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1. INTRODUCTION: The subject of this project is a study of how Gulf War Illness (GWI) is modulated 
by alterations in the gut microbiome. In addition, the GWI-modified gut microbiome will the targeted for 
therapy using probiotics and gut microbiota transfer, in order to re-balance the GWI-disrupted 
microbiome. The purpose of the project is to use a validated animal model of GWI and then carry out 16S 
rRNA gene sequencing to determine if treatment results in alterations in the composition and structure of 
the gut microbiome. This project will also assess the effects of the GWI model on the development of 
anxiety- and depression-like behaviors in treated mice. These latter symptoms mirror the central nervous 
system alterations seen in Veterans with GWI. The scope of this project includes a broad assessment of 
how GWI can alter the gut microbiome, which then pivots to include attempts to correct the GWI-induced 
dysbiosis and provide symptom relief.  
 
2. KEYWORDS: Gulf War Illness, gut microbiome, dysbiosis, probiotics, microbiota transfer therapy, 
mood alterations, depression- and anxiety-like behavior, 16S rRNA gene sequencing, permethrin, 
pyridostigmine bromide. 
 
3. ACCOMPLISHMENTS:  
 
 ○ What were the major goals of the project?  
 
  ● Major Task 1 (Specific Aim 1): Treat mice with GWI modeling compounds (i.e., 
pyridostigmine bromide [PB] and permethrin [PER]). 
  ● Major Task 2 (Specific Aim 1): Characterize gut microbiome in controls and treated 
mice using 16S rRNA next generation sequencing and liquid chromatography/mass spectrometry. 
  ● Major Task 3 (Specific Aim 2): Rebalance dysbiosis using probiotics. 
  ● Major Task 4 (Specific Aim 2): Rebalance dysbiosis using microbiota transfer (fecal 
transplantation). 
 
 ○ What was accomplished under these goals? 
 
  1. Major activities:  
 

● Treat mice in the following groups: 1) vehicle control and 2) PB + PER per 
Subtask 1 of Major Task 1;  

● Test both treatment groups for anxiety-like and depression-like outcomes using 
the elevated plus maze and sucrose preference test, respectively per Subtask 2 of Major 
Task 1; Subtask 1 

● Isolate DNA from caecum contents of control and GWI-treated mice using 
Qiagen QIAmp Power Fecal DNA kit per Subtask 1 of Major Task 2 

● Run PCR using sequence specific bacterial primers, prepare sequencing library 
and generate clonal clusters through bridge amplification per Subtask 2 of Major Task 2 

● Sequence DNA using our MiSeq System and carry out data and statistical 
analyses using software (Mothur, R) to generate cladograms, heat maps, and alpha- and 
beta-diversity comparisons among microbial communities of the treatment groups per 
Subtask 3 of Major Task 2. 

 
  2. Specific objectives:  

● Determine if GWI toxicants PB and PER significant alter the structure and 
composition of the gut microbiome 

● Determine if the GWI toxicants PB and PER result in the appearance of 
anxiety- and depression-like behaviors in treated mice 
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● Determine if a high fat diet (HF), used to simulate the fact that the majority of 
Veterans who deployed to the Gulf are now overweight/obese.  

 
  3. Significant results: Fig. 1 shows the body weights of mice treated with GWI or control 
(Con) ± HF. Both treatment groups fed the HF gained on average 10g over the 6 week test period, 
whereas both groups fed the normal diet (ND) gained ~3g. GWI treatment did not alter body weight in 
mice fed either ND or HF compared to controls. When mice initially fed a HF diet were switched to the 
ND for 3 weeks, both groups lost significant amounts of weight (~6-7 g). However, the Con-HF-ND 
group achieved a significant reduction in body weight sooner after the diet switch (post hoc Tukey’s test; 

p < 0.001 at day 27) than the GWI-HF-ND group (post hoc Tukey’s test; p < 0.001 at day 31), and the 
GWI treated mice ultimately lost less weight than controls (post hoc Tukey’s test; p < 0.05 at day 41). 
The main effects of time (F11,528 = 64.8, p < 0.001) and treatment (F5,528 = 115.9, p < 0.001) as well as 
their interaction (F55,528 = 7.3, p < 0.001) were significant (2-way ANOVA). These data establish that 
the HF led to significant gains in body weight that were of the same magnitude in controls and GWI 
treated mice. Both groups lost significant weight when switched back to ND, although weight loss was 
more pronounced among controls. Food intake paralleled body weight gain and did not differ between the 
control and GWI groups for either diet (not shown). GWI treatment therefore did not alter food intake or 
body weight gain for either diet. 
 
Fig. 2 presents an analysis of α-diversity using the Chao-1 index as a measure of gut microbiome 
richness. The main effect of treatment (F5,44 = 26.1, p < 0.0001) was highly significant. Post hoc 
comparisons indicated that GWI treatment significantly reduced microbiome richness compared to 
controls (Tukey’s test, p < 0.05), and that HF led to significantly decreased richness in both control 
(Tukey’s test, p < 0.001) and GWI groups (Tukey’s test, p < 0.05). Notably, when mice were shifted from 
HF to ND, α-diversity recovered to the levels of the appropriate treatment control and differed 
significantly from the respective HF-HF group (Tukey’s test, p < 0.001 for controls and p < 0.01 for 
GWI).  
 

Fig. 1. Effect of diet on body weights. Mice were treated with GWI (PER 
+ PB) or Con (control) and then fed a normal (ND) or high fat (HF) diet 
for 3 weeks. Thereafter, half of the mice on the HF diet (Con and GWI) 
were switched to ND (HF-ND) for an additional 3 weeks. Remaining 
GWI and Con mice were fed ND or HF diet throughout (ND-ND or HF-
HF). Results are mean body weight ± SEM, N= 7-9. 
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With respect to β-diversity, analyses based on the Jaccard index, which reflects shared microbiome 
membership (i.e. community composition) results showed that the OTU profiles of samples clustered 
together tightly according to the diet regimen, and that within diet regimen groups, samples also clustered 
by treatment (Fig. 3). Two-way NPMANOVA analyses revealed that the main effects of treatment (p < 
0.01) and diet (p < 0.0001), as well as their interaction (p < 0.02), were significant. All post hoc 
comparisons among groups were statistically significant. It is interesting that mice in the control and GWI 

Fig. 2. Effects of GWI ± HF on α-diversity. Data are 
presented as Chao-1 ± SEM, N= 8-9. Con = control; GWI 
= PER + PB; ND = normal diet; HF = high fat diet. 
Symbols represent significance levels for the indicated 
post hoc comparisons as p < *0.05, **0.01, ****0.0001.  

Fig. 3. Effects of treatments on β-diversity. PCoA showing 
differences in the similarities of the gut microbiome profiles of the 
study groups using the Jaccard index. Con = control; GWI = PER + 
PB; ND = normal diet; HF = high fat diet. 
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groups exposed to the HF-ND regimen clustered near the ND-ND groups on the PCoA plot, suggesting 
rapid recovery of the gut microbiome following a return to a ND, as was also seen above for α-diversity.  
 

The taxonomic identities of prominent OTUs (≥ 1.5% average relative abundance among all subjects) 
varied among treatment groups. These results are presented in the heat map in Fig. 4. It can be seen that 
the GWI and control groups displayed similar patterns of OTU expression according to diet. The most 
prominent differences in these groups were decreases in Bacteroidetes (see the clusters near the bottom of 
Fig. 4) and increases in Firmicutes (clusters near the top) in the C-HF-HF and G-HF-HF groups. 
Furthermore, within each diet group, differences in OTU relative abundances were evident for GWI 
versus controls. As reported above for community α and β diversity, as mice in the GWI and control 
groups transitioned from HF to the ND, patterns of OTU relative abundance appeared to “recover” toward 
the pattern shown in the groups fed ND throughout this experiment (i.e., ND-ND groups). 
 
Fig. 5 presents results from linear discriminant analysis effect size (LEfSe) analysis and highlights the 
effect sizes of the treatments and diets on affected taxa. LEfSe compares each group to all others 
simultaneously and generates bar plots that include taxa that are distinctly relatively abundant in each 
specific treatment and diet group. LEfSe is used as a means for biomarker discovery by finding OTUs that 

Fig. 4. Heat map illustrating patterns in OTU relative abundance among the treatment groups. All 
subjects in each group are arrayed in columns and bacterial taxonomies are indicated in rows. Con= 
control; GWI = PER + PB; ND = normal diet; HF= HF diet. Clustering along the y-axis was done 
using the Ward algorithm. 
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consistently explain the differences between two or more types of microbial communities. Two main 
outcomes from this analysis are apparent. First, the GWI groups are demarcated by more taxonomic 
biomarkers than controls for each diet condition.  Second, most treatment groups were distinguished by 
taxa in the order Clostridiales within the phylum Firmicutes (i.e., Con-ND-ND, Con-HF-ND and GWI-
HF-ND). However, the GWI-ND-ND group was represented primarily by taxa in the order Bacteroidales 
within the phylum Bacteroidetes, the Con-HF-HF group was singularly characterized by taxa within the 
order Desulfovibrioales, and the GWI-HF-HF group was represented by taxa within the orders 
Lactobacillales and Erysipelotrichales. The HF diet shifted the predominant taxa for the GWI-ND-ND 
group from Bacteroidetes to Firmicutes. All of the control groups regardless of diet were distinguished by 
taxa within Firmicutes and the relatively most abundant taxa in the group fed a ND were in the 
Clostridium XIVa and IV clusters. Controls fed the HF diet were characterized by taxa within the genera 
Desulfovibrio and Pseudoflavonifractor and the control group shifted to a ND from the HF diet was 
distinguished by Porphyromonadaceae and Lachnospiraceae. Treatment- and diet-induced biomarkers 
were observed down to the level of family or genus as shown in the cladogram (Fig. 5). 
 
Fig. 6 illustrates treatment effects at the phylotype level. Treatment and diet effects on specific bacterial 
phyla are presented as percent relative abundance. The main effect of phylum was significant (F7,352 = 
2616, p < 0.0001) but the treatment main effect was not. The phylum X treatment interaction was also 
highly significant (F35,352 = 50.6, p < 0.0001) by two–way ANOVA. Post hoc comparisons revealed that 
virtually all treatment groups differed significantly from one another (p values ranging from 0.05 to 

Fig. 5. Bacterial taxa that were differentially abundant across treatments. LEfSe was carried out using the Galaxy Project and the 
results are displayed in the bar charts (A) and the associated cladogram (B). Taxa showing different abundance values in each 
treatment group (according to LEfSe) are shown in the cladogram highlighted by small circles and by shading. All groups are 
statistically significant compared to each other (LDA > 3.6). Con = control; GWI = PER + PB; ND = normal diet; HF = high fat 
diet. 
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0.0001). The observed changes occurred only within the prominent phyla Firmicutes and Bacteroidetes 
(Fig. 6). The only groups that did not differ were Con-ND-ND vs GWI-ND-ND within Firmicutes and 
Con-ND-ND vs GWI-ND-ND within Bacteroidetes.  
 
The effects of treatments and diets on taxa below the level of phylum were also probed in view of the 

likelihood that changes at the highest taxonomic level may have not reached statistical significance 
because of increases and decreases of equal magnitude within phyla in percent relative abundances of 
bacteria at lower taxonomic levels. Fig. 7 shows these results and indicates that effects at the taxonomic 
levels of class and order vary in a complex manner that is dependent on the combined influence of 

treatment and diet. The main effect of treatment in each panel of Fig. 7 was significant by one-way 
ANOVA with p values ranging from 0.035 (for Bacilli) to 0.0001 (for all remaining taxa). In general, the 
effects of the HF on bacterial taxa were more prevalent than those of GWI treatment. The Con-ND-ND 

Fig. 6. Percent relative abundances of phyla in treatment and diet groups. Stacked columns for the 8 
most prominent phyla are included. Con = control; GWI = PER + PB; ND = normal diet; HF = high fat 
diet. 

Fig. 7. Relative abundance of taxa below the level of phylum in treatment and diet groups. Results are presented as % 
relative abundance for each taxon. Con = control; GWI = PER + PB; ND = normal diet; HF = high fat diet.  
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group did not differ from the GWI-ND-ND group, whereas both control and GWI groups fed ND-ND 
were significantly different from the respective HF-HF groups for most taxa. The complexity of the 
changes are most evident for Desulfovibrionales and Clostridia, where the relative abundances of these 
taxa were increased in HF-HF groups compared to ND-ND groups, and in Betaproteobacteria and 
Bacteroidia, which were both greatly decreased in abundance in the HF-HF groups. Two additional 
unique changes can be seen in Fig. 7A where the abundance of Mollicutes in GWI-HF-ND group was 
significantly increased compared to the other groups, and in Fig. 7D where the abundance of 
Betaproteobacteria was significantly decreased for most groups compared to the Con-ND-ND group.  
Each of the OTUs from the LEfSe analysis (Fig. 5) was subjected to analysis using the Basic Local 
Alignment Search Tool (BLAST) in an attempt to identify taxa that were differentially abundant among 
treatments at the species level (i.e. the consensus sequence of the OTU had > 99% sequence identity with 
the sequence of a bacterial species within the BLAST taxonomy database). The results presented in Table 
1 show that all groups except Con-HF-ND were represented by specific bacterial species. The Con-ND-
ND group was characterized by Muribaculum intestinale whereas Fusimonas intestini was characteristic 
of the GWI-ND-ND  group. The Con-HF-HF group was represented by Flintibacter butyricus and 
Bacteroides intestinalis and the corresponding GWI-HF-HF group was demarcated by Bacteroides 
vulgatus, Mucispirillum schaedleri and Parabacteroides goldstenii. Finally, the biomarkers 
Paramuribactum intestinale, Duncaniella muris and Bacteroides acidifaciens emerged in the GWI-HF-ND 
group.   
 

 
 
Finally, Fig. 8 shows that the GWI model used in this study recapitulates some of the key features of the 
condition, such as mood alterations. Mice treated with PER + PB showed decreased self-motivated care 
reflected as a shorter grooming time in the splash test compared to controls (p < 0.05; Fig. 1A). This is 

Fig. 8. Effects of treatment with Gulf War agents PER + PB on the splash test (A) and the elevated 
plus maze (B). Behaviors were evaluated 6 weeks after administration of the agents to corroborate 
that the GWI model induced some of the outcomes reported for this condition. Results are mean ± 
SEM, N = 5-6. Symbols represent significance levels for the indicated comparisons as p < *0.05, 
**0.01.  
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associated with a depression-like phenotype in rodents. Two-way ANOVA analysis of anxiety-like 
behaviors tested with the elevated plus maze test revealed a main effect of treatment (F1,20 = 6.64, p < 
0.05), time in each set of arms (F1,20 = 633.2, p < 0.0001) and these two factors interaction (F1,20 = 
13.51, p < 0.01). The time animals treated with PER + PB spent in the closed arms of the maze was 
significantly longer compared to controls (p < 0.01, post hoc Sidak’s test), whereas no differences were 
found in the time spent in the open arms (Fig. 8B). These results are indicative of anxiety-like phenotype 
in the mice treated with PER + PB. 
 
  4. Other achievements: All stated goals for this period of activity were met and the data 
was positive in outcome. The method used to model GWI was based on a validated and approved model 
that involves treatment of mice with PB + PER. After treatment, the contents of the caecum were 
removed and DNA was extracted. The DNA was used to construct a sequencing library and the library 
was subjected to 16S rRNA gene sequencing on an Illumina MiSeq system. Behavioral assays used to 
assess anxiety- and depression-like behavior were the elevated plus maze and the splash test, respectively, 
both of which have been extensively validated in published work.  
 
 ○ What opportunities for training and professional development has the project provided? 
Nothing to report. 
 
 ○ How were the results disseminated to communities of interest? The results collected up to 
the present time on this project have been published. The citation is: Angoa-Perez, M., Zagorac, B., 
Francescutti, D.M., Winters, A.D., Greenberg, J.M., Ahmad, M.M., Manning, S.D., Gulbransen, B.D., 
Theis, K.R. and Kuhn, D.M. Effects of a high fat diet on gut microbiome dysbiosis in a mouse model of 
Gulf War Illness. Scientific Reports, 10 (1):9529. doi: 10.1038/s41598-020-66833-w, 2020. 
 
 ○ What do you plan to do during the next reporting period to accomplish these goals? In the 
next reporting period we will carry out Subtask 4 (Major Task 2 on SOW) which is to homogenize 
caecum tissue and use liquid chromatography/mass spectrometry to determine the levels of short chain 
fatty acids (e.g., butyrate, acetate, propionate, valerate) and selected gut- and CNS-active large neutral 
amino acid phenyl derivatives (e.g., p-cresol, indoxyl sulfate, phenylacetylglutamine). In addition, we will 
progress to Major Task 3 which involves rebalancing the GWI-modified gut microbiome using probiotics 
and microbiota transfer therapy.  
 
4. IMPACT 
 
 ○ What was the impact on the development of the principal discipline of the project? The 
findings of this project so far have added substantiation to the possibility that the multi-symptom disorder 
referred to as GWI could be based in a significantly altered gut microbiome. Numerous other health 
disorders included diabetes, obesity, hypertension, developmental disorders and neurodegenerative 
diseases have now been linked to an altered gut microbiome. Therefore, our results extend GWI to this 
growing list of health conditions that have been linked to dysbiosis. In addition, the findings that a high 
fat diet can accentuation the effects of PB + PER on the gut microbiome establishes that life-style risk 
factors can worsen and possibly perpetuate the symptoms of GWI. Of significance is the finding that a 
dietary intervention can correct or re-balance the effects of a high fat diet on GWI-induced alterations in 
the gut microbiome. 
 
 ○ What was the impact on other disciplines? Our findings were published very recently so it is 
not yet possible to determine their impact on other disciplines. 
 
 ○ What was the impact on technology transfer? Nothing to report. 
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 ○ What was the impact on society beyond science and technology? As above, the impact of 
our recently published findings are hard to gauge now. However, we did participate in the recent 
CDMRP-VA Conference on “Gulf War Illness 2020 State of the Science Conference” held August 18-19, 
2020. This virtual conference included a panel of Gulf War Veterans all of whom listened intently and 
provided valuable feedback and suggestions for future work on GWI therapies. Awareness of our results 
could impact the broader Veterans community by suggesting that unhealthy life-style risk factors such as 
obesity, smoking and alcohol consumption could complicate existing health conditions in Veterans by 
accentuating the modification in the gut microbiome. Attention to these results could lead to a change in 
behavior (e.g., eating a healthier diet, reduce smoking and drinking) that has the possibility of improving 
a health condition through the application of non-drug and non-invasive “therapies”. 
 
5. CHANGES/PROBLEMS: 
 
 ○ Changes in approach and reasons for change: No changes. 
 
 ○ Actual or anticipated problems or delays and actions or plans to resolve them: The one 
unanticipated problem was the closure of our research institutions as a result of the Corona virus 
pandemic. We have now been approved to resume research activities using a wide variety of approaches 
that will minimize increased infection. These include intensive health screen upon entry into the facility, 
wearing PPE, social distancing and careful de-contamination of all instruments and lab benches at the 
beginning and end of the workday. There were no other problems. 
 
 ○ Significant changes in the use or care of human subjects, vertebrate animals, biohazards, 
and/or select agents: There were no deviations, unexpected outcomes or changes in IACUC protocol 
approvals.  
 
 ○ Significant changes in the use or care of human subjects: Not applicable. 
 
 ○ Significant changes in use of care of vertebrate animals: No changes. 
 
 ○ Significant changes in use of biohazards and/or select agents: No changes. 
 
 
6. PRODUCTS 
 
 ○ Publications, conference papers and presentations 
 
  ● Journal publications: Angoa-Perez, M., Zagorac, B., Francescutti, D.M., Winters, 
A.D., Greenberg, J.M., Ahmad, M.M., Manning, S.D., Gulbransen, B.D., Theis, K.R. and Kuhn, D.M. 
Effects of a high fat diet on gut microbiome dysbiosis in a mouse model of Gulf War Illness. Scientific 
Reports, 10 (1):9529. doi: 10.1038/s41598-020-66833-w, 2020. CDMRP support acknowledged. 
 
  ● Books or other non-periodical, one-time publications: None 
 
  ● Other publications, conference papers, and presentations: Kuhn, D.M. Effects of a 
high fat diet on gut microbiome dysbiosis in a mouse model of Gulf War Illness. CDMRP-VA Gulf War 
Illness 2020 State of the Science Conference (virtual), August 18-19, 2020. CDMRP support 
acknowledged. 
 
 ○ Website(s) or other Internet site(s): None 
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 ○ Technologies or techniques: None 
 
 ○ Inventions, patent applications, and/or licenses: None 
 
 ○ Other products: None 
 
7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS 
 
 ○ What individuals have worked on the project? 
 

Name Role Person months Contribution Funding 
Donald M. Kuhn PI 2.4 PI, design, data 

interpretation, 
manuscript prep 
and revision 

This award 

Mariana Angoa-
Perez 

Co-investigator 1.8 Design, data 
analysis, 
bioinformatics, 
manuscript prep 
and revision 

This award 

Kevin R. Theis  Collaborator 1.2 Design, data 
analysis, 
bioinformatics, 
manuscript prep 
and revision 

This award 

 
 ○ Has there been a change in the active other support of the PD/PIs or senior/key personnel 
since the last reporting period? Nothing to report. 
 
 ○ What other organizations were involves as partners?  
 
  ● Describe partner organizations 
 
   ● Organization Name: Michigan State University 
 
   ● Location of Organization: East Lansing, Michigan 
 
   ● Partners contribution to the project: 
 
    ● Collaboration 
 
8. SPECIAL REPORTING REQUIREMENTS 
 
 ○ Collaborative awards: None 
 
 ○ QUAD charts: Not applicable- no changes from original 
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9. APPENDICES 
 
 ○ Journal article 
 
 ○ PI CV 
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Effects of a high fat diet on gut 
microbiome dysbiosis in a mouse 
model of Gulf War Illness
Mariana Angoa-Pérez1,2, Branislava Zagorac1,2, Dina M. Francescutti1,2, Andrew D. Winters3, 
Jonathan M. Greenberg3, Madison M. Ahmad3, Shannon D. Manning4, Brian D. Gulbransen5, 
Kevin R. Theis3,6 & Donald M. Kuhn1,2 ✉

Gulf War Illness (GWI) is a chronic health condition that appeared in Veterans after returning home from 
the Gulf War. The primary symptoms linked to deployment are posttraumatic stress disorder, mood 
disorders, GI problems and chronic fatigue. At first glance, these symptoms are difficult to ascribe to a 
single pathological mechanism. However, it is now clear that each symptom can be linked individually 
to alterations in the gut microbiome. The primary objective of the present study was to determine 
if gut microbiome dysbiosis was evident in a mouse model of GWl. Because the majority of Gulf War 
Veterans are overweight, a second objective was to determine if a high fat diet (HF) would alter GWI 
outcomes. We found that the taxonomic structure of the gut microbiome was significantly altered in 
the GWI model and after HF exposure. Their combined effects were significantly different from either 
treatment alone. Most treatment-induced changes occurred at the level of phylum in Firmicutes and 
Bacteroidetes. If mice fed HF were returned to a normal diet, the gut microbiome recovered toward 
normal levels in both controls and GWI agent-treated mice. These results add support to the hypotheses 
that dysbiosis in the gut microbiome plays a role in GWI and that life-style risk factors such as an 
unhealthy diet can accentuate the effects of GWI by impacting the gut microbiome. The reversibility 
of the effect of HF on the gut microbiome suggests new avenues for treating GWI through dietary 
intervention.

Soon after the end of hostilities in the Gulf War (August 1990–April 1991), a series of health issues began emerg-
ing in Gulf War Veterans and have persisted to the present day. The health issues reported are a perplexing and 
complex constellation of symptoms now known as Gulf War Illness (GWI). Over the past two decades, the 
Institute of Medicine has completed a series of studies on GWI and Health and the most recent review con-
cluded that “Evidence is sufficient to conclude that a causal relationship exists between being deployed to the Gulf 
War and a health outcome” (p. 31). When considering all symptoms that have been reported to be part of GWI, 
posttraumatic stress disorder was the only condition judged to have sufficient evidence of a causal relationship. 
The other symptoms for which evidence was sufficient to establish an association with deployment were mood 
disorders (anxiety, depression), GI symptoms (irritable bowel syndrome [IBS], dyspepsia) and chronic fatigue 
syndrome1. These disparate outcomes make it difficult to attribute GWI to a single mechanism until consideration 
is given to the gut microbiome.

The GI system of humans and most other mammals is inhabited by a very large number of bacteria, viruses, 
fungi and archaea. Collectively, these microorganisms make up the gut microbiome. It has been estimated that 
the gut contains 100 trillion cells and these cells express >150-fold more unique genes than the human genome2. 
The commensal members of the gut microbiome support human health but disruption in it has been implicated 
in a large number of clinical and physiological disorders [see3–5 for reviews]. Several conditions linked to enteric 

1Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, USA. 2Department of 
Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA. 
3Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, 
Michigan, USA. 4Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, 
Michigan, USA. 5Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, 
Michigan, USA. 6Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School 
of Medicine, Detroit, Michigan, USA. ✉e-mail: donald.kuhn@wayne.edu

OPEN

https://doi.org/10.1038/s41598-020-66833-w
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dysbiosis are reminiscent of GWI. First, IBS6,7 and dyspepsia8 are emerging as prototypical forms of gut dysbi-
osis. Second, the CNS symptoms associated with GWI (general anxiety, PTSD and depression) are frequently 
co-morbid with IBS and other inflammatory conditions of the bowel9,10. Third, chronic fatigue/fibromyalgia has 
also been linked to altered microbiome composition11,12. Therefore, the three main symptom clusters of GWI 
can be linked individually to gut dysbiosis, suggesting the possibility that a disrupted microbiome underlies all 
three. Indeed, a very small number of recent studies has confirmed that the gut microbiome is altered in Gulf War 
Veterans13 and in animal models of GWI14–16.

It remains perplexing that the symptoms of GWI are so chronic. In this preliminary report, we hypothesize 
that life-style risk factors, and specifically an unhealthy diet, could contribute to the persistence of GWI symp-
toms. It is known that Gulf War Veterans are often overweight or obese, both of which contribute to chronic 
health conditions17,18. Moreover, it is well known that a fat-laden diet causes dysbiosis within the human gut 
microbiome19,20, alters GI transit21 and can contribute to chronic low-grade gut inflammation (see22 for review). 
Animal studies have reported that energy dense23 and fat- or sugar-enriched diets24 not only cause significant 
alterations in the gut microbiome and fat accumulation but can also lead to changes in memory, brain inflam-
mation and gut-brain communication. Germ-free mice colonized by fecal transfer from obese mice25 or obese 
humans26 develop significant increases in body fat, showing the importance of the microbiome in obesity. In this 
study, mice were exposed to a GWI model (pyridostigmine bromide (PB) and permethrin (PER)) and then fed 
either a normal diet (ND) or high fat diet (HF) to mimic conditions in Veterans with GWI. The results confirm 
that the gut microbiome is altered in an animal model of GWI and reveal that a HF further alters the dysbiotic 
gut microbiome in this model.

Materials and Methods
Animal model of GWI.  An established mouse model of GWI, as effectively employed by Crawford and 
colleagues27–30, was used in the present studies. This model has been extensively validated31 and has been deemed 
a GWI-relevant animal model in The Gulf War Illness Landscape (https://cdmrp.army.mil/gwirp/pdfs/GWIRP_
Landscape.pdf) published by the DoD GWI Research Program. Male C57BL6/J mice (8 weeks of age) were 
purchased from Envigo (Indianapolis, I.N.) and housed individually in a room with constant temperature and 
humidity and with alternating 12 hr periods of light and darkness. All mice used in these studies were from the 
same cohort and assignment to treatment groups was random. Half of the mice were injected with 50 μl of GWI 
agents in final doses of 0.7 mg/kg of pyridostigmine bromide (PB) and 200 mg/kg of permethrin (PER) solubi-
lized in 100% dimethyl sulfoxide (DMSO). Drug solutions were further diluted with sterile physiological saline 
to a final DMSO concentration of 3% just prior to intraperitoneal injection. The other half served as controls and 
received intraperitoneal injections of 3% DMSO in sterile physiological saline. Injections were administered once 
daily for 10 days. Several studies consistently show that in rodents, exposure to PER + PB results in neurobe-
havioral alterations (i.e. anxiety and mood impairment) that are similar to symptoms reported by Veterans with 
GWI28. Thus, anxiety and depression-like behaviors were tested as specified below. During treatment, all mice 
were given ad libitum access to water and normal rodent laboratory chow ((ND); D12450K with 10 kcal% from 
fat, Research Diets, New Brunswick, NJ). On the last day of treatment, the GWI and control groups were split into 
3 same sized groups (N = 7–9 mice per group) and fed the following diet regimens: one group on a ND and two 
groups on a high fat diet ((HF); D12451 with 45% kcal from fat, Research Diets, New Brunswick, N.J.) known 
to induce obesity in mice32,33). After 3 weeks, one of the HF fed groups was switched back to a ND while the two 
other groups were continued on their original HF or ND for an additional 3 weeks. Hereafter, the treatment/diet 
groups are referred to as Con-ND-ND, Con-HF-HF and Con-HF-ND for controls and GWI-ND-ND, GWI-
HF-HF and GWI-HF-ND for PER + PB treated mice. To validate the GWI model at the specific post-treatment 
time of 6 weeks that mice were exposed to diets, the Con-ND-ND and GWI-ND-ND groups were evaluated for 
depression- (splash test) and anxiety- (elevated plus maze) like behaviors prior to sacrifice. These are two of the 
core components of mood disorders present in individuals with GWI1. The splash test was performed according 
to our previously reported work34. Briefly, this test involves spraying a 10% sucrose solution onto the dorsal coat 
of the mouse in its home cage. This mildly sticky solution induces self-grooming, and the time the mouse spends 
grooming is considered a direct measure of self-motivated care. The elevated plus maze was also performed 
according to our previous reports35. In this test, the time spent in both the open and closed arms of the maze 
was recorded for each mouse in 5 min sessions using a motion-sensitive digital video camera and EZ Video free-
ware Software (Ezvid, Inc, Los Angeles, CA; https://www.ezvid.com/ezvid_for_windows). Mice were sacrificed 
by decapitation and the contents of the caecum were harvested and frozen at −80°C. Stressors such as noise and 
handling by multiple persons were avoided and mice were monitored daily for signs of distress or injury until 
the experimental endpoint. The Institutional Care and Use Committee of Wayne State University approved the 
animal care and experimental procedures (IACUC 17-08-0307). All procedures were also in compliance with the 
NIH Guide for the Care and Use of Laboratory Animals and were conducted in compliance with ARRIVE guide-
lines and under IACUC-approved protocols.

Microbiome analysis.  DNA was extracted from caecum contents (~200 mg wet weight) using QIAamp 
PowerFecal DNA kits and sample DNA concentrations were determined using a Qubit 4 Fluorometer (range 
70–100 ng/µl). Samples were sequenced in duplicate on an Illumina MiSeq system using a 2 × 250 cycle V2 
kit with Illumina reagents and Illumina sequencing procedures detailed by Kozich and colleagues36. The 16S 
rRNA gene primers targeted the V4 region of the gene (forward primer: 5′-GTGCCAGCMGCCGCGGTAA-3′; 
reverse primer: 5′-GGACTACHVGGGTWTCTAAT-3′). The 16S rRNA gene sequences from the paired fastq 
files were trimmed, screened and aligned using mothur37, in accordance with the MiSeq SOP established by 
Schloss and colleagues (https://www.mothur.org/wiki/MiSeq_SOP). After de-multiplexing and quality control 
(e.g., truncating reads with >2 adjacent low quality base calls; discarding reads containing any ambiguous base 
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calls in surviving sequences), sequences were binned into operational taxonomic units (OTUs) based on percent 
sequence identity (97%). The OTUs were taxonomically classified in mothur, and the bacterial community data 
were thereafter visualized and statistically analyzed using PAST software (v3.2038). Microbiome diversity was 
characterized in terms of α-diversity using the Chao1 (i.e. community richness) and Shannon and Simpson (1-D) 
(i.e. community heterogeneity) indices. The number of sequences and Good’s coverage values were analyzed 
using one-way ANOVA. β-diversity was assessed using the Jaccard (i.e. shared composition) and Bray-Curtis (i.e. 
shared structure) indices based on relative abundance data. High-dimensional class comparisons were carried out 
with linear discriminant analysis effect size (LEfSe) in an on-line interface39 using default parameters except that 
the minimum LDA score was set to 3.6. Heat maps were generated using MetaboAnalyst 4.040.

Data analysis and statistics.  Data from splash test was analyzed with an unpaired student’s t test using 
GraphPad Prism (v6.07) for Windows (GraphPad Software, La Jolla, CA, USA, www.graphpad.com). Time spent 
in each set of arms of the elevated plus maze was analyzed by two-way ANOVA and subsequent Sidak’s multiple 
comparison tests. Food and body weight data were analyzed with two-way ANOVA followed by Tukey’s post 
hoc tests using Prism The indices for α-diversity were obtained using PAST software (v3.20; free software for 
scientific data analysis, Oyvind Hammer, Natural History Museum, University of Oslo, Norway; https://folk.
uio.no/ohammer/past/). The results were analyzed statistically with a one-way ANOVA and subsequent Tukey’s 
post hoc comparisons, using Prism. The indices for β-diversity were also calculated, and statistical analyses were 
carried out, using PAST software as well. The results were analyzed using a two-way NPMANOVA, and post hoc 
comparisons were made using one-way NPMANOVAs. Taxonomic distributions at the phylum level (treatment X 
phylum) and lower taxonomic levels (treatment X time) were analyzed with a two-way ANOVA followed by post 
hoc comparisons using Tukey’s tests in GraphPad Prism.

Results
Effects of HF on food intake and body weight in a model of GWI.  Figure 1 shows that the GWI 
model used in this study recapitulates some of the key features of the condition, such as mood alterations. Mice 
treated with PER + PB showed decreased self-motivated care reflected as a shorter grooming time in the splash 
test compared to controls (p < 0.05; Fig. 1A). This is associated with a depression-like phenotype in rodents. 
Two-way ANOVA analysis of anxiety-like behaviors tested with the elevated plus maze test revealed a main effect 
of treatment (F1,20 = 6.64, p < 0.05), time in each set of arms (F1,20 = 633.2, p < 0.0001) and these two factors 
interaction (F1,20 = 13.51, p < 0.01). The time animals treated with PER + PB spent in the closed arms of the maze 
was significantly longer compared to controls (p < 0.01, post hoc Sidak’s test), whereas no differences were found 
in the time spent in the open arms (Fig. 1B). These results are indicative of anxiety-like phenotype in the mice 
treated with PER + PB.

Figure 2 A shows food intake measures for all groups and analysis by two-way ANOVA revealed signifi-
cant main effects of time (F11,484 = 72.71, p < 0.0001), treatment (F5,44 = 65.82, p < 0.0001) and their interaction 
(F55,484 = 5.57, p < 0.0001). The GWI agent-treated group displayed a significantly higher food intake of the ND 
compared to controls fed equally (post hoc Tukey’s test; p < 0.0001). The consumption of HF impacted the food 
intake as Con-HF-HF mice had a lower intake compared to Con-ND-ND mice (post hoc Tukey’s test; p < 0.0001) 
and to Con-HF-ND (post hoc Tukey’s test; p < 0.0001). Con-ND-ND mice did not differ from Con-HF-ND. In 
mice treated with GWI agents, both groups fed with HF showed a decreased intake compared to mice fed with 
ND (post hoc Tukey’s tests for both GWI-HF-HF and GWI-HF-ND vs GWI-ND-ND; p < 0.0001). No differences 
were detected when comparing the GWI-HF-HF group to the GWI-HF-ND mice. While HF was associated 
with a lower food intake, body weight followed the opposite trend (Fig. 2B). Both treatment groups fed the HF 
(Con-HF-HF and GWI-HF-HF) gained on average 10 g over the 6 week test period, whereas both groups fed the 
ND (Con-ND-ND and GWI-ND-ND) gained ~3 g. Body weight was not altered by treatment with GWI agents as 
Con-ND-ND was not different from GWI-ND-ND, and Con-HF-HF was not different from GWI-HF-HF mice. 
When mice initially fed a HF diet were switched to the ND for 3 weeks, both groups lost significant amounts of 
weight (~6–7 g). However, the Con-HF-ND group achieved a significant reduction in body weight sooner after 

Figure 1.  Effects of treatment with Gulf War agents PER + PB on the splash test (A) and the elevated plus 
maze (B). Behaviors were evaluated 6 weeks after administration of the agents to corroborate that the GWI 
model induced some of the outcomes reported for this condition. Results are mean ± SEM, N = 5–6. Symbols 
represent significance levels for the indicated comparisons as p < *0.05, **0.01.
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the diet switch (post hoc Tukey’s test; p < 0.001 at day 27) than the GWI-HF-ND group (post hoc Tukey’s test; 
p < 0.001 at day 31), and the GWI agent-treated mice ultimately lost less weight than controls (post hoc Tukey’s 
test; p < 0.05 at day 41). The main effects of time (F11,528 = 64.8, p < 0.001) and treatment (F5,528 = 115.9, p < 0.001) 
as well as their interaction (F55,528 = 7.3, p < 0.001) were significant (2-way ANOVA). These data establish that 
the HF led to significant gains in body weight that were of the same magnitude in controls and mice treated with 
GWI agents. Both groups lost significant weight when switched back to ND, although weight loss was more pro-
nounced among controls.

Effects of treatment with GWI agents and HF on the gut microbiome at the OTU level.  The 
number of sequences obtained were as follows: 117,212 ± 7,509 for Con-ND-ND, 103,432 ± 17,384 for 
Con- HF-HF, 128,772 ± 9,319 for Con-HF-ND, 100,369 ± 10,433 for GWI-ND-ND, 111,781 ± 32,363 for 
GWI-HF-HF, and 128,371 ± 32,694 for GWI-HF-ND. There were no statistically significant differences among 
these groups with respect to sequence numbers. Good’s coverage values ± SD were the following: 99.63 ± 0.043 
for Con-ND-ND, 99.7 ± 0.056 for Con-HF-HF, 99.67 ± 0.025 for Con-HF-ND, 99.63 ± 0.025 for GWI-ND-ND, 
99.71 ± 0.06 for GWI-HF-HF, and 99.69 ± 0.079 for GWI-HF-ND.

Figure 3 presents an analysis of α-diversity using the Chao-1 index as a measure of gut microbiome richness. 
The main effect of treatment (F5,44 = 26.1, p < 0.0001) was significant. Post hoc comparisons indicated that treat-
ment with GWI agents significantly reduced microbiome richness compared to controls (Tukey’s test, p < 0.05), 
and that HF led to significantly decreased richness in both control (Tukey’s test, p < 0.001) and GWI agent-treated 
groups (Tukey’s test, p < 0.05). Notably, when mice were shifted from HF to ND, α-diversity recovered to the lev-
els of the appropriate treatment control and differed significantly from the respective HF-HF group (Tukey’s test, 
p < 0.001 for controls and p < 0.01 for GWI).

Results of α-diversity analyses based on the Simpson (1-D) index indicated that, while the heterogeneity of 
the gut microbiome did not differ between GWI agent-treated mice and controls, gut microbiome heterogeneity 
was consistently highest in HF mice whereas there were no consistent effects of treatment on gut microbiome het-
erogeneity using the Shannon index (Supplementary Fig. S1). With respect to β-diversity, analyses based on the 
Jaccard index, which reflects shared microbiome membership (i.e. community composition) results showed that 
the OTU profiles of samples clustered together tightly according to the diet regimen, and that within diet regimen 

Figure 2.  Effect of diet on food intake (A) and body weight (B). Mice were treated with GWI agents or Con 
(control) and then fed a normal (ND) or high fat (HF) diet for 3 weeks. Thereafter, half of the mice on the HF 
diet (Con and GWI) were switched to ND (HF-ND) for an additional 3 weeks. Remaining GWI and Con mice 
were fed ND or HF diet throughout (ND-ND or HF-HF). Food intake measures were calculated based on food 
consumption (g), mouse body weight (kg) for a 24 h period and reported as g/kg/24 h. Results are mean ± SEM, 
N = 7–9.

Figure 3.  Effects of GWI ± HF on α-diversity. Data are presented as Chao-1 ± SEM, N = 8-9. Con = control; 
GWI = PER + PB; ND = normal diet; HF = high fat diet. Symbols represent significance levels for the indicated 
post hoc comparisons as p < *0.05, **0.01, ****0.0001.
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groups, samples also clustered by treatment (Fig. 4). Two-way NPMANOVA analyses revealed that the main 
effects of treatment (p < 0.01) and diet (p < 0.0001), as well as their interaction (p < 0.02), were significant. All 
post hoc comparisons among groups were statistically significant (Supplementary Table S1). It is interesting that 
mice in the control and GWI agent-treated groups exposed to the HF-ND regimen clustered near the ND-ND 
groups on the PCoA plot, suggesting rapid recovery of the gut microbiome following a return to a ND, as was also 
seen above for α-diversity. Results for β-diversity using the Bray-Curtis index, which reflects overall microbiome 
structure (i.e. not just membership), were similar to those for the Jaccard index (Supplementary Fig. S2).

The taxonomic identities of prominent OTUs (≥1.5% average relative abundance among all subjects) var-
ied among treatment groups. These results are presented in the heat map in Fig. 5. It can be seen that the GWI 
agent-treated and control groups displayed similar patterns of OTU expression according to diet. The most prom-
inent differences in these groups were decreases in Bacteroidetes (see the clusters near the bottom of Fig. 5) and 
increases in Firmicutes (clusters near the top) in the Con-HF-HF and GWI-HF-HF groups. Furthermore, within 
each diet group, differences in OTU relative abundances were evident for the GWI agent-treated versus controls. 
As reported above for community α and β diversity, as mice in the GWI agent-treated and control groups transi-
tioned from HF to the ND, patterns of OTU relative abundance appeared to “recover” toward the pattern shown 
in the groups fed ND throughout this experiment (i.e., ND-ND groups).

Figure 6 presents results from linear discriminant analysis effect size (LEfSe) analysis and highlights the effect 
sizes of the treatments and diets on affected taxa. LEfSe compares each group to all others simultaneously and 
generates bar plots that include taxa that are distinctly relatively abundant in each specific treatment and diet 
group. Segata et al.39 propose LEfSe as a means for biomarker discovery by finding OTUs that consistently explain 
the differences between two or more types of microbial communities. Two main outcomes from this analysis are 
apparent. First, the groups treated with GWI agents are demarcated by more taxonomic biomarkers than controls 
for each diet condition. Second, most treatment groups were distinguished by taxa in the order Clostridiales 
within the phylum Firmicutes (i.e., Con-ND-ND, Con-HF-ND and GWI-HF-ND). However, the GWI-ND-ND 
group was represented primarily by taxa in the order Bacteroidales within the phylum Bacteroidetes, the 
Con-HF-HF group was singularly characterized by taxa within the order Desulfovibrioales, and the GWI-HF-HF 
group was represented by taxa within the orders Lactobacillales and Erysipelotrichales. The HF diet shifted the 
predominant taxa for the GWI-ND-ND group from Bacteroidetes to Firmicutes. All of the control groups regard-
less of diet were distinguished by taxa within Firmicutes and the relatively most abundant taxa in the group fed a 
ND were in the Clostridium XIVa and IV clusters. Controls fed the HF diet were characterized by taxa within the 
genera Desulfovibrio and Pseudoflavonifractor and the control group shifted to a ND from the HF diet was distin-
guished by Porphyromonadaceae and Lachnospiraceae. Treatment- and diet-induced biomarkers were observed 
down to the level of family or genus as shown in the cladogram (Fig. 6).

Effects of treatment with GWI agents and HF on the gut microbiome at the phylotype 
level.  Figure 7 illustrates treatment effects at the phylotype level. Treatment and diet effects on specific bacte-
rial phyla are presented as percent relative abundance. The main effect of phylum was significant (F7,352 = 2616, 
p < 0.0001) but the treatment main effect was not. The phylum X treatment interaction was also significant 
(F35,352 = 50.6, p < 0.0001) by two–way ANOVA. Post hoc comparisons revealed that virtually all treatment groups 
differed significantly from one another (p values ranging from 0.05 to 0.0001). The observed changes occurred 
only within the prominent phyla Firmicutes and Bacteroidetes (Fig. 7). The only groups that did not differ were 
Con-ND-ND vs GWI-ND-ND within Firmicutes and Con-ND-ND vs GWI-ND-ND within Bacteroidetes. The 
results of all pairwise statistical tests for % relative abundance of Firmicutes and Bacteroidetes among treatment 
groups are presented in Supplementary Table S2.

Because the observed differences in % relative abundance occurred within the Firmicutes and Bacteroidetes 
phyla, and in light of the findings that the ratio of Firmicutes/Bacteroidetes (F/B) is higher in obese and 

Figure 4.  Effects of treatments on β-diversity. PCoA showing differences in the similarities of the gut 
microbiome profiles of the study groups using the Jaccard index. Con = control; GWI = PER + PB; 
ND = normal diet; HF = high fat diet.
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overweight humans than in lean controls41, we calculated this ratio for all treatment groups and the results are 
presented in Fig. 8. The main effect of treatment was significant (F5,44 = 50.8, p < 0.0001). Specifically, the HF 
diet caused significant increases in the F/B ratio for controls and GWI treated mice (Tukey’s test, p < 0.0001 
for both). The increase in the F/B ratio was significantly greater in the control mice than the GWI agent-treated 
mice (Tukey’s test, p < 0.001). When groups fed the HF were shifted to the ND, the F/B ratio decreased to levels 
observed in the respective ND-ND controls (Tukey’s test, p < 0.0001 for both).

Effects of treatment with GWI agents and HF on taxa below the level of phylum.  The effects of 
treatments and diets on taxa below the level of phylum were also probed in view of the likelihood that changes 
at the highest taxonomic level may have not reached statistical significance because of increases and decreases 
of equal magnitude within phyla in percent relative abundances of bacteria at lower taxonomic levels. Figure 9 
shows these results and indicates that effects at the taxonomic levels of class and order vary in a complex manner 
that is dependent on the combined influence of treatment and diet. The main effect of treatment in each panel 
of Fig. 9 was significant by one-way ANOVA with p values ranging from 0.035 (for Bacilli) to 0.0001 (for all 
remaining taxa). In general, the effects of the HF on bacterial taxa were more prevalent than those of GWI-agents 
treatment. The Con-ND-ND group did not differ from the GWI-ND-ND group, whereas both control and GWI 
agent-treatment groups fed ND-ND were significantly different from the respective HF-HF groups for most taxa. 
The complexity of the changes are most evident for Desulfovibrionales and Clostridia, where the relative abun-
dances of these taxa were increased in HF-HF groups compared to ND-ND groups, and in Betaproteobacteria 
and Bacteroidia, which were both greatly decreased in abundance in the HF-HF groups. Two additional unique 
changes can be seen in Fig. 9A where the abundance of Mollicutes in GWI-HF-ND group was significantly 
increased compared to the other groups, and in Fig. 9D where the abundance of Betaproteobacteria was signifi-
cantly decreased for most groups compared to the Con-ND-ND group.

Each of the OTUs from the LEfSe analysis (Fig. 6) was subjected to analysis using the Basic Local Alignment 
Search Tool (BLAST) in an attempt to identify taxa that were differentially abundant among treatments at 
the species level (i.e. the consensus sequence of the OTU had >99% sequence identity with the sequence of a 
bacterial species within the BLAST taxonomy database). The results presented in Table 1 show that all groups 
except Con-HF-ND were represented by specific bacterial species. The Con-ND-ND group was characterized 
by Muribaculum intestinale whereas Fusimonas intestini was characteristic of the GWI-ND-ND group. The 

Figure 5.  Heat map illustrating patterns in OTU relative abundance among the treatment groups. All 
subjects in each group are arrayed in columns and bacterial taxonomies are indicated in rows. Con = control; 
GWI = PER + PB; ND = normal diet; HF = HF diet. Clustering along the y-axis was done using the Ward 
algorithm.

https://doi.org/10.1038/s41598-020-66833-w


7Scientific Reports |         (2020) 10:9529  | https://doi.org/10.1038/s41598-020-66833-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 6.  Bacterial taxa that were differentially abundant across treatments. LEfSe was carried out using 
the Galaxy Project and the results are displayed in the bar charts (A) and the associated cladogram (B). Taxa 
showing different abundance values in each treatment group (according to LEfSe) are shown in the cladogram 
highlighted by small circles and by shading. All groups are statistically significant compared to each other 
(LDA > 3.6). Con = control; GWI = PER + PB; ND = normal diet; HF = high fat diet.

Figure 7.  Percent relative abundances of phyla in treatment and diet groups. Stacked columns for the 8 most 
prominent phyla are included. Con = control; GWI = PER + PB; ND = normal diet; HF = high fat diet.

Figure 8.  Firmicutes to Bacteroidetes (F/B) ratio in treatment and diet groups. Results are presented as means 
+ SEM for each treatment and diet. Symbols represent significance levels for the indicated post hoc comparisons 
as p < : ***0.001, ****0.0001. Con = control; GWI = PER + PB; ND = normal diet; HF = high fat diet.
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Con-HF-HF group was represented by Flintibacter butyricus and Bacteroides intestinalis and the corresponding 
GWI-HF-HF group was demarcated by Bacteroides vulgatus, Mucispirillum schaedleri and Parabacteroides golds-
tenii. Finally, the biomarkers Paramuribactum intestinale, Duncaniella muris and Bacteroides acidifaciens emerged 
in the GWI-HF-ND group.

Discussion
The goal of the present study was to determine if a HF would interact with PER and PB to further alter the gut 
microbiome in a mouse model of GWI. The rationale for this pilot study was the fact that a majority of Gulf 
War Veterans are overweight or obese17,18, and that fat-laden diets can lead to changes in memory, GI and brain 
inflammation and gut-brain communication19,20,23,24. In this regard, it was important to rule out that an increased 
caloric consumption of the HF diet rather than its fat component itself was responsible for the observed effects. 
Thus, the energy density for the groups fed with HF versus ND was calculated. According to manufacturer’s 
specifications, the energy density for the ND is 3.8 Kcal/g, whereas for the HF it is 4.7 Kcal/g. Using an average of 
the intake of each diet group over the entire experiment, the caloric densities were surprisingly higher for the ND 
groups (490.96 Kcal for Con-ND-ND and 530.1 Kcal for GWI-ND-ND) than for the HF groups (443.1 Kcal for 
Con-HF-HF and 444.4 Kcal for GWI-HF-HF). This is evidence that the number of calories was not the causative 
factor for the effects we reported. The experimental results established that PER and PB caused a significant dys-
biosis, as did exposure to a HF, and their combined effects led to an altered gut microbiome that was significantly 
different from the effect of either treatment alone. These results are even more impactful when considering the 
relatively short-term period over which mice were fed the HF (i.e., 3 or 6 weeks). Consumption of the HF for only 
three weeks caused significant increases in body weight in groups treated with PER + PB or controls compared 

Figure 9.  Relative abundance of taxa below the level of phylum in treatment and diet groups. Results are 
presented as % relative abundance for each taxon. Con = control; GWI = PER + PB; ND = normal diet; 
HF = high fat diet. Symbols represent significance levels for the indicated post hoc comparisons as p < : *0.05, 
**0.01, ***0.001, ****0.0001.

OTU # Phylum Bacteria sp
Identity 
(%) Group

OTU0088 Bacteroidetes Muribaculum intestinale 100 Con-ND-ND

OTU0007 Firmicutes Flintibacter butyricus 99.6 Con-HF-HF

OTU0075 Bacteroidetes Bacteroides intestinalis 99.6 Con-HF-HF

OTU0047 Firmicutes Fusimonas intestini 99.6 GWI-ND-ND

OTU0022 Bacteroidetes Paramuribaculum intestinale 100 GWI-HF-ND

OTU0066 Bacteroidetes Duncaniella muris 100 GWI-HF-ND

OTU0011 Bacteroidetes Bacteroides acidifaciens 100 GWI-HF-ND

OTU0019 Bacteroidetes Bacteroides vulgatus 100 GWI-HF-HF

OTU0013 Deferribacteres Mucispirillum schaedleri 100 GWI-HF-HF

OTU0069 Bacteroidetes Parabacteroides goldstenii 100 GWI-HF-HF

Table 1.  Bacterial species identified by BLAST analysis.
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to mice maintained on a ND. Two additional observations link these effects to alterations in the gut microbiome 
as a mediating factor. First, the Gulf War agents PER and PB did not alter water intake or the amount of food 
consumed on either diet. Second, when mice in both treatment groups were shifted from the HF to a ND for three 
additional weeks, mice treated with PER + PB lost significantly less weight than controls.

PER + PB and diet each caused significant alterations in the taxonomic makeup of the gut microbiome. The 
predominant changes in OTU structure occurred within the Firmicutes and Bacteroidetes phyla. This pattern 
was expected in light of the fact that the mouse gut microbiome is dominated by these two phyla42. Treatment 
with PER + PB caused a complex set of alterations in α-diversity. In both GWI agent-treated and control mice, 
those fed HF diets throughout the duration of the experiment exhibited gut microbiomes with reduced richness. 
Nevertheless, the gut microbiomes of all mice in the experiment remained OTU-rich, with Chao1 index values 
exceeding 1000. This high degree of OTU-richness resulted in high values for microbiome heterogeneity as well, 
with Simpson (1-D) and Shannon index values exceeding 0.93 and 4.0, respectively. The heterogeneity of gut 
microbiomes from HF-HF mice exceeded that of ND-ND mice in both GWI agent-treated and control groups 
based on the Simpson index, but not the Shannon index. These data suggest that although HF led to a reduction 
in the OTU-richness of the gut microbiome, the OTUs that were present in the guts of HF-treated mice were more 
evenly distributed in their relative abundances than were the OTUs in the gut microbiomes of ND mice.

Treatment with PER and PB and the HF each led to significant alterations in the complexity of the gut micro-
biome. The OTUs for the different diet conditions clustered together tightly and apart from the other groups. 
Mice fed the HF throughout (HF-HF) were most distant from mice fed a ND throughout (ND-ND) on the PCoA 
plot. Interestingly, when GWI and control mice were shifted from the HF to a ND (HF-ND), both groups clus-
tered nearest to their respective ND-ND groups, suggesting a partial recovery in β-diversity after the dietary shift. 
Nevertheless, within each diet condition cluster, the GWI agent-treated mice differed significantly from controls. 
These results emphasize the fact that a life-style risk factor such as a HF can accentuate the effects of PER and PB 
on community diversity and establish the reversible nature of this effect after return to a ND.

LEfSe analysis identified numerous bacterial taxa that were differentially abundant among treatment groups 
and these taxonomic “biomarkers” varied substantially between the GWI agent-treated mice and those exposed 
to dietary shifts. The gut microbiome in mice fed the ND throughout were dominated by Clostridium XIV 
whereas the mice treated with PER + PB were dominated by Barnesiella and Porphyromonadaceae. The HF 
resulted in a large increase in the predominant taxa for both GWI and control mice. For instance, the GWI 
agent-treated mice on a HF were most defined by Enterococcus, Clostridium, Porphyromonadaceae, Oscillibacter 
and Proteobacteria whereas controls were dominated by Clostridium XIV, Ruminococcaceae, Erysipelotochaceae, 
Barnsiella, Lachnospiraceae and Actinobifidobacteriales. As seen above in treatment-induced alterations in com-
munity diversity, the shift from a HF to a ND led to a reduction in the number of defining taxa for both GWI 
agent-treated mice and their controls. Many of the differentially abundant taxa that emerged in the HF-HF groups 
(by comparison to the ND-ND groups) were not evident in the HF-ND mice for both GWI and control groups 
although the number of remaining taxa was greater than that seen in the ND-ND groups.

The individual OTU’s that were identified in the LEfSe analysis were compared to 16S rRNA gene sequence 
data in the NCBI data base using BLAST in an attempt to identify bacterial species that were markers for the 
present treatment groups. A total of 10 species were matched with 99.6 to 100% sequence identity with 3 species 
linked to the Con-ND-ND and Con-HF-HF groups and 7 linked to the GWI agent-treated groups in all dietary 
conditions. Of these, 7 species were from the Bacteroidetes phylum, 2 were from Firmicutes and 1 was from 
Deferribacteres. Some interesting parallels to GWI can be seen in the identified species. For instance, Flintibacter 
butyricus, which was a marker for the Con-HF-HF group is increased in mice fed bile acids and a dietary fat43. 
Mucispirillum schaedleri was relatively most abundant in the GWI-HF-HF group and is known to be expanded 
in the gut under inflammatory conditions accompanied by reactive oxygen/nitrogen stress44. The GWI-HF-ND 
group was characterized by Bacteroides acidifaciens and Duncaniella muris. B. acidifaciens can ameliorate meta-
bolic disorders such as diabetes and obesity and is expanded in lean phenotypes of the atg7 knockout mouse45. 
When mice fed a HF supplemented with resistant starch, the starch caused significant improvements in the intes-
tinal health of obese mice and was associated with expansion of D. muris46.

It is not yet possible to draw direct associations between a GWI model and HF to specific gut microbiome 
alterations. This can be attributed to several different factors. First, rodent models are probably limited in the 
extent to which they mimic the conditions to which Gulf War Veterans were exposed during their deployment. 
Second, GWI is a heterogeneous disorder making it difficult to link it to changes in specific taxa. For example, 
increases in Proteobacteria have been linked to gut inflammatory conditions47 including a preliminary study 
of GWI13. While our present results showed significant increases in Proteobacteria, in the Con-HF-HF group, 
this increase did not quite reach statistical significance in the GWI agent-treated groups. The present results 
did document a significant increase in the F/B ratio for groups fed the HF-HF diet (both controls and GWI) in 
agreement with data from humans with IBS6. A more recent meta-analysis suggests that at least IBS is character-
ized at the genus level by decreases in Lactobacillus and Bifidobacterium and increased levels of Escherichia coli 
and Enterobacter (both in the Proteobacteria phylum) without changes in Bacteroidetes and Enterococcus6. Both 
of these outcomes are not fully recapitulated in Veterans with GWI13 or in rodent models of this disorder14–16, 
including the results of the present study. Third, GWI is not IBS and likely encompasses a different set of patho-
logical alterations such that some Veterans with GWI have GI disturbances while others do not1,13.

The present results stand in contrast to a recent study showing gut microbiome alterations in a mouse model of 
GWI14. Alhassan and colleagues demonstrated that mice treated with Gulf War agents plus corticosterone showed 
a significant increase in OTU richness and higher percent relative abundances for Firmicutes and Tenericutes 
over Bacteroidetes at the level of phylum. In contrast, we observed a reduction in OTU richness with GWI treat-
ment in both the ND-ND and HF-ND groups and we did not observe increases in the relative abundance of 
Tenericutes in GWI agent-treated mice. These discrepancies may reflect differences in the Gulf War models used, 
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the use of different survival times post-treatment, and the lack of a stress-only group in the Alhassan et al.14 study. 
Despite the differences in these two preclinical studies, the possibility that gut microbiome alterations may play a 
role in the symptoms of GWI is strengthened by the recent report of dysbiosis in Gulf War Veterans13.

The present study has several strengths. First, it adds support to the hypothesis that gut microbiome dysbi-
osis contributes to the symptoms of GWI. Second, it is the first characterization of the effect of a life-style risk 
factor–a diet rich in fat–on the alterations in the gut microbiome caused by PER + PB. Life-style risk factors that 
contribute to poor health could play important roles in extending the duration and severity of the symptoms of 
GWI and may help explain how the symptoms of GWI persist for so long after PER and PB levels have dropped 
below detection in Gulf War Veterans1. Third, we show that the interaction between treatment with GWI agents 
and diet is significant, such that their combined effects on the gut microbiome are greater than either treatment 
alone. Fourth, the present study shows that the enhancement of gut microbiome dysbiosis by a HF in a model 
of GWI is reversible and leaves open the possibility that dietary modifications or other non-invasive treatments 
that alter the gut microbiome (e.g., probiotics, antibiotics) may provide relief from the symptoms of this chronic 
multi-system disorder.

Our study has three primary limitations. First, it is a molecular microbiology study without experiments 
designed to link gut microbiome alterations in a GWI model to changes in GI (e.g., leakiness, inflammation). 
Second, this project had a single post-treatment survival time; future experiments should include exposure to a 
HF for longer periods of time (e.g., 3–6 months) to evaluate the impact on severity and chronicity of GWI symp-
toms. Third, it cannot yet be determined if the observed effects of the GWI agents are due to direct effects on the 
gut microbiome or to indirect effects via modulation of the immune and/or nervous systems.

In summary, additional studies on the role of the gut microbiome in GWI are called for in light of emerging 
findings that significant enteric dysbiosis has been documented in Veterans with GWI as well as in animal models 
of this disorder. Each of the major symptom clusters of GWI has been linked individually to alterations in the 
gut microbiome so it is plausible that an altered gut microbiome could contribute to all major symptoms of this 
disorder. It is clear that the symptoms of GWI persist long after the toxicants to which military personnel were 
exposed in the Gulf War (e.g., PER and PB) have been removed from the body. Therefore, emphasis should also be 
placed on assessing various life-style risk factors for their ability to potentiate and/or extend the chronicity of the 
symptoms of GWI. There is no medically validated or effective treatment for GWI and if additional substantiation 
can be gathered for a role for gut microbiome dysbiosis, new and non-invasive therapies that target restoration 
of the gut microbiome in Veterans with GWI (e.g., probiotics, dietary interventions, fecal transplantation) could 
be tested as therapies.
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   CURRICULUM VITAE 
 
 Donald M. Kuhn, Ph.D.   
 
 

                                                                                                   
  Donald M. Kuhn, Ph.D.          

 
Date of Preparation: 08/19/2020 

 
 
Office Address:  Department of Psychiatry and Behavioral Neurosciences 

Wayne State University School of Medicine 
John D. Dingell VA Medical Center 
4646 John R 
Research Service (11R), Room B4281 
Detroit, MI USA 48201 

 
Office Telephone:  313-576-4457 
Facsimile:   313-576-1112 
Laboratory:   313-576-4520 
e-mail:    donald.kuhn@wayne.edu 
    donald.kuhn@va.gov 
 
Home Address:  3802 Crestlake Drive 

Bloomfield Hills, MI  48304 
 
Home Telephone:  248-642-1514  
Cellular:   248-496-4905 
 
 
 
EDUCATION 
 
Baccalaureate: Presbyterian College, Clinton, South Carolina, B.S. degree 1972 
 
Graduate: University of South Carolina, Columbia, S.C., Ph.D. degree 1976 
 
 
 
 
 
 
 
TRAINING 
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Aug 1972-Aug 1976 Graduate research and teaching assistant, Department of Psychology, 

University of South Carolina, Columbia, S.C.  29208 
 
May 1974-Aug 1974 Graduate research assistant, Department of Biochemistry, Medical 

University of South Carolina, Charleston, S.C. 29301 
 
Sep 1974-Jun 1976 Graduate research assistant, Ensor Research Laboratory, William S. Hall 

Psychiatric Institute, Columbia, S.C. 29202 
 
Sep 1976-Apr 1977 Postdoctoral Fellow, Program in Neuroscience, Department of 

Psychology, Princeton University, Princeton, N.J. 08540 
 
May 1977-May 1978 NIH Postdoctoral Fellow, Section on Biochemical Pharmacology, 

Hypertension-Endocrine Branch, National Heart, Lung, and Blood 
Institute, National Institutes of Health, Bethesda, M.D. 20205 

 
FACULTY and ACADEMIC APPOINTMENTS 
 
Sep 1981-Mar 1986 Consultant in Research 

Department of Pharmacology 
The George Washington University Medical Center 
Washington, D.C.  

 
Apr 1986-Dec 1991 Associate Professor 

Department of Psychiatry 
Wayne State University School of Medicine 
Detroit, Michigan  

 
Dec 1991-present Professor, with tenure 

Department of Psychiatry and Behavioral Neurosciences 
Wayne State University School of Medicine 
Detroit, Michigan  

 
Dec 1994-2010 Adjunct Professor and Member 

NIEHS Center in Molecular and Cellular Toxicology with Human   
   Applications  

Institute for Chemical Toxicology 
Wayne State University 
Detroit, Michigan 

 
Sep 1998-present Research Career Scientist 
   John D. Dingell VA Medical Center 
   Research & Development Service (11R) 
   Detroit, Michigan 
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Feb 2017-Feb. 2018 Assistant Chief of Staff (Acting), Research & Development Service 
   John D. Dingell VA Medical Center 
   Detroit, Michigan  
 
Feb 2018-present Deputy Assistant Chief of Staff, Research & Development Service 
   John D. Dingell VA Medical Center 
   Detroit, Michigan 
 
Feb 2017-present Research Integrity Officer 
   John D. Dingell VA Medical Center 
   Detroit, Michigan 
 
OTHER PROFESSIONAL APPOINTMENTS 
 
Jun 1978-Apr 1983 Senior Staff Fellow, Section on Biochemical 

Pharmacology, Hypertension-Endocrine Branch, 
National Heart, Lung, and Blood Institute, 
National Institutes of Health, Bethesda, MD  

 
Apr 1983-Sep 1985 Pharmacologist, Section on Biochemical 

Pharmacology, Hypertension-Endocrine Branch, 
National Heart, Lung, and Blood Institute, 
National Institutes of Health, Bethesda, MD  

 
Aug 1985-Mar 1986 Visiting Scientist 

J.W. Goethe Universitat 
Zoologisches Institut 
6000 Frankfurt am Main 
Federal Republic of Germany 

 
Sep 1985-Feb 1986 Chief, Section on Biochemical Pharmacology 

Hypertension-Endocrine Branch 
National Heart, Lung, and Blood Institute  
National Institutes of Health  
Bethesda, MD 

 
Feb 1986-Nov 1992 Director, Laboratory of Neurochemistry and 

Director of Research 
Lafayette Clinic 
Detroit, Michigan 

 
Aug 1993-Jun 1994 Visiting Professor 

Department of Molecular Genetics and 
Howard Hughes Medical Institute 
University of Texas Southwestern Medical Center at Dallas, Texas 

MAJOR PROFESSIONAL SOCIETIES 
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- American Society for Neurochemistry (ASN) 
- American Society for Pharmacology and Experimental Therapeutics (ASPET) 
- International Drug Abuse Research Society (IDARS) 
- Society for Neuroscience (SFN) 
- Federation of American Societies for Experimental Biology (FASEB) 
- National Neurotrauma Society (NNTS) 
- International Behavioral Neuroscience Society (IBNS)  
 
HONORS AND AWARDS 
 
- National Research Service Award, National Heart Lung and Blood Institute (Sponsor: Dr. Walter 
Lovenberg), 1976 
 
- Mead-Johnson American College of Neuropsychopharmacology (ACNP) Travel  Award, San 
Diego, California, 1981 
 
- Merck, Sharpe and Dohme Visiting Scholar, Department of Medicine (Host: Dr. J. Chalmers), 
Flinders Medical Center, Bedford Park, South Australia 5042, 1982 
 
- Vector Laboratories Outstanding Young Investigator Award in Neurochemistry, 1983 
 
- FASEB Travel Award, IUPHAR International Congress of Pharmacology London, England, 1984 
 
- Alexander von Humboldt Fellow, J.W. Goethe University (Host: Prof. Dr. H. Zimmermann), 
Frankfurt am Main, Federal Republic of Germany, Member of AvH 1985- present 
 
- Wayne State University, Neuroscience Research Award, 1986 
 
- Research Career Scientist, Department of Veterans Affairs, 2006-present 
 
- Research Excellence Award 2012, Wayne State University School of Medicine 
 
- Federal Employee Recognition Award, 2017, Detroit Federal Executive Board 
 
LICENSES  
 
- Drug Enforcement Administration Schedule 1 Controlled Substances 
- Drug Enforcement Administration Schedule 2, 2N, 3, 3N, 4, and 5 Controlled Substances 
- State of Michigan Schedule I Controlled Substance License 
- State of Michigan Research Laboratory Controlled Substance License 
 
 
 
 
SERVICE 
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Wayne State University 
 
Department of Psychiatry and Behavioral Neurosciences 
 
- Executive Education Committee (EEC) Ex-Officio as Graduate Officer, CCN 
- Executive Research Directors Committee (ERDC) Ex-Officio consultant as Graduate Officer, 
 Cellular and Clinical Neurobiology PhD program 
- Graduate Officer and Chairman of the Graduate Committee, Cellular and Clinical 
 Neurobiology PhD Program, Department of Psychiatry, Wayne State University, Jan. 
 1996- Jan. 1998. 
- Faculty Promotion and Tenure Committee 
 Elected member, Sep 1997 -Sep 2001 
 Re-elected Jan 2006- 2010 
 Re-elected Mar 2016-present 
- Masters of Science in Psychiatry Program 
 Ex-Officio member of Program Committee 
 Ex-Officio member of Graduate Program 
- Protocol Review Committee, Appointed member Oct. 1999 to 2000 
- Departmental Leadership Committee, Basic Scientist Representative, Jan. 2012 to present 
- Committee to Engage Medical Students and Undergraduates in Departmental Activities 
 (Chair), June 2012-present 
- Departmental Research Committee, Nov. 2011-present 
- Asselin Award Committee, June 2012-present 
- Departmental Publications Committee, July 2012-present 
- Departmental New Investigator Research Grants Committee (Co-Chair), Oct. 2012-present 
- Departmental Chair’s Committee on Funding Innovative Pilot Projects, Dec. 2012-present 
- Translational Neuroscience Program (PhD), Steering Committee, Jun. 2014- present 
- Translational Neuroscience Program Assessment and Performance, Wayne State University 
 Compliance Assist, Office of the Provost, June 2016-present 
- Psychiatry Resident’s Summer Seminar Program, Course Director and Lecturer, May 2016-
 present 
- Departmental Faculty Search Committee October 2018- present 
 
School of Medicine  
 
- Wayne State University School of Medicine, Interdisciplinary Biological Sciences PhD 
 Program Executive Committee (Departmental representative) 
- Member, IBS Systems Biology Curriculum Subcommittee 
- Director, Neurosciences Component of the Systems Biology Course 
- Member, School of Medicine Task Force on Graduate Assistantships 
- Member (Appointed by Dean of the School of Medicine), Chair Search Committee for the 
 Department of Psychiatry and Behavioral Neurosciences, 2003 
- Member (Elected by faculty), Department of Psychiatry & Behavioral Neurosciences 
 Committee, 5-Year Departmental Review, 2007. 
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- Wayne State University Department Faculty Developmental Liaison Group (Departmental 
 Representative), March 2012-present 
- Member (elected) of the Wayne State University School of Medicine Hearing Panel, Office of 
 the Dean, Aug. 2016 – Aug 2017 
- Chair, School of Medicine Departmental 5 Year Review, Department of Pathology 
 
University 
 
- Member, OVPR Research Focus Group for Development of School of Medicine Strategic Plan 
- Member, Wayne State University Division of Laboratory Animal Resources (DLAR) Advisory 
 Panel, Feb. 2015- present 
- Search Committee, Wayne State University, Office of the Vice President for Research, 
 Division of Laboratory Animal Resources Attending Veterinarian Candidate Search 
 Committee, Oct, 2016- Nov. 2017 
- Member, Wayne State/VA Joint Committee on Human and Animal Research Activities, Mar. 
 2018- present 
 
Affiliate Medical Organizations 
 
- Member, John D. Dingell VA Medical Center R&D Committee  
 Member, January 2001-January 2002 
 Chair, January 2002 to January 2004 
 Member, January 2005 to June 2014 
 Chair, June 2014 to January 2017 
- Member, John D. Dingell VA Medical Center Research Review Committee  
 Chair, June 2012 - June 2014 
 Member, June 2014 - June 2018 
 Chair, August 2018 - present  
- Member, John D. Dingell VA Medical Center Search Committee for Assistant Chief of Staff, 
 Research & Development Service, Sep 2016- Jan 2017 
- Assistant Chief of Staff, Research & Development Service (Acting), Jan 2017- Feb. 2018 
- Deputy Assistant Chief of Staff, Research & Development Service, Mar 2018-present 
- Member of the Board, The Metropolitan Detroit Research and Education Foundation 
 (MDREF; VA), May 2017-present 
- Member. Clinical Executive Committee, John D. Dingell VA Medical Center, Jan. 2017- Feb. 
 2018 
- Member, Affiliation Partnership Council, John D. Dingell VA Medical Center, Jan. 2017-
 present 
 
Scholarly Service 

 
Grant Review Committees 
 
- Ad hoc reviewer for the Neurosciences Research Review Committee of the National Institutes 
 of Mental Health and for the Behavioral and Neurosciences Review Committee of the 
 National Institutes of Health (1985). 
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- Ad hoc reviewer for the Program in Neural Mechanisms of Behavior and for the Program for 
 Developmental Neuroscience of the National Science Foundation (1988). 
 
- Ad hoc reviewer for the Drug Abuse Biomedical Research Review Committee Pharmacology II 
 Subcommittee (DABR3), National Institute on Drug Abuse (1992-1995). 
 
- Full member of the Drug Abuse Biomedical Research Review Committee NIDA-C, National 
 Institute on Drug Abuse (1994-1998). 
 
- Ad hoc reviewer for the National Institute on Alcohol Abuse and Alcoholism, Office of 
 Scientific Affairs, Contract Review Unit (1995-1998). 
 
- Ad hoc reviewer of scientific grant applications for the Medical Research Council of Canada 
 and for the Netherlands Organization for Scientific Research, Council for Medical and 
 Health  Research  (Nov. 1999). 
 
- Ad hoc reviewer for Neurological Sciences and Disorders B (NSD-B), National Institute of 
 Neurological Disorders and Stroke (Aug. 2000- Aug. 2002). 
 
- Full member of Molecular, Developmental, and Cellular Neuroscience-4 (MDCN-4) Study 
 Section, Center for Scientific Review, NIH (Feb. 1998-June 2002).  
 
- Full member, Integrative, Functional, and Cognitive Neuroscience (IFCN-7) Study Section 
 (Feb. 2002- Feb. 2006). 
 
- Full member, American Federation for Aging Research Scientific Board (Dec. 2001-Dec. 
2004). 
 
- Reviewer, Alzheimer’s Association Grant Review Committee (Mar. 2002-Mar. 2004). 
 
- Ad hoc reviewer, Integrative, Functional, and Cognitive Neuroscience (IFCN-4) Study Section 
 (June 2002- June 2004). 
 
- Full member, Neurobiology-A Merit Review Subcommittee, Department of Veterans Affairs 
 (June 2004- June 2008). 
 
- Ad hoc reviewer, Special Emphasis Panel NIMH ZMH1 BRB-S, Molecular Markers and 
 Mechanisms of HIV-Associated Dementia, National Institute on Mental Health (July 
 2004). 
 
- Reviewer, Agency for Science, Technology & Research, Biomedical Research Council 
 (Singapore), Extramural Grant Program (June 2004). 
 
- Reviewer, Philip Morris External Research Program (July 2005-Nov. 2007) 
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- Ad hoc reviewer, Special Emphasis Panel NIMH ZMH1-ERB-Y, ADHD and Long-Term 
 Psychostimulant Therapy (March 2005). 
 
- Ad hoc reviewer, Neurobiology of Motivated Behavior (NMB) Study Section (June 2005- June 
 2006). 
 
- Ad hoc reviewer, NIMH-ERB-L-04, Silvio Conte Centers for Depression and Anxiety (Feb. 
 2006). 
 
- Ad hoc reviewer and Committee Chair, MDCN-L 02S, Biophysics and Neuronal Processes 1 
 (Apr. 2006). 
 
- Full member, Neurobiology of Motivated Behavior (NMB) study section (June 2006-June 
 2010) 
 
- Ad hoc reviewer, NIMH-ERB-L-03, Silvio Conte Centers for Collaborative Neuroscience 
 Research (Mar 2007) 
 
- Full member and Deputy Chair, ZRG1 MDCN-E, Review of Neuroscience AREA-R15 Grant 
 Applications (Nov. 2011- Nov. 2019; Chair Feb. 2020 - present) 
 
- Ad hoc reviewer, ZRG1 IFCN H 02M, Member conflict reviews (Jan. 2012) 
 
- Full member, Department of Veterans Affairs, RRDB 1, Brain Injury (Dec. 2011-Dec. 2013) 
 
- Ad hoc reviewer, ZRG1 BBBP-J 92 study section (Sep. 2012) 
 
- Ad hoc reviewer, ZDA1 GXM-A (14) 1 study section to review NIDA CEBRA grants (Nov. 
 2012) 
 
- Ad hoc reviewer, ZDA1 SXC-E (13), NIDA Cutting-Edge Basic Research Awards (CEBRA) 
 grant application online IAR review (Mar. 2013) 
 
- Ad hoc reviewer, ZDA1 MXL-F (08) 1, NIDA EUREKA proposal telephone review (Jul. 2013) 
 
- Ad hoc reviewer, ZDA1 SXC-E (13), NIDA Cutting-Edge Basic Research Awards (CEBRA) 
 grant application online IAR review (Apr. 2015) 
 
- Ad hoc reviewer, Department of Veterans Affairs, RRD6 Aging & Neurodegenerative Diseases 
 Merit Review Panel (Aug 2016-present) 
 
- Ad hoc reviewer, National Science Center, Poland, Panel NZ7- Influence of New Psychoactive 
 Drugs, grant application online review, Oct 2016 
 
- Ad hoc reviewer, ZRG1 IFCN-L (56), NIDA Synthetic Psychoactive Drugs and Strategic 
 Approaches to Counteract Their Deleterious Effects Review Panel, Nov. 2017 
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-Ad hoc reviewer, Department of Veterans Affairs, RRD8, Career Development Program Panel 1, 

telephone reviewer, Aug. 2019- present. 
 
- Ad hoc reviewer, Department of Veterans Affairs, RRD7, Research Career Scientist Award 

Applications, Aug. 2020- present. 
 
 
Service for Peer Reviewed Journals Journal/Editorial Activity 
 
- Editorial Board Membership 

Journal of Neurochemistry (1998-2010) 
Neurochemistry International (1984-1994) 
Pteridines (1988-1995) 

 
- Review of Manuscripts 
 Behavioural  Brain Research 

Biological Psychiatry 
Brain Research 
Brain Research Bulletin 
Depression and Anxiety 
Drug and Alcohol Dependence 
European Journal of Pharmacology 
Experimental Neurology 
FASEB Journal 
FEBS Letters 
Free Radical Biology and Medicine 
Journal of Biological Chemistry 
Journal of Pharmacology and Experimental Therapeutics 
Journal of Neurochemistry 
Journal of Neuroinflammation 
Journal of Neurological Sciences 
Journal of Neurotrauma 
Journal of Neuroscience 
Journal of Neuroscience Research 
Molecular Neurobiology 
Molecular Pharmacology 
Neurobiology of Disease 
Neuropsychopharmacology 
Neuroscience 
Neurotoxicology 
Neurotoxicology and Teratology 
Pharmacology, Biochemistry and Behavior 
Psychopharmacology 
Synapse 
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Other Service 
 
- Councilor, Michigan Society for Neuroscience Chapter, Wayne State Representative, Sep. 
2000- Sep 2002 

 
TEACHING 
 
Years at Wayne State University: 30 
 
Years at other universities 
- Princeton University: 1 (Postdoctoral Fellow; Dr. B. Jacobs) 
- The George Washington University: 6 (Adjunct Faculty while member of NIH Intramural 

Research Program) 
- J.W. Goethe University (Frankfurt, Germany): 1 (Alexander von Humboldt Fellow; Dr. H. 

Zimmermann) 
- University of Texas, Southwestern Medical Center at Dallas: 1 (Sabbatical; Dr. T. Sudhof) 

 
Teaching at Wayne State (Graduate students) 
 
- PYC 701- Neurobiology I: Lectures on Neurotransmitter Release, Synaptic Morphology, and 
 Serotonin Neurochemistry. 
- PYC 751- Neurochemical Pharmacology of Monoamine Neurons: Lectures on Protein 
 Biochemistry and Physiological Regulation of Tyrosine Hydroxylase, Protein 
 Biochemistry and Physiological Regulation of Tryptophan Hydroxylase, and 
 Physiological Definition of Serotonin Neuronal Systems. 
 
- PYC 756- Advanced Topics in Behavioral Pharmacology: Course Leader and Coordinator with 
 lectures on operant control of behavior and the behavioral analysis of drug action, and 
 behavioral and biochemical models of psychiatric diseases. 

 
- PHC 750- Neuropharmacology I: Serotonin Neurochemistry and Neuropharmacology. 
 Department of Pharmacology, Wayne State University School of Medicine.  
 
- IBS 7050- Systems Biology-Neurobiology- Two credit hour course taught as part of the 
 combined interdisciplinary biomedical curriculum in all School of Medicine PhD 
 programs. 
 
- PYC 7010- Molecular Neuropsychopharmacology- Lectures on pre-synaptic organization, 
 essential elements of exocytosis and endocytosis, and vesicle structure; lectures on 
 genetic polymorphisms and microarrays in neuropsychopharmacology. 
 
- PYC 760 – Advanced topics course on emerging concepts in Parkinson’s Disease and other 
 neurodegenerative conditions with a focus on microglial activation and mediation as a 
 cause of neuronal damage. 
 
- PYC 7595 - The Gut Microbiome and Translational Neuroscience- starting Fall 2020 semester 
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(Course director M. Angoa-Perez; co-director D.M. Kuhn) 
 
Teaching at Wayne State (Residents/Fellows) 
 
- Psychiatry Resident’s Summer Seminar Program, 2016-present 
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Mentorship 
 

Name Status Dates WSU/VA Clinical or Basic 
Research 

Current Position or Activity 

William A. Wolf 
 

Predoctoral 1981-
1985 
(PhD) 

WSU Basic Hines VAMC and Adjunct Professor, Department of 
Anatomy & Cell Biology, University of Illinois at Chicago, 
Chicago, IL 

Patricia A. Johanson Predoctoral 
(F31 funded) 

1990-
1993 
(PhD) 

WSU Basic Senior Clinical Publications Lead, AstraZeneca 
Pharmaceuticals, Philadelphia, PA 

Carroll M. D’Sa Predoctoral 1994-
1996 
(PhD) 

WSU Basic Business Systems Analyst, Yale Center for Clinical 
Investigation, Yale University School of Medicine, New 
Haven, CT 

Krishnamoorthy Sankaran, 
PhD 

Postdoctoral 1989-
1991 

WSU Basic Head Chemist, 
City of Detroit, Dept. Water and Sewerage, Detroit, MI 

Ulrike Berresheim, MD Postdoctoral 1990-
1991 

WSU Basic Private medical practice, Anesthesiology and Pain 
Management, St. Ulrich a.P., Tirol, Austria 

Ellen Zaija, MD Postdoctoral 1990-
1991 

WSU Basic Private medical practice, Radiation Oncology, Milwaukee, 
WI 

William A. Wolf, PhD Postdoctoral 1990-
1992 

VA Basic Hines VAMC and Adjunct Professor, Department of 
Anatomy and Cell Biology, University of Illinois at Chicago, 
Chicago, IL 

Barbara Gibbs, PhD Postdoctoral 1990-
1991 

WSU Basic Senior Patent Attorney, Office of Technology 
Commercialization, Purdue University, West Lafayette, IN 

Panos Z. Anastasiadis, PhD Postdoctoral 1994-
1996 

WSU Basic Professor of Cancer Biology (Tenured), Mayo Clinic, 
Jacksonville, FL 

Samuel U. Park Predoctoral 
(F31 funded) 

1999-
2007 

WSU Basic  

Cheryl W. Aretha, PhD Postdoctoral 
(F32 funded) 

1998-
2000 

WSU Basic Professor, Biology Department, Macomb Community 
College, Macomb, MI 

Mark  Ritter, MD Postdoctoral 2000-
2001 

WSU Basic/Clinical Resident, Psychiatry & Internal Medicine, WSU School of 
Medicine 

Mahdieh Sadidi Predoctoral 1999-
2004 
(PhD) 

WSU Basic Postdoctoral Fellow, Michigan State University, East 
Lansing, MI 

Stacey (Sakowski) Jacoby Predoctoral 2000- WSU Basic Deputy Managing Director, Alfred Taubman Medical 
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2006 
(PhD) 

Research Institute, University of Michigan SOM, Ann Arbor, 
MI 

David M. Thomas, PhD Postdoctoral 
and NIH KO1 

mentor 

2002-
2005 

VA Basic Professor (Tenured), Department of Biological Sciences and 
Assistant Dean for Medical Education,  Oakland University 
William Beaumont School of Medicine, Rochester Hills, MI 

Pamela VandeVord, PhD Mentor on VA 
Career Dev. 

Award 

2007- 
present 

VA Basic Professor (Tenured), School of Biomedical Engineering and 
Sciences, Virginia Polytechnic Institute & State University, 
Blacksburg, VA  

Alana Conti, PhD Mentor on 
NIH KO1 

2012-
2014 

WSU/VA Basic Associate Professor (Tenured), Department of Neurosurgery, 
WSU School of Medicine 

Michael J. Kane, PhD Postdoctoral  2011-
2013 

WSU/VA Basic Adjunct Assistant Professor, Neuroscience Program, Temple 
University, Philadelphia, PA 

Mariana Angoa-Perez, PhD Postdoctoral 2009-
present 

WSU/VA Basic Postdoctoral Research Associate, WSU School of Medicine 

Nieves Herrera-Mundo, PhD Postdoctoral 2012-
2014 

WSU/VA Basic Postdoctoral Fellow, Biological Sciences, National 
Autonomous University of Mexico, Mexico City MX 

John H. Anneken, PhD Postdoctoral 2013- 
present 

WSU/VA Basic Postdoctoral Research Associate, WSU School of Medicine 

Denise I. Briggs, PhD Pre- and  
Postdoctoral 

2012-
2016 

WSU/VA Basic PhD, May 2016, Department of Neurosurgery, Stanford 
University School of Medicine 

John A. Rotondo Predoctoral 2014-
2015 

WSU/VA Basic Student in MD/PhD program, WSU School of Medicine 

Denise I. Briggs, PhD Pre- and  
Postdoctoral 

2012-
2016 

WSU/VA Basic PhD, May 2016, Department of Neurosurgery, Stanford 
University School of Medicine 
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Theses and Dissertations directed 
 

- William A. Wolf, PhD dissertation, Studies on the Mechanisms which Regulate Serotonin 
 Release, Department of Pharmacology, The George Washington University School of 
 Medicine, June 1985. 
 
- Patricia J. Johansen, PhD dissertation, Activation and Phosphorylation of Brain Tryptophan 
 Hydroxylase by Protein Kinases, Cellular and Clinical Neurobiology Program, Wayne 
 State University School of Medicine, August 1993. 
 
- Carrol D’Sa, PhD dissertation, Regulation of Brain Tryptophan Hydroxylase, Cellular and 
 Clinical Neurobiology Program, Wayne State University School of Medicine, July 1998. 
 
- Mahdieh Sadidi, PhD dissertation, Molecular Footprints of Neurotoxicity: Posttranslational 
 Modifications of Tyrosine Hydroxylase, Cellular and Clinical Neurobiology Program, 
 Wayne State University School of Medicine, Dec. 2004. 
 
- Stacey Sakowski, PhD dissertation, Biochemistry and Molecular Biology of Tryptophan 
 Hydroxylase, Center for Molecular Medicine and Genetics, Wayne State University 
 School of Medicine, June, 2006.  
 
- Denise I. Briggs, PhD Dissertation, Cognitive, Psychiatric and Neuropathological Outcomes of 
 Repetitive Mild Traumatic Brain Injury, Translational Neuroscience Program, Wayne 
 State University School of Medicine, PhD March 2016. 
 
- John Rotondo, MS, Basic Medical Sciences, Wayne State University School of Medicine, 2014. 
 
- Charles Fisher, MS, Basic Medical Sciences, Wayne State University School of Medicine, 
 2014. 
 
- David Shaheen, MS, Basic Medical Sciences, Wayne State University School of Medicine, 
 2014. 
 
- Julia Solarewicz, MS, Department of Physiology, Wayne State University School of Medicine, 
 2015 
 
- Alhassan Dhia, MS, Basic Medical Sciences, Wayne State University School of Medicine, 
 2014. 
 
- Helen Wu, MD/PhD Program, PhD Dissertation Committee member, Translational 
 Neuroscience Program, Wayne State University School of Medicine, PhD May 2016. 
 
- Muzamil Arshad, MD/PhD Program, PhD Dissertation Committee member, Translational 
 Neuroscience Program, Wayne State University School of Medicine, PhD August 2016. 
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- Hamilton Trinh, M1 Honors Student thesis, Wayne State University School of Medicine, 2016.  
  
- Krithika Muthkumaran, Department of Chemistry and Biochemistry, University of Windsor, 
 External PhD Dissertation Examiner Sep 2016. 
 
- Andrew Neff, Translational Neuroscience PhD Program, Dissertation Committee member, 
 Wayne State University School of Medicine, PhD March 2018. 
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GRANTS, CONTRACTS, AND OTHER FUNDING 
 
Active National/International Grants and Contracts 
 
Role: Principal Investigator, Percent effort 20%, IK6RX002419 
Title: Research Career Scientist Award 
Source: Department of Veterans Affairs (VA) Rehab R&D  
2006-2023 
Total direct costs:   
 
Role: Principal Investigator, Percent effort 20%, I01RX000458 
Title: Role of TPH2 and 5HT Neuronal Loss in Non-motor Symptoms of Parkinson’s 
Source: Department of Veterans Affairs (VA) Rehab R&D Merit Award 
2016-2020 
Total direct costs: $1,080,000 
 
Role: Co-Principal Investigator, Percent effort 5%, PI: Jason Mateika 
Title: 5HT modulation of arousal and chemoreflex responses in intact and SCI mice 
Source: Department of Veterans Affairs (VA) Rehab R&D Merit Award 
2018-2022 
Total direct costs: $980,000 
 
Role: Principal Investigator, Percent effort 5%, IS1BX004395 
Title: ShEEP Request for an Illumina MiSeq System 
Source: VA Office of Research & Development, Shared Equipment Award Program 
2018-2019 
Total direct costs: $117,000 
 
Role: Principal Investigator, Percent effort 20%, I01BX004340 
Title: Delayed and Progressive Emergence of CTE- and Psychiatric-like Pathologies after 
 Repetitive Mild TBI 
Source: Department of Veterans Affairs (VA) Basic Laboratory R&D Merit Award 
2019-2023   
Total direct costs: $940,000 
 
Role: Principal Investigator, Percent effort 20%, GW170034 
Title: Gulf War Illness and Gut Microbiome Dysbiosis: Treatment with Probiotics and Fecal 

Transplantation 
Source: Department of Defense, Congressionally Directed Medical Research Program 
2019-2021  
Total direct costs: $230,000 
 
Role: Principal Investigator, Percent effort 20%, 1I01BX004757-01A1 
Title: Gulf War Veterans' Illnesses: Symptom Chronicity via Interactions of Diet and Lifestyle 

Risk Factors with the Gut Microbiome 
Source: Department of Veteran’s Affairs (VA), Basic Laboratory R&D Merit Award 
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2020-2024 
Total direct costs: $1,368,788 
 
Pending National/International Grants and Contracts 
 
Role: Principal Investigator, Percent effort 20%, R21DA048191 
Title: Synthetic Psychoactive Cathinones and the Gut Microbiome: Potential Target to 

Counteract Drug Deleterious Effects 
Source: NIH, National Institute on Drug Abuse 
2020-2022 
Total direct costs: $275,000 
 
Role: Principal Investigator, Percent effort 25%, R21DA049548 
Title: The Gut Microbiome Influences Cocaine and Heroin Self Administration, Extinction and 

Relapse 
Source: NIH, National Institute on Drug Abuse, Cutting Edge Biological Research Application 
2019-2021 
Total direct costs: $275,000 
 
Previously funded Grants and Contracts 
 
Role: Principal Investigator, Percent effort 20%, R21DA034692 
Title: βeta-ketoamphetamines: Window to the Neurotoxic Mechanisms of Methamphetamine 
Source: NIH/NIDA Cutting Edge Basic Research Award 
2015-2018   
Total direct costs: $230,000 
 
Role: Principal Investigator, Percent Effort: 100%, F32 HL0245 
Title: Control Mechanisms for Serotonin Synthesis in Brain 
Source: NIH/NHLBI 
1976-1978 
Total direct costs: $65,000 
 
Role: Principal Investigator, Percent effort: 100%, NHLBI  
Title: Intramural Research Program, Section on Biochemical Pharmacology, National Heart 
Lung  & Blood Institute, National Institutes of Health 
Source: NIH/NHLBI  
1978-1986 
Total direct costs: ~$900,000 (NIH Intramural funding)   
 
Role: Principal Investigator, Percent effort: 10%  
Title: Small Grant in Neurosciences Award 
Source: Wayne State University School of Medicine 
1986-1987 
Total direct costs: $10,000 
Role: Mentor, Percent effort: 5% 
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Title: Office of the Dean of the Medical School, Dean's Postdoctoral Recruiting Award (PI: Dr. 
 W.A. Wolf) 
Source: Wayne State University School of Medicine 
1989-1990 
Total direct costs: $20,000 
Role: Principal Investigator, Percent Effort 20% R03 MH02365 
Title: Tryptophan Hydroxylase: Purification and Production of Antibodies 
Source: NIH/NIMH 
1989-1990   
Total direct costs: $31,000 
 
Role: Principal Investigator, Percent effort 20% 
Title: Differential Loss of Tyrosine Hydroxylase from the Striatum in Parkinson's Disease 
Source: United Parkinson Foundation 
1990-1991 
Total direct costs: $25,450 
 
Role: Principal Investigator, Percent effort 20%, R01 DA006219 
Title: Cocaine and Serotonin Neurochemistry 
Source: NIH/NIDA 
1991-1995 
Total direct costs: $1,006,004 
 
Role: Principal Investigator, Percent effort 5% 
Title: Small Instrumentation Grant Program 
Source: Alcohol, Drug Abuse, and Mental Health Administration (administered through Wayne 
 State University School of Medicine 
1991-1992 
Total direct costs: $21,000  
 
Role: Mentor, Percent effort 5% 
Title: Office of the Dean of the Medical School, Dean's Postdoctoral Recruiting Award (PI: Dr. B. 
 Gibbs) 
Source: Wayne State University School of Medicine 
1992-1993 
Total direct costs: $20,000 
 
Role: Mentor, Percent effort 5%, F31 MH010230 National Research Service Award 

(Predoctoral) 
Title: Tryptophan Hydroxylase: Regulation by Protein Kinases (PI: Patricia Johansen) 
Source: NIH/NIMH 
1992-1994  
Total direct costs: $23,000 
 
Role: Principal Investigator Percent effort 20%, R55 NS030833 (Shannon Award) 
Title: Regulation of Brain Tryptophan Hydroxylase 
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