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Abstract15

In this work, a terrain estimation framework is developed for autonomous vehi-16

cles operating on deformable terrains. Previous work in this area usually relies17

on steady state tire operation, linearized classical terramechanics models, or18

on computationally expensive algorithms that are not suitable for real-time es-19

timation. To address these shortcomings, this work develops a reduced-order20

nonlinear terramechanics model as a surrogate of the Soil Contact Model (SCM)21

through extending a state-of-the-art Bekker model to account for additional dy-22

namic effects. It is shown that this reduced-order surrogate model is able to23

accurately replicate the forces predicted by the SCM while reducing the com-24

putation cost by an order of magnitude. This surrogate model is then utilized25

in a unscented Kalman filter to estimate the sinkage exponent. Simulations26

suggest this parameter can be estimated within 4% of its true value for clay27

and sandy loam terrains. It is also shown in simulation and experiment that28

utilizing this estimated parameter can reduce the prediction errors of the future29

vehicle states by orders of magnitude, which could assist with achieving more30

robust model-predictive autonomous navigation strategies.31
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1. Introduction34

Autonomous ground vehicles (AGVs) have drawn interest for military ap-35

plications to perform tasks, such as supply transport, in unsafe environments36

that could pose a threat to human operators (Iagnemma and Dubowsky, 2002).37

Three considerations about military AGVs are important to motivate this work.38

First, military vehicles often need to operate off-road on deformable terrains,39

where the vehicle’s mobility is dependent on the highly nonlinear tire forces40

generated at the tire-terrain interface (Taheri et al., 2015). Second, increas-41

ing the mobility of military AGVs is a critical need (Liu et al., 2017). Third,42

state-of-the-art approaches to navigate such vehicles typically rely on model43

dependent architectures, such as Model Predictive Control (MPC) (Liu et al.,44

2017, 2018). Therefore, when the AGVs are operated on deformable terrains, a45

more accurate knowledge of the terrain parameters becomes a critical enabler46

to maximize the mobility of the AGVs.47

Much research has been performed in developing terramechanics models for48

off-road applications, which can be divided into empirical models, physics-based49

models, semi-empirical models (Taheri et al., 2015). Empirical model are the50

simplest; however, such models do not generalize well beyond the experimental51

test conditions used for their development. On the other hand, physics-based52

finite and discrete element models have proven to be of the highest fidelity, but53

the large computational efforts required renders them infeasible for real-time54

tire force prediction, thus limiting their applicability for use in AGVs and real-55

time terrain estimation (Taheri et al., 2015). More promising candidates, and56

perhaps the most widely used, for real-time tire force prediction on deformable57

terrains are the semi-empirical models based upon the classical terramechanics58

theory developed by Bekker, including the Soil Contact Model (Gallina et al.,59
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2014; Ishigami et al., 2007; Smith, 2014; Guo, 2016). In these models, the60

tire is typically assumed rigid and the deformation is assumed to occur only61

in the terrain (Smith, 2014). To model the complex tire-terrain interactions,62

these terramechanics models rely on knowledge of terrain-specific parameters63

such as cohesion, internal friction angle, or sinkage exponent. During vehicle64

operation, these parameters may not be explicitly known or may be varying due65

to non-uniform terrains. Therefore, real-time terrain estimation is necessary in66

AGVs to improve the accuracy of the terramechanics models online and generate67

better informed control commands. Having this capability would also provide68

insight into traversability of terrains, such that path planning algorithms can69

reroute the vehicle to avoid regions where loss of mobility or excessive power70

consumption is likely to occur (Iagnemma, 2006).71

Researchers have already recognized this need and a limited number of re-72

sults are available in the literature. In particular, in (Gallina et al., 2014, 2016),73

a Bayesian procedure is utilized for terrain parameter identification, but mak-74

ing this approach work online is subject to future research. Other researchers75

have proposed an online algorithm for estimating soil cohesion and internal fric-76

tion angle utilizing a linear least-squares estimator for a rover (Iagnemma and77

Dubowsky, 2002; Iagnemma et al., 2004). The algorithm relies on simplifying78

classical terramechanics equations through linear approximations to increase79

computational efficiency and subjects the rover to periodic high and low speed80

traverses (Iagnemma and Dubowsky, 2002). Similarly, in (Ding et al., 2015),81

multiple terrain parameters are estimated through least squares curve fitting82

with promising results for a sand-like terrain. Due to large computation times83

in the Bekker-based model, on the order of 10 s to estimate the parameter,84

the model is linearized. Multiple linearized models are analyzed which take85

on the order of 15 ms to hundreds of ms depending on model simplicity, sac-86
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rificing estimation accuracy for computational efficiency. In (Hutangkabodee87

et al., 2006), the Composite Simpson’s Rule and Newton Raphson method are88

utilized for online determination of terrain parameters from measured forces.89

In (Ray, 2009), a multi-model approach is used to efficiently select a terrain90

parameter set from a precompiled library of parameter sets and mappings de-91

termined a priori. Finally, in (Setterfield and Ellery, 2013) polynomial models92

representing terrain response are developed from measurements including rover93

velocities and forces rather than explicitly estimating the terrain parameters,94

but real-time implementation was not achieved.95

While existing results are promising, several limitations of the existing liter-96

ature are important for this work: (1) linear approximations can lead to inaccu-97

rate stress approximations, particularly in terrains with low sinkage exponents98

such as clay (Zhenzhong Jia et al., 2011), and hence inaccurate force prediction,99

(2) these algorithms often rely on measurements obtained from force and torque100

sensors, which are not necessarily standard on AGVs, and (3) periodically oper-101

ating at low speeds is not desirable when maximum mobility is desired. Hence,102

online estimation of deformable terrain parameters for off-road AGVs is still an103

open research area and is the focus of this work.104

This study presents a new approach for online terrain parameter estimation.105

First, due to the large computation time associated with integrating stresses in106

SCM and limitations of classical terramechanics equations, a nonlinear reduced-107

order model is developed by extending the work presented in (Zhenzhong Jia108

et al., 2011) to account for additional dynamic effects such that a sufficient109

agreement with SCM can be achieved. Then, the reduced-order terramechanics110

model is incorporated in a 3 DoF bicycle model (Liu et al., 2018) to create111

an estimation model, whereas the actual vehicle is represented with a 11 DoF112

plant model with SCM or a physical vehicle operating on a grass field. The113
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predictions from the estimation model are fused with measurements from the114

plant model, independent of forces and torque measurement, in an Unscented115

Kalman Filter (UKF) to identify the dominant terrain parameter, namely, the116

sinkage exponent. The result is an online terrain estimation approach that can117

be used to better inform control and path-planning algorithms for AGVs.118

The rest of this paper is organized as follows. Sec. 2 first briefly reviews119

the SCM model used in the plant model. Then a state-of-the-art fast terrame-120

chanics model used as a benchmark is introduced and the significant deviations121

of its predictions from SCM are demonstrated. This model is then modified122

to improve its accuracy vis-à-vis SCM, so that a suitable estimation model is123

obtained. Sec. 3 presents the vehicle models, both the plant model as well124

as the estimation model. The terrain estimation procedure based on UKF is125

summarized in Sec. 4. Sec. 5 and Sec 6 give the simulation and experimen-126

tal conditions. Sec. 7 gives the simulation results, including the accuracy of127

the estimations and their ability to improve the predictive accuracy of the 3128

DoF model, and the experimental results on grass. Finally, Sec. 8 gives the129

conclusions drawn from this work.130

2. Terramechanics Models131

2.1. Soil Contact Model (SCM)132

This section briefly reviews the terramechanics model adopted in this work to133

represent the tire-terrain interactions in the plant simulations with high fidelity.134

This model is also used to evaluate the accuracy of the fast terramechanics135

models, including a state-of-the-art model and the surrogate model developed136

in this work. As such, this model serves as the ground truth for the purposes of137

this work.138

The terramechanics model used in this study for generating the lateral tire139
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forces acting on the vehicle is based on the Soil Contact Model (SCM) reported140

in (Gallina et al., 2014; Krenn and Gibbesch, 2011). Verification of the model141

can be found in (Krenn and Hirzinger, 2009). The SCM calculates relevant142

forces and torques acting on a 3 dimensional object in contact with a deformable143

terrain as summarized below.144

The SCM algorithm relies on a discretized mesh of the tire and terrain to145

search for contact points at the tire-terrain interface. In the contact detection146

step, the vertices of the tire mesh are projected onto the nearest vertices of147

the terrain digital elevation map, effectively arranging the contact vertices in148

individual columns. The sinkage at each vertex can be determined from the149

minima of each column, assuming the vertex location is a point of sinkage. The150

effective contact width, b, can then be determined from the footprint’s area and151

contour length (Krenn and Gibbesch, 2011).152

Following contact detection, the algorithm calculates the stresses at each153

contact node of the footprint as follows. The pressure, σ, is expressed as (Bekker,154

1962)155

σ = (kc/b+ kφ)hn (1)

The shear stress, τ , is expressed as (Janosi et al., 1961)156

τ = τmax(1− e−j/k) (2)

with τmax given as157

τmax = (c+ σ tanφ) (3)

In the above expressions h is the sinkage, b is the tire effective width, and158

j is the shear deformation. The remaining parameters are internal parameters159

characterizing the terrain as summarized in Table 1. The forces generated at160

the tire-terrain interface can then be given by integrating the stresses over the161
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Table 1: SCM terrain parameters.

Parameter Symbol Unit
Cohesive modulus kc N/mn+1

Frictional modulus kφ N/mn+2

Sinkage exponent n -
Shear deformation modulus k m

Cohesion c Pa
Angle of internal friction φ rad

entire contact patch. The above overview is a summary of (Gallina et al., 2014);162

a more complete discussion is given in (Krenn and Gibbesch, 2011).163

SCM is a rather complex model due to the discretizations and integrations164

involved and may thus not be suitable for real-time parameter identification165

purposes. It has been shown that the accuracy of SCM is heavily influenced by166

the discretization resolution (Krenn and Gibbesch, 2011). Furthermore, several167

SCM operations are of N2 complexity, where N is the number of grid nodes168

(Krenn and Gibbesch, 2011). As an example, for a discretization of just 200169

total nodes (100 per tire in a bicycle model), the time required by SCM can170

be around 20 ms (Krenn and Gibbesch, 2011). Furthermore, for the UKF, the171

estimation method used in this work, 17 sigma points must be generated as172

discussed in Sec. 4, each calling the terramechanics model twice (once per tire173

in the bicycle model). Thus the total time spent calculating tire forces can be174

around 350 ms per a single UKF iteration. Finally, taking into account that175

many UKF iterations are needed to achieve estimation convergence, a UKF with176

SCM can be expected to take several minutes to converge, which is impractically177

long. Therefore, faster terramechanics models are needed.178

2.2. State-of-the-Art Fast Terramechanics Model179

Much less computationally demanding solutions better suited for online es-180

timation are given by Bekker-based models. These models are again based on181
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(1)-(3); however, σ, τ , h, and, j are now replaced by functions of the angle of182

contact, θ. As such, (1)-(3) are rewritten as:183

σ(θ) = (kc/b+ kφ)h(θ)n (4)

184

τ(θ) = τmax(1− e−j(θ)/k) (5)

185

τmax = (c+ σ(θ) tanφ) (6)

where h(θ) is given by186

h(θ) =


r(cos θ − cos θf) θm ≤ θ ≤ θf

r(cos θe − cos θf) θr ≤ θ ≤ θm
(7)

with187

θm = (a0 + a1s)θf (8)

188

θf = cos−1(1− hf/r) (9)

189

θe = θf − (θ − θr)(θf − θm)/(θm − θr) (10)

190

θr = cos−1(1− Λh/r) (11)

where r is the radius of the tire; θf is the angle at which the front of the tire191

comes into contact with the terrain; θm is the location of maximum normal192

stress with a0 and a1 as terrain parameters typically taking on values of 0.4 and193

0–0.3, respectively (Wong and Reece, 1967); s is the longitudinal slip of the tire;194

θe is the equivalent front contact angle for angles less than θm; θr is the angle at195

which the rear of the tire loses contact with the terrain; and Λ is a property of196

the terrain characterizing the sinkage ratio. Note that Λh in (11) corresponds197

to the hr in Fig. 1a.198
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Finally, j(θ) is given as199

j(θ) =


r[(θf − θ)− (1− s)(sin θf − sin θ)] s ≥ 0

r[(θf − θ)− (1/(1 + s))(sin θf − sin θ)] s < 0

(12)

The maximum sinkage can be calculated in an iterative fashion by using the200

Newton-Raphson method as proposed in (Guo, 2016) as follows. The maximum201

sinkage is initialized as the static sinkage, which is based on the load on the tire202

W :203

h0 =

[
3W

b(3− n)(kc/b+ kφ)
√

2r

] 2
2n+1

(13)

However, due to dynamic effects, such as slippage, additional sinkage is induced.204

To account for this, the reaction force is calculated as205

Fz =

∫ θf

θr

rb(τ(θ) sin(θ) + σ(θ) cos(θ))dθ (14)

and a new sinkage is determined using the Newton-Raphson root finding method206

as207

h′0 = h0 − Fz(h0)/F ′z(h0) (15)

where F ′z denotes the derivative of the reaction force with respect to sinkage.208

The iterative procedure terminates when the calculated reaction force is within209

a specified tolerance of the normal force applied to the tire. Once the maximum210

sinkage is determined, the lateral force Fy can then be calculated in a similar211

fashion as in (Ishigami et al., 2007; Guo, 2016), i.e.,212

Fy =

∫ θf

θr

rbτy(θ) (16)
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Figure 1: Tire-terrain geometry for positive slip.

with τy(θ) given as213

τy(θ) = τmax(1− e−|jy(θ)|/ky ) (17)

where214

jy(θ) = r(1− s)(θf − θ) tanβ (18)

and β is the side slip angle given as215

β = arctan(
vy
vx

) (19)

Depending on the soil type τy(θ) can also be represented with a different216

formulation such as217

τy(θ) = τmax(j/ky)(e1−jy(θ)/ky ) (20)

Other formulations can be found in (Smith, 2014). All relevant variables are218

depicted in Fig. 1.219

To assess the accuracy of (16) compared to SCM, a simulation is run in220

Chrono (Tasora et al., 2016). The simulation utilizes a single wheel test bed221

operating on a sand-like terrain using Chrono’s built-in SCM terrain. The test222
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Table 2: Terrain parameters for sand (Guo, 2016).

Parameter Value
kc 1000 (N/mn+1)
kφ 1528600 (N/mn+2)
n 1.08 (–)
k 0.024 (m)
c 200 (Pa)
φ 0.4712 (rad)

Table 3: Wheel states for benchmark simulation.

State Value
Normal load 2500 (N)

Longitudinal slip 0.2 (–)
Camber angle 0 (rad)

Speed 5.5 (m/s)

bed allows for individual control of the tire’s velocity, load, longitudinal slip, and223

lateral slip. The terrain properties used in this simulation are representative of224

sand and given in Table 2. The simulation sweeps the tire through a range of225

lateral slips with a 1 Hz sine wave. The load, longitudinal slip, camber angle,226

and linear velocity of the tire are all held at the constant values given in Table227

3.228

Fig. 2 shows the results of an SCM simulation run in Chrono (orange) and229

the force predicted by (16) (blue). The term k is assumed to be constant, rather230

than a function of lateral slip as in (Ishigami et al., 2007). This is to maintain231

consistency with the SCM formulation used in Chrono. As seen in the figure,232

the base model of (16) captures the overall trend, at least in the linear region233

around zero lateral slip, but averages the two distinct curves seen in SCM. This234

is because the current formulation does not account for the hysteresis effects of235

varying lateral slip; i.e., the shear deformation of (18) does not account for the236

shearing resulting from the tire rotation that induces the lateral slip. Note that237
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Figure 2: Simulation results for SCM (orange) and model based on (16) (blue). The simulation
uses the inputs given in Table 3 and the terrain properties given in Table 2.

in this work the lateral slip is varied by the steering angle applied to the tire.238

Recognizing this shortcoming in the state-of-the-art fast terramechanics model,239

a new surrogate model for SCM is developed in the next section.240

2.3. New Surrogate Model241

This section presents the new terramechanics model developed as a fast242

surrogate for the SCM.243

The new surrogate is obtained by replacing (17) and (20) with the following244

expressions, respectively.245

τ∗y (θ) = τmax(1− e−|j
∗
y(θ)|/k

∗
y )g1(v, s, Fz, n) (21)

246

τ∗y (θ) = τmax(j/k∗y)(e1−j
∗
y(θ)/k

∗
y )g1(v, s, Fz, n) (22)

with

j∗y(θ) =− |r(1− s)(θf − θ) tanβ|+

sign(β)
(
r sin(θ)∆δ g2(v, s, Fz, n)

) (23)

where ∆δ is the change in the steering angle. ky, a parameter originally de-247
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scribing the shear displacement required to generate peak shear stress, is now248

empirically estimated as a function of the wheel states, i.e.,249

k∗y = g3(v, s, Fz, n) (24)

The lateral force acting on the vehicle is then determined as in (16). It250

should be noted that an additional term in (16) is often given representing251

the bulldozing force; however, simulations suggest this contribution is minimal252

for this application. Additionally, integrating the original nonlinear functions253

over the contact patch is a computationally demanding task. Therefore, the254

quadratic approximation proposed in (Zhenzhong Jia et al., 2011) is adopted in255

the surrogate model. Furthermore, the modifications shown represent the lateral256

force acting on the vehicle frame, not the lateral forces in the tire reference frame.257

Simulations covering the operating range of a notional military AGV are258

run to develop the modifying functions g1(·) − g3(·). For each slip range of259

the clay simulation, as described in the Appendix, the simulations are run at 4260

equispaced wheel loads, 5 slips, 5 translational velocities, and 7 sinkage expo-261

nents, i.e. 4+5+5+7 samples. It is worth noting, this could potentially cause a262

loss of interaction effects between the inputs; however, training with 4+5+5+7263

samples rather than 4*5*5*7 samples leads to much faster development time.264

Furthermore, to ensure this method leads minimal loss of accuracy from inter-265

action effects, over 1,500 independent validation tests were performed for cases266

where interacting effects would occur, as described in the following paragraphs.267

Finally, other terrain parameters are set to their nominal values, because only268

the sinkage exponent is selected as the parameter to be estimated due to the269

higher sensitivity of tire forces to sinkage exponent than other parameters (Gal-270

lina et al., 2014; Ishigami, 2008). Table 4 shows the range of inputs covered271

in the simulations. In these simulations, the inputs are held at constant values272
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Table 4: Wheel states and terrain ranges for development of g1(·) − g3(·)

.

State Value
Normal load 1000–4000 (N)

Longitudinal slip -0.9–0.9 (–)
Camber angle 0 (rad)

Speed 2.5–8.5 (m/s)
n 0.4–1.3 (–)

and the lateral slip is varied with a sinusoidal input. Following this, correction273

factors are determined for τy, jy(θ), and ky to match the output of (16) with274

each of the SCM simulations. Least squares curve fitting is then used to derive275

the relationship between the correction factors and the simulation inputs of Ta-276

ble 4, resulting in the modification functions g1(·)− g3(·). To ensure the model277

was not subject to overfitting or a loss of accuracy from interaction effects, over278

1,500 independent validation simulations were performed as described in the279

following paragraphs.280

Several parameters in the surrogate terramechanics model have distinct ef-281

fects on the lateral force prediction and can be modified to achieve better agree-282

ment with SCM. For illustration purposes, the effects of each input on a sand283

terrain are shown in Fig. 3-5. The slope of the linear region can be set by modi-284

fying ky with g3(·), the distance between the two curves can be set by adjusting285

jy with g2(·), and the overall magnitude of the force can be adjusted with g1(·).286

The effect of the wheel states on g1(·)− g3(·) are as follows. The effect of wheel287

load can be captured with linear functions for g1(·)−g3(·). Increased wheel load288

tends to increase the magnitude of the lateral force, increase the slope of the289

linear region, and increase the separation between the top and bottom curves290

as shown in Fig. 3 for a load 2000N (blue) and 3000N (orange). The effect of291

longitudinal slip can be modeled by polynomials for g1(·) − g3(·). As seen in292

Fig. 4, for positive slips, lower magnitude longitudinal slips tend to increase the293

15



Figure 3: Simulation results for SCM with Fz being 2000 N (blue) and 3000 N (orange). The
simulation uses the inputs given in Table 3 and the terrain properties given in Table 2, except
for the normal load and slip (-0.5).

slope of the linear region, while also causing a larger spread between the top and294

bottom curve. Fig. 4 shows these results for a slip of 0.2 (blue), 0.4 (orange),295

and 0.6 (yellow). The effect of translational velocity can be captured with a296

power function for g2(·) alone, because it has minimal effect on g1(·) and g3(·).297

Hence, g1(·) and g3(·) do not depend on translational velocity. As seen in Fig.298

5, for a speed of 2.5 m/s (blue) and 4.5 m/s (orange), increased translational299

velocity tends to have little effect on the slope of the linear region, but reduces300

the hysteresis. Example formulations of g1(·)− g3(·) for a clay terrain are given301

in the Appendix.302

Once g1(·) − g3(·) are determined, over 1,500 independent validation simu-303

lations are ran using equispaced samples for the wheel states of Table 4. The304

mean absolute error for 1,500 SCM clay simulations is 62.97 N, suggesting the305

surrogate model is able to accurately predict the tire forces beyond the training306

set and incurs minimal loss of accuracy from the interaction effects of the train-307

ing method. The results of the surrogate model are shown in Fig. 6 (blue) while308

SCM is shown in (orange), for the same SCM simulation of Fig. 2. Much better309

agreement is observed between the surrogate model and the SCM simulation310

compared to Fig. 2. It should also be noted that the surrogate model runs in311
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Figure 4: Simulation results for SCM with slip being 0.2 (blue), 0.4 (orange), 0.6 (yellow).
The simulation uses the inputs given in Table 3 and the terrain properties given in Table 2,
except for the slip.

Figure 5: Simulation results for SCM with speed being 2.5 m/s (blue) and 4.5 m/s (orange).
The simulation uses the inputs given in Table 3 and the terrain properties given in Table 2,
except for the speed and slip (0.5).
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Figure 6: Simulation results for SCM (blue) and the new surrogate model (orange) for the
inputs given in Table 3 and the terrain properties given in Table 2.

200-400 µs, which is an order of magnitude more efficient than what is reported312

for SCM and more suitable for online terrain estimation.313

3. Vehicle Models314

Two vehicle models are employed in this work; a 11 DoF model to represent315

the plant and a 3 DoF bicycle model to be used as part of the estimator. This316

section describes these models.317

3.1. Plant Model318

To represent the actual vehicle in the simulation-based validation of the319

proposed surrogate model and terrain estimator, the Chrono software is utilized320

to simulate the dynamics of a notional military vehicle, specifically a Polaris321

MRZR 4, as well as to implement the SCM (Tasora et al., 2016). For the322

purposes of this work, the vehicle is modeled with a double wishbone suspension,323

rack-pinion steering, 4 wheel drive, and a simple powertrain without a torque324

converter or transmission. This results in a 11 DoF vehicle model that is then325

combined with the SCM as the tire-terrain interaction model. Fig.7 depicts the326

plant operating on a sand SCM terrain in Chrono. The data received from the327
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Figure 7: Plant operating on sand SCM terrain in Chrono.

Table 5: Measurement standard deviations used for sensor simulation.

State Noise (σ)
x 1.2 (m)
y 1.2 (m)
ψ 0.0175 (rad)
u 0.25 (m/s)
v 0.25 (m/s)
ωz 0.0175 (rad/s)

plant is then corrupted with Gaussian noise and serves as the measurement yk328

in (29) in Sec. 4. Table 5 lists the standard deviations used in the noise model329

for each state. Actual sensors typically offer lower noise levels; hence the chosen330

standard deviations represent a worse-case scenario to test the ability of the331

estimator (Ryu et al., 2002).332

3.2. Bicycle Model333

As part of the terrain estimation process that is detailed in Sec. 4, a vehicle334

model is needed to predict future vehicle states based on the tire forces from335

the surrogate model. For this work, a 3 DoF bicycle model with forward Euler336
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integration is adopted, as it provides a proper level of fidelity while maintaining337

enough simplicity for short-horizon predictions (Liu et al., 2016). Fig. 8 depicts338

the bicycle model schematic. Mathematically, the bicycle model takes on the339

following form:340

żb =



u cosψ − (v + Lfωz) sinψ

u sinψ + (v + Lfωz) cosψ

wz

ax

(Fyf + Fyr)/Mt − uωz

(FyfLf − FyrLr)/Izz


(25)
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where the state vector, zb, is defined as341

zb :=



x

y

ψ

u

v

ωz


=



global x position of front axle

global y position of front axle

yaw angle

longitudinal velocity

lateral velocity

yaw rate


(26)

with Mt being the vehicle mass, Izz being the vehicle’s yaw moment of inertia,342

and Lf and Lr being the distance from the vehicle’s center of gravity to the front343

and rear axles, respectively. Finally, Fyf and Fyr are the lateral forces generated344

from the front and rear tires acting on the vehicle body, as obtained from the345

terramechanics model.346

4. Terrain Estimation347

The terrain parameter to be estimated is chosen as the sinkage exponent n,348

because it has been shown to be the dominant parameter (Gallina et al., 2014).349

All other terrain parameters are assumed to be some nominal values based on350

the specific terrain type, which can be determined from terrain classification351

algorithms such as the ones described in (Iagnemma, 2006; Weiss et al., 2008).352

To estimate the unknown terrain parameter n, it is appended to the 3 DoF353

bicycle model in (25) with trivial dynamics. Here n is given as a 2x1 vector354

to account for the front and rear tires. This is to mitigate the influence of355

unmodeled multipass effects and in the case of a discrete terrain change where356

the front tire and rear tire may operate on different terrains. The augmented357
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state vector and state dynamics are given as358

z :=

zb
n

 , ż =

żb
0

 (27)

Given the measurements of the vehicle states in (26), the augmented dynam-359

ics are utilized in an unscented Kalman filter (UKF) to estimate the augmented360

state vector in (27) including the sinkage exponent. It is worth noting that many361

other algorithms are available in the literature for nonlinear parameter estima-362

tion, including, but not limited to, extended Kalman filters, transitional Markov363

Chain Monte Carlo algorithms, and particle filters. Among these options the364

UKF is preferred in this work, because preliminary explorations suggest that365

the UKF offers a good balance between accuracy and computational speed for366

this application.367

The UKF is composed of two general steps; a time update step and a mea-368

surement update step. Assume that a system is given in discrete time as:369

zk+1 = F (zk, ρk) (28)

370

yk = H(zk, γk) (29)

where z is the state, y is the observation, and ρ and γ are the process and obser-371

vation noise, respectively. The functions F (·) and H(·) are nonlinear functions372

describing the dynamics and outputs. In this application, z takes the form of373

the state vector in (27) and F (·) is obtained by discretizing the state equation374

in (27) using the forward Euler method. H(·) is given as the state vector in375

(26).376

First, a set of 2L + 1 sigma points are created to capture the statistical377

distribution of the states, where L is the dimension of the state vector z. The378
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sigma points are determined as follows:379

Zk−1 = [ẑ ẑ ± (
√

(L+ λ)Pz)i] (30)

where ẑ is the mean value of z. λ is a scaling parameter given as:380

λ = α2(L+ κ)− L (31)

where α is a tunable scaling parameter that typically takes a value between 0381

and 1, κ is another scaling parameter that is typically set to 0. At the time382

update step, the sigma points are propagated through the original nonlinear383

system as:384

Zzk|k−1 = F (Zzk−1, Z
v
k−1) (32)

The following weights are then calculated385

Wm
0 = λ/(L+ λ) (33)

386

W c
0 = λ/(L+ λ) + (1− α2 + ζ) (34)

387

Wm,c
i = 1/(2(L+ λ)) (35)

where ζ is set to 2 for Gaussian distributions. The statistics of the time update388

step are then given by:389

ẑ−k =

2L∑
i=0

Wm
i Z

z
i,k|k−1 (36)

390

P−k =

2L∑
i=0

W c
i (Zzi,k|k−1 − ẑ

−
k )(Zzi,k|k−1 − ẑ

−
k )T (37)

391

Yk|k−1 = H(Zzk|k−1, Z
n
k−1) (38)
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392

ŷ−k =

2L∑
i=0

Wm
i Yi,k|k−1 (39)

Finally, the measurement update step is given by the following set of equa-393

tions:394

Pŷkŷk =

2L∑
i=0

W c
i (Yi,k|k−1 − ŷ−k )(Yi,k|k−1 − ŷ−k )T (40)

395

Pzkyk =

2L∑
i=0

W c
i (Zi,k|k−1 − ẑ−k )(Yi,k|k−1 − ŷ−k )T (41)

396

K = PzkykP
−1
ŷkŷk

(42)

397

ẑk = ẑ−k +K(yk − ŷ−k ) (43)

398

Pk = P−k −KPŷkŷkK
T (44)

The above process is a summary of the algorithm given in (Wan and Van Der399

Merwe, 2000). Intuitively, the process works by merging model-based predic-400

tions of the states with their measurements from the plant by exploiting the401

uncertainties associated with each to determine the best estimates of the states.402

For further discussion of UKF and details of its implementation, the reader is403

referred to (Wan and Van Der Merwe, 2000; Kol̊as et al., 2009). It also worth404

noting that while this work only focuses on estimating the dominant param-405

eter n, other terrain parameters could be estimated simultaneously, as well.406

However, this would incur additional computational costs as the state space di-407

mension increases, thus increasing the number of sigma points necessary in the408

UKF.409

5. Simulation Setup410

Simulations are performed utilizing Chrono’s SCM deformable terrain and411

the developed AGV model in Sec. 3.1. Two terrains are considered including412

24



Table 6: Terrain parameters for simulated terrains (Smith, 2014).

Parameter Sandy Loam Clay
kc 5300 (N/mn+1) 13200 (N/mn+1)
kφ 1515000 (N/mn+2) 692200 (N/mn+2)
n 0.7 (–) 0.5 (–)
k 0.025 (m) 0.01 (m)
c 1700 (Pa) 4140 (Pa)
φ 0.5061 (rad) 0.2269 (rad)

sandy loam and clay. Relevant terrain parameters are given in Table 6. The sim-413

ulation subjects the AGV to sinusoidal steering commands, steering fully to the414

left and right over a three second period. The throttle is also varied with a sinu-415

soidal command such that varying speeds are achieved. No braking command is416

given. The applied steering and speed profiles for the clay simulation are shown417

in Fig. 9. Throttle and steering commands of the same frequency are given in418

the sandy loam simulation, as well. Two remarks are in order. First, as seen in419

Fig. 9, no requirement on constraining the vehicle to low speeds (on the order420

of 10 cm/s) is made, which is in contrast to previous efforts (Iagnemma et al.,421

2004). This enables enhanced mobility, which is critical for military applica-422

tions. Second, a sinusoidal steering input is selected to induce lateral dynamics423

for the vehicle. Since the bicycle model only utilizes the lateral forces acting on424

the vehicle, it is critical for the estimation that the vehicle operates in such a425

way that lateral dynamics are induced. Otherwise, the lack of information on426

the lateral dynamics leads to parameter variations having negligible effects on427

the output of the bicycle model. In other words, if Fyf and Fyr are zero, it is not428

possible to estimate terrain parameters based on lateral forces. If estimation is429

required in such a scenario, additional measurement should be exploited.430

In all simulations, the simulation time step is set to 2 ms in Chrono. The431

purpose of these simulations is to determine the estimation algorithm’s accuracy432

and utility under different terrain conditions. Once the simulations are com-433
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(a) Steering (b) Longitudinal speed

Figure 9: Steering and velocity profiles used in simulation.

(a) Figure 8 positions. (b) Longitudinal speed

Figure 10: Position and velocity profiles from the experiment on grass.

plete, noise is added to the outputs to simulate sensors, as discussed in Sec. 3.1.434

The estimator is then run at a 12 ms time step and the simulated measurements435

are received at every 24 ms. The terrain parameter n is initialized with a value436

off of the true terrain parameter used in the plant simulation. The remaining437

terrain parameters are set to their true values given in Table 6. Note that the438

true values are used here only to assess how closely the algorithm can converge439

to the true sinkage exponent.440

6. Experimental Setup441

Experiments were performed with a Polaris MRZR 4, example shown in442

Fig. 11, equipped with sensors to measure the relevant states required for the443

measurement update of the UKF as described in Sec. 4. Actuators were con-444
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Figure 11: Example Polaris MRZR 4 (dvidshub, accessed January 30, 2020).

Table 7: Terrain parameters for grass field (Okello et al., 1998).

Parameter Value
kc 16000 (N/mn+1)
kφ 1180000 (N/mn+2)
n 0.26 (–)
kw 0.046 (m)
c 24000 (Pa)
φ 0.75 (rad)

trolled with TORC ByWire, Actus ERC 722 for throttle and braking, and Allied445

Motion GLOBE POW-R STEER Electric Power Assisted Steering (EPAS) for446

steering. A Robotic Research RR-N140 navigation system was used for high447

accuracy localization which is composed of Global Navigation Satellite System448

(GNSS)/Global Positioning System (GPS) as well as an Inertial Measurement449

Unit (IMU). In addition, Honeywell SNDH-T4L-G01 were used for wheel en-450

coders. Sensor noise values are given in Table 5. Measurements were received451

by the UKF at a frequency of 25 Hz and the bicycle model predictions were452

made at a frequency of 50 Hz.453

The vehicle was subjected to a series of Figure 8 maneuvers as exemplified in454

Fig. 10 (a) with a longitudinal velocity profile given in 10 (b). This maneuver455

was selected to induce lateral dynamics. The location of the maneuver was a wet456

open grass field. While the exact terrain parameters of the field are unknown,457

the literature provides several parameter sets for various grass terrains (Okello458
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et al., 1998). The terrain parameters found in the literature for a terrain most459

comparable to the test site were chosen as shown in Table 7 due to the moisture460

content and surface type.461

7. Results and Discussion462

7.1. Simulation Results463

In this section the performance of the terrain estimator is evaluated. The464

performance is evaluated from two different points of view: (1) the accuracy of465

the estimated sinkage exponent n, and (2) the accuracy of the predicted state466

trajectories of the vehicle . The former assesses the algorithm’s ability to find467

the true sinkage exponent, whereas the latter assesses the utility of estimating468

the sinkage exponent in the larger picture of predicting the future states of469

the vehicle. Note that if the assumed nominal values for the non-estimated470

parameters are not representative of the true terrain type, then the estimator471

may not necessarily converge to the true terrain parameter, as it will attempt472

to find a value that compensates for the errors in the non-estimated values and473

achieves the best prediction capability of the vehicle model. For the ultimate474

aim of more accurately predicting the future mobility capabilities of the vehicle,475

the second evaluation criterion is the more relevant one.476

Table 8 displays the initial guess of the value of the sinkage exponent n,477

its converged estimate by the algorithm, and the error associated with the es-478

timated parameter. The initial terrain parameter for sandy loam is chosen to479

be representative of Buchele (Michigan) sandy loam and the initial terrain pa-480

rameter for clay is chosen to be representative of Thailand clay (Wong, 2001).481

On both terrains, the percent error in the estimated terrain parameter is less482

than 4%, where the estimated value is taken to be the final value by the end483

of the simulation. Fig. 12 shows the estimated terrain parameters for the two484
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(a) Sandy loam (b) Clay

Figure 12: Simulated sinkage exponent estimation results.

Table 8: Initial guess, estimated value, and estimation errors of the sinkage exponent n for
simulated terrains.

Terrain Initial guess True val. Converged val. % error
Sandy loam 0.9 0.7 0.722 3.1%

Clay 0.7 0.5 0.519 3.8%

considered terrains as time evolves. The differences between the converged and485

true terrain values can be due to model discrepancies between the high fidelity486

Chrono model and the 3 DoF bicycle model along with discrepancies arising487

from the reduced order terramechanics model. Nevertheless, the estimator con-488

verges within 10% of the estimated parameter within 5 seconds for both cases.489

The peak computation time of the estimator is 10.5 ms and 7.5 ms for clay490

and sandy loam simulations respectively, thus demonstrating the potential to491

achieve real-time estimation. The platform running this estimation consists of492

16 GB Memory and a single core 3 GHz Intel Core i7 processor.493

While estimating the terrain properties accurately is a worthy goal in and494

of itself, it is more of interest to evaluate to what extent the estimations can495

improve the predictive capability of the bicycle model as motivated above. To496

accomplish this second evaluation, the bicycle model, with the terramechanics497

model parameterized by either the initial guess or the converged terrain parame-498

ter, is used to predict the vehicle states approximately 0.5, 2.5, and 5.0 seconds499

29



Table 9: Mean squared error over entire simulation with varying prediction horizons for clay
using estimated terrain parameter (n = 0.519) and initial guess (n = 0.7).

Time horizon 0.5 (s) 2.5 (s) 5 (s)

State n=0.519 n=0.7 n=0.519 n=0.7 n=0.519 n=0.7

x (m) 0.0034 0.0025 0.037 0.01 0.075 0.078
y (m) 0.0035 0.0051 0.022 0.15 0.12 0.34
ψ (rad) 3.17e-05 1.8e-04 2.45e-04 0.0089 9.9e-04 0.0115
u (m/s) 6.46e-05 6.46e-05 1.33e-04 1.33e-04 1.2e-04 1.2e-04
v (m/s) 0.0027 0.013 0.0047 0.15 0.005 0.28
ωz (rad/s) 6.2e-04 0.004 (rad/s) 9.01e-04 0.023 9.05e-04 0.04

Figure 13: Simulated vehicle positions for AGV operating on clay. True vehicle positions from
Chrono (blue solid line), bicycle model parameterized by n = 0.519 (red dashed line), and
bicycle model parameterized by initial terrain guess n = 0.7 (black dotted line).

into the future for the clay case. After this time the vehicle states are reset500

to the true values received from Chrono. As such, this procedure mimics the501

operational procedure of a model predictive control approach, where a reced-502

ing finite horizon optimal control problem is solved periodically with updated503

information available from sensors (Liu et al., 2017).504

Table 9 depicts the mean squared errors (MSE) of the state estimates given505

by the 3 DoF bicycle model for both the case when the initial guess for the506

sinkage exponent for clay is used and the case when the converged estimate507
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Figure 14: Sinkage exponent estimation results for the experiment on grass.

is used over the entire 32.89 s simulation. The model parameterized by the508

estimated terrain property yields significantly better predictions, especially at509

larger time horizons with order of magnitude reductions in MSE. Fig. 13 shows510

a portion of the simulation, using the ∼2.5s time horizon and depicting the true511

vehicle positions from the plant (blue solid line), and the predicted positions512

using the bicycle model with the initial guess of the sinkage exponent (black513

dotted line) and with the converged sinkage exponent (red dashed line). As514

can be seen, the converged value yields much more accurate predictions, thus515

demonstrating the ability of the estimator to significantly improve prediction516

fidelity. Similar results are also observed for the other terrains, but they are not517

reported here due to space limitations. This improvement in turn could lead to518

better performance in model predictive controllers, which is subject to future519

research.520

7.2. Experimental Results521

Fig. 14 shows the estimated sinkage exponent for the experimental tests522

on grass described in Sec. 6. Here, the initial guess of the sinkage exponent523

corresponds to that of Table 7 and all other terrain parameters are set to nominal524
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Table 10: Mean squared error over entire experiment with 2.5 second prediction horizon for
the experiment on grass.

State n=0.39 n=0.26
(estimated value) (initial guess)

x 0.3132 (m) 1.7305 (m)
y 0.4378 (m) 1.6483 (m)
ψ 0.0117 (rad) 0.0209 (rad)
u 1.8747e-04 (m/s) 1.8747e-04 (m/s)
v 0.1740 (m/s) 0.3989 (m/s)
ωz 0.0100 (rad/s) 0.0204 (rad/s)

values given in Table 7. While the true sinkage exponent of the grass test site525

is unknown, the converged value of 0.39 is within the range reported for grass526

of 0.26-0.7 as given in (Okello et al., 1998).527

Table 10 displays the MSE of the state predictions of a 3 DoF bicycle model528

parameterized by the initial sinkage exponent guess (n = 0.26) and the con-529

verged estimate (n = 0.39) as compared to measurements on the experimental530

vehicle over a 2.5 s horizon. As can be seen, the model parameterized by the531

estimate significantly reduces the MSE for all states, demonstrating the util-532

ity of estimator. Furthermore, this result provides confidence in the estimated533

parameter value despite uncertainty in its true value. This is demonstrated534

by Fig. 15, which plots the normalized sum squared error (SSE) over the en-535

tire experiment between a bicycle model prediction (one time step into the536

future) as compared to state measurements from the vehicle as a function of537

the sinakge exponent. As can be seen, the sinkage exponent that minimizes this538

error is approximately 0.395, which is within 1.5% of the estimated parameter539

value. Thus the experimental results demonstrate the ability of the estimator540

to improve the prediction capabilities of the bicycle model, which could prove541

beneficial in model predictive navigation strategies.542
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Figure 15: Normalized sum squared error predictions for various sinkage exponents for the
experiment on grass.

7.3. Remarks543

While the results of the estimator are promising, there are two limiting544

assumptions of the proposed scheme. The first is that the estimator assumes the545

terrain is homogeneous. This is common among the approaches reported in the546

literature (Iagnemma et al., 2004). However, in reality, terrain parameters may547

be changing and evaluating the performance of the estimator in this scenario is548

subject to future work. The second limiting assumption is that SCM is treated549

as the ground truth and the surrogate terramechanics model is parameterized550

accordingly. The reality may be different than SCM. For example, SCM was551

originally developed for rover applications which tend to occur at lower speeds.552

At high speeds, inertial effects may impact model fidelity. However, in that553

case, a similar procedure in developing the surrogate model could potentially554

be used by replacing the SCM simulations with an experimental single wheel555

test bed. While the experimental results presented herein suggest the estimator556

is able to improve the prediction capability of the bicycle model despite this557

second limitation, it is still of interest to experimentally validate the developed558

terramechanics model, which is subject to future work.559
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8. Conclusion560

This paper considers AGVs operating on deformable terrains with unknown561

terrain properties and develops a novel terrain estimation framework towards562

increasing the terrain-awareness of the AGV. In particular, the novelty of the563

framework is the development of a new surrogate terramechanics model for SCM564

and its use in conjunction with a bicycle model in a UKF. The results suggest565

that this new framework can estimate the dominant terrain parameter, namely566

the sinkage exponent, with high accuracy and high computational efficiency. It is567

therefore concluded that the framework is an important step towards achieving568

a good balance between estimation accuracy and computational speed. The569

results also show that the increase in the accuracy of the terrain parameter570

due to the developed estimation framework leads to a significant increase in571

the predictive accuracy of the bicycle model, especially for longer prediction572

time horizons. It is therefore concluded that the proposed framework could573

be useful to increase the performance of AGVs when they are controlled with574

model predictive schemes.575

Future work includes evaluating the estimator on varying terrain conditions.576

The need for and ability of estimating multiple terrain parameters also needs577

to be investigated. It is also of interest to perform experimental validation of578

the developed surrogate terramechanics model, and investigate the utility of the579

estimator in a model predictive control framework for terrain-aware autonomous580

navigation.581

Appendix582

The following depicts the formulas for g1−g3 for a clay terrain. In this work583

the equations for g1 − g3 are determined for four separate slip ranges for better584
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agreement. The slip ranges are:585

0.16 ≤ s (45)

586

0 ≤ s < 0.16 (46)

587

−0.157 < s < 0 (47)

588

s ≤ −0.157 (48)

The dependencies for g1 − g3 on each input is determined through curve fitting589

to simulation data as discussed in Sec. 2.3. The below equations are valid for590

the slip range of 0 ≤ s < 0.16. For the lower curve of Fig. 6, the equations are591

given as:592

g1 = g1ng1s (49)

593

g2 = g2ng2sg2Fz
g2v (50)

594

g3 = g3ng3sg3Fz
(51)

where595

g1n = 128.3n5 − 415.4n4 + 523.3n3

−320n2 + 95.07n− 9.942

(52)

596

g1s = 563.5s4 − 107.9s3 − 4.848s2

+1.761s+ 1.024

(53)

597

g2n = max(1.8n− 1.08, 0) (54)

598

g2s = 1.367× 106s4 − 3.71× 105s3

+2.809× 104s2 − 545.7s+ 70

(55)
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599

g2Fz
= (0.0001Fz + 0.7) (56)

600

g2v = (4.908v−0.9295) (57)

601

g3n = −0.1235n2 + 0.7287n+ 0.08425 (58)

602

g3s = −309.5s4 + 90.48s3 − 8.983s2

+0.2631s+ 0.086

(59)

603

g3Fz
= (8.3× 10−5)Fz + 0.76 (60)

The same process yields the following equations for the upper curve of Fig.604

6605

g1 = g1s (61)

606

g2 = g2ng2sg2Fz
g2v (62)

607

g3 = g3ng3sg3Fz
(63)

where608

g1s = 1.16(1913s4 − 520.6s3 + 49.57s2

−1.204s+ 1.024)

(64)

609

g2n = max(1.8n− 1.08, 0) (65)

610

g2s = 1.367× 106s4 − 3.71× 105s3+

2.809× 104s2 − 545.7s+ 70

(66)

611

g2Fz
= (0.0001Fz + 0.7) (67)

612

g2v = (4.908v−0.9295) (68)

613

g3n = −0.22 (69)
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614

g3s = 1609s4 − 529s3 + 58.88s2 − 2.467s+ 0.082 (70)

615

g3Fz
= (8.3× 10−5)Fz + 0.76 (71)

The equations for other slip ranges can easily be determined by repeating616

the curve fitting process on data in those ranges. Furthermore, it should be617

noted that these particular equations are only valid for the specific tire under618

consideration. Should these be used for a different tire, for example of different619

radius, the equations are no longer valid and the process would need to be620

repeated.621
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