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1 Summary 
The Defense Advanced Research Projects Agency’s (DARPA) program on “Mining and 
Understanding Software Enclaves” (MUSE) put forth a grand challenge to leverage the 
institutional knowledge embedded in millions of lines of existing code corpora (“big code”) to 
revolutionize the field of software engineering by transforming the way software is developed. 
The PLINY project addressed this grand challenge by advancing three key technical areas in the 
MUSE program — Technical Area (TA) 2: Artifact Generators, TA 3: Mining Engine, and TA 4: 
Analytics. The results of our research have been published in over 40 peer-reviewed publications 
[1–40] and multiple open-source software releases. As described in these publications, the main 
advances have been in the following areas: 

1. Code search: We developed a new code-search engine named Source Forager [41]. Given a
query in the form of a C/C++ function, Source Forager searches for similar C/C++ functions
using a pre-populated code database generated from available code corpora. Source Forager
preprocesses the database to extract a unique set of syntactic and semantic code features that
capture different aspects of code. A search returns the top-k functions in the database that are
most similar to the query and allows for assigning different weights to different
syntactic/semantic code features. Our experiments show that the ranked results returned by
Source Forager are accurate and that query-relevant functions can be reliably retrieved even
when searching through a large code database that contains very few query-relevant functions.

2. Anomaly detection: We developed a novel Bayesian framework [21] that can learn
probabilistic specifications from large, unstructured code corpora, and then use these
specifications to detect anomalous, hence likely buggy, regions of code. This approach has been
implemented in an open-source system, called SALENTO [42], for finding application
programming interface (API) usage errors in Android programs. SALENTO learns specifications
using a combination of a topic model and a neural network model. Our experiments show that the
system can discover subtle errors in Android applications in the wild, and outperforms a comparable
non-Bayesian approach.

3. Test-based synthesis: Our early experiences with code search led to creating an approach to
automatic code synthesis in which a) the user provides an incomplete sketch of a program, b)
available code corpora are searched to return functions that are most similar to the input, c) formal
methods are used to generate candidate complete executable programs from the sketch and
search results, and d) user-provided test cases are used to prune the candidate set to those that
pass all tests. We developed three systems to demonstrate this approach — Splicer, SyPet and
Hunter.

With Splicer [12], the programmer provides a sketch that includes incomplete code, natural
language comments, and correctness requirements. A program synthesizer that interacts with a
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large, searchable database of program snippets then automatically completes the sketch into 
a program that meets the requirements. Splicer was implemented for the Java programming 
language, using a code corpus of over 3.5 million Java methods. 

SyPet [28] is a program synthesis tool that helps programmers to use Java libraries. The 
programmer provides SyPet with: (1) a signature of the method to be synthesized, (2) a set of test 
cases, and (3) a set of Java libraries. SyPet will automatically find a sequence of API calls from 
these Java libraries that will pass all test cases provided by the programmer. The key novelty 
in SyPet is the use of a compact Petri-net representation to model relationships between 
methods in an API. 

Hunter [30] is a tool that facilitates code reuse by finding relevant methods in large codebases 
and automatically synthesizing any necessary wrapper code for code adaptation. We have 
implemented Hunter as an Eclipse plug-in and it is available on Eclipse marketplace [43]. 

4. Evidence-based synthesis: To further reduce the burden on developers for providing test inputs 
and sketch programs, we also explored an alternate approach to code synthesis [7] that significantly 
reduces the input that a user needs to provide to a small amount of “evidence”. Examples of 
evidence include a small set of API calls and/or data types that are desired in the generated code. 
This approach is unique in that it trains a neural generator on program sketches rather than on 
complete source codes, and synthesizes code by sampling a posterior distribution over sketches 
and then concretizing samples from this distribution into type-safe programs. This approach 
was implemented in an open-source system named BAYOU [44] for generating API-heavy Java 
code, which demonstrated how the entire body of a method can be predicted given just a few 
API calls or data types that are desired in the method. 

5. Scalable infrastructure for search and learning: The above techniques for code search, 
anomaly detection, and code synthesis all rely on the ability to perform both scalable search 
and scalable learning on large code corpora. Since no currently available system can perform 
both kinds of operations in a scalable manner, we developed the open-source PLINYCompute 
system [1, 2, 10, 45]. PLINYCompute supports the development of high-performance, data-
intensive, distributed computing tools and libraries, making it especially well suited for 
scalable search and learning applications. It performs automatic, relational-database style 
optimizations on declarative commands to determine how best to stage distributed 
computations. This capability is enabled by a persistent object data model and associated 
memory management system designed specifically for high performance, distributed, data-
intensive computing, resulting in superior performance and scalability relative to distributed 
systems built on managed runtimes such as Java Virtual Machines (JVMs). 
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6. Extension project on identifying API misuse in JavaScript code: In this extension project, we 
performed a transition-related task mentored by GitHub as a potential transition partner1. 
Specifically, we focused on scanning JavaScript programs for API misuse by leveraging our 
earlier experiences with using big code for anomaly detection. While our past work on anomaly 
detection was prototyped on Java and C/C++ code, the extension project focused on Javascript, 
since it has a higher transition priority as the most popular programming language used in 
GitHub projects. We also prototyped our approach in JS-Smart, a pipeline that performs code 
mining and anomaly detection for JavaScript codes as described in more detail later in this 
report. 

  

                                                            
1 Note that our research is open and available to any industry partner interested in these capabilities. 
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2 Introduction 
Inspired by the goals of the DARPA MUSE program, the PLINY project has introduced 
technologies that simultaneously bring the vast experience of expert programmers and the rigor of 
automated tools to the fingertips of ordinary software developers. In this manner, PLINY leverages 
the institutional knowledge embodied in the vast corpus of existing software to simplify the 
creation of new software. Furthermore, the PLINY technologies extend the reasoning capabilities 
of the programmer through the use of automated analysis and synthesis tools. We believe that the 
technologies developed in the PLINY project will help address many of the productivity and cost 
challenges associated with software development today, and also reshape the way people think 
about programming in the future. 

From the perspective of a PLINY user, programming is no longer a solitary exercise where the only 
sources of help are the debugger and the occasional helpful posts on websites like Stack Overflow. 
PLINY instead interacts with the programmer to complete program sketches, find bugs, and suggest 
useful fixes. The programmer will no longer need to spend unproductive hours trying to understand 
the undocumented intricacies of a complex library, but can instead ask PLINY to help fill in 
boilerplate code and identify inconsistencies in API usage. These capabilities will not only help 
novice programmers but will also dramatically increase the productivity of expert software 
developers. Figure 1 summarizes this overall PLINY vision, which to a software developer can 
appear as “magic in the cloud” that uses the knowledge in millions of software repositories to 
enable advanced Code Search, Anomaly Detection, and Code Synthesis, all powered by Scalable 
Infrastructure in the cloud. 

 
Figure 1:  The PLINY vision. 

The PLINY project realized the vision in Figure 1 by advancing three key technical areas in the 
MUSE program — TA 2: Artifact Generators, TA 3: Mining Engine, and TA 4: Analytics — as 
indicated in Figure 2. To enable the “magic in the cloud” the PLINY system crawls large software 
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repositories (“code corpora”) asynchronously in batch mode, similar to web crawlers used by 
search engines. However, unlike search engines, the artifact generation encompassed by TA 2 
includes feature extraction from source code that is driven by a sophisticated program analyses in 
the PLINY Language Framework. Our work related to TA 3 is embodied in the PLINYCompute 
engine which supports both code search and machine learning (ML) on code artifacts with high 
scalability. Finally, TA 4 represents the part of the PLINY system that interfaces with developers 
at all expertise levels by leveraging the PLINY Language Framework, the PLINY Reasoning 
Framework, and the PLINYCompute engine, to enable code search, anomaly detection, and code 
synthesis capabilities that are central to enhancing developer productivity. 

 
Figure 2:  Realizing the PLINY vision. 

In the remainder of this report, we elaborate on the methods, assumptions, and procedures (Section 
3) and present and discuss results (Section 4) for key components of the PLINY project. 

The results of our research have been disseminated in multiple software releases and 40 peer-
reviewed publications [1–40] presented at the following top-tier venues:  

International Conference on Computer-Aided Verification (CAV) 2018; 

European Symposium on Programming (ESOP) 2016; 

Association for Computing Machinery (ACM) Special Interest Group on Software 
Engineering (SIGSOFT)/Symposium on Foundations of Software Engineering (FSE) 2016 

ACM SIGSOFT Joint Meeting on European Software Engineering Conference (ESEC) and 
Symposium on Foundations of Software Engineering (ESEC/SIGSOFT FSE) 2017, 2018; 

International Conference on Learning Representations (ICLR) 2018; 

International Conference on Machine Learning (ICML) 2018; 
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Institute of Electrical and Electronics Engineers (IEEE) International Conference on 
Software Engineering (ICSE) 2018; 

The Network and Distributed System Security Symposium (NDSS) 2017; 

Object Oriented Programming, Systems, Languages and Applications (OOPSLA) 2015, 
2017, 2018; 

ACM Special Interest Group on Programming Languages (SIGPLAN) Conference on 
Programming Language Design and Implementation (PLDI) 2015, 2016, 2017, 2018. 

ACM SIGPLAN Special Interest Group on Algorithms and Computation Theory 
(SIGACT) Symposium on Principles of Programming Languages (POPL) 2016, 2017, 
2018; 

Proceedings of the Very Large Data Bases (VLDB) Endowment (PVLDB) 2019; 

ACM Special Interest Group on Management of Data (SIGMOD)/Principles of Database 
Systems (PODS) International Conference on Management of Data 2018; 

ACM Transactions on Programming Languages and Systems (TOPLAS); 

International Conference on VLDB 2018; and 

International Conference on Verification, Model Checking, and Abstract Interpretation 
(VMCAI) 2016, 2017. 
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3 Methods, Assumptions and Procedures 
This section includes details on three key components of the PLINY project: 

1. Anomaly detection: We developed a novel Bayesian framework [21] that can learn 
probabilistic specifications from large, unstructured code corpora, and then use these 
specifications to detect anomalous, hence likely buggy, regions of code. This approach has 
been implemented in an open-source system, called SALENTO [42], for finding API usage 
errors in Android programs. SALENTO learns specifications using a combination of a topic 
model and a neural network model. Our experiments show that the system can discover 
subtle errors in Android applications in the wild, and outperforms a comparable non-
Bayesian approach. 

2. Evidence-based Synthesis: To further reduce the burden on developers for providing test 
inputs and sketch programs, we also explored an alternate approach to code synthesis [7] that 
significantly reduces the input that a user needs to provide to a small amount of “evidence”. 
Examples of evidence include a small set of API calls and/or data types that are desired in 
the generated code. This approach is unique in that it trains a neural generator on program 
sketches rather than on complete source codes, and synthesizes code by sampling a posterior 
distribution over sketches and then concretizing samples from this distribution into type-safe 
programs. This approach was implemented in an open-source system named BAYOU [44] for 
generating API-heavy Java code, which demonstrated how the entire body of a method can 
be predicted given just a few API calls or data types that are desired in the method. 

3. Extension project on identifying API misuse in JavaScript code: In this extension project, we 
performed a transition-related task mentored by GitHub as a potential transition partner2. 
Specifically, we focused on scanning JavaScript programs for API misuse by leveraging our 
earlier experiences with using big code for anomaly detection. While our past work on 
anomaly detection was prototyped on Java and C/C++ code, the extension project focused 
on Javascript, since it has a higher transition priority as the most popular programming 
language used in GitHub projects. We also prototyped our approach in JS-Smart, a pipeline 
that performs code mining and anomaly detection for JavaScript codes as described in more 
detail later in this report. 

Additional aspects of our project are described in our publications [1–41], and include the Source 
Forager code-search engine [41]; test-based synthesis using the Splicer [12], SyPet [28] and Hunter 
[30] technologies and tools; and, the PLINYCompute engine [1, 2, 10], which supports both code 
search and ML on code artifacts with high scalability. 

                                                            
2 Note that our research is open and available to any industry partner interested in these capabilities. 
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3.1 Anomaly Detection 

3.1.1 Overview 

In this section, we present an overview of our approach, with the help of an illustrative example. 

Modeling Framework and Workflow 

Our approach has the following key aspects. First, we assume the existence of a specification Z for 
each program F. However, unlike traditional approaches that start with a formal specification, Z in 
our context is not observable. Instead, what is observable is XF, a set of syntactic features for F. 
The features are evidence, or data, that inform our opinion as to the unseen specification Z. In 
Bayesian fashion, our uncertainty about Z is formalized as a posterior distribution P(Z|X = XF), 
where Z is a random variable over specifications and X is a random variable over features. This 
distribution assigns higher likelihood to a specification if we believe it is more likely to be the 
correct specification for programs that “look like” F, given the evidence. 

Second, we allow for uncertainty regarding the behaviors Y — defined as sequences of observable 
actions — that a given program F produces. This uncertainty comes from the fact that we do not 
fully know the inputs on which the program will run, and is captured by a distribution PF(Y), where 
Y is a random variable ranging over behaviors. The framework also allows for a distribution          
P(Y|Z = Z) over the behaviors of programs that implement a given specification Z. This uncertainty 
can come from the fact that we do not know the inputs to implementations of Z, or the fact that we 
may have never seen a specification exactly like Z before, so that we have to guess the behavior of 
a program implementing Z. Our a priori belief about the relationships between specifications and 
the features and behaviors of their implementations is given by a joint distribution P(X, Y, Z). Our 
third key idea is that this distribution is informed by data extracted from a corpus of code. This 
information is taken into account formally during a learning phase that fits the joint distribution 
prior model to the data. 

Finally, in the inference phase, we frame bug detection as a problem of computing a quantitative 
anomaly score. In traditional correctness analysis, the semantics of programs and specifications 
are given by sets, and one checks if the set difference between a program and a specification is 
empty. Our formulation is a quantitative generalization of this and defines the anomaly score for 
a program F as the Kullback-Leibler divergence (KL-divergence) [46] between the behavior 
distribution PF(Y) for F, and the posterior distribution P(Y|X = XF) that the model expects from F. 
Correctness analysis amounts to checking whether this score is below a threshold. 
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Figure 3:  Workflow, with instantiations in grey boxes 

The workflow of our method is shown in Figure 3. The training and inference phases are denoted 
by green (solid) edges and red (dashed) edges respectively. During training, from each program Fi 
in a corpus of programs F1, F2, . . ., we extract a set of features XFi , and sample a set of behaviors 
from the distribution PFi(Y), forming the training data. From this data, we learn the joint distribution 
P(X, Y, Z|M), where M represents the model parameters. 

During inference, we extract the features XF of a given program F, and query the trained model for 
the distribution P(Y|X = XF, M) that tells us how F should behave. Separately, we obtain the 
distribution PF(Y) over observed behaviors of F. The anomaly score of F is then computed as the 
KL-divergence between these distributions. 

Instantiating the Framework 

An instantiation of our framework must concretely define program features and behaviors, and the 
way in which the distributions P(X, Y, Z|M) and PF(Y) are obtained. We consider a particular 
instantiation, embodied in the SALENTO tool, where the goal is to learn patterns in the way 
programs call methods in a set of APIs. We abstract each such call as a symbol from a finite set, 
and define a behavior Y as a sequence of symbols. The feature XF for a program F is the set of 
symbols that F can generate. 

A key idea in this instantiation is to capture hidden specifications using a topic model. Here, “topic” 
is an abstraction of the hidden semantic structure of a program. A specification for a program F is 
a vector of probabilities whose i-th component is the probability that F follows the i-th topic. For 
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example, the topics in a given corpus may correspond to graphical user interface (GUI) programs 
and bit-manipulating programs. A program that makes many calls to GUI APIs will likely have a 
higher probability for the former topic. 

Specifically, we use Latent Dirichlet Allocation (LDA) [47] to learn a joint distribution                  
P(Z, X|M) over the topics and features of programs. A topic-conditioned recurrent neural network 
model [48], is used to learn conditional distributions of the form P(Y|Z = Z, M). The joint 
distribution P(X, Y, Z|M) that our framework maintains can be factored into these two 
distributions. 

Our probabilistic model PF(Y) for behaviors of programs F is not data-driven. This is because to 
learn this distribution statistically, we would need data on the inputs that F receives in the real 
world. Since such data is hard to get, we simply assume a definition of PF(Y). While many such 
definitions are possible, the one we pick models F as a class of automata, called generative 
probabilistic automata [49, 50]. The distribution PF(Y) is simply the semantics of this automaton. 

Example 

Consider the problem of finding bugs in GUIs, where the right and wrong ways of invoking GUI 
API methods are seldom formally defined. Specifically, consider a dialog box in a GUI that does 
not give the user an option to close the box and a dialog box that does not display any textual 
content. Clearly, such boxes violate user expectations and are buggy in that sense. Two such boxes, 
produced by real-world Android apps, are shown in Figure 4(a). 

 
Figure 4:  (a) Abnormal dialog boxes discovered by our anomaly detection (b) Code snippets corresponding to the 

dialog boxes 
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The code snippets responsible for these boxes are shown in Figure 4. For example, in Figure 
4(b)(i), b is a dialog box; the method b:setItems(…) adds content to the dialog box; the method 
b:show() displays the box. If the branches in lines 4 and 7 are not taken, then b.show() opens the 
box without a “close” button. Note that the sequences of API calls that lead to these bugs are not 
forbidden by the API, and would not be caught by a traditional program analysis. In contrast, a 
statistical method like ours can observe thousands of programs and learn that these sequences are 
abnormal. 

Operationally, to debug this program using SALENTO, we generate features and behaviors from a 
corpus of Android apps. Using these features, LDA learns to classify programs by the APIs they 
use and to also distinguish between different usage patterns in the same API. Consider the 
examples of dialog box creation in Figure 4(b), where program F1 in (b)(i) explicitly specifies the 
items that go into the box, and the program F2 in (b)(ii) provides a View that encompasses the items 
that go into the box. LDA can assign different topics to these usage patterns. For example, the 
pattern used in F1 could be assigned the first topic, resulting in a topic vector (Z) 〈0:98; 0:01; 0:01〉, 
and the pattern used in F2 could be assigned the second topic, resulting in the topic vector 〈0:01; 
0:98; 0:01〉. 

Conditioned on such a topic vector Z, a topic-conditioned recurrent neural network (RNN) provides 
the probability of an API call sequence Y, that is, P(Y = Y|Z = Z). For instance, given the former 
topic vector, a topic-conditioned RNN trained on thousands of examples of topics and behaviors 
would provide a high probability to a sequence such as: 

new A() setTitle(…) setItems(…) show() 

and a low probability to an abnormal sequence such as 

new A() setTitle(…) show() 

as it shows a dialog without any content. However, our probabilistic automaton model PF1(Y) of F1 
assigns about 0.66 and 0.33 probability, respectively, to these sequences. In general, the KL-
divergence between the two distributions is high, causing F1 to be flagged as anomalous. 

3.1.2 Bayesian Specification Framework 

In this section, we formalize our framework, along with the problems of specification learning and 
anomaly detection. 

Program Behaviors and Features 

Our framework is parameterized by a programming language. Each program in the language has 
syntax and operational semantics. Because the details of the language do not matter to the 
framework, we do not concretely define this syntax and semantics. Instead, we assume that the 
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syntax of each program F can be abstracted into a feature set XF. For instance, such features can 
include syntactic constructs, assertions, and natural language comments. We also assume that 
program actions during execution can be abstracted into a finite alphabet Σ of observable symbols 
(including an empty symbol ϵ). We model program executions as behaviors Y, defined to be words 
in Σ*. A behavior is the result of a probabilistic generative process that takes place when a program 
is executed. Accordingly, we assume a probabilistic behavior model of F, defined as a distribution 
PF(Y) over the behaviors of F. 

Specification Learning 

Our framework builds a probabilistic model P(X, Y, Z) that factorizes as P(X, Y, Z) =                                  
P(Y|Z)P(X|Z)P(Z). The model captures the intuition that every program is implementing some 
unknown specification in the space of all specifications (P(Z)), which determines the program’s 
behavior (P(Y|Z)) and features (P(X|Z)). 

Building this model requires data, in the form of a large corpus of example programs. As in all 
statistical learning methods, we first develop an appropriate statistical model, which is typically a 
distribution family, and then learn that model—choose the parameters for the model family so they 
match reality—by training it on data. To this end, P(X, Y, Z) also takes as input a set of model 
parameters M. Fully parameterized, this distribution becomes: 

P(X, Y, Z|M) = P(Y|Z, M) P(X|Z, M)P(Z|M)    (1) 

The available data are then used to choose an appropriate set of parameters M. For this, we follow 
the standard recipe of maximum likelihood [51]. Suppose that we are given a large corpus of 
programs {F1,…, FN}, and for each program Fi we have extracted the pair (XFi, 〈Yi,1 Yi,2 …〉) 
consisting of its feature set and a number of examples of its behavior sampled from its behavior 
model. Given this data, our goal is to choose M that maximizes the function: 

 
Note that we integrate out Z, since this is an unseen random variable, as we typically do not know 
the value of the precise specification associated with each code in the corpus. Once M is learned, 
the distribution would represent our prior belief as to what the “typical” specification, behavior 
and features look like, informed by the programs in the corpus. 

Anomaly Detection 

Suppose that we are given a new program F and would like to obtain a quantitative measure of the 
“bugginess” of F. On the one hand, since we already have learned a joint distribution over 
behaviors, features, and specifications, P(X, Y, Z|M), we can condition this distribution with the 
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newly observed XF, to obtain the posterior: 

 
From Equation 1, we have: 

 
Applying Bayes’ rule to the term P(X = XF|Z, M) we rewrite P(Y, Z|X = XF, M) as: 

 
From this, since we do not know the precise specification that F is implementing, we can integrate 
out Z to obtain the (marginalized) posterior distribution over behaviors: 

 
This form is amenable to Monte Carlo integration, which estimates an integral through random 
sampling. Intuitively, it gives us a distribution over the program behaviors Y, which would be 
anticipated, given learned parameters M, for a program with a feature set XF. 

On the other hand, we have a distribution PF(Y) over the actual behaviors of F when it is executed. 
The final step is to then compare this actual distribution with the anticipated distribution over 
behaviors, that is, P(Y|X = XF, M). A measure such as the Kullback-Leibler divergence [46] between 
distributions is appropriate here. The KL-divergence between two distributions P1 and P2 over the 
domain i is a quantitative measure defined as: 

 
Using this measure, we can compute the anomaly score of F by setting P1 and P2 to the distributions 
PF(Y) and P(Y|X = XF, M) respectively, and ranging i over the domain of all possible program 
behaviors in the language Σ*: 
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Choosing an Abstraction 

When instantiating the framework, the exact form of the feature set XF must be chosen with some 
care. If the feature set XF does not provide any abstraction for the program (i.e., XF is the program 
itself) and the model and learner are arbitrarily powerful, then P(Y|X = XF, M) (Equation 2) could, 
in theory, describe the compiler and symbolic executor used to produce the training data. This 
would mean that the KL divergence (Equation 3) is zero for any program. 

When applying the framework to a problem, we protect against this possibility by choosing a 
feature set XF that abstracts the program adequately. For example, when debugging API usage, it 
makes sense to choose XF as the bag of API calls made by the code. This ensures that                          
P(Y|X = XF, M) is limited to attaching probabilities to sequences that can be made out of those calls, 
and it is impossible for the learner to “learn” to compile and execute a program. 

3.1.3 Instantiation of the Framework 

Now we present a concrete instantiation of our framework. 

Probabilistic Behavior Model PF(Y) 

First, our instantiation includes a definition of the probabilistic behavior model PF(Y). This 
definition relies on the abstraction of programs as generative probabilistic automata [50, 52]. 

Program Model 

A generative probabilistic automaton is a tuple F = 〈Q, Σ, q0, QA, δ〉 where Q is a finite set of states, 
Σ is the alphabet of observable symbols that was introduced earlier, q0 ∈ Q is the initial state,       
QA ⊆ Q is a set of final or accepting states, and δ: Q × Σ × ℝ(0,1) × Q is a transition relation. We 
have δ(qi, s, p, qj) if the automaton can transition between states qi and qj with a probability                 

p ∈ (0, 1), generating the symbol s. (We write 𝑞𝑞𝑖𝑖  
𝑠𝑠,𝑝𝑝
��  𝑞𝑞𝑗𝑗 if such a transition exists.) Transitions 

with probability 0, or infeasible transitions, are excluded from the automaton. 

A program in a high-level language is transformed into the above representation through symbolic 
execution [53] in a preprocessing phase. Symbolic execution runs a program with symbolic inputs 
and keeps track of symbolic states, analogous to a program’s memory. The symbolic states 
encountered become the states Q, and the accepting states QA are typically the states at a final 
location (or some location of interest) in the program. Unbounded loops can be handled by 
imposing a bound on symbolic loop unrolls, or through a predicate abstraction of the program to 
make variable domains finite. The detection of infeasible states—in general an undecidable 
problem—depends on the underlying theorem prover that is used. 

As symbolic execution is a standard method in formal methods [54–56], this section only gives an 
example of the method’s use. As it is applied at a preprocessing level, we often use the term 
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“program” to refer to an automaton generated via symbolic execution, rather than a higher-level 
program to which preprocessing is applied. 

 

 

Semantics 

A run 𝜋𝜋 of F is defined as a finite sequence of transitions 𝑞𝑞𝑖𝑖  
𝑠𝑠1,𝑝𝑝1�⎯�  𝑞𝑞𝑗𝑗

𝑠𝑠2,𝑝𝑝2�⎯� …
𝑠𝑠𝑛𝑛,𝑝𝑝𝑛𝑛�⎯⎯� 𝑞𝑞𝑛𝑛 beginning at 

the initial state q0. 𝜋𝜋 is accepting if qn ∈ QA. The probability of 𝜋𝜋 is 𝑃𝑃(𝜋𝜋) = ∏ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 . Every run 𝜋𝜋 

generates a behavior Y ∈ Σ*, denoted as ‖𝜋𝜋‖ = 𝑠𝑠1𝑠𝑠2 … 𝑠𝑠𝑛𝑛. Let ∏𝐹𝐹 be the set of all accepting runs 
of F, and ∏𝐹𝐹(Y) ⊆ ∏𝐹𝐹 be the set of all accepting runs 𝜋𝜋 such that ‖𝜋𝜋‖ = Y. 

The probabilistic behavior model PF(Y) : Σ* → [0, 1] is: 

 
where 𝜈𝜈 = ∑ 𝑃𝑃(𝜋𝜋)𝜋𝜋∈Π𝐹𝐹  is a normalization factor. 

It is easy to see that PF(Y) defines a probability distribution over behaviors. To generate a “random” 
behavior of F, we simply sample from the distribution PF(Y). 

Features 

Given a program F, the feature set XF is defined as {𝑠𝑠|𝑞𝑞𝑖𝑖
𝑠𝑠,𝑝𝑝
�� 𝑞𝑞𝑗𝑗 ∈ 𝛿𝛿}, i.e., the set of all non-empty 

symbols in the transition system of F. 

 
Figure 5:  Automation for the example in Figure 4(b)(i) 

Example. 

The automaton for the code in Figure 4(b)(i) is shown in Figure 5. Each “state” in the automaton 
is labeled with a program location, with multiple instances of the same location being primed. The 
initial state is the first location, and the accepting states, in bold, are all instances of a (special) 
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terminal location T in the program. The transitions follow the structure of the code (for brevity, we 
collapse sequential statements into a single transition), emitting as symbols API methods called at 
each location. 

Note that we gave a uniform probability at each state to transition to the next possible states, but 
this can be controlled through other means. For instance, one can apply model counting on a branch 
condition and compute the probability of the program executing one branch over another. Such a 
definition is not necessarily a better choice than ours, as it would assign low probabilities to corner 
cases that get triggered on a small number of inputs but are often of interest to users of static 
analysis. The two definitions simply make different tradeoffs. We use a uniform distribution at 
branches because it is simpler and worked well in our experiments. 

{new A(), setTitle(…), setItems(…), show()} is the feature set for this program. There are three 
accepting runs of F, and two behaviors generated by these accepting runs: 

Y1 = new A() setTitle(…) setItems(…) show() 

Y2 = new A() setTitle(…) show() 

We have ν = 1:0, the sum of the probabilities of all accepting runs. Hence, PF(Y1) = (0.33 + 0.33)/1.0 
= 0.66 and PF(Y2) = 0.33. 

Assume now that after training on a large number of behaviors, the model had learned that 
conditioned on specifications such as 〈0.98; 0.01; 0.01〉 (that gave a high probability to the first 
topic), program behaviors tend to always add a title and items to dialog boxes. This might result 
in the behavior Y1 having a very high probability, say 0.99, and all other behaviors having a very 
low probability. Particularly, a behavior that only calls setTitle without setItems would be assigned 
a very low probability, say, 10-5. In our program F, we saw that PF(Y1) = 0.66 and PF(Y2) = 0.33, and 

the probability of any other Y is 0. Thus, the anomaly score of F is: 0.66 log 0.66
0.99

 + 0.33 log 0.33
10−5

0.33 

= 3.16. Suppose now, that the state 11′ in the program model was infeasible. Then, both accepting 
runs in the model would only generate Y1, and so PF(Y1) = 1. The anomaly score of this “correct” 

program would then be log 1
0.99

 = 0.01. 

Topic Models for P(Z,X|M) 

Topic models are used in natural language processing to automatically extract topics from a large 
number of “documents” containing textual data as words. In our case, a document is the feature 
set of a program, words are symbols from the observable alphabet that a program uses, and the 
topic distribution of a document is its unknown specification. 

LDA [47] is a popular topic model that models the generative process of documents in a corpus 
where each document XFi contains a bag of words. The inputs to LDA are the number K of topics 
to be extracted, and two hyper-parameters α and η. LDA models a document as a distribution over 
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topics, and a topic as a distribution over words in the vocabulary. An LDA model is characterized 
by the variables: (i) α and η, hyper-parameters of a Dirichlet prior that chooses the topic 
distribution of each document and the word distribution of each topic, respectively, (ii) ZFi, the 
topic distribution of document XFi, and (iii) βk, the word distribution of topic k. 

The result of training an LDA model is a learned value for all the latent variables α, η, ZFi and βk, 
which forms our model parameter M. During inference, we are given a document XF, and we would 
like to compute the posterior distribution P(Z|X = XF, M). Since LDA has already learned a joint 
distribution P(Z, X|M), this is simply a matter of conditioning this distribution with the newly 
observed XF to get a posterior distribution over Z, which is often approximated through a technique 
called Gibbs sampling [57]. 

Recurrent Neural Networks for P(Y|Z, M) 

Neural networks have been used to solve classification problems such as image recognition and 
part-of-speech tagging. These problems involve classifying an input x into a set of (output) classes 
y, using the conditional distribution P(y|x, M). 

Suppose we are given a value of x: a given sequence of symbols (characters) s1s2…st-1 where each 
symbol is from the alphabet Σ, and we would like the model to generate the next symbol st. We 
can cast this generative problem as a classification task by creating x1x2…xt-1, where each xk is the 
one-hot vector of sk, and querying the model to “classify” the sequence x1x2…xt-1 into |Σ| classes. 
The output vector yt is then interpreted as a distribution over Σ, from which a symbol st can be 
sampled [58]. Let us denote the probability of a symbol s given by the distribution yt as yt(s). 

A topic-conditioned neural network [48] takes, in addition to x, an input Z representing the topic 
distribution of a document obtained from a topic model. To handle unbounded length input 
sequences, a recurrent neural network is used. An RNN uses a hidden state to neurally encode the 
sequence it has seen so far. At time point t, the hidden state ht and the output yt are computed as: 

 
where W, V, U and T are the weight matrices of the RNN, bh and by are the bias vectors of the 
hidden states and outputs respectively, f is a non-linear activation function such as the sigmoid, 
and g is a softmax function that ensures that the output is a distribution. 

Training the model involves defining an error function between the output of the RNN and the 
observed output in the training data. Specifically, if the training data is of the form                            
(XFi, 〈Yi,1, Yi,2,…〉), then each training step of the RNN will consist of the input x being Yi,j, target 
output y being Yi,j shifted by one position to the left (since at time point t the output yt is interpreted 
as the distribution over the next symbol in the sequence), and Z being a sample from                    
P(Z|X = XF, M) given by the trained topic model. A standard error function such as cross-entropy 
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between the output of the RNN and the target output can be used. 

Since the error function and all non-linear functions used in the RNN are differentiable, training 
is done using stochastic gradient descent. The result of training is a learned value for all matrices 
in the RNN, which together form a part of our model parameter M. 

During inference, we are given a value Z of Z and a particular Y = s1s2…sn, and would like to 
compute P(Y=Y|Z=Z, M). This is straightforward: we set xt as the one-hot vector of st for 1 ≤ t ≤ n. 
Then, P(Y = Y|Z = Z, M) = ∏ 𝑦𝑦𝑡𝑡(𝑠𝑠𝑡𝑡+1)𝑛𝑛−1

𝑡𝑡=1  where yt is computed using Equation 6. 

Estimation of the Anomaly Score 

There are two difficulties associated with computing the anomaly score in our instantiation of the 
framework. First, in general, the computation in Equation 4 requires summing over a possibly 
infinite number of program behaviors Y, which is not feasible. Second, it also requires computing 
P(Y|X = XF, M), which in turn requires integrating out the unknown specification Z (Equation 2). 

Both of these difficulties can be addressed via sampling. We note that in general, to estimate a 
summation of the form ∑ 𝑃𝑃1(𝑖𝑖)𝑃𝑃2(𝑖𝑖)𝑖𝑖∈𝐼𝐼  where P1(i) is a probability mass function over the 
(possibly) infinite domain I and P2 is a function on I, it suffices to take a number of samples             
i1, i2,…, im ~ P1(i). One can then use: 

 
as an unbiased estimate for the desired sum. It is well known from standard sampling theory that 
the variance of this estimator, denoted as σ2, reduces linearly as m increases. 

We can apply this process to estimate the anomaly score for F by letting the domain I be the set of 
all possible behaviors in Σ*, and sampling a large number of behaviors Y with probability 
proportional to PF(Y), then letting P2(Y) = log(PF(Y = Y)) – log(P(Y = Y|X = XF, M)) and using the 
estimator described above. We can keep sampling until the variance of the estimate is sufficiently 
small. 

Fortunately, sampling a behavior from the distribution PF(Y) is easy: we can use rejection sampling 
[59] to sample an accepting run 𝜋𝜋 of F and then simply obtain its behavior Y = ‖𝜋𝜋‖. However we 
do not yet have a complete solution to our problem. The difficulty is that for a sampled behavior 
Y, it is not possible to compute P2(Y = Y) easily because of two reasons. First, the term PF(Y = Y) 
(Equation 5) requires summing over possibly infinite number of accepting runs ∏𝐹𝐹, and second, 
as mentioned before, computing P(Y = Y|X = XF, M) requires integrating over the unseen Z value. 

To handle this, we extend our sampling-based algorithm. Rather than just sampling behaviors, we 
sample the set I of (Y, ∏𝐹𝐹� , 𝑍𝑍𝐹𝐹�) triples, where ∏𝐹𝐹�  is itself a set of accepting runs of F sampled using 
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the same method, and 𝑍𝑍𝐹𝐹� is a set of values sampled from P(Z|X = XF, M). The latter set of samples 
can easily be obtained via Gibbs sampling. One could then estimate the divergence as: 

 
where ∏𝐹𝐹� (Y) is the set of paths 𝜋𝜋 ∈ ∏𝐹𝐹�  such that ‖𝜋𝜋‖ = Y. The sum in the first log term estimates 
the fraction of sampled accepting runs whose behavior is Y, thus estimating PF(Y = Y), and the sum 
in the second log term estimates P(Y = Y|X = XF, M). 

The problem is that this estimate will be biased since one cannot commute the expectation operator 
E with a logarithm. That is: 

 
A similar problem exists for the second summation used to estimate the logarithm of                         
P(Y = Y|X = XF, M). Intuitively, this bias is not surprising, since an over-estimate for the probability 
PF(Y = Y) by some constant amount is likely to have little effect on an estimate of the logarithm of 
the probability. However, an under-estimate by the same amount can cause a radical reduction in 
the estimate of the logarithm, and we expect a negative bias. 

A sampling-based estimate for this bias can be computed using a Taylor series expansion about 
the expected value of the biased estimator, which obtains an expression for the bias in terms of the 
central moments of a Normal distribution; estimating those moments leads to an estimate for the 
bias. Assume that this estimator is encapsulated in a procedure bias(Y, ∏𝐹𝐹� , 𝑍𝑍𝐹𝐹�) that computes the 
bias of an estimate. Our final estimate for the anomaly score is: 

 

3.2 Evidence-based Synthesis 

3.2.1 Problem Statement 

Assume a universe ℙ of programs and a universe 𝕏𝕏 of labels. Also assume a set of training 
examples of the form {(X1, Prog1), (X2, Prog2),…}, where each Xi is a label and each Progi is a 
program. These examples are sampled from an unknown distribution Q(X, Prog), where X and 
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Prog range over labels and programs, respectively.3 

We assume an equivalence relation Eqv ⊆ ℙ × ℙ over programs. If (Prog1, Prog2) ∈ Eqv, then 
Prog1 and Prog2 are functionally equivalent. The definition of functional equivalence differs across 
applications, but in general it asserts that two programs are “just as good as” one another. 

The goal of conditional program generation is to use the training set to learn a function g : 𝕏𝕏→ℙ 
such that the expected value E[I((g(X), Prog) ∈ Eqv)] is maximized. Here, I is the indicator 
function, returning 1 if its boolean argument is true, and 0 otherwise. Informally, we are attempting 
to learn a function g such that if we sample (X, Prog) ~ Q(X, Prog), g should be able to reconstitute 
a program that is functionally equivalent to Prog, using only the label X. 

Instantiation 

In this project, we consider a particular form of conditional program generation. We take the 
domain ℙ to be the set of possible programs in a programming language called AML that captures 
the essence of API-heavy Java programs. AML includes complex control flow such as loops, if-
then statements, and exceptions, access to Java API data types, and calls to Java API methods. 
AML is a strongly typed language, and by definition, ℙ only includes programs that are type-safe.4 
To define labels, we assume three finite sets: a set Calls of possible API calls in AML, a set Types 
of possible object types, and a set Keys of keywords, defined as words, such as “read” and “file”, 
that often appear in textual descriptions of what programs do. The space of possible labels is             
𝕏𝕏 = 2Calls × 2Types × 2Keys (here 2S is the power set of S). 

Defining Eqv in practice is tricky. For example, a reasonable definition of Eqv is that (Prog1; Prog2) 
∈ Eqv iff Prog1 and Prog2 produce the same outputs on all inputs. But given the richness of AML, 
the problem of determining whether two AML programs always produce the same output is 
undecidable. As such, in practice, we can only measure success indirectly, by checking whether 
the programs use the same control structures and whether they can produce the same API call 
sequences. 

Example 

Consider the label X = (XCalls, XTypes, XKeys) where XCalls = {readLine} and XTypes and XKeys are empty. 
Figure 6(a) shows a program that our best learner stochastically returns given this input. As we 
see, this program indeed reads lines from a file, whose name is given by a special variable $String 
that the code takes as input. It also handles exceptions and closes the reader, even though these 
actions were not directly specified. 

                                                            
3 We use italic fonts for random variables and sans serif — for example X — for values of these variables. 
4 In research on programming languages, a program is typically judged as type-safe under a type environment, 
which sets up types for the program’s input variables and return value. Here, we consider a program to be type-
safe if it can be typed under some type environment. 
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Figure 6:  Programs generated by BAYOU with the API method name readLine as a label. Names of variables of type 
T whose values are obtained from the environment are of the form $T. 

Although the program in Figure 6-(a) matches the label well, failures do occur. Sometimes, the 
system generates a program as in Figure 6-(b), which uses an InputStreamReader rather than a 
FileReader. It is possible to rule out this program by adding to the label. Suppose we amend XTypes 
so that XTypes = {FileReader}. BAYOU now tends to only generate programs that use FileReader. 
The variations then arise from different ways of handling exceptions and constructing FileReader 
objects (some programs use a String argument, while others use a File object). 

3.2.2 Technical Approach 

Our approach is to learn g via maximum conditional likelihood estimation (CLE). That is, given a 
distribution family P(Prog|X, θ) for a parameter set θ, we choose θ* = argmaxθ Σi log P(Progi|Xi, 
θ). Then, g(X) = argmaxProgP(Prog|X, θ*). 

The key innovation of our approach is that here, learning happens at a higher level of abstraction 
than (Xi, Progi) pairs. In practice, Java-like programs contain many low-level details (for example, 
variable names and intermediate results) that can obscure patterns in code. Further, they contain 
complicated semantic rules (for example, for type safety) that are difficult to learn from data. In 
contrast, these are relatively easy for a combinatorial, syntax-guided program synthesizer to deal 
with. However, synthesizers have a notoriously difficult time figuring out the correct “shape” of a 
program (such as the placement of loops and conditionals), which we hypothesize should be 
relatively easy for a statistical learner. 

Specifically, our approach learns over sketches: tree-structured data that capture key facets of 
program syntax. A sketch Y does not contain low-level variable names and operations, but carries 
information about broadly shared facets of programs such as the types and API calls. During 
generation, a program synthesizer is used to generate programs from sketches produced by the 
learner. 

Let the universe of all sketches be denoted by 𝕐𝕐. The sketch for a given program is computed by 
applying an abstraction function α : ℙ→𝕐𝕐. We call a sketch Y satisfiable, and write sat(Y), if           
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α-1(Y) ≠ ∅. The process of generating (type-safe) programs given a satisfiable sketch Y is 
probabilistic, and captured by a concretization distribution P(A|Y, sat(Y)). We require that for all 
programs Prog and sketches Y such that sat(Y), we have P(Prog|Y) ≠ 0 only if Y = α(Prog). 

 

Importantly, the concretization distribution is fixed and chosen heuristically. The alternative of 
learning this distribution from source code poses difficulties: a single sketch can correspond to 
many programs that only differ in superficial details, and deciding which differences between 
programs are superficial and which are not requires knowledge about program semantics. In 
contrast, our heuristic approach utilizes known semantic properties of programming languages like 
ours — for example, that local variable names do not matter, and that some algebraic expressions 
are semantically equivalent. This knowledge allows us to limit the set of programs that we 
generate. 

Let us define a random variable Y = α(A). We assume that the variables X, Y and A are related 
as in the Bayes net in Figure 7. Specifically, given Y, A is conditionally independent of X. Further, 
let us assume a distribution family P(Y|X, θ) parameterized on θ. 

 
Figure 7:  Bayes net for A, B, C 

Let Yi = α(Progi), and note that P(Progi|Y) ≠ 0 only if Y = Yi. Our problem now simplifies to learning 
over sketches, i.e., finding: 

 
Instantiation 

Figure 8 shows the full grammar for sketches in our implementation. Here, 𝜏𝜏0, 𝜏𝜏1,… range over a 
finite set of API data types that AML programs can use. A data type, akin to a Java class, is 
identified with a finite set of API method names (including constructors), and ranges over these 
names. Note that sketches do not contain constants or variable names. 
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Figure 8:  Grammar for sketches 

A full definition of the abstraction function for AML appears in [7]. As an example, API calls in 
AML have the syntax “call e.a(e1,…,ek)”, where a is an API method, the expression e evaluates to 
the object on which the method is called, and the expressions e1,…,ek evaluate to the arguments of 
the method call. We abstract this call into an abstract method call “call 𝜏𝜏.a(𝜏𝜏1,…, 𝜏𝜏k)”, where 𝜏𝜏 is 
the type of e and 𝜏𝜏i is the type of ei. The keywords skip, while, if-then-else, and try-catch preserve 
information about control flow and exception handling. Boolean conditions Cseq are replaced by 
abstract expressions: lists whose elements abstract the API calls in Cseq. 

3.2.3 Learning 

Now we describe our learning approach, shown in Figure 9. Equation 7 leaves us with the problem 
of computing argmaxθ Σi log P(Yi|Xi, θ), when each Xi is a label and Yi is a sketch. Our answer is to 
utilize an encoder-decoder and introduce a real vector-valued latent variable Z to stochastically 
link labels and sketches: P(Y|X, θ) = ∫ 𝑃𝑃(Z|X, θ)𝑃𝑃(Y|Z, θ)dZ𝑍𝑍∈ℝ𝑚𝑚 . 

 

Figure 9:  Active learning to “close the loop” 

P(Y|Z, θ) is realized as a probabilistic decoder mapping a vector-valued variable to a distribution 
over trees. As for P(Z|X, θ), this distribution can, in principle, be picked in any way we like. In 
practice, because both P(Y|Z, θ) and P(Z|X, θ) have neural components with numerous parameters, 
we wish this distribution to regularize the learner. To provide this regularization, we assume a 
Normal (0�⃗ , I) prior on Z. 

Recall that our labels are of the form X = (XCalls, XTypes, XKeys), where XCalls, XTypes, and XKeys are sets. 
Assuming that the j-th elements XCalls,j, XTypes,j, and XKeys,j of these sets are generated independently, 
and assuming a function f for encoding these elements, let: 
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That is, the encoded value of each XTypes,j, XCalls,j or XKeys,j is sampled from a high-dimensional 
Normal distribution centered at Z. If f is 1-1 and onto with the set ℝ𝑚𝑚 then from Normal-Normal 

conjugacy, we have: P(Z|X) = Normal (Z| 𝑋𝑋�

1+𝑛𝑛
, 1
1+𝑛𝑛

 I), where: 

 
and n = nTypesσ-2Types + nCallsσ-2Calls + nKeysσ-2Keys . Here, nTypes is the number of types supplied, and 
nCalls and nKeys are defined similarly. 

Note that this particular P(Z|X, θ) only follows directly from the Normal (0�⃗ , I) prior on Z and 
Normal likelihood P(X|Z, θ) if the encoding function f is 1-1 and onto. However, even if f is not 
1-1 and onto (as will be the case if f is implemented with a standard feed-forward neural network) 
we can still use this probabilistic encoder, and in practice, we still tend to see the benefits of the 
regularizing prior on Z, with P(Z) distributed approximately according to a unit Normal. We call 
this type of encoder-decoder, with a single, Normally-distributed latent variable Z linking the input 
and output, a Gaussian encoder-decoder (GED). 

Now that we have chosen P(X|Z, θ) and P(Y|Z, θ), we must choose θ to perform CLE. Note that: 

 
where the ≥ holds due to Jensen’s inequality. Hence, L(θ) serves as a lower bound on the log-
likelihood, and so we can compute θ* = argmaxθL(θ) as a proxy for the CLE. We maximize this 
lower bound using stochastic gradient ascent; as P(Z|Xi, θ) is Normal, we can use the re-
parameterization trick common in variational auto-encoders while doing so. The parameter set θ 
contains all of the parameters of the encoding function f as well as σTypes, σCalls, and σKeys, and the 
parameters used in the decoding distribution function P(Y|Z, θ). 

  



Approved for Public Release; Distribution Unlimited.   
25  

 

3.2.4 Combinatorial Concretization 

The final step in our algorithm is to “concretize” sketches into programs, following the distribution 
P(A|Y). Our method of doing so is a type-directed, stochastic search procedure that builds on 
combinatorial methods for program synthesis. 

Given a sketch Y, our procedure performs a random walk in a space of partially concretized 
sketches (PCSs). A PCS is a term obtained by replacing some of the abstract method calls and 
expressions in a sketch by AML method calls and AML expressions. For example, the term 
“x1.a(x2); 𝜏𝜏1.b(𝜏𝜏2)”, which sequentially composes an abstract method call to b and a “concrete” 
method call to a, is a PCS. The state of the procedure at the i-th point of the walk is a PCS Hi. The 
initial state is Y. 

Each state H has a set of neighbors Next(H). This set consists of all PCS’s H′ that are obtained by 
concretizing a single abstract method call or expression in H, using variable names in a way that 
is consistent with the types of all API methods and declared variables in H. 

The (i+1)-th state in a walk is a sample from a predefined, heuristically chosen distribution 
P(Hi+1|Hi). The only requirement on this distribution is that it assigns nonzero probability to a state 
iff it belongs to Next(Hi). In practice, our implementation of this distribution prioritizes programs 
that are simpler. The random walk ends when it reaches a state H* that has no neighbors. If H* is 
fully concrete (that is, an AML program), then the walk is successful and H* is returned as a sample. 
If not, the current walk is rejected, and a fresh walk is started from the initial state. 

Recall that the concretization distribution P(A|Y) is only defined for sketches Y that are satisfiable. 
Our concretization procedure does not assume that its input Y is satisfiable. However, if Y is not 
satisfiable, all random walks that it performs end with rejection, causing it to never terminate. 

While the worst-case complexity of this procedure is exponential in the generated programs, it 
performs well in practice because of our chosen language of sketches. For instance, our search 
does not need to discover the high-level structure of programs. Also, sketches specify the types of 
method arguments and return values, and this significantly limits the search space. 

3.3 Extension project on identifying API misuse in 
JavaScript code 

In this section, we discuss the methods employed in the extension project mentored by GitHub, in 
which we focused on scanning JavaScript programs for API misuse. While our past work on 
anomaly detection was prototyped for analyzing Java and C/C++ code, this extension project 
focused on JavaScript, since it is the most popular programming language used in GitHub projects. 
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We implemented our approach in JS-Smart, a new tool chain developed in this extension project 
that performs code mining and anomaly detection for JavaScript codes as described in this section. 

Section 3.3.1 describes the overall architecture of JS-Smart, and Sections 3.3.2–3.3.5 describe the 
components of the end-to-end pipeline that process the code corpus, mine rules, and checks users’ 
input programs. 

3.3.1 JS-Smart Architecture 

The JS-Smart framework can be divided into two parts: an offline part that processes the code 
corpus and mines the rules, and an online part that analyzes the users’ programs and produces 
analysis output. 

 
Figure 10:  Overall architecture of JS-Smart 

 

Figure 10 shows the overall architecture of JS-Smart. The offline part starts from a corpus 
collection that downloads node package manager (npm) packages and JavaScript projects from 
various open source repositories, and crawls through them for feature extraction. Each file is 
processed via static code analysis techniques that extract call sites and other code features of 
interest, which in turn are used to build a rule-based statistical model that can be used to identify 
anomaly patterns. 

The key component of the online part is the anomaly detector which takes the user code as input, 
as well as the statistical model produced by the offline part, and performs a specialized program 
analysis to identify anomalies which are then written as output. JS-Smart’s output is created in 
Static Analysis Results Interchange Format (SARIF) so that it can be easily displayed by different 
integrated development environments (IDE’s) that accept SARIF. 
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In general, the end-to-end workflow for JS-Smart can be summarized as follows: 

1. Download a given set of target and dependent packages; 

2. run feature extraction, and collect the extracted features in JavaScript Object Notation 
(JSON) files; 

3. obtain various statistics on the extracted features; 

4. perform rule mining on the extracted features and generate a “rules” file, also represented in 
JSON format; 

5. run an anomaly detector based on the “rules” file on an arbitrary JavaScript/Node.js project 
and generate output in SARIF format. 

3.3.2 Source Code Mining 

JS-Smart employs a feature extractor to perform source code mining. The feature extractor takes 
JavaScript/Node.js program as input, translates them to an intermediate representation (IR) to 
extract the call site related information. It is implemented as a Python program that performs the 
following steps: 

1. Download the JavaScript/Node.js code corpus from the internet; 

2. Derive dependent-target combinations as configurations; 

3. Apply parser and feature extraction to Node.js source code with all configurations, and stores 
the output to files; 

4. Aggregate the output files and get total counts of call sites for each function. 

For intermediate representation generation, we use the TypeScript compiler [60] which is designed 
to support an optionally typed superset of the JavaScript programming language, and also supports 
the full ECMAScript language specification [61]. In our project, we used the TypeScript compiler 
to parse standard untyped JavaScript code, and to generate an abstract syntax tree (AST) as the 
intermediate representation used by JS-Smart to extract function call site related information. 

 
Figure 11:  Feature extractions for Source Code Mining 
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Figure 11 shows the workflow of feature extraction for source code mining. The Node.js source is 
parsed by the parser to generate the TypeScript AST as IR. An AST based program pattern 
collector is applied on AST to extract call site information and generate output as a JSON file. 

For each call site, the feature extractor extracts several features that will be used for the rule 
detection process to measure if the call site should be selected as an anomaly. The details of the 
features are presented in Table 1. 

Table 1:  Call site features 

 

3.3.3 Statistical Model for Rule Detection 

The goal of source code mining is to extract features that feed into a statistical model that can be 
used to identity anomalies in specific call sites. This rule detector is invoked after the feature 
extractor collects all call sites with relevant features shown in Table 1 The rule detector scans the 
call sites, identifies anomalies, and also identifies rules to be used in anomaly detection. 

Based on our observations, the specification of JavaScript/Node.js APIs is different from C/C++ 
and Java APIs which typically involve sequences of API calls. In contrast, JavaScript/Node.js APIs 
are more self-contained, thus enabling anomaly checking to focus on single API call sites. The 
statistical model employed here for anomaly detection is a static Bayesian network [62]; it uses a 
probability threshold to determine whether a pattern of API usage should be reported as an 
anomaly. The collected rules are converted to JSON format and saved into a JSON file that will 
be read by the anomaly detector summarized next. 

3.3.4 Anomaly Detection 

The anomaly detector takes users’ programs as input, scans the source code and performs the 
pattern match on the call sites with the rules mined by rule detector. Figure 12 shows the 
implementation of the anomaly detector, which is similar in structure to the feature extractor for 
source code mining (Figure 11) since they both employ the TypeScript compiler as the IR 
generator. 
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Figure 12:  Anomaly detection with the rules 

However, there are important differences as well, since source code mining is performed on every 
program scanned from source code repositories, whereas the anomaly detector is only performed 
on specific programs submitted by a user. The anomaly detector also imports rules from the rule 
file and invokes the TypeScript compiler to parse the input JavaScript/Node.js code and generate 
the IR (presented as TypeScript AST). For each call site in IR, the anomaly detector checks 
whether it is a library API call; if so, it checks whether the source program violates a previously-
mined rule. Any such call sites are emitted as output in SARIF format, along with the relevant rule 
violation information. 

3.3.5 User Interfaces 

We explored different user interfaces to enable the interaction between end-users (which can 
include software developers and “rule curators”) and the toolsets (feature extractor, rule miner and 
anomaly detector). For the offline part of JS-Smart, both the feature extractor and the rule miner 
can be run as command-line tools by staff that is responsible for curating rules. We also 
encapsulated these two tools as a docker container that can be easily set up and deployed. 

The anomaly detector is the online part that interacts with the software developers directly by 
analyzing their code; it can be invoked either as an integrated development environment plugin or 
as a cloud service. In the IDE case, the anomaly detector can analyze the user’s code directly from 
the IDE editor. In the cloud service case, it runs as a backend service triggered by users’ commit-
like operations and sends feedback to the user via the web information update. As we learned from 
our GitHub mentors, the second use case is well supported by the GitHub App interface. 

The anomaly detector is implemented as a static analyzer that helps users identify misuse of 
JavaScript APIs. As indicated earlier, the analyzer has been packaged as two different tools to 
address two different use cases: 

1. A plugin for Microsoft Visual Studio Code IDE, that takes the JavaScript being edited in the 
IDE as input, performs analysis and outputs the analysis result presented in SARIF [63] 
format which can be displayed conveniently in the IDE. 

2. A GitHub App that captures user events to perform rule-based analysis on the user’s 
repository, and sends the output to the user’s GitHub issues page. 
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In the Github App based implementation, the anomaly detector is executed as a backend service 
that is invoked by the GitHub App engine on the user’s repository (each Github repository owner 
can customize its GitHub App via a web interface). The actual workflow of the GitHub App based 
anomaly detector is presented in Figure 13. It captures users’ “git push” events, pulls the latest 
version of the repository to temporary storage, and runs the anomaly detection process on the 
user’s code. The analysis result is updated on the user’s “issues” page. Another way to trigger this 
workflow using a GitHub App is to capture a special “issue creation” event with a pre-specified 
title, and the analysis result is updated in the same “issue”. As shown in Figure 13, the actual 
implementation has two parts, one of them is a GitHub App client that captures the user’s operation 
on a git repository, communicates with the anomaly detector and updates the analysis result in the 
user’s repository issues page. Another part is the anomaly detector that runs on the server-side (we 
deployed our anomaly detector on an Amazon Web Services (AWS) lightsail cloud server), 
analyzes the code pulled from the user’s repository, produces analysis results in SARIF format and 
sends them back to the GitHub App client. 

 
Figure 13:  The workflow of JS-Smart Github App 
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4 Results and Discussion 

4.1 Anomaly Detection Results 

In this section, we present an evaluation of our method on the task of finding API misuses in 
Android apps. Specifically, we seek to answer the following questions: 

1. Can we find useful de facto specifications followed by Android developers (Section 4.1)? 

2. Using the specifications, can we find possible bugs in the usage of the Android API in a 
corpus (Section 4.1)? 

3. How does specification learning help in anomaly detection (Section 4.1)? 

4. How does the Bayesian framework help in handling heterogeneity in the specifications 
(Section 4.1)? 

Implementation and Experimental Setup 

Now we briefly describe the system, SALENTO, which implements our method. SALENTO uses 
SOOT [64] to implement symbolic execution and transform code in an Android app into our 
automaton model, TENSORFLOW [65] to implement the topic-conditioned RNN, and SciPy [66] to 
implement LDA. SALENTO builds a coarse model of the Android app life-cycle by collecting all 
entry points in the application which are callback methods from the Android kernel. It also uses 
SOOT’s Class Hierarchy Analysis and Throw Analysis to over approximate the set of possible call 
or exception targets, and SOOT’s built-in constant propagator to detect infeasible paths. 

In addition to API methods in Σ, SALENTO also collects some semantic information about the state 
of the program when an API call is made. This is done through the use of simple Boolean 
predicates that capture, for example, constraints on the arguments of a call, or record whether an 
exception was thrown by the call. This allows us to learn specifications on more complex 
programming constructs. 

The training corpus consisted of 500 Android apps from [67], and the testing corpus consisted of 
250 apps from [68]. The two repositories did not overlap, perhaps since the latter is open-source 
and the former is not. We conducted experiments on three Android APIs: alert dialogs 
(android:app:AlertDialog:Builder), bluetooth sockets (android:bluetooth:BluetoothSocket) and 
cryptographic ciphers (javax:crypto:Cipher). The APIs were chosen to represent common yet 
varied facets of a typical Android app (UI, functionality, security). From the training and testing 
repositories, we created about 6000 and 1800 automata models (henceforth just called programs) 
respectively. While doing so, we set the accepting location of the program as various locations of 
interest, that is, locations where a method in one of these APIs was invoked. This helps in 
localizing an anomaly to a particular location. All experiments were run on a 24-core 2.2 GHz 
machine with 64 GB of memory and an Nvidia Quadro M2000 graphics processing unit (GPU). 
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Specification Learning 

With a goal to discover specifications of Android API usage, we applied LDA on the training 
corpus of programs, where the alphabet Σ consisted of 25 methods from the three APIs. We used 
α = 0:1 for each topic, and η = 1/|Σ| for all words in a topic. Running LDA with 15 topics (K) took 
a few seconds to complete. Figure 14 shows the top-3 words (methods) from six topics extracted 
from the corpus that we picked to exemplify. At a first glance, it may seem that LDA is simply 
categorizing methods from different APIs into separate topics, which can raise the question of why 
we need topic models if we already knew the APIs beforehand. 

 
Figure 14:  Top-3 methods from topics extracted by LDA (A = AlertDialog:Builder, B = BluetoothSocket, C = Cipher) 

LDA, however, does more than that. Topic 1 and Topic 2 contain methods from the same API but, 
interestingly, different polymorphic versions with int and string arguments. The model has 
discovered that the polymorphic versions fall under separate topics, meaning that they are not 
often used together in practice. Indeed, some Android apps declare all resources they need in a 
separate Extensible Markup Language (XML) file and provide the resource ID as the int argument. 
Other apps do not make use of this feature and instead directly provide the string to use in the 
dialog box. Therefore, it makes sense that an app would seldom use both versions together. 
Similarly, Topic 3 also contains methods from the same API, however, it describes yet another way 
to create dialog boxes. Note the lack of the setMessage method in this topic, as the message would 
already have been enveloped in the View passed to setView (using both methods together can lead 
to the display of corrupted dialog boxes as shown in Figure 4(a)(ii)). 

As these examples show, the topic model can expose specifications of how methods in an API (or 
different APIs) are used together. 
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Anomaly and Bug Detection 

To evaluate SALENTO on anomaly detection, we first trained the topic-conditioned RNN on 60,000 
behaviors sampled from the training programs. Training took 20 minutes to complete. We then 
computed anomaly scores for the 1800 programs in our testing corpus. The time to compute each 
score was around 2-3 seconds. 

The histogram of scores, in Figure 15(a), shows a high concentration of small values, such as 5 or 
less, and a very low concentration of high values. We chose to further investigate programs 
appearing in the top 10% of anomaly scores (above the red line) for possible bugs. Specifically, 
since each program provides a localization to a location in the app (through its accepting states), 
we investigated the behaviors that were sampled from the program’s probabilistic behavior model, 
which would have determined its anomaly score. 

 
Figure 15:  (a) Histogram of anomaly score values, (b) Precision-recall for the possible bugs in Figure 16 for (i) 
Bayesian model (ii) non-Bayesian model, and (c) Anomaly scores of remaining 90% programs before and after 

mutation 

Our definition of a “possible bug” is based on the following: “is a behavior an instance of Android 
API usage that is questionable enough that we would expect it to be raised as an issue in a formal 
code review?” Note that an issue raised in a code review may relate to a design choice and not 
necessarily cause the program to crash (an unusual button text, for example). Nonetheless, such an 
issue would be raised and likely fixed by engineers examining the code. 
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One problem with counting an anomaly as a possible bug is that multiple anomalies in an app can 
have the same “cause”—an incorrect statement or set of statements in the code—and we would 
like to avoid “double-counting” different anomalies with the same cause as different bugs. It is a 
hard software engineering problem to establish the cause of an anomaly/bug, which is out of the 
scope of this project. To avoid this problem, however, we conservatively consider only the top-
most anomaly in each app in the top-10%, as clearly, anomalies in two different apps cannot have 
the same cause. 

 
Figure 16:  Anomalies that are possible bugs, found in the top 10% of anomalous programs 

Through manual inspection and triage, we found 10 different types of possible bugs in our testing 
corpus (Figure 16), ranging from the benign to the insidious. We have already seen anomalies #6 
and #10 (Figure 4) that could display corrupted or unclosable dialog boxes. #2 could lead to an 
exception being thrown due to a failed connection, #5 would create a crypto object that defaults to 
the semantically insecure electronic code book (ECB) encryption mode, and #8 could cause future 
attempts to open a socket to be blocked. 

Figure 15(b)(i) shows the precision-recall plot for these possible bugs in the top-10% of anomaly 
scores. It can be seen that at around the top 8%, we reach full recall with 75% precision or 25% 
false positive rate. This is reasonable compared to industrial static analysis tools such as Coverity 
that advocates a 20% false positive rate for “stable” checkers [69]. Our method does not rely on 
specified properties to check, and many of these bugs cannot be easily expressed as a formal 
property for traditional static analyzers to check. 

After this threshold, the precision continues to drop, and we conjecture that it will not increase any 
further, because almost all the possible bugs have already been found. To substantiate this 
conjecture, we would have to manually inspect thousands of programs to qualitatively declare that 
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all anomalies have been triaged. Due to the practical infeasibility of this task, we instead 
quantitatively injected anomalies into the remaining 90% of programs through mutations and 
measured whether our model is able to detect those mutations. For each program, we mutated the 
API call before its accepting states into one chosen randomly from Σ. 

Figure 15(c) shows the anomaly scores before (dark) and after (light) the mutation, and the 
cumulative mean of the relative increase in the score (dashed line, secondary axis). As a result of 
the mutation, the scores are greatly increased, sometimes by 20 times or more, and the mean of the 
increase is about 4x. That is, a mutation, on average, caused the anomaly score to increase by 4 
times, indicating that our model detected the mutation. 

Note that a random mutation has the possibility of reducing the anomaly score of a program if it 
had a possible bug and the mutation happened to fix it. However, it is not very likely for a random 
mutation to fix a bug, and so these instances rarely occurred. 

Role of Learning in Anomaly Detection 

To evaluate the role of learning, we compared with a traditional outlier detection method that does 
not require learning. k-nearest neighbor (k-NN) outlier detection [70] uses a distance measure to 
compute the k-nearest neighbors of a given point within a dataset. The larger the average distance 
to the k-NN, the more likely it is that the point is an outlier, or anomaly. We already have a distance 
measure between distributions: the KL-divergence between the behavior model for the given 
program and a program in the corpus. 

We implemented such a k-NN and compared our method with it by conservatively setting k = 1. 
That is, the anomaly score of a given program is the smallest KL-divergence with any program in 
the corpus. However, even with this 1-NN anomaly score, a substantial top 25% of programs had 
a distance of infinity to the corpus, thus providing no useful information about their anomalies. 

The reason is that these programs happened to generate a behavior that was not generated by any 
program in the corpus. This sets P1(Y) to a non-zero value and P2(Y) to zero in the KL-divergence 
formula (Equation 3) immediately making the sum infinity. This is unreasonable because we 
clearly do not want to call every behavior we have not observed in the training data an anomaly, 
but instead would like to assign probabilities even to behaviors that were never seen before. That 
is, we would like to generalize from the corpus. This is why probabilistic specification learning is 
needed. 

Comparison with Non-Bayesian Methods 

To see how the Bayesian framework helps in handling heterogeneity in the corpus, we compared 
our method with a non-Bayesian specification learning method. Existing state-of-the-art methods 
use n-grams [71] or RNNs [72] to learn a (non-Bayesian) single probabilistic specification of 
program behaviors. We implemented a non-Bayesian specification learner as an RNN (not topic 
conditioned) and trained it directly on the behaviors in our training corpus. We then performed the 
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same anomaly and bug detection experiment in Section 4.1, querying the trained model with 
behaviors in the testing program for inference. 

Figure 15(b)(ii) shows the precision-recall rate for the top-10% of anomaly scores. Compared to 
our Bayesian method, the non-Bayesian method fared poorly. Consider again a “stable” checker’s 
false-positive rate of 20%, or 80% precision. At this threshold (marked by the red line), our 
Bayesian method has about 80% recall compared to only 53% for the non-Bayesian method. This 
shows that given a reasonable precision threshold, our method is able to discover significantly 
more bugs compared to the non-Bayesian method. It is also worth noting that the non-Bayesian 
method was unable to discover any possible bug that was not found by our method. 

Effect of Heterogeneity 

We finally performed a series of experiments by incrementally increasing the heterogeneity of the 
training programs. First, as a baseline, we considered only programs that use the BluetoothSocket 
API and learned from them both Bayesian and non-Bayesian specifications of their behaviors. We 
then computed anomaly scores of the 45 testing programs that use this API. 

In the next step, we added to the training corpus programs that also use the Cipher API, making 
the corpus more heterogeneous, and learned new specifications. We then computed anomaly 
scores again but using the newly learned specifications. Figure 17(a) shows the average relative 
increase in anomaly scores from using the old versus the new specifications. Ideally, one would 
expect the scores to not change, because the addition of programs that use the Cipher API—
behaviors on which are unrelated to the BluetoothSocket API— should not have any effect on the 
scores. This is observed in the Bayesian specification (dashed line), which lingers close to 1.0 on 
average. However, the non-Bayesian specification (solid line) suffers from about a 2x increase. 

 
Figure 17:  Average relative increase in anomaly scores of BluetoothSocket programs when the training corpus only 

uses the APIs (a) BluetoothSocket, Cipher (b) AlertDialog:Builder, BluetoothSocket, Cipher 

This was further evident when programs that also use the API AlertDialog:Builder were considered 
for training, making the corpus even more heterogeneous (this is the same training corpus in 
Section 4.1). In Figure 17(b), the relative increase in scores using the Bayesian specification is, on 
average, close to 1.0, showing that it is robust to the increased heterogeneity. However, the non-
Bayesian specification induces a further increase of about 3.5x in the scores. 
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We expect the gap to keep widening as more heterogeneous programs are added to the corpus, at 
some point making the scores from the non-Bayesian model meaningless. In contrast, the scores 
from our Bayesian model would remain almost the same showing that the model is able to “focus” 
on relevant parts of the learned specification, in principle tolerating arbitrary heterogeneity. 

Limitations 

We conclude by summarizing the limitations of our experiments: 

1. Our evaluation used Android, a platform where programs are APIs-heavy and APIs are fairly 
well-structured. While our experiments show good results in this domain, whether they 
generalize to other domains that do not share these characteristics (such as C programs) is an 
open question. 

2. Our evaluation used a small subset of the Android API space, due to the manual effort needed 
to report precision-recall numbers. It is possible for the results to be different for a different 
set of APIs. 

3. Finally, as the domains that we study often lack crisp definitions of correctness, we manually 
triaged the anomalies reported in our experiments into true and false positives. While this 
step was performed carefully, it is possible that a different person could have triaged some 
of these reports differently. 

4.2 Evidence-based Synthesis Results 

Now we present an empirical evaluation of the effectiveness of our method. The experiments we 
describe utilize data from an online repository of about 1500 Android apps [67]. We decompiled 
the Android Package Kits (APKs) using JADX [73] to generate their source code. Analyzing about 
100 million lines of code that were generated, we extracted 150,000 methods that used Android 
APIs or the Java library. We then pre-processed all method bodies to translate the code from Java 
to AML, preserving names of relevant API calls and data types as well as the high-level control 
flow. Hereafter, when we say “program” we refer to an AML program. 

From each program, we extracted the sets XCalls, XTypes, and XKeys as well as a sketch Y. Lacking 
separate natural language descriptions for programs, we defined keywords to be words obtained 
by splitting the names of the API types and calls that the program uses, based on camel case. For 
instance, the keywords obtained from the API call readLine are “read” and “line”. As API methods 
and types in Java tend to be carefully named, these words often contain rich information about 
what programs do. Figure 18 gives some statistics on the sizes of the labels in the data. From the 
extracted data, we randomly selected 10,000 programs to be in the testing and validation data. 
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Figure 18:  Statistics on labels 

Implementation and training 
We implemented our approach in our tool called BAYOU, using TENSORFLOW [65] to implement 
the GED neural model and the Eclipse IDE for the abstraction from Java to the language of sketches 
and the combinatorial concretization. 

In all our experiments we performed cross-validation through grid search and picked the best 
performing model. Our hyper-parameters for training the model are as follows. We used 64, 32 
and 64 units in the encoder for API calls, types, and keywords, respectively, and 128 units in the 
decoder. The latent space was 32-dimensional. We used a mini-batch size of 50, a learning rate of 
0.0006 for the Adam gradient-descent optimizer [74], and ran the training for 50 epochs. 

The training was performed on an AWS “p2.xlarge” machine with an NVIDIA K80 GPU with 
12GB GPU memory. As each sketch was broken down into a set of production paths, the total 
number of data points fed to the model was around 700,000 per epoch. Training took 10 hours to 
complete. 

Clustering 
To visualize clustering in the 32-dimensional latent space, we provided labels X from the testing 
data and sampled Z from P(Z|X), and then used it to sample a sketch from P(Y|Z). We then used t-
distributed stochastic neighbor embedding (t-SNE) [75] to reduce the dimensionality of Z to 2-
dimensions, and labeled each point with the API used in the sketch Y. Figure 19 shows this 2-
dimensional space, where each label has been coded with a different color. It is immediately 
apparent from the plot that the model has learned to cluster the latent space neatly according to 
different APIs. Some APIs such as java:io have several modes, and we noticed separately that each 
mode corresponds to different usage scenarios of the API, such as reading versus writing in this 
case. 
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Figure 19:  2-dimensional projection of latent space 

Accuracy 
To evaluate prediction accuracy, we provided labels from the testing data to our model, sampled 
sketches from the distribution P(Y|X) and concretized each sketch into an AML program using our 
combinatorial search. We then measured the number of test programs for which a program that is 
equivalent to the expected one appeared in the top-10 results from the model. 

As there is no universal metric to measure program equivalence (in fact, it is an undecidable 
problem in general), we used several metrics to approximate the notion of equivalence. We defined 
the following metrics on the top-10 programs predicted by the model: 

M1 This binary metric measures whether the expected program appeared in a syntactically 
equivalent form in the results. Of course, an impediment to measuring this is that the 
names of variables used in the expected and predicted programs may not match. It is 
neither reasonable nor useful for any model of code to learn the exact variable names in 
the training data. Therefore, in performing this equivalence check, we abstract away the 
variable names and compare the rest of the program’s Abstract Syntax Tree instead. 

M2 This metric measures the minimum Jaccard distance between the sets of sequences of 
API calls made by the expected and predicted programs. It is a measure of how close to 
the original program were we able to get in terms of sequences of API calls. 

M3 Similar to metric M2, this metric measures the minimum Jaccard distance between the 
sets of API calls in the expected and predicted programs. 

M4 This metric computes the minimum absolute difference between the number of 
statements in the expected and sampled programs, as a ratio of that in the former. 

M5 Similar to metric M4, this metric computes the minimum absolute difference between 
the number of control structures in the expected and sampled programs, as a ratio of that 
in the former. Examples of control structures are branches, loops, and try-catch 
statements. 
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Partial Observability 
To evaluate our model’s ability to predict programs given a small amount of information about its 
code, we varied the fraction of the set of API calls, types, and keywords provided as input from 
the testing data. We experimented with 75%, 50% and 25% observability in the testing data; the 
median number of items in a label in these cases were 9, 6, and 2, respectively. 

Competing Models 
In order to compare our model with state-of-the-art conditional generative models, we 
implemented the Gaussian Stochastic Neural Network (GSNN) presented by [76], using the same 
tree-structured decoder as the GED. There are two main differences: (i) the GSNN’s decoder is also 
conditioned directly on the input label X in addition to Z, which we accomplish by concatenating 
its initial state with the encoding of X, (ii) the GSNN loss function has an additional KL-divergence 
term weighted by a hyper-parameter β. We subjected the GSNN to the same training and cross-
validation process as our model. In the end, we selected a model that happened to have very similar 
hyper-parameters as ours, with β = 0:001. 

Evaluating Sketches 
In order to evaluate the effect of sketch learning for program generation, we implemented and 
compared it with a model that learns directly over programs. Specifically, the neural network 
structure is exactly the same as ours, except that instead of being trained on production paths in 
the sketches, the model is trained on production paths in the ASTs of the AML programs. We 
selected a model that had more units in the decoder (256) compared to our model (128), as the 
AML grammar is more complex than the grammar of sketches. We also implemented a similar 
GSNN model to train over AML ASTs directly. 

Figure 20 shows the collated results of this evaluation, where each entry computes the average of 
the corresponding metric over the 10000 test programs. It takes our model about 8 seconds, on 
average, to generate and rank 10 programs. 
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Figure 20:  Accuracy of different models on testing data. GED-Aml and GSNN-Aml are baseline models trained over 

Aml ASTs, GED-Sk and GSNN-Sk are models trained over sketches. 

When testing models that were trained on AML ASTs, namely the GED-AML and GSNN- AML 
models, we observed that out of a total of 87,486 AML ASTs sampled from the two models, 2525 
(or 3%) ASTs were not even well-formed, i.e., they would not pass a parser, and hence had to be 
discarded from the metrics. This number is 0 for the GED-Sk and GSNN-Sk models, meaning that 
all AML ASTs that were obtained by concretizing sketches were well-formed. 

In general, one can observe that the GED-Sk model performs best overall, with GSNN-Sk a 
reasonable alternative. We hypothesize that the reason GED-Sk performs slightly better is the 
regularizing prior on Z; since the GSNN has a direct link from X to Y, it can choose to ignore this 
regularization. We would classify both these models as suitable for conditional program 
generation. However, the other two models GED-AML and GSNN-AML perform quite worse, 
showing that sketch learning is key in addressing the problem of conditional program generation. 
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Generalization 
To evaluate how well our model generalizes to unseen data, we gather a subset of the testing data 
whose data points, consisting of label-sketch pairs (X, Y), never occurred in the training data. We 
then evaluate the same metrics in Figure 20(a)-(e), but due to space reasons we focus on the 50% 
observability column. Figure 20(f) shows the results of this evaluation on the subset of 5126 (out 
of 10000) unseen test data points. The metrics exhibit a similar trend, showing that the models 
based on sketch learning are able to generalize much better than the baseline models and that the 
GED-Sk model performs the best. 

4.3 Extension Project Results 

This section discusses experimental results obtained by applying JS-Smart on a set of 
JavaScript/Node.js programs. 

Experimental Setup 
For this evaluation, we ran the feature collection and rule mining processes in JS-Smart on a Linux 
workstation with a 40-Core Intel Xeon processor with 128GB of random access memory (RAM). 
The two major programming systems used were Python3 (version 3.5, for JS-Smart tools) and 
Node.js (version 9.1, for user code). The TypeScript compiler used in this project was version 
3.5.3. 

Feature Extraction 
The statistics related to feature extraction for this evaluation are listed in Table 2. 

Table 2:  Statistics for feature-extraction (code-mining). 

 
Rule Mining 
Our goal is to achieve low false-positives, so the mined rules are further triaged and curated. We 
focused on “fixed string” style rules, since the Open Web Application Security Project (OWASP) 
vulnerabilities (A2: Broken authentication, A3: Sensitive data exposure, A6: Security mis-
configuration, A10: Insufficient Logging & Monitoring) are all relevant to the string parameters 
for API calls. Table 3 summarizes statistics for the rules that we mined. We manually identified 
34 rules that are security relevant among the 128 rules that were mined overall. 
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Table 3:  Statistics for mined rules. 

 
 

Beside “fixed string” style rules, we also identified the following types of rules as security relevant 
— “run in loop”, “run in try-catch” and “used return value”. “Run in loop” helps with identifying 
Distributed Denial of Service (DDoS) vulnerabilities, e.g., if a network “send” API is invoked 
within a loop, it could be a potential DDoS attack. “Run in try-catch” identifies cases where API 
invocation was not protected by an appropriate exception handling block. The “used return value” 
rule identifies APIs with return values that must be used by the caller, and not ignored. 

Detected Vulnerabilities 
We applied the JS-Smarts’ anomaly detector to the Node.js applications provided by end-users 
(i.e. software developers who volunteered for evaluating our tools). As mentioned above, we 
mined 4 types of security relevant rules: “fixed string”, “run in loop”, “run in try-catch” and “used 
return value”. Figure 21 contains examples of violations detected by our anomaly detector for all 
four rules. 

 
Figure 21:  The cases identified by JS-Smart anomaly detector. 
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5 Conclusions 
The PLINY project has introduced technologies that leverage the institutional knowledge embodied 
in the vast corpus of existing software to simplify the creation of new software. The main advances 
produced by the PLINY project include: Source Forager, a novel, accurate and reliable query-
relevant code-search engine; SALENTO, a novel Bayesian framework for finding API usage errors 
(anomaly detection) in Android programs; Splicer, SyPet (a program synthesis tool) and Hunter (a 
tool to facilitates code reuse) for test-based synthesis; BAYOU an open-source evidence-based 
synthesis system for generating API-heavy Java code; the PLINYCompute system, a scalable 
infrastructure supporting high-performance, data-intensive, distributed computing tools and libraries, 
suited for search and learning applications; and extensions of these to JavaScript programs. The 
PLINY technologies extend the reasoning capabilities of the programmer through the use of 
automated analysis and synthesis tools. The results of the research have been disseminated in 
multiple software releases and multiple peer-reviewed publications [1–40]. We believe that the 
technologies developed in the PLINY project help address many of the productivity and cost 
challenges associated with software development today, and will also reshape the way people think 
about programming in the future. 
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List of Symbols, Abbreviations, and Acronyms 
ACM Association for Computing Machinery 

AML not an acronym, a programming language that captures the essence 
of API-heavy Java programs 

API Application Programming Interface 

APK Android Package Kit 

AST Abstract Syntax Tree 

AWS Amazon Web Services 

BAYOU not an acronym, system for generating API heavy Java code 

CAV International Conference on Computer-Aided Verification 

CLE Conditional Likelihood Estimation 

DARPA Defense Advanced Research Agency 

DDoS Distributed Denial of Service 

ECB Electronic Code Book 

ECMAScript not an acronym, a general purpose programming language as 
defined in ECMA-262 by ECMA International 

ESEC European Software Engineering Conference 

ESOP European Symposium on Programming 

FSE Symposium on Foundation of Software Engineering 

GED Gaussian Encoder-Decoder 

GPU Graphics Processing Unit 

GSNN Gaussian Stochastic Neural Network 

GUI Graphical User Interface 

HUNTER not an acronym, a tool that facilitates code reuse 

ICLR International Conference on Learning Representations 

ICML International Conference on Machine Learning 

ICSE International Conference on Software Engineering 

IDE Integrated Development Environment 
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IEEE Institute of Electrical and Electronics Engineers 

IR Intermediate Representation 

JADX not acronym, a command line and GUI tools to produce Java source 
code from Android Dex and Apk files 

JSON JavaScript Object Notation 

JVM Java Virtual Machine 

KL-divergence Kullback-Leibler divergence 

k-NN k-nearest neighbor

LDA Latent Dirichlet Allocation

ML Machine Learning

MUSE Mining and Understanding of Software Enclaves

NDSS The Network and Distributed System Security Symposium

npm node package manager

OOPSLA Object Oriented Programming, Systems, Languages and 
Applications 

OWASP Open Web Application Security Project 

PCS Partially Concretized Sketches 

PLDI ACM SIGPLAN Conference on Programming Language Design and 
Implementation 

PLINY not an acronym, An End-to-End Framework for Big Code Analytics 

PODS Principles of Database Systems 

POPL ACM SIGPLAN-SIGACT Symposium on Principles of Programming 
Languages 

PVLDB Proceedings of the VLDB Endowment 

RAM Random Access Memory 

RNN Recurrent neural network 

SALENTO not an acronym, system for finding API usage errors 

SARIF Static Analysis Results Interchange Format 

SciPy not an acronym, Python based ecosystem of open-source software 
for mathematics, science and engineering 
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SIGACT Special Interest Group on Algorithms and Computation Theory 

SIGMOD Special Interest Group on Management of Data 

SIGPLAN Special Interest Group on Programming Languages 

SIGSOFT Special Interest Group on Software Engineering 

SOOT not an acronym, a Java compiler infrastructure 

SPLICER not an acronym, a program synthesis tool 

SYPET not an acronym, a program synthesis tool 

TA Technical Area 

t-SNE t-Distributed Stochastic Neighbor Embedding

TOPLAS ACM Transactions on Programming Languages and Systems

VLDB International Conference on Very Large Data Bases

VMCAI International Conference on Verification, Model Checking, and 
Abstract Interpretation 

XML Extensible Markup Language 
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