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Recommendation Systems Overview

• Concepts and foundations

• Applications to DoD and IC

• Facebook DLRM and MLPerf

• Advanced computing in the ETC

• CMU SEI advances in DLRM

• Impact
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What is a Recommendation System?

Given your profile and the things you’ve liked in the past, what is the 

probability that you will “click through” on a recommendation?

• Netflix

• Amazon

• YouTube

• Spotify

• Facebook

• Twitter

“DNN-based personalized recommendation models comprise up to 

79% of AI inference cycles in a production-scale data center.”

Gupta, Udit, et al. “The architectural implications of Facebook's DNN-based personalized recommendation.” 2020 IEEE 

International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2020.
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The Idea Behind Recommendation Systems

Given a “user” and an “item” that the user has not interacted with, what is the 

probability that the user will click on the item?

User-item pairs with the highest predicted click-through rate are prioritized

The data is “sparse,” i.e., any given user has interacted with very few items

Sparsity example: Netflix Prize Dataset

• 17,770 movies

• 480,189 users

Ratings on scale of 1 – 5.

~100,000,000 total ratings

• ~20,000 x ~500,000 = ~10,000,000,000

• Sparsity: 100,000,000 / 10,000,000,000 ~ 1%
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Recommendation Systems in the DoD and IC

Intelligence Analysis Cybersecurity Analysis Social Network Analysis

• Prioritizing documents 

when number of 

documents much greater 

than number of analysts

• Guiding novice analyst 

searches using search 

paths of more experienced 

analysts 

• Generating prioritized 

lists for defense actions 

• Detecting insider threats

• Monitoring network 

security 

• Predicting cyber attacks

• As an attack vector 

• Software vulnerability 

severity assessments

• Discovering fake news

• Identifying malicious 

conversations 
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Recommendation Systems are Appearing in the JAIC

Kitware Inc. developed and demonstrated 

Interactive Query Refinement with intel 

imagery. Actively developing this capability 

and migrating to Project Maven.

Contact: Dr. Juan Vasquez, AFRL ACT3 Product Development Director

JAIC Mission Initiatives

Joint Warfighting 

Operations

Warfighter Health

Business Process 

Transformation

Threat Reduction and 

Protection

Joint Logistics

Joint Information Warfare

Operationalizing AI for Predictive 

Maintenance (H-60 T700 Engines)

• Train an AI that provides results to users 

who can quickly approve/reject the results

• Rapidly train the AI to improve performance

• Unsupervised data exploration to generate 

"candidate questions" that a user may want 

to ask the AI

• Use model to recommend future questions
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MLPerf

Community-wide effort to develop benchmarks for evaluating vendor hardware 

that represent real-world problems 
• 70+ companies including:

• 10 universities and research institutes including:

DoD-relevant benchmarks:

• Image classification and object detection 

• Natural language processing 

• Recommendation systems 

Facebook’s Deep Learning Recommendation Model recently added

AMD

Google

NetApp

Lenovo

Facebook

Dell

Baidu

Cisco

NetApp

IBM

Microsoft

Intel

VMWare

Qualcomm

Harvard University

Stanford University

University of Minnesota

University of Toronto

University of Illinois, Urbana Champaign

University of Texas, Austin

University of California, Santa Cruz

University of California, Berkeley
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Feature vectors and latent factors

Features are notional

(latent factors)
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Will a User Click on an Ad?

Click-through rate prediction

Users and products represented by continuous and 

categorical features

• User represented by a latent factor vector

• Categorical features described by an embedding matrix

- Different numbers of categories:

• new, used, in original box

• sports, music, theater, movies, news, cuisine, …

• “category” for each individual website

- 26 Categorical features

MLP = multilayer percepteron

(neural network)

Facebook released Deep 

Learning Recommendation 

Model (DLRM)  May 31, 2019 

https://arxiv.org/abs/1906.00091

https://arxiv.org/abs/1906.00091
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Advanced Computing and DLRM: Relevant ETC Projects

Research Areas in Advanced 

Computing 

Big Learning 

Benchmarks

Spiral 

AI/ML

Quantum 

Computing

DARPA 

SDH

DARPA 

DSSoC

Parallelism

Data-level Parallelism ✓ ✓ ✓ ✓ ✓

Model-level Parallelism ✓ ✓ ✓ ✓ ✓

Interlayer Parallelism ✓ ✓ ✓

Intralayer Parallelism ✓ ✓ ✓

SIMD/SIMT Parallelism ✓ ✓ ✓ ✓ ✓

Specialized Processing Units

Vector Cores ✓ ✓ ✓ ✓ ✓

Tensor Cores ✓ ✓ ✓ ✓ ✓

Application-Specific Integrated 

Circuits
✓ ✓ ✓

Data Motion ✓ ✓ ✓ ✓ ✓



12
Topics in Advanced Computing: Promise and Challenges of Recommendation Systems for the DoD 
©2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 

unlimited distribution.

RESEARCH REVIEW 2020

What is Data Motion?

A B
A B+A B A B A B A B A B A B A B A B

A B
A B+A B A B

• The most expensive part of any calculation

- “expense” – time and energy

• Values moved between memory spaces

• Types of memory boundedness

- Bandwidth bound – data pipe is full

• Can process data much faster than it is delivered

• Dense, structured workloads (computer vision)

- Latency bound – data pipe is not full

• Spends time waiting for data to arrive

• Workloads with random access to data

• Math is fast, data motion is slow
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DLRM Piece Parts – Data Motion

slow –

DRAM

Access

fast – Vector

Math

fast –Vector

Math

slow – concatenation

fast –
Vector

Math
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CMU SEI Contributions: Spiral AI/ML

• CMU ECE Prof. Tze Meng Low, student Elliot Binder

• Low’s group develops hardware performance models to write optimal code 

for various platforms

- Models incorporated into Spiral (Franchetti, CMU ECE) to automatically generate 

optimal code

• AI models are overwhelmingly implemented in Python frameworks such as 

PyTorch and Tensorflow

- Python front ends link to high performance, hardware specific back ends

- High-level abstractions introduce performance tradeoffs

• Compare performance of model-driven, hand-tuned code with vendor-

submitted results to MLPerf
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CMU SEI Contributions: Spiral AI/ML (cont.)

• Exploit knowledge of memory systems and frameworks to minimize data 

motion

- Block data to make most efficient use multi-way set associative caches

• Eliminate unnecessary framework-induced overheads

- Fuse operations

• Loops determine data motion

- Interplay between vector sizes and cache sizes determines optimal ordering

• Effect of optimizations applied to both CPU and GPU implementations

• Present results at conferences to show the best possible performance to 

the community
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CMU SEI Contributions: Spiral AI/ML (cont.)

• Up to five times faster results

- “bmm” = batch matrix multiply

- Other components are data motion 
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Improving Recommendation Systems: Impact on DoD

Financial savings

• Back of the envelope – commercial

- Hyperscale data center market in 2025: ~$100B

- ~10% of data center time spent on recommender systems: ~$10B

- 2x faster model would save ~$5B

• DoD FY21 AI budget proposal: $841M

- DoD will spend ~$100M on inference and training in coming years

- Savings with these techniques: ~$10M
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Advanced Computing in the Emerging Technology Center

John 
Wohlbier

Scott 
McMillan

Annika 
Horgan

Jason 
Larkin

Daniel 
Justice

DARPA

• Software Defined Hardware

• Domain Specific System on Chip

Spiral

• Spiral AI/ML

• Spiral Graph

Quantum

• Quantum Advantage Evaluation 

Framework

• Quantum versus Classical  

• Near Term Quantum Computing for 

Software Verification and Validation
Tze Meng Low

CMU ECE

Elliot Binder

CMU ECE
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