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I. Introduction and Motivation
Autonomous unmanned aerial vehicles(UAV) are of interest to U.S. Navy because they provide unique capability for

reconnaissance and surveillance missions when operating close to enemy shores, without significant endangerment to
any human life. Automating the final landing approach of the UAV to the shipdeck, is the most difficult part of the
entire flight profile of the vehicle. This is because the landing platform is continuously moving in 3D space, being
stochastically perturbed by the ocean waves. And since stealth is of paramount importance for UAV operations, the
ship cannot transmit its position or orientation, because that risks jeopardizing ship’s location if the transmission is
intercepted. Hence, use of passive sensors such as camera to estimate the ship’s position and orientation for landing is
imperative. This neccessiates the development and testing of control techniques for accurate tracking of a moving target
with limited sensor information. This article focuses on the development of such control techniques and its testing with
both high fidelity flight mechanics models in simulation and with real-time quadrotor hardware.

The complete autonomous shipboard landing problem is an extremely complicated task, as evident by the huge
cognitive workload of the human pilots performing the task today for manned vehicles. When dealing with such a
complicated problem with many technological barriers, it is often advantageous to split them into small problems,
solutions of which will lay the foundation for a successful operation. This is the approach that has been used by us.

II. Landing On A Stationary Target
The most elementary problem close to the final shipboard landing task is that of landing on a stationary target in

well controlled laboratory environment and without any gusts or wake of the ship. This section discusses our process of
achieving that.

A. Vehicle
Flight hardware used for landing on a stationary target is shown in Figure 1. The entire vehicle has a footprint of

about 240 mm × 360 mm, a gross take-off weight of about 620 grams and max thrust to weight ratio of 4. An internal
6-DOf Inertial Measurement Unit(IMU) serves as the sensor for estimation of orientation and angular velocity of the
vehicle. An optical flow sensor combined with a sonar serves as the instrument for obtaining position and velocity
estimates of the quadrotor. It is to be noted that while the frame is custom built, the flight controller, sensors and motors
are taken from a commercially available bebop quadrotor. This is because tracking and landing on a stationary target is
a guidance problem. Using a commercially available flight controller gives us a stable flying vehicle on which guidance
can be easily implemented. For tracking and estimation of relative position and orientation of the ship-deck, an on-board
custom monocular global shutter camera is used. The images are processed by an onboard flight computer(Up-board)
containing Intel Atom processor. A dual band WIFI module connected to the flight computer is used to communicate
with an offboard personal computer(PC) serving as the ground station.
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Fig. 1 Quadrotor hardware used for landing on a stationary target

B. Target tracking using Computer Vision
Classical computer vision techniques are used to recognize an Aruco marker placed on the landing target. The

marker serves as a fiducial in camera images and is used to obtain position and orientation of the quadrotor relative to
the target. It should be noted that if desired, in real world scenarios multiple markers can be used to improve the relative
position and orientation estimates of the quadrotor.

Fig. 2 Aruco markers used as a fiducial for ship-deck tracking

C. Control
Once relative position and velocity of the quadrotor with respect to the landing target is obtained, PD guidance is

used to generate position setpoints for the vehicle to navigate to, and is sent to the bebop flight controller, as summarized
by the following equation.

-3 =  ? ∗ (0 − -) +  3 ∗ (0 − ¤-) (1)
(2)

Here, - is relative position obtained from camera while ¤- is the velocity of the quad obtained from optic flow sensor.
As stated in previous section, tracking and landing on a stationary target is a guidance problem and the above guidance
law can be implemented on any stable rotary wing vehicle.
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D. Results
The results of tracking and landing on a stationary target is shown in Fig 3. As observed, once the target is acquired

in the camera frames, the quadrotor converges and lands on the target pretty quickly(in less than 10 seconds).
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Fig. 3 Results of landing on a stationary target

III. Landing On A Moving Platform

A. Ship motion data (Analysis and Prediction)
Data of shipdeck motion under different sea states was provided by the Office of Naval Research (ONR). The ship

was a generic surface combatant moving in a straight line as maintained by its internal Proportional-Derivative(PD)
controllers. From the analysis of the data, the deviations of the shipdeck motion around the mean were found to
be of Gaussian distribution. The standard deviation of the linear velocities and orientations of the ship-deck for a
representative ship motion in extreme weather are presented in Table1.

Surge Velocity +G 0.9 ft/s
Sway Velocity +H 3 ft/s
Heave Velocity +I 2.9 ft/s
Roll Angle q 6.72◦

Pitch Angle \ 0.78◦

Yaw Angle k 0.92◦

Roll rate ? 3.53◦/B
Pitch rate @ 0.67◦/B
Yaw rate A 0.33◦/B

Table 1 Representative standard deviations of ship motion
As observed from the table, deviations in heave, sway and roll motions of the ship are more dominant than other

motions of the ship-deck. It should be noted that sway and roll are inherently coupled, as sway of the deck is the result
of large ship roll and the deck being high above the sea-line.
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Next we try to predict the ship motion using the popular fourier decomposition technique. The idea is that if it
is possible to predict the ship-deck motions reasonably well, then the entire problem of landing vehicle on a dynamic
platform is reduced to a tracking problem. If so, the quadrotor can aggressively track the ship deck or wait for the
predicted deck states to reach a calm steady condition to land. The entire prediction algorithm can be summarized in the
following steps:

1) Decompose the time history of ship-deck motion into component frequencies through fourier transform.
2) Re-construct the motion from the best n-frequencies and project them into future to predict deck motion in future.
3) Update the component frequencies as new data about ship deck becomes available.

The best n-frequencies for reconstruction is defined as those that minimize the following function:

| | 5 (C) −
=∑
8=1

�8B8=(l8C + q8) | |22 (3)

where 5 (C) is the time history of the deck state to be modelled and �8 , l8 , q8 are the parameters over which the
minimization is done.

The results of the method on heave data is shown in Fig 4. Training is done for 30 second time history of
heave acceleration and the trained function is then projected forward to predict heave acceleration for 30 seconds. The
predicted acceleration is double-integrated to get predicted heave. As observed the method does not works well and
hence is not carried forward. Infact, from here-on the disturbances by the sea-waves are assumed to be stochastic and
have a gaussian white noise distribution.

(a) Heave acceleration (b) Heave

Fig. 4 Analysis and prediction of ship-deck heave with fourier decomposition method

B. Control
A baseline rotary-wing controller for tracking the stochastic motions of a ship is developed using classical control

techniques. Utilising the timescale separation of the translational and attitude dynamics, the entire control is divided
into two loops. The outer loop, controlling the translational dynamics of the vehicle, is responsible for generating
desired thrust, roll and pitch angles for tracking the ship deck trajectory in 3D space. The inner loop controlling the
rotational dynamics, generates desired body moments from the desired roll (q), pitch (\) and yaw (k) angles, received
from outer loop. The inner control loop of the vehicle is designed as a Proportional-Integral-Derivative (PID) controller
of the rotational dynamics linearized around hover. The outer control loop design based on nonlinear Dynamic Inversion
theory is described next.
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1. Outer loop control for tracking of ship motion
The translational dynamics of a quadrotor can be written in inertial frame (defined as +ve Z toward gravity) in the

following form: 
¥-
¥.
¥/

 =
'8
1

<


0
0
−T

 +


0
0
6

 (4)

where '8
1
is the rotation matrix from body to inertial frame, T is the total thrust from all rotors (in our demo case, 4),

< is the mass of the vehicle and 6 is acceleration due to gravity. Now since control appears in second derivative of
position, a second order error dynamics for tracking a given trajectory -3 (C), .3 (C), /3 (C) is designed as follows:

4G ,-3 − - (5)
¥4G +  3 ¤4G +  ?4G = 0 (6)

=⇒ ¥- = ¥-3 +  3 ( ¤-3 − ¤-) +  ? (-3 − -) (7)

where  ? and  3 are tunable gains. Eq. (7) gives the desired acceleration along - for tracking the trajectory. Desired
acceleration along . and / can be derived in a similar way. These desired accelerations are then converted into desired
thrust, roll and pitch angles by inverting the dynamics given by Eq. (34) resulting in following equations:

T3 = <

√
¥-2 + ¥.2 + (6 − ¥/)2

\3 = tan−1 ¥- cosk + ¥. sink
6 − ¥/

q3 = tan−1 ¥- sink − ¥. cosk cos \
6 − ¥/

(8)

These are outer loop control laws. It should be noted that even though the control laws are derived for a quadrotor,
they can be easily extended to other rotary wing vehicle configurations as translational dynamics of most rotary wing
vehicles, especially around hover are similar to Eq (34). Most rotary wing vehicles change the direction of rotor thrust
through changes in body attitudes to achieve translation in 3D space. The complete baseline control algorithm is shown
in Figure 5. The estimators are planned to be Extended Kalman Filter.

Fig. 5 Baseline rotary wing controller

C. Simulation Results
Fundamental results regarding validation of our technical approach are presented next. First we demonstrate the

ability of our baseline tracking controller to track a ship deck in simulation, followed by results of validation of our
freewake model.
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The designed baseline controller is tested with the most elementary flight mechanics simulation model, which
models rotors as simple thrust producing devices. A sample ship-deck motion trajectory provided by ONR is used as the
desired trajectory to be tracked by the controller. First, we assume that knowledge of target’s position (-3), velocity ( ¤-3)
and acceleration ( ¥-3) are available to be fed forward into the tracking controller. The results are shown in Figure 6.

Fig. 6 Ideal tracking; dotted lines are ship deck trajectory, solid lines are trajectory of quadrotor tracking it

Clearly the controller is capable of perfect tracking with perfect knowledge of the target’s trajectory. But in practice,
it is difficult to estimate the acceleration ( ¥-3) and velocity ( ¤-3) of the target, especially with sensors such as camera.
Hence in this situation only position of the target (-3) is available to be fed forward into the tracking controller. The
result for this simulation is shown in Figure 7.

Fig. 7 Tracking with only position feed forward, large phase lag

As observed there is a lag in tracking of the target’s trajectory which is the result of high  3 gain in error dynamics(Eq.
(6)). If we reduce the gain, the lag reduces but vehicle now significantly overshoots the target’s position. This is observed
in Figure 8.
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Fig. 8 Tracking with only position feed forward, large overshoot

These observations show that the overshoot and lag in tracking cannot be reduced simultaneously with only position
information of the target. These observations are typical steady state behavior of second order systems, in which low
damping leads to high amplitude, while high damping leads to large phase lag. This is consistent with the fact that in the
absence of velocity and acceleration information of the target, the error dynamics in Eq (6) becomes

¥4G +  3 ¤4G +  ?4G = ¥-3 +  3
¤-3 (9)

As a result, the second order error dynamics now has a forcing term ( ¥-3 +  3
¤-3) on the right. This forcing term

does not allows the tracking error to reduce to zero and is moreover dependent on  3 itself. The forcing term can be
reduced significantly (and thereby improving tracking), if in addition to position, information regarding velocity of the
target is also available, as shown in Figure9.

Fig. 9 Tracking with both position and velocity feed forward

These results show that along with position, estimates of target’s velocity is also required for good tracking of a
moving target like a shipdeck. We plan to estimate both using only camera as the sensor.
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D. Vehicle
Flight hardware to be used to demonstrate landing on a dynamic platform is different from that used for landing

on a static platform. The primary reason is that the one used for static platform used a proprietory flight controller
from Parrot bebop and as a result accessing the lower level controller of the vehicle was not possible. The new flight
hardware is shown in Figure 1. The entire vehicle has a footprint of about 280 mm × 280 mm, a gross take-off weight of
about 750 grams and max thrust to weight ratio of about 4. An internal 6dof Inertial Measurement Unit(IMU) will serve
as the sensor for estimation of orientation and angular velocity of the vehicle. For indoor experiments, an optical flow
sensor combined with an optical distance sensor, instead of GPS will serve as the instrument for obtaining position
and velocity estimates of the quadrotor. An onboard monocular global shutter camera will be used to estimate relative
position and orientation of the shipdeck. An Aruco marker as shown in Figure 11, placed on the ship-deck will serve as
a fiducial in camera images. A 32 bit ARM Cortex M4 microcontroller board will process IMU data and run the inner
loop of the baseline controller at 72MHz. All other sensor data will be processed by a flight computer containing a quad
core Intel Atom processor. The computer will also be responsible for running the outer loop of the baseline controller.
Communication between the processor and the microcontroller is through a dedicated Universal Asynchronous Receiver
Transmitter(UART) channel. A dual band WIFI module is to be used to communicate with an off-board personal
computer(PC) serving as the ground station. The inner loop of the controller is currently being tested on the flight
hardware.

Fig. 10 Quadrotor hardware to be used for landing on a dynamic platform

E. Target tracking(Vision)
Similar to that used for stationbary shipboard landing, classical computer vision techniques are used to recognize an

Aruco marker placed on the landing target. The marker serves as a fiducial in camera images and is used to obtain
position and orientation of the quadrotor relative to the target. It should be noted that if desired, in real world scenarios
multiple markers can be used to improve the relative position and orientation estimates of the quadrotor.
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Fig. 11 Aruco markers used as fiducial for ship-deck tracking

F. 6-DoF motion platform for replicating ship deck motion
Final testing of the algorithm will be carried out on a platform that can replicate the 6-DOF stochastic motions of a

shipboard. Replication of the 6-DOF motion is to be done using a stewart platform as shown in Fig 12. The benefit
of using such a platform for 6-DOF motion replication is that its inverse kinematics is much simpler than its forward
kinematics. In other words, it is much easier to obtain the actuator commands for a given 3D position and orientation of
the platform than it is to do the other way around.

Fig. 12 Example of a 6-DOF stewart platform

Current Status
After re-opening of the campus facilities, design and building of the stewart platform for replicating 6-DOF shipdeck

motion has started. The flight hardware is currently being tested for robustness using only an inner loop attitude
controller, which will be completed soon and will lead to the testing of the outer navigation loop control using an
optic flow sensor for position estimation. The final testing of the flight hardware on the 6-DOF ship motion simulation
platform in laboratory environment is expected to be completed by the end of the year.

IV. Tackling Changing Vehicle Dynamics due to gusts
Another problem pertaining to shipboard landing task is flying in an environment with rapidly changing winds/gusts

which is similar to flying in the wake of the ship which leads to changing vehicle dynamics. A way to tackle this is to
adapt the control inputs accordingly. There are two approaches to control adaptation namely, model based adaptive
control and model-free reinforcement learning. Both of these approaches applied to quadrotor are studied in this section.

A. Model-based Adaptive Control Theory
In this section, the derivation of adaptive control law for a control-affine dynamic system is presented. The controller is
developed through the use of a dummy state variable which drives the state of the actual system toward the desired state.
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Using Lyapunov theory, the stability of the controller is proved. For simplicity, a single state system is first considered.
The theory developed for a single state system can be easily extended to multiple states system.

In general, the dynamics of a single state control affine system can be written in state-space form as

¤G = 5 (G) + 6(G)D +, 5 q 5 (G) +,6q6 (G)D + n (10)

Here, , 5 q 5 (G) and ,6q6 (G) are the terms used to model the uncertainties in 5 (G) and 6(G) respectively. q 5 (G)
and q6 (G) are the basis functions which are assumed to be known a priori. , 5 and ,6 are the unknown weights
which should be ’learnt’ online. n represent the terms in plant dynamics which cannot be modelled into, 5 q 5 (G) or
,6q6 (G)D(ideal approximation error). n is assumed to be bounded. It should be noted that the bounds on n can always
be decreased approaching toward zero(and the complexity of the system be increased) by including more basis functions
and corresponding weights in the above equation.

Since , 5 , ,6, and n are not known a priori, Eq.(10) cannot be used for control derivation. The approximated
dynamics equation used for control derivation is

¤G0 = 5 (G) + 6(G)D + ,̂ 5 q 5 (G) + ,̂6q6 (G)D (11)

where ,̂ 5 and ,̂6 are the approximate weights which(by their designed dynamics) should move toward their ideal
values, 5 and,6 respectively. It is to be noted that G0 is a dummy state variable.
For driving G towards G3 , ¤G0 is defined as follows,

¤G0 , ¤G3 +  G (G3 − G) (12)

where  G is a positive constant and is treated as a design parameter.
Defining error as 4 , G − G3 , the error dynamics equation is(Subtracting Eq.(11) from Eq.(10))

¤4 +  G4 = ,̃ 5 q 5 (G) + ,̃6q6 (G)D + n (13)

where, ,̃ 5 = , 5 − ,̂ 5 and ,̃6 = ,6 − ,̂6. The equilibrium of the error dynamics is calculated to be

483 = 0, ,̃ 83
5 = 0, 0=3 ,̃ 83

6 = 0. (14)

For the dynamics given in (11), with real positive constants W 5 , and W6, the weight update law given by

¤̂, 5 = W 5 4q 5

¤̂,6 = W64q6D
(15)

estimates the uncertainties in 5 (G) and 6(G) and asymptotically stabilizes the identity element of the error space,(
483 , ,̃ 83

5
, ,̃ 83

6

)
≡ (0, 0, 0) if n = 0.

If n ≠ 0 and is finite, all the errors remain bounded. Consider a Lyapunov canditate function given by

+ =
1
2
42 + 1

2W 5

,̃2
5 +

1
2W6

,̃2
6 (16)

The function + is positive definite about the identity element
(
483 , ,̃ 83

5
, ,̃ 83

6

)
≡ (0, 0, 0). The time derivative of + is

given by
¤+ = 4 ¤4 + 1

W 5

,̃ 5
¤̃, 5 +

1
W6
,̃6
¤̃,6 (17)

Substituting (13) in (17), the expression for ¤+ is written as

¤+ = − G4
2 + ,̃ 5 q 5 4 + ,̃6q6D4 + n4 +

1
W 5

,̃ 5 (− ¤̂, 5 ) +
1
W6
,̃6 (− ¤̂,6) (18)
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Using (15),
¤+ = − G4

2 + n4 (19)

Finally, (19) is less than zero if

|4 | > |n |
 G

(20)

Additionally, if n = 0, ¤+ becomes negative semi-definite over the complete error space. Thus, we have M ={(
483 , ,̃ 83

5
, ,̃ 83

6

)}
as the largest invariant set in the complete error space. Asymptotic stabilization of the equilibrium(

483 , ,̃ 83
5
, ,̃ 83

6

)
in the error space using the weight update law in (15) follows from LaSalle’s Invariance Principle.

The control law can be derived using the approximated dynamics model(i.e. Eq(11)) through dynamic inversion or
other control techniques. Using dynamic inversion the control law is derived as follows,

D = [6(G) + ,̂6q6 (G)]−1 ( ¤G3 +  G4 − 5 (G) − ,̂ 5 q 5 (G)) (21)

The control design for quadrotors involes first and second order error dynamics, therefore the control design procedure
for the second order system is given in the next subsection.

1. Stability proof of adaptive second order error dynamics
Using the same approach of the previous section, for control affine second order systems dynamics can be expressed as

¥G = 5 (G, ¤G) + 6(G, ¤G)D +, 5 q 5 (G, ¤G) +,6q6 (G, ¤G)D + n (22)

Using the same reasoning used as done for first order systems, consider approximated dynamics as

¥G0 = 5 (G, ¤G) + 6(G, ¤G)D + ,̂ 5 q 5 (G, ¤G) + ,̂6q6 (G, ¤G)D (23)

where G0 is dummy variable and is defined as,

¥G0 , ¥G3 + l2 (G3 − G) + 2Zl( ¤G3 − ¤G) (24)

where Z andl are design parameters. Defining error as 4 , G−G3 , error dynamics for second order system is,(Subtracting
Eq. (23) from (22))

¥4 + 2Zl ¤4 + l24 = ,̃ 5 q 5 (G, ¤G) + ,̃6q6 (G, ¤G)D + n (25)

Z and l are design parameters. For proving the stability of the system we choose the following Lyapunov function,

+ =
1
2

[
4 ¤4

] [
0 1

1 2

] [
4

¤4

]
+ 1

2W 5

,̃2
5 +

1
2W6

,̃2
6 (26)

V is positive definite for 0 > 0 and 02 − 12 > 0 (Sylvester’s criterion for positive definite matrices).
Differentiating Eq.(26)
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¤+ =
[
4 ¤4

] [
0 1

1 2

] [
¤4
¥4

]
+ 1
W 5

,̃ 5
¤̃, 5 +

1
W6
,̃6
¤̃,6

=

[
04 + 1 ¤4 14 + 2 ¤4

] [
¤4
¥4

]
+ 1
W 5

,̃ 5
¤̃, 5 +

1
W6
,̃6
¤̃,6

=04 ¤4 + 1 ¤42 + (14 + 2 ¤4) ¥4 + 1
W 5

,̃ 5
¤̃, 5 +

1
W6
,̃6
¤̃,6

=04 ¤4 + 1 ¤42 + (14 + 2 ¤4) (−2Zl ¤4 − l24 + ,̃ 5 q 5 (G) + ,̃6q6 (G)D + n) +
1
W 5

,̃ 5
¤̃, 5 +

1
W6
,̃6
¤̃,6

=04 ¤4 + 1 ¤42 − 2Zl14 ¤4 − l2142 − 2Zl2 ¤42 − l224 ¤4

+ ,̃ 5

(
−
¤̂, 5

W 5

+ (14 + 2 ¤4)q 5

)
+ ,̃6

(
−
¤̂,6

W6
+ (14 + 2 ¤4)q6D

)
+ (14 + 2 ¤4)n

= − l2142 + (1 − 2Zl2) ¤42 + (0 − 2Zl1 − l22)4 ¤4

+ ,̃ 5

(
−
¤̂, 5

W 5

+ (14 + 2 ¤4)q 5

)
+ ,̃6

(
−
¤̂,6

W6
+ (14 + 2 ¤4)q6D

)
+ (14 + 2 ¤4)n

For stability ¤+ < 0. Hence the necessary conditions for stability are,

1 > 0 (27)

2 ≥ 1

2Zl
> 0 (28)

0 = 2Zl1 + l22 > 0 (29)
¤̂, 5 = W 5 (14 + 2 ¤4)q 5 (30)
¤̂,6 = W6 (14 + 2 ¤4)q6D (31)

It is to be noted that the conditions for V to be positive definite, 0 > 0 and 02 − 12 = 2Zl1(2 − 1
2Z l ) + l

222 > 0 are
automatically satisfied. Hence Eq. (29)-(31) are also the sufficient conditions for stability.
With these conditions the equation for ¤+ reduces to

¤+ = −U42 − V ¤42 + 1n4 + 2n ¤4 (32)

where U , l21, V , 2Zl2 − 1.
Hence ¤+ < 0, when |4 | > 1 |n |

U
0=3 | ¤4 | > 2 |n |

V
This shows that both 4 and ¤4 always remain bounded. Using dynamic

inversion the control law can be derived as follows

D = [6(G, ¤G) + ,̂6q6 (G, ¤G)]−1 ( ¥G0 − 5 (G, ¤G) − ,̂ 5 q 5 (G, ¤G)) (33)

2. Function Approximators
The two types of uncertainties tackled in this report are structured and unstructured. Structured uncertainties

are measurement errors in plant parameters such as mass, moment of inertia or aerodynamic coefficients. The basis
functions for this type of uncertainty are known a priori and are obtained from the structure of functions 5 (G) and 6(G) in
plant dynamics (Eq. 22). Unstructured uncertainties are uncertain forces and moments which may arise due to modeling
error or due to sudden changes in external conditions or actuator failure while in flight. Since the basis functions for
these uncertainties are not known a priori, radial basis functions which (from universal approximation theorem [1]) are
universal approximators are used. The single layer neural network formed in this way is called RBF-network. It is to be
noted that the adaptive theory developed here is only valid for single hidden layer neural network. Hence other types of
neural network model which require more than one hidden layer for universal approximation such as MLP(Multi-layer
perceptron) cannot be used.
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Fig. 13 RBF network

B. Adaptive control of quadrotors
In this section, the above developed theory is applied to quadrotor dynamics. Utilizing the timescale separation, the
controller is still designed as two loops, with the inner loop still being a PID controller. The outer loop’s dynamic
inversion controller is however augmented using the adaptive control design method described in the previous section.

1. Outer loop control design
Outer loop provides tracking ability by driving the error in position variables (4G = G − G3 , 4H = H − H3 , 4I = I − I3) to
zero. Following the theory developed in the previous section first the actual translational dynamics of a quadrotor with
uncertain terms is presented. Next, the dynamics is approximated with the introduction of dummy variables, which are
used for control derivation. Thereafter, stability of the approach is demonstrated using Lyapunov theory. Finally the
control outputs of outer loop is derived from the approximate dynamics equation using Dynamic Inversion.

Translational dynamics of quadrotor in inertial coordinate system is written as,
¥G
¥H
¥I

 =
'8
1

"


0
0
−)

 +


0
0
6

 (34)

Modifying the equation to account for variation in mass(structured uncertainty),
¥G
¥H
¥I

 =
'8
1
(1 +," )
"


0
0
−)

 +


0
0
6

 (35)

where ," is the ’weight’ added to account for changes in mass. It is added in the numerator because the adaptive
theory developed in the previous section requires the weights to be in linear form.
Modification to account for unmodelled forces (unstructured uncertainty)

¥G
¥H
¥I

 =
'8
1
(1 +," )
"


0
0
−)

 +


0
0
6

 +
'8
1

"


Σ,81q81

Σ,82q82

Σ,83q83

 + n (36)

where n=[nG , nH , nI] is the ideal approximation error and q8 9’s ( 9 = 1, 2, 3) are radial basis functions (RBFs),

q8 9 = exp
−||G−2 | |2

A2
9 . The design of this single neural network for unstructured uncertainty is discussed in Subsection C.

Since the actual dynamics contain weights which are not known a priori, the following approximate dynamics equation
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is used for control derivation,
¥G0
¥H0
¥I0

 =
'8
1
(1 + ,̂" )
"


0
0
−)

 +


0
0
6

 +
'8
1

"


Σ,̂81q81

Σ,̂82q82

Σ,̂83q83

 (37)

where hat (ˆ) represents the approximate value of that term and,
¥G0
¥H0
¥I0

 ,

¥G3 + 2ZGlG ( ¤G3 − ¤G) + l2

G (G3 − G)
¥H3 + 2ZHlH ( ¤H3 − ¤H) + l2

H (H3 − H)
¥I3 + 2ZIlI ( ¤I3 − ¤I) + l2

I (I3 − I)

 (38)

where ZG , ZH , ZI , lG , lH and lI are design parameters. Subtracting Eq. (37) from Eq. (36) we get the following error
dynamics, 

¥4G + 2ZGlG ¤4G + l2
G4G

¥4H + 2ZHlH ¤4H + l2
H4H

¥4I + 2ZIlI ¤4I + l2
I4I

 = ,̃"

'8
1

"


0
0
−)

 +
'8
1

"


Σ,̃81q81

Σ,̃82q82

Σ,̃83q83

 +

nG

nH

nI

 (39)

where ,̃8 9 = ,8 9 − ,̂8 9 , ,̃" = ," − ,̂" and 
4G

4H

4I

 ,

G − G3
H − H3
I − I3

 (40)

Next, we show the stability of the above error dynamics

2. Weight update law and lyapunov stability proof
We choose the following Lyapunov function,

+ =
1
2

[
4G ¤4G

]
%G

[
4G

¤4G

]
+ 1

2

[
4H ¤4H

]
%H

[
4H

¤4H

]
+1

2

[
4I ¤4I

]
%I

[
4I

¤4I

]
+ 1

2W"
,̃2

" + ΣΣ
1

2W8 9
,̃2

8 9

(41)

where W" , W8 9 are learning rates and %G , %H , %I are positive definite matrices whose elements satisfy the conditions
(29)-(31). Differentiating, expanding Eq. (41) and using Eq. (40),

¤+ = − UG4
2
G − VG ¤42

G − UH4
2
H − VH ¤42

H − UI42
I − VI ¤42

I +
1
W"

,̃" (− ¤̂," ) + ΣΣ
1

2W8 9
,̃8 9 (− ¤̂,8 9 )

+ (,̃"

'8
1
(1, 3)
"

(−)) +
'8
1
(1, 1)
"

Σ,̃81q81 +
'8
1
(1, 2)
"

Σ,̃82q82 +
'8
1
(1, 3)
"

Σ,̃83q83 + nG) (1G4G + 2G ¤4G)

+ (,̃"

'8
1
(2, 3)
"

(−)) +
'8
1
(2, 1)
"

Σ,̃81q81 +
'8
1
(2, 2)
"

Σ,̃82q82 +
'8
1
(2, 3)
"

Σ,̃83q83 + nH) (1H4H + 2H ¤4H)

+ (,̃"

'8
1
(3, 3)
"

(−)) +
'8
1
(3, 1)
"

Σ,̃81q81 +
'8
1
(3, 2)
"

Σ,̃82q82 +
'8
1
(3, 3)
"

Σ,̃83q83 + nI) (1I4I + 2I ¤4I)

where, UG , VG , UH , VH , UI , VI are appropriate positive constants similar to U and V in Eq. (32). (e.g.: UG = l
2
G1G ,

VG = 2ZGlG2G − 1G)

14



Therefore the weight update laws for ¤+ < 0 are,

¤̂," =W"

['8
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(42)

Control is found by solving Eq. (37) for ) , \3 and q3 .

) = "
√
02 + 12 + 22

\3 = C0=
−1 0 cosk3 + 1 sink3

2

q3 = C0=
−1 0 sink3 − 1 cosk3 cos \3

2

(43)

where, 
0

1

2
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¥I3 + 2ZIlI ( ¤I3 − ¤I) + l2

I (I3 − I)
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0
0
6

 −
'8
1

"


Σ,̂81q81
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
 (44)

3. Simulation Results
In this section, the performance of the adaptive controller is compared with that of a nominal controller (Nonlinear

Dynamic Inversion) through some simulations. First, the effect of uncertainty in mass on the tracking performance of
both the controllers is shown. Next, the effect of unstructured uncertainty is inspected, and the performance of both the
controllers are studied at two different velocities. Finally, the effect of actuator failure on the tracking ability of both
the controllers is presented. The controller gains have been adjusted so that its tracking performance is satisfactory
when there is no uncertainty in the dynamic model. After that the uncertainties in the dynamic model are brought
in and the adaptive portion of the controller is turned on. Neural network uses online training. Hence its learning
rate is started from a low value (around 10−10) and is increased until either the performance of the adaptive controller
is satisfactorywith uncertainties in the dynamicmodel or the numerical method used for solving the dynamics destabilizes.

In the following simulation, the ability of both the controllers to track a circular trajectory in the presence of
variation in mass only is studied. Fig. 14 shows that the effect of uncertainty in mass for a DI-controller is a steady state
error in height.
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Fig. 15 Control Efforts with uncertain mass

As observed in Fig. 14 the uncertainty in mass is appropriately learnt by the adaptive controller and the error hieght is
nullified . Fig. 15 shows the control history for both the controllers.

In the next simulation, the dynamics model uses the advanced rotor kinetics developed from BEMT and published in [2].
Hence for the controller, the simulation model now contains unstructured uncertain terms. The performance of both the
controllers is studied at both low and high speeds.
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Fig. 19 Control Efforts at high speed (15 m/s)

The aerodynamics of the rotor is the source of uncertainty here. Fig. 16 shows that at low speed both the controllers
are capable of tracking the given trajectory because at low speeds the aerodynamics effects which are accounted for in the
nominal controller are small. The control forces and moments required to be generated by the controllers are shown in
Fig. 17. At high speeds the aerodynamics effects become significant and as it is observed from Fig. 18, the performance
of the nominal controller degrades considerably. As also observed from the same figure, the adaptive controller still
provides good tracking ability. The effects of rotor aerodynamics on control history for both the controllers is shown in
Fig. 19.

Finally, the fault tolerant ability of the controllers is tested. The fault is introduced into one of the motors of
the quadrotor in the simulation model after 10 seconds. The faulty motor operates at 60% of the desired rpm.
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Fig. 21 Fault Tolerant Control Efforts

It is observed from Fig. 20 and Fig. 21 that the nominal controller fails to track the given trajectory and destabilizes
while the adaptive controller can control the vehicle even in this situation. The extra rolling moment needed by the
adaptive controller after 10 seconds, to balance the thrust from the faulty motor is evident in control history, as shown in
Fig 21. These results demonstrate the fault-tolerant capability of the adaptive controller. It should, however, be pointed
out that further simulations showed that the fault-tolerant capability of the current controller is limited because of the
specific design of its unstructured neural network. However, the controller can be optimized for more robust operations
by increasing the size of the RBF-network, but the computing power required for such networks will be enormous.
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C. Model-free Reinforcement Learning Control
The basis of all Reinforcement Learning (RL) algorithms employing neural networks for control is Markov Decision

Process (MDP) model, which is represented by the following figure:

Fig. 22 Markov Decision Process

The environment in MDP is the external system to be controlled. The agent is the program executing actions on
environment and receiving rewards and the current state of the environment in return. Action by an agent is same as
control input to a system in classical control terminology. A policy in MDP is any function which outputs an action for
a given state of the environment. It is to be noted that an agent can either follow a policy or act randomly, which is
common during training phase of RL algorithms. All RL algorithms are focussed on finding optimum policy functions
for any given environment.

RL controllers have primarily two benefits over traditional analytical controllers namely model-free algorithm and
emergent behaviour.

Model-free algorithm: RL controller design does not require the knowledge of system’s dynamics apriori. It learns
the dynamics during training phase. Hence by nature, it can adapt to changes in plant’s dynamics if the training is
continued online. This adaptive nature of RL controllers, also make it more robust than PID controllers. It can by design
tackle problems like gust, turbulence, ground effect (on one or multiple rotors), partial actuator failure, etc.

Emergent behaviour: For RL controllers, system behaviour emerge during training so as to perform the task
as decided by the reward function optimally. For PID these are by design limited to the linear regime and are fixed
throughout the system operation. The behaviour of an RL system can be non-linear and change as the environment
changes. This comes with the downside that since the behaviour is not known apriori, it could be undesirable in
environments the algorithm has not been trained before.

1. Controller structure
Controller structure for a DQN controller is shown in Fig 23. The Q-network is a neural-net that given a state,

calculates the Q-values of all possible control inputs(actions). The Q-value of a control input represents the average
future rewards for executing that control. Under the optimum policy the control with the maximum Q-value is executed.
However, for the optimum policy to be valid the network has to be completely trained to represent to the exact Q-value
of the task at hand. Hence we need an algorithm that can train a generic neural-net to optimally represent the Q-values
of all possible (state, control) pairs. This training algorithm is discussed next.

Fig. 23 Deep Q-Network structure. The neural network takes the vehicle state as input and calculates the
Q-value of all actions. Under greedy policy, the action with max Q-value is executed.
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2. DQN parameter update
The feedback on whether a performed action(control) is appropriate or not is obtained through rewards obtained

after performing that action on the environment. Value of a state under a policy is defined as the average rewards that
can be obtained by following the policy from that state and is given by the following equation:

+c (B8) =
∞∑
9=8

W 9−8A (B 9 , 0: = c(B 9 ))

where A (B 9 , 0: ) is the reward obtained for taking action 0: in state B 9 following a policy c. W < 1 is a discount
factor (a constant) to indicate that rewards in near future have preference over long-term rewards. This is also necessary
for a stable training. Using the value function, now the Q-value function of a (state, action) pair is defined as follows:

&(B8 , 0: ) = A (B8 , 0: ) + W+c (B8+1)

It is evident by definition that under the optimal policy(c∗), which is defined as the one that maximizes the value
function, the following relation holds:

+c∗ (B8) = max
0:

&∗ (B8 , 0: ) = max
0:

(A (B8 , 0: ) + W+c∗ (B8+1))

Henceforth, we get the following:

&∗ (B8 , 0: ) = A (B8 , 0: ) + Wmax
0:

&∗ (B8+1, 0: )

This is the Bellman equation of optimality [8] written in terms of Q-value function. The update law for the Q-value
function is derived from the bellman equation using fixed-point iteration method as given by the following equation:

&=4F (B8 , 0: ) = (1 − U)&>;3 (B8 , 0: ) + U(A (B8 , 0: ) + Wmax
0:

&>;3 (B8+1, 0: )) (45)

where U is the relaxation factor also known as ’learning rate’ in reinforcement learning literatures. The above along
with gradient descent algorithm is used to train the Q-network. In the above algorithm, both learning rate and discount
factors are hyperparameters or constants that need to be ’tuned’ for the algorithm. Low learning rate and high discount
factors lead to stable but slow learning algorithms, while high learning rate and low discount factor leads to faster but
possibly numerically ’unstable’ learning algorithms.

Using this framework, the process of finding the optimal policy is simply reduced to the process of finding a
good reward function for a given environment. They can range from very simple generic functions to ones that are well
crafted for the problem at hand, which have higher tendency to produce more robust control solutions(or policies) [9].

3. Simulation Results
The simulation experiment is designed to test the ability of a Q-learning algorithm to control a hovering quadrotor.

Neural networks used are simple feed forward neural networks. The state of the environment is defined as the 6
Degree-of-Freedom (DoF) pose representing the current state, concatenated with the 6 DoF pose error. Since DQN
requires discrete action space, the continuous action space of quadrotor is discretized into ’bins’. The bins in this study
is to increase or decrease or no change of motor rpm of quadrotor by a fixed value. This set of bins is chosen because it
requires a coarser discretization of the control action space, yet it allows for a high granularity of control actions to be
achieved. Simulation validation of the DQN learning algorithm is performed using a simple set of reduced degree of
freedom non-linear quadrotor rotational dynamics model. The 1-DOF model tests the ability of DQN to control only the
pitch of the quadrotor. The 2-DOF model incorporates the control of roll in addition to pitch.
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Fig. 24 Validation of Deep Q-Learning on a quadrotor to perform pitch control. The steady state error in
DQN is believed to be the result of coarse discretization of continuous controls for quadrotor

Fig. 25 Validation of Deep Q-learning on a quadrotor for 2d-attitude control.

As observed from the figures, DQN has atleast similar performance to that of a PID controller. This validates
the generic idea of using neural nets for quadrotor stabilization. The DQN controller though has a steady state error,
the source of which is believed to be the discretization of the continuous action set for the controller. It is important
here to point out that even though in the above results RL controllers seems to have similar performance to traditional
PID, the benefits of RL controllers as model-free algorithm, being adaptive to changing environments and free from
extensive online manual tuning, makes it worthwhile to explore it as a flight controller for the quadrotor especially for
the shipboard landing task. Also, it is important to recognize that unlike traditional controllers model-free reinforcement
learning controllers have no stability proofs, but so is the case for current human pilots flying the aircrafts today. Hence,
the only way to satisfactorily validate such controllers is to have extensive rigorous testing with exhaustive set of test
cases. Hence it is only in the long-run that such controllers can completely replace human pilots.

Current status
Though DQN algorithm demonstrates good performance in the above simulation environment, it cannot be used

in real-world environments primarily because it requires the action space to be discrete and finite. To overcome this
limitation, continuous action reinforcement learning algorithms are required. This is currently being developed at the
Alfred Gessow Rotorcraft Center (AGRC). Model-based adaptive control has been tested in simulation but remains to
be proven using hardware. This will be carried out next year after the basic landing algorithm discussed in Sec. 3 for a
dynamic platform has been satisfactorily validated.
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V. Conclusions and Future Work
In this work, controllers for landing an UAV on a shipboard are developed. The controller has been successfully

implemented in hardware and tested for landing on a static platform. For landing on a dynamic platform, the controller
has been tested in simulations and hardware validation is ongoing(delayed due to closure of campus facilities as a result
of COVID-19) and should be completed by the end of the year. Model-based adaptive control has also been demonstrated
in simulations and will be validated in hardware next year. This will be followed by testing of reinforcement learning
controllers whose continuous variant for quadrotor control is currently under development.
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