species mixed cell, under the assumption of a) a 4×4 or
b) 2×1 network to model the connectivity of a mixed cell, resulting in different representations
for the F function

3.2 Electrical Pathway Constraint

In the model proposed in ARL-TR-89791 (and, thus, in the results of Fig. 4), there
is a hierarchy of conductive preference that favors electrical pathways of greater
conductivity. In the implementation adopted, if the material species are numbered
in order of decreasing conductivity, the pathway hierarchy is constrained to 1, 1∩2,
. . . , 1∩ · · · ∩n, for a mixed cell of n species. This ordering means that pathways that
traverse solely through the most conductive species {1} are preferred, but beyond
that, all pathways are compound, traversing through a multiplicity of species, pref-
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erentially given by the sets {1, 2}, {1, 2, 3}, . . . , {1, 2, · · · , n}. The rationale for this
hierarchy is described in ARL-TR-8979.

To achieve linearized behavior of electrical conductivity κ, which seems almost but
not quite achieved in Fig. 4b, the model to describe the conductivity of compound
pathways must be revised, by way of assumption. In particular, we must assume that
a given piece of matter cannot be part of two different pathways. Therefore, because
material species 1 composed the preferred pathways in the mixed-cell “network”,
pathways encompassing the 1∩2 set must employ the lower-conductivity species 2
exclusively, such that

κ1∩···∩ j = κ j (revised assumption/constraint). (3)

Pathways that traverse two or more species are unilaterally precluded under this
assumption, even though there is little physical rationale for it. It does, however,
serve to simplify the resulting equations. This assumption replaces Eq. 4 of ARL-
TR-8979.

4. Results

We can now turn to the question of how these two revisions will affect the calcu-
lation of electrical conductivity (for reference to what follows, please see Eqs. 4–7
in ARL-TR-8979). Under the assumption of Section 3.1 of this report, which leads
to Eq. 2 in the form of F(v) = v, the model of ARL-TR-8979 (Eq. 6) simplifies as
follows:

F1∪···∪ j = F
(∑ j

i=1 vi

)
=

∑ j
i=1 vi . (4)

This simplification, by way of Eq. 5 of ARL-TR-8979, leads directly to the result:

F1∩···∩ j = F1∪···∪ j − F1∪···∪ j−1 = v j . (5)

Take the assumption from Section 3.2, in the form of Eq. 3, along with the result of
Eq. 5, and insert them into Eq. 7 of ARL-TR-8979 to obtain the model expression
for κ:

κ = κ1∪···∪n =

n∑
j=1

F1∩···∩ j κ1∩···∩ j =

n∑
j=1

v jκ j . (6)

A comparison of Eq. 6 to the volume-averaged result of Eq. 1 reveals a match!
Graphically, Eq. 6 presents as shown in Fig. 5.
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Fig. 5 Electrical conductivity of a two-species mixed cell, incorporating the assumptions em-
bodied in Eqs. 2 and 3 to the model of ARL-TR-8979, captures the behavior of volume aver-
aging

Equation 6, by adopting the two assumptions embodied in Eqs. 2 and 3, captures the
behavior of the volume-averaged formulation. In no way is it being recommended to
employ the model in such a volume-averaged fashion. The model was indeed devel-
oped as an alternative to the volume-averaged approach. Nonetheless, the purpose
in showing the connection lies in providing a fuller context and understanding of
how the model of ARL-TR-8979 operates vis-à-vis the volume-averaged approach.

The result allows one to better critique the deficiency of the volume-averaged ap-
proach, by understanding what underlying assumptions are necessary to bring it
about. First, by forcing the use of a single-element network to serve as the metaphor-
ical equivalent of the mixed cell, one loses the essential threshold behavior known
to exist in distributed (heterogeneous) networks, as represented in Fig. 1b.

Secondly, the pathway restrictions that lead to Eq. 3 represent an unrealistically sim-
plistic notion that electrical pathways through a mixed cell cannot be compounded
from two or more species, as would otherwise be found in situ. This latter restric-
tion forcibly requires the abandonment of the underlying principle that the current
prefers a pathway of lesser resistance and instead treats each of the species in the
mixed cell as isolated therein.
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5. Conclusion

In this report, the mixed-cell electrical conductivity model introduced in ARL-TR-
89791 was reimagined, subject to a new set of constraints, in an effort to reproduce
a model equivalent to the technique known as volume averaging. The purpose of
this exercise is not to put forward the volume-averaging approach, but rather to
understand the technical specificities that separate the model of ARL-TR-8979 from
that of volume averaging.

This goal was successfully achieved through the adoption of two assumptive changes
in the underlying model. First, the network used to metaphorically represent the
mixed cell had to be ultimately simplified to a single linkage. In so doing, the ten-
dency toward threshold behavior is removed from the problem, such that the prob-
ability of network connectivity becomes directly proportional to the likelihood that
any single network linkage is conductive. Secondly, the materials of the mixed cell,
which are free to act in concert when placed in situ, must instead be assumed to
be internally isolated from each other so that electrical pathways across the cell
comprise a single material species only.*

With these two assumptive changes in place, the model of ARL-TR-8979 takes on
a behavior that has been shown to be mathematically equivalent to the approach
known as “volume averaging”. It is clear, however, that these two assumptions run
counter to our understanding of current flow through a heterogeneous medium.

First, we understand that, in order to disturb the conductivity of a conductor, it is
not enough to introduce a minute quantity of low/nonconducting species into the
domain—enough pathways can establish themselves around the inclusions so as
to retain near-optimal conductivity. Rather, the introduction of low/nonconducting
species must be of a magnitude beyond a threshold in order to substantially disrupt
the likelihood of establishing high-conductivity pathways. Second, we also under-
stand that, in reality, conductive pathways can establish themselves, which transit

*As pointed out by Berning,3 these two assumptive changes, taken together, are akin to thinking
of the mixed cell as a set of wires, conducting in parallel, one wire for each material species in the
mixed cell. All wires are of the same length, and the cross section of each wire is in proportion to the
volume fraction of the material species composing it. In such a configuration, each current pathway
traverses a single material species and the contribution toward the conductivity for each material
species is in proportion to its volume fraction.
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multiple, disparate species—there is no scientific justification for requiring that a
pathway be confined to a single material species.

These two arguments alone testify against the adoption of a mixed-cell conductiv-
ity model based on the principles of volume averaging. Therefore, they serve to
reinforce the notion that an alternative approach, perhaps like that introduced in
ARL-TR-8979, are better suited to the modeling of mixed-cell conductivity in the
context of numerical methods employing magnetohydrodynamic physics.
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