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1. INTRODUCTION 

Pulmonary Fibrosis (PF) describes a chronic lung disease in which lung tissue becomes scarred over time 

in response to microinjuries leading to progressive shortness of breath and ultimately to death within 3-5 

years. This condition can be idiopathic, as in idiopathic pulmonary fibrosis (IPF), or secondary to genetic or 

autoimmune disorders, or to exposure to environmental toxins, chemical warfare, or radiation. IPF is the 

most common idiopathic form of pulmonary fibrosis that affects approximately 120,000 patients in the US 

with a steady increase in both incidence and mortality.  

Histologically, IPF is characterized by marked fibrosis with or without honeycombing in a predominantly 

subpleural and paraseptal location with central areas relatively spared. The fibrosis is distributed 

heterogeneously, with normal lung adjacent to established fibrosis. At the boundary between these regions, 

there are fibroblast foci, defined by accumulation of immature hyaluronic acid rich matrix underneath 

epithelial cells undergoing injury and cell death. In response to the cell death, there is an attempt at 

replacement with type II cell hypertrophy and hyperplasia. Temporal heterogeneity – the presence of acute 

or active disease (fibroblastic foci with or without epithelization) along with progressive disease (mature 

fibrotic scar) and non-diseased lung, as well as spatial heterogeneity – the presence of fibrotic lung 

adjacent to histologically normal lung are a molecular disease mechanism specific to IPF.  

The application of high throughput transcript profiling approaches to pulmonary fibrosis discovered that the 

IPF lung exhibits dramatically different patterns of gene expression with over 2000 significant differentially 

expressed genes. However, conventional bulk RNA sequencing methods lack the ability to unravel the 

unique histopathologic features of IPF – temporal heterogeneity, alveolar cell hyperplasia, abundance of 

myofibroblast foci and aberrant remodeling – on a cellular level, and cell-type specific molecular networks 

that regulate disease progression are poorly understood. Recent technological advances led to the 

development of single cell and single nuclei sequencing. The overall objective of this proposal is to create a 

unique dataset of single nuclei transcriptomes of well-characterized, differentially affected regions within 

the IPF lung, so we can unravel the microenvironment in IPF by systems biology approaches. Based on 

these observations and technological innovations, we hypothesized that investigating the single nuclei 

transcriptomes of well-characterized, differentially affected regions within the IPF lung would allow us to 

investigate cell-type-specific regulatory networks associated with disease progression and to discover 

novel, more specific, drugable targets. We aim to identify aberrant cell compositions and aberrant gene 
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expression profiles in cellular subpopulations in differentially affected regions within the IPF lung. 

Furthermore, we plan to establish cell-type-specific regulatory networks in the microenvironment of IPF and 

cell-type-specific pathways of disease progression. Last, we aim to discover cell-type-specific biomarkers 

of disease progression as well as targets for novel therapeutics.  

The successful completion of the specific aims of this application will substantially impact our 

understanding of pulmonary fibrosis and its disease progression, and to discover cell type-specific 

candidates for novel therapeutics for patients suffering from PF.  

2. KEYWORDS  

Idiopathic pulmonary fibrosis; single nuclei RNA sequencing; regulatory networks; disease progression; 

lung; biomarker; gene expression; spatial resolution.  

3. ACCOMPLISHMENTS 

What were the major goals of the project? 

Goal 1: To identify aberrant cell compositions and aberrant gene expression profiles in cellular 

subpopulations in differentially affected regions within the IPF lung, 

Goal 2: To establish cell-type-specific regulatory networks in the microenvironment of IPF and cell-type-

specific pathways of disease progression. 

Goal 3: To discover cell-type-specific biomarkers of disease progression as well as targets for novel 

therapeutics. 

What was accomplished under these goals? 

Major activities: 

a) Single nuclei RNA sequencing experiments to compare isolation and clean-up of nuclei by either 

Fluorescence activated cell sorting (FACS) sorting or enrichment of high-quality nuclei using a 

OptiPrep-based density cushion centrifugation  

b) Single cell RNA sequencing of all remaining samples after enrichment of high-quality nuclei using a 

OptiPrep-based density cushion centrifugation – in progress  
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c) Development of an automated computational pipeline for data preprocessing including identification 

of valid barcodes and removal of background contamination, and an analytical protocol. This 

computational pipeline was field-tested on an independently generated dataset of sputum cells from 

patients with cystic fibrosis and controls. 

Specific objectives: 

a) Identification of the optimal nuclei isolation and purification method 

b) Generating the single nuclei RNA sequencing dataset based on the optimal method of a) – in 

progress 

c) Development of an automated computational pipeline for data preprocessing 

Significant results or key outcomes:  

First, we performed a comparison of 

nuclei isolated and cleaned by either a) 

Fluorescence activated cell sorting (FACS) 

sorting (n=8) or b) enrichment of high-

quality nuclei using an OptiPrep-based 

density cushion centrifugation (n=4) in two 

independent single nuclei RNA seq 

experiments. In both cases, nuclei were 

isolated using a hypotonic sucrose solution 

with an additional mechanical tissue 

disruption using the gentleMACS Dissociator. Regarding FACS sorting, isolated nuclei were stained 

with DAPI, then sorted at our FACS core facility. The OptiPrep-based density cushion centrifugation 

was performed such that the isolated nuclei were resuspended in media containing 25% OptiPrep, then 

overlaid over cushions of 35% and 30% OptiPrep-containing solutions. These layered solutions were 

centrifuged at 4696g for 20min at 4°C and the nuclei collected at the 35%-30%-interphase. With both 

methods, nuclei with little contaminant debris were obtained. Both were nuclei preparations were then 

subjected to single nuclei RNA barcoding, library preparation and sequencing using our standard 

Table 1: Data processing summary of the two single nuclei RNA seq 
runs. Fluorescence activated cell sorting (FACS) sorting (“Sorting”, n=8) 
and enrichment of high-quality nuclei using a OptiPrep-based density 
cushion centrifugation (“Density cushion”, n=4) 



Page 7 
 

protocol. The data processing QC measurements in general are were similar and are summarized in 

Table 1. However, two crucial differences were observed: The median number of UMI of the nuclei 

purified with the density cushion centrifugation (median 1,328 UMI) was roughly 500 UMI higher 

compared to the FACS sorted nuclei. Furthermore, the sequencing saturation with a dramatically lower 

in the density cushion samples (27.48% vs. 73.78%), which means that if we increase the reads per 

sample the advantage of the density cushion samples with regards to the median number of UMI will 

further increase. Taken together, the amount of information per nuclear transcriptome is radically higher 

in the samples isolated by the density cushion and could be further improved by a higher sequencing 

depths. This clearly favors density-cushion- based nuclei isolation method, which we will use now on 

the whole cohort. 

 Second, were processed the data from our 

single nuclei RNA seq experiment with nuclei isolated 

using the density cushion method using our newly 

developed pipeline (see next paragraph). We could 

identify 35,784 valid single nuclei transcriptome, 

embedded them in “Uniform manifold approximation 

and projection” (UMAP) space, clustered them and 

assigned cell type annotations. The quality of this 

data was good enough, even with this low 

sequencing saturation, that we could identify all major 

cell populations of the human lung (see figure 1). In the single IPF sample from a severely affected 

lung, we clearly observed a loss of AT1 and AT2 cells, and a shift towards bronchial epithelial cells and 

fibroblasts, suggesting that our goal of analyzing differences in areas of mild and severe fibrosis is 

feasible. 

In the meantime, we developed a computational pipeline for processing of raw sequencing data 

and analysis protocol, which was field-tested on a dataset of cystic fibrosis samples (see publication 

“Single Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis” under “6. Products”). 

As we automated all major steps of this computational pipeline, we will be able to perform this step on 

Figure 1: Preliminary embedding of 35,784 single nuclei 
transcriptomes of the density cushion experiment. 
Preliminary Uniform manifold approximation and projection 
(UMAP) embedding of 35,784 of the density cushion trial run 
without removal of multiplets. Each dot is a single nucleus 
transcriptome, colored by cell type identity 
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the final dataset of IPF and control single nuclei RNA seq data within less than two weeks. Our 

computational pipeline consists of the following 

steps: Basecalls are converted to reads with the 

implementation mkfastq in the software “Cell 

Ranger”. Read2 files are subject to two passes 

of contaminant trimming with cutadapt: first for 

the template switch oligo sequence anchored on 

the 5' end; secondly for poly(A) sequences on 

the 3' end. Following trimming, read pairs are 

removed if the read 2 was trimmed below 20bp. 

Subsequent read processing is conducted with 

the software “STAR” and its single cell 

sequencing implementation “STARsolo”. Reads 

are aligned to the human genome reference 

GRCh38. Collapsed unique molecular identifiers (UMIs) with reads that span both exonic and intronic 

sequences are retained as both separate and combined gene expression assays. Cell barcodes 

representative of quality cells are delineated from barcodes of apoptotic cells or background RNA 

based on the following three thresholds: fraction of intron spanning UMI, i.e. unspliced reads indicative 

of nascent mRNA; total number of UMI; fraction of UMI of mitochondrial origin. It is important to mention 

that the identification of valid barcodes deviates from CellRanger’s standard workflow, but utilizing this 

threshold-based methods enables to adapt to the lower total UMI counts of nuclei, as alternatively, the 

majority of valid nuclei barcodes might get discarded. Raw UMI counts are normalized with a scale 

factor of 10,000 UMIs per cell and subsequently natural log transformed with a pseudocount of 1. 

Highly variable genes are identified using the method “vst” of the R package Seurat, then data is scaled 

and the total number of UMI and the percentage of UMI arising from mitochondrial genes are regressed 

out. The scaled are were then subject to principle component analysis (PCA) for linear dimension 

reduction.  A shared nearest neighbor network is created based on Euclidean distances between cells 

in multidimensional PC space  and a fixed number of neighbors per cell, which is used to generate a 2-

dimensional Uniform Manifold Approximation and Projection (UMAP) for visualization. For cell type 

Figure 2: Quality characteristics of barcodes. Plotted are the 
number of Unique Molecule Identifiers (UMI) on the x-axis versus the 
fraction of intronic, i.e. unspliced, mRNA per barcode on the y-axis. 
Valid barcodes can be found in the top right quadrant and were 
identified using nUMI >700 and faction.intronic >50% as filters. 
Barcodes are colored by the fraction of UMIs originating from the 
mitochondrial genome. Valid barcodes have very low fraction of 
mitochondrial reads (data not shown) and are filtered with a maximum 
of 5% mitochondrial reads. 
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identification, scaled data is clustered using the Leiden algorithm. In addition to general filtering based 

on quality control variables, a curated multiplet removal based on prior literature knowledge is 

performed. In order to evaluated cell-type markers we use Seurat’s FindAllMarkers to calculate log fold 

changes, percentages of expression within and outside a group, and p-values of Wilcoxon-Rank Sum 

test comparing a group to all cells outside that specific group including adjustment for multiple testing 

and to compare differential gene expression in specific cell types. 

Other achievements: 

Supported by this grant, we published an editorial “Towards Early Detection of IPF” (see “6. 

Products”) in which we discuss steps necessary for an early identification of patients with IPF or of 

subjects with increased risk for developing IPF in the context of interstitial lung abnormalities. An early 

diagnosis will enable treatment of minimal fibrotic lesions, before extensive remodeling and 

bronchiolization have occurred, which is a critically important mission. We argue for a paradigm shift 

from focusing on developing cohorts of patients already diagnosed with IPF toward cohorts of 

individuals highly likely to develop the disease. 

What opportunities for training and professional development has the project provided? 

The PI, Jonas Schupp, mentored by Naftali Kaminski, has been trained in developing automated 

computational pipelines as well as expanded his expertise in experimental methods with regards to 

sample processing for single nuclei RNA sequencing. In addition, his scientific writing skills have been 

developed, as highlighted by the editorial "Towards Early Detection of IPF". The "Professional 

development" activities of Jonas Schupp included the participation in the annual conference of the 

American Thoracic Society. 

How were the results disseminated to communities of interest? 

Nothing to report. 

What do you plan to do during the next reporting period to accomplish the goals? 

Having established the best method to isolate and purify nuclei and confirmed the usefulness of the 

generated data for cell type identification and already observed basic differences in severely affected 

IPF samples, we will now finalize generating the single nuclei RNA seq dataset samples from 
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differentially affected regions within 10 IPF lungs (3 tissue cores per lung) and 10 controls lungs. As 

outlined in the paragraph “5. CHANGES/PROBLEMS”, our automated computational pipeline will allow 

preprocessing of the data within less than 2 weeks, once the whole raw data is ready. We will then 

continue as outlined in the SOW and identify aberrant gene expression profiles in cellular 

subpopulations, establish cell-type-specific regulatory networks in the microenvironment of IPF and 

cell-type-specific pathways of disease progression and discover cell-type-specific biomarkers of 

disease progression as well as targets for novel therapeutics.   

4. IMPACT 

What was the impact on the development of the principal discipline(s) of the project? 

Nothing to report. 

What was the impact on other disciplines? Nothing to report. 

What was the impact on technology transfer? Nothing to report. 

What was the impact on society beyond science and technology? Nothing to report. 

5. CHANGES/PROBLEMS 

Changes in approach and reasons for change: 

 Nothing to report.  

Actual or anticipated problems or delays and actions or plans to resolve them: 

Two major problems/issues caused a delay of milestones of this project. First, the secondary ethics 

review by the DoD approved the use of the tissue samples on 12/26/2019. Following the DoD’s 

regulations, we therefore were not allowed to perform any research on those samples before that date. 

Second, due to the outbreak of the Covid-19 pandemic, Yale shut down all non-Covid-19-related 

research at the beginning of March 2020, which included all core facilities and our lab. Any bench work 

for this project including single nuclei RNA sequencing was therefore not allowed. Furthermore, also 

the sequencing core facility was shut down for non-Covid19 related projects. Our lab was only partially 

reopened on June 12, 2020. Both issues, the longer than expected secondary ethics review by the DoD 

and the shutdown of all labs at Yale, caused a major delay of goals and milestones, in particular, we 
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could only generate a small part of the single nuclei RNAseq dataset which is the foundation of all 

downstream goals. As our lab has partially reopened now, we are working full steam to finalize the 

dataset. To speed up the completion of the downstream goals, significant parts of the computational 

pipeline have been automated (see “significant results” under “achievements”) such that we will be able 

to perform task 2 of Goal 1 and Goal 2 in a fraction of the time stated in the original SOW (presumably 

in less than 2 weeks). Goal 3 is highly dependent on the complete dataset and the results of Goal 2 and 

will be carried out as originally outlined. 

Changes that had a significant impact on expenditures: 

 Nothing to report.  

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or 

select agents:  

Significant changes in use or care of human subjects 

Nothing to report.  

Significant changes in use or care of vertebrate animals.  

Not applicable. No research on vertebrate animals. 

Significant changes in use of biohazards and/or select agents 

Nothing to report. 

6. PRODUCTS 

Publications, conference papers, and presentations 

Journal publications:  

Schupp JC, Khanal S, Gomez JL, Sauler M, Adams TS, Chupp GL, Yan X, Poli S, Montgomery 

RR,  Rosas IO, Dela Cruz CS, Bruscia EM, Egan ME, Kaminski N, Britto CJ. Single Cell 
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Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis. Am J Respir Crit Care 

Med. 2020 Jun 30. DOI: 10.1164/rccm.202004-0991OC.  

Status of publication: published 

Acknowledgement of federal support: yes 

Schupp JC, Kaminski N. Towards Early Detection of IPF. Am J Respir Crit Care Med. 2019 

Aug 14. DOI: 10.1164/rccm.201908-1530ED 

Status of publication: published 

Acknowledgement of federal support: yes 

Books or other non-periodical, one-time publications: Nothing to report 

Other publications, conference papers, and presentations:   

Schupp JC, Adams T, Ahangari F, Poli De Frias S, DeIuliis G, Yan Y, Rosas IO, Homer R, 

Kaminski N. Single Cell Transcriptomics Reveals Novel COL15A1+ Endothelial Population in 

Pulmonary Fibrosis and Lung Cancer. Conference abstract. Annual conference of the American 

Thoracic Society 2020.  

Status of publication: published 

Acknowledgement of federal support: during submission: yes; funding is however not visible on the 

congress homepage 

Website(s) or other Internet site(s): Nothing to report 

Technologies or techniques: Nothing to report 

Inventions, patent applications, and/or licenses: Nothing to report 

Other Products: Nothing to report 

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS 

What individuals have worked on the project? 

Name: Jonas Christian Schupp 

Project Role: PI 

https://doi.org/10.1164/rccm.202004-0991oc
https://doi.org/10.1164/rccm.201908-1530ED
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Researcher 
Identifier (e.g. 
ORCID ID): 

ORCID iD: 0000-0002-7714-8076 

Nearest person 
month worked: 4 

Contribution to 
Project: 

Jonas Schupp developed the data processing pipeline and established 
analytical algorithms to be used on the final dataset. He performed two 
preliminary single nuclei RNA experiments and analyzed them and is 
generating the final dataset at the moment. 

 

Name: Naftali Kaminski 

Project Role: Mentor 

Researcher 
Identifier (e.g. 
ORCID ID): 

ORCID iD: 0000-0001-5917-4601 

Nearest person 
month worked: <1 

Contribution to 
Project: Supervision of this project and mentoring of Jonas Schupp. 

 

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since 

the last reporting period? 

Nothing to report. 

What other organizations were involved as partners? 

Nothing to report. 

8. SPECIAL REPORTING REQUIREMENTS 

Nothing to report.  

9. APPENDICES  

The appendix includes the two publications (details see above in “6. Products”) supported by this grant: 

a) “Single Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis” 

b) “Towards Early Detection of IPF” 
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CyTOF data were reanalyzed by JLG, RRM, and EMB. JCS, TSA, PS, IOR, and NK created and 

provided scRNAseq data of control distal lungs, TSA calculated the correlation matrix. YZ and 

RRM performed the sample processing comparison experiments. The manuscript was drafted by 

JCS and CJB, and was reviewed and edited by all other authors.  

Funding: This work was supported by The National Institutes of Health & National Heart, Lung, 

and Blood Institute (USA) through grants NIH T32-HL007778 and K01-HL125514-01 (CB); the 

Cystic Fibrosis Foundation through its Fifth Year Clinical Fellowship Award (CB); the 

American Thoracic Society Foundation's Unrestricted Research Award (CB); NIH U01 
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Short running title: Single cell RNA sequencing of cystic fibrosis sputum

Descriptor number:  9.16 Cystic Fibrosis: Basic Studies

Total word count - manuscript: 3791 words

Total word count - abstract: 242 words

Some of the results of these studies have been previously reported in the form of a preprint 

(medRxiv, 10 March 2020  https://10.1101/2020.03.06.20032292v1).

This article has an online data supplement, which is accessible from this issue's table of content 

online at www.atsjournals.org. 
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At a Glance

Scientific Knowledge:

Functionally different subsets of neutrophils and mononuclear phagocytes with defective 

bacterial killing, impaired phagocytic function, and enhanced cytokine production have been 

described in CF. However, the broad spectrum of transcriptional alterations underlying immune 

dysfunction in individual CF airway cells has not been characterized.

Add to the Field: 

This is the first single-cell RNA sequencing characterization of airway immune cells from CF 

and healthy control subjects. We observed a shift in the airway immune cell repertoire of CF 

subjects from alveolar macrophages to a predominance of recruited monocytes and neutrophils. 

We identified a novel population of recruited lung mononuclear phagocytes in CF, with three 

distinct transcriptional archetypes: activated monocytes, monocyte-derived macrophages, and 

heat-shock activated monocytes, and characterized neutrophil subpopulations, highlighting a 

dominant immature proinflammatory archetype. Our findings offer an opportunity to understand 

subject-specific immune dysfunction and its potential contribution to CF pathogenesis.
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Abstract: 

Rationale: Cystic fibrosis (CF) is a life-shortening multisystem hereditary disease caused by 

abnormal chloride transport. CF lung disease is driven by innate immune dysfunction and 

exaggerated inflammatory responses that contribute to tissue injury. In order to define the 

transcriptional profile of this airway immune dysfunction, we performed the first single-cell 

transcriptome characterization of CF sputum. 

Objectives: To define the transcriptional profile of sputum cells and its implication in the 

pathogenesis of immune function and the development of CF lung disease.

Methods: We performed single-cell RNA sequencing of sputum cells of nine subjects with CF 

and five healthy controls. We applied novel computational approaches to define expression-

based cell function and maturity profiles, here called transcriptional archetypes. 

Measurements and Main Results: The airway immune cell repertoire shifted from alveolar 

macrophages in healthy controls to a predominance of recruited monocytes and neutrophils in 

CF. Recruited lung mononuclear phagocytes were abundant in CF, separated into three 

archetypes: activated monocytes, monocyte-derived macrophages, and heat-shock activated 

monocytes. Neutrophils were most prevalent in CF, with a dominant immature pro-inflammatory 

archetype. While CF monocytes exhibited pro-inflammatory features, both monocytes and 

neutrophils showed transcriptional evidence of abnormal phagocytic and cell-survival programs. 

Conclusions: Our findings offer an opportunity to understand subject-specific immune 

dysfunction and its contribution to divergent clinical courses in CF. As we progress towards 

personalized applications of therapeutic and genomic developments, we hope this inflammation 
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profiling approach will enable further discoveries that change the natural history of CF lung 

disease. 

Total word count - abstract: 242 words

MeSH key words: Neutrophils, RNA-Seq, Gene Expression Profiling, Macrophages, Monocytes, 

Cystic Fibrosis
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Introduction

Cystic Fibrosis (CF) is a life-shortening, multiorgan hereditary disease affecting over 

33,000 individuals in the United States (1, 2). Clinical manifestations of CF are caused by 

mutations in the CFTR gene that cause abnormal chloride and bicarbonate transport on epithelial 

surfaces (3, 4). The disruption of epithelial and innate immune functions is a key contributor to 

CF lung disease, the primary cause of morbidity and mortality in CF (5, 6). Non-CFTR disease-

modifying genes also contribute to immune dysfunction, clinical phenotype, and disease 

progression in CF(7, 8). 

Airway inflammation is crucial in the development of CF lung disease, where recruited 

cells cause tissue damage (9-11). Inflammatory cell populations are heterogeneous, with 

increasingly recognized CF-specific polymorphonuclear neutrophil (PMN) and macrophage 

(MΦ) subclasses (10). CF Immune cells from blood and lung biopsies have been profiled using 

bulk RNA sequencing to characterize transcriptional profiles associated with disease progression 

and clinical outcomes(12-15). Flow-cytometry studies, including our group's mass cytometry 

characterization of CF immune cells, also shed light on functional defects of CF immune cell 

subsets and distinct patterns of immune activation across subpopulations (10, 16-18). These 

studies have been constrained by the limited number of protein or genetic markers available per 

assay to define population clusters and assess immune responses. A study providing 

individualized cellular data on sputum cell types with the granularity afforded by single-cell 

RNA sequencing (scRNAseq) has not been reported in CF or any other lung disease. 

Airway PMN in CF have been characterized in the past (19-24). However, progress in 

high-throughput single-cell immune profiling has been slow relative to other immune cells like 

peripheral blood mononuclear cells (PBMC). This may be in part due to the overall limited 
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viability and increased fragility of airway PMN ex vivo. CF PMNs generally have a 

proinflammatory profile, yet some studies reveal functionally different subsets, including 

populations with abnormal immune function and defective bacterial killing (10). Airway MΦ and 

other mononuclear phagocytes are also present in CF airway secretions (25-27). Specifically, CF 

airway monocytes have impaired phagocytic function and enhanced cytokine production (28, 

29), playing an important role in driving exaggerated airway inflammation in CF (9, 25). 

Single-cell transcriptome profiling is a powerful tool to study innate immune defects and 

define cell subpopulations that contribute to pathogenesis (30). The use of immune cells from 

sputum instead of circulating cells or cells differentiated in vitro allows us to investigate gene 

expression profiles that reflect airway transmigration, response to the airway microenvironment, 

and cell-cell and cell-pathogen interactions key to CF pathogenesis.

Previously identified CF inflammatory cell subpopulations from other studies suggested 

to us that these cells exist as a continuum of immune maturation and function, rather than 

isolated, clearly defined, subpopulations. To define this spectrum, we applied scRNAseq 

followed by pseudotime analysis, and novel approaches to visualize high-dimensional data. In 

the continuum of sputum inflammatory cells, those with most extreme gene expression features 

defined functional and maturity trajectories, here called transcriptional archetypes (31). These 

archetypes constitute a dynamic, more inclusive way to understand transcriptional differences 

within immune cells. Our approach also allowed us to investigate the relationship between 

transcription factors and genes involved in immune activation and cell maturation, not previously 

possible due to an inability to sequence the full cellular transcriptome.

This work is the first to characterize the spectrum of maturation and immune activation 

states of inflammatory cell populations in CF airways at an unprecedented resolution enabled by 
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scRNAseq. Transcriptional profiling of inflammatory cell archetypes could open the door for 

highly-targeted therapeutic interventions in subjects with similar CF-causing mutations who 

experience divergent clinical courses. 

Methods

Detailed methods are provided in the online data supplement.

Results 

Disease-Specific Cell Distributions of CF Airway Inflammatory and Epithelial Cells

The primary objective of this study was to characterize sputum cell subpopulations in CF 

using unbiased transcriptome analysis of single cells obtained from CF and healthy control (HC) 

subjects. Our recruitment period extended from December 2018 through December 2019. Nine 

subjects with a confirmed CF diagnosis from the Yale Adult CF Program provided sputum 

samples. We also recruited five HC to undergo sputum induction according to previous protocols 

(16). 

Study subjects were closely age-matched, with a higher inclusion of female subjects in 

the CF group (67% CF, n=6; 40% HC, n=2). The CF cohort was comprised primarily of F508del 

homozygous subjects (78%, n=7) with only two F508del heterozygotes harboring either one 

deletion or one frameshift mutation in one CFTR allele and an F508del in the other. The CF 

cohort's degree of lung function impairment, as determined by Forced Expiratory Volume in the 

first second (FEV1), ranged from mild to severe (FEV1 19-84% of predicted), with a mean FEV1 

of 57%. All CF subjects had pancreatic exocrine insufficiency and 44% (n=4) carried a diagnosis 

of CF-related diabetes. Pseudomonas aeruginosa was isolated in the sputum of 56% of CF 

subjects (n=5). The majority of CF subjects were receiving CFTR-modulator therapy (89%, n=8) 

Page 8 of 62

 AJRCCM Articles in Press. Published June 30, 2020 as 10.1164/rccm.202004-0991OC 
 Copyright © 2020 by the American Thoracic Society 



with a combination of either Ivacaftor/Tezacaftor (67%, n=6) or Ivacaftor/Lumacaftor (22%, 

n=2). For further demographic and clinical details see Table 1.

We developed a standardized scRNAseq workflow for sputum sample analysis (Fig. 1A) 

and profiled a total of 20,095 sputum cells (12,494 CF, 7,601 HC). We identified nine distinct 

sputum cell populations based on known transcriptomic markers (Fig. 1C, Supplemental Data 

file E1): mononuclear phagocytes (recruited lung monocytes, monocyte-derived MΦ (MoMΦ), 

and alveolar MΦ (alvMΦ)); classical and plasmacytoid dendritic cells (cDC, pDC); PMN; 

lymphocytes (B, T, and NK cells); and airway epithelial cells from buccal and tracheobronchial 

mucosa (Fig. 1B-D). The expression of CFTR in sputum cells was overall very low and CFTR 

was detected in most cell types in frequencies ranging from 0 to 6.84% (Supplemental Fig. E1).

The Inflammatory Cell Repertoire of CF Sputum Displays a Shift from alvMΦ to Airway 

Monocytes and PMN

The dominant cell populations in CF and HC samples were strikingly different. PMNs 

contributed 64% of all CF cells, with minimal numbers of alvMΦ (0.4%). In contrast HC 

samples were composed of 80.2% alvMΦ with almost no detectable PMN (<2%, both p <0.002). 

Further, CF subjects also exhibited increased numbers of airway monocytes (19% CF, 1% HC, 

p=0.001) and B cells (4% CF, 1% HC, p = ns), and lower numbers of MoMΦ (1% CF, 6% HC, 

p=0.007) (Fig. 1B-D). Disease-associated PMN, MΦ, and monocyte cellular distributions were 

confirmed on mass cytometry data from a previously published study by our group, comparing 

surface markers of inflammatory sputum cells in CF and HC (Supplemental Fig. E2) (16). 

Furthermore, correlation of cell type gene classifiers in this study and analogous cell types in the 

largest scRNAseq dataset of the distal lung available to date (n=28) revealed a greater correlation 

between HC cell types from each dataset than within other cell types from the same dataset, 
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confirming our cell annotations (Supplemental Fig. E3)(31). Our findings indicate that immune 

cell populations in CF sputum are distinguishable from HC through scRNAseq, and that our cell 

annotations and shifts in major cell distributions in CF are consistent with other mass cytometry 

(CyTOF) and scRNAseq studies.

Recruited CF Lung Mononuclear Phagocytes Display Distinct Maturation and Immune 

Activation Archetypes

AlvMΦ were rare in CF sputum; however, we identified a distinct subpopulation of 

Recruited Lung mononuclear Phagocytes (RLPs, Fig. 1B) that included recruited lung 

monocytes and MoMΦ. These RLPs were defined by high expression of mononuclear 

phagocyte-associated genes (LYZ, CTSB, CTSH, CTSL, CTSS, CTSZ, HLA-DRA, HLA-DRB1, 

LGALS1, FTL, CD74). RLPs were relatively abundant in CF (20% of CF cells) and were rarely 

identified in HC sputum (7% of HC cells, p=0.06). RLPs were a heterogeneous group, with 

pronounced and notably different plasticity in CF. This suggested that RLPs would differ not 

only in abundance, but also in transcriptional profiles between HC and CF. 

To characterize the spectrum of immune activation and maturation of monocytes and 

MoMΦ contained within CF and HC RLPs, we performed a Pseudotime analysis using 

“Potential of Heat diffusion for Affinity-based Transition Embedding” (PHATE). Pseudotime 

analysis is a computational technique that allows the distribution of single-cell expression 

profiles along the continuum of a biologic process marked by gene expression changes (in this 

case cell maturation, immune activation, and heat-shock response gene expression). Pseudotime 

analysis demonstrated three distinct gene expression trajectories, and in turn, the most extreme 

phenotypes of these trajectories defined three RLP transcriptional archetypes in sputum (Fig. 

2A)(31, 32). Two of these archetypes were CF-predominant archetypes: activated pro-
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inflammatory monocytes and heat-shock activated monocytes. The third RLP archetype, mature 

resting MoMΦ, was more prevalent in HC. 

Next, we examined the sequence of gene expression changes leading to the mature 

resting MoMΦ and activated pro-inflammatory monocyte archetypes, correlating gene 

expression changes with Pseudotime distance values. The trajectory towards activated pro-

inflammatory monocytes was characterized by a gradual and steady increase of pro-

inflammatory chemokine and cytokine gene expression. This trajectory was characterized by 

increasing expression of IL1B, CXCL2, CCL3, CCL4, CCL20, VEGFA and EREG, Calprotectin 

(S100A8, S100A9)(33), anti-apoptotic proteins MCL1 and BCL2L1, the inflammasome subunit 

NLRP3(34), inducible cyclooxygenase 2 (PTGS2), and transcription factor NFKB1 (Fig. 2B, 

Supplemental Fig. E4, E5, Supplemental Data file E2). In the activated monocyte archetype, 

imputed regulating factors of common activator/repressor genes (i.e. regulons), suggested 

increased expression of NFKB1 and pro-inflammatory transcription factors NFKB2, ETS and 

IRF1. Pro-inflammatory cytokines TNF and IL1A were expressed only towards the extreme end 

of the trajectory, in the most activated monocytes. In contrast to CF RLPs, we did not observe 

similar immune activation archetypes in MoMΦ, or in alvMΦ from HC. Remarkably, although 

pro-inflammatory CF monocytes exhibited increased overall cytokine expression, they also 

showed impaired expression of key phagocytic and cytolytic components of the immune 

response (complement C1Q), markers of maturation towards a MΦ phenotype (APOC1, APOE), 

and phagocytic function (MARCO) compared to other RLP archetypes (Fig. 2B, D). 

The mature resting MoMΦ archetype was enriched in HC, and none of the CF MΦ 

reached the distal end of this archetype (Fig. 2C). Key regulons involved in monocyte to MΦ 

maturation were active, and increasingly expressed towards the distal end of the archetype 
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trajectory, including canonical SPI1 (PU.1), as well as MITF and USF2. Maturation of MoMΦ 

was accompanied by a gradual transcriptional increase of scavenger and pattern-recognition 

receptors MSR1 and MRC1, surface markers CD9 and CD81, apolipoproteins APOC1 and 

APOE, and FABP5. 

MoMΦ were overall rare in sputum, but more evenly distributed between CF and HC 

subjects, these were distinguished by expression of PLA2G7, an enzyme that inactivates platelet-

activating factor, monocyte chemokine CCL2, LGMN a cysteine-protease involved in MHC-II 

presentation and differentiation towards DC, and activated-leukocyte cell adhesion molecule 

ALCAM. The majority of sputum cells in HC were alvMΦ. These highly abundant HC alvMΦ 

expressed the expected levels of phagocytosis-associated genes, underscoring the transcriptional 

readiness of healthy immune cells to participate in phagocytic functions and coordinate 

inflammatory cell recruitment, without the basal pro-inflammatory activity noted in the CF-

predominant monocytes. Taken together, these findings show that CF RLPs have high pro-

inflammatory gene expression but limited phagocytosis-associated transcriptional responses, 

consistent with excessive inflammation and impaired host defense responses known to occur on 

CF airways.

An Immature Pro-Inflammatory Archetype Prevails among CF Airway PMN

CF Sputum contained 64% PMN, in contrast with HC where PMN constituted 2% of 

sputum cells (Fig. 1D). PHATE of the PMN spectrum of gene expression (PMN manifold) 

enabled us to identify three PMN archetypes based on canonical markers of PMN immaturity 

(CXCR4, IGF2R) and maturity (FCGR3B, ALPL, CXCR2), as well as a heat-shock response 

archetype (Fig. 3A, 3B, Supplemental Fig. E6). To analyze gradual changes within the PMN 

manifold, we applied trajectory inference and correlated the resulting pseudotime distances with 
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gene expression and regulon activity. When tracing PMN maturation, we observed that 

expression of calprotectin (S100A8, S100A9), S100A11, CSF3R and antiapoptotic factor BL2A1 

are gained relatively early, in contrast to classical maturation markers FCGR3B, ALPL, CXCR2 

and CD14 which ramp up in expression relatively late (Fig. 3B, Supplemental Data file E2)(35, 

36). In immature PMN, we observed a gradual increase of transcription factors TFEC, MITF, 

STAT3, and maturation-associated transcription factors CEBPB and NFIL3. The CF-predominant 

immature PMN archetype was further defined by increased expression of PMN-activating 

chemokine MIP (CCL3, CCL4) and downstream transcription factor and adapter molecules 

IRAK3 and TRAF3. These findings suggest that CF airway PMNs have an overall pro-

inflammatory phenotype, with a large subpopulation of PMNs exhibiting a functional and 

maturity transcriptional shift, consistent with an immature PMN gene expression profile.

CF PMN Archetypes Have Decreased Phagocytic Marker and Tyrosine Kinase Expression

We compared the gene expression profiles of CF and HC PMN to understand transcriptomic 

differences associated with their immune function (Supplemental Data file E3). We categorized 

the top gene expression differences between CF and HC accordingly into: 1) Cell adhesion and 

maturation markers, 2) MHC class I molecules; 3) Pattern and IgG recognition, 4) Transcription 

factors and adaptor molecules; 5) Tyrosine Kinase expression; and 6) Survival and apoptosis 

genes (Fig. 3C). In CF PMN, cell adhesion and maturation markers were overall lower than in 

HC (CSF2RB, CSF3R, CXCR2, ICAM3, PECAM1), except for ITGAX. The decreased expression 

of these markers in CF reflects a higher prevalence of the immature PMN archetype described 

above. In addition to decreased CXCR- and CSF-receptor expression, CF PMN also expressed 

lower CXCR1, IL1RN, and IL1B that could condition further defects in phagocytosis and 

inflammatory cell recruitment. We identified striking differences in antigen presentation, 
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pathogen recognition, and phagocytosis-associated genes between CF and HC PMN. CF PMN 

showed decreased expression of numerous members of the MHC-I molecules (HLA-A/B/C/E), 

immunoglobin receptors (FCGR3B, FCGR2A, FCGRT), decreased pathogen recognition 

receptors CD14, TLR2, and NLRP1, and decreased expression of lysozyme (LYZ). Interestingly, 

two genes involved in the assembly of lipid rafts and primary neutrophil granule release were 

increased (SYK, CD63) suggesting that although PMN may suffer from defective phagocytic 

activity, the transcriptional infrastructure needed to express tissue proteases and inflammatory 

mediators into the airways is preserved. CF PMN demonstrated increased transcriptomic 

activation characterized by expression of transcription factors and pro-inflammatory adapter 

molecules (increased PI3, IRAK2/3, TRAF3, TANK), yet this activation did not translate into 

increased expression of inflammatory cytokines. Interestingly, the downstream response to 

cytokine activation appeared to be blunted, as shown by decreased overall tyrosine kinase gene 

expression (ITPK1, MAP3K5, MAP2K4, CAMK1D, PIK3CD, HIPK3). Finally, we observed the 

induction of genes involved in the hypoxic response (HIF1A, VEGFA, FGF13, PTGS2) and 

diverging proapoptotic signals with lower expression of CASP4, RPS6KA5, CREB5, BCL2A, and 

increased expression of HES4, KRAS, and CREM in CF. These observations underscore the 

presence of a hypoxic airway environment in CF and a dysfunctional cell death program that 

enhances the survival of functionally ineffective PMN. Taken together, these findings indicate 

that CF PMN do not carry out an effective transcriptional response to inflammatory stimuli and 

lack essential components for pathogen recognition and removal.

Discussion 

This is the first single-cell transcriptome characterization of immune cells in CF sputum. 

We identified CF-specific differences in cell subpopulations including alvMΦ, RLPs, and PMN. 
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Furthermore, these cells had markedly different transcriptional profiles when compared to their 

HC counterparts. Previous CF studies have used transcriptomic analysis to determine the 

likelihood of adverse outcomes in CF lung disease, however they have not focused on 

establishing differences between healthy and CF airway inflammatory cells, or characterizing 

their immune activation profiles (12-15). The most remarkable finding from this study is the 

discovery of novel archetypes of RLPs, enabled by an unprecedented depth of gene expression 

profiling. These inflammatory cell subpopulations exhibit a wide spectrum of maturity and 

immune activation in CF. Airway MΦ and other mononuclear cells have been described in 

human CF airway secretions (25, 26) and their role in driving exaggerated airway inflammation 

in CF has been well characterized in animal models (9, 25). However, a broader genomics 

approach to define sputum RLPs, their potential functional impairments, and pathogenic role has 

not been reported. 

We identified three novel archetypes of CF RLP including activated monocytes, mature 

MoMΦ, and heat-hock activated monocytes. Airway monocytes in CF have impaired ion 

transport and phagocytic function, however their role in CF lung disease remains undefined (28, 

37). Others have described dramatic changes in monocyte cell adhesion and chemotaxis that 

perpetuate inflammation in CF lungs, along with enhanced chemokine production that sustains 

PMN recruitment and injury (38). In agreement with these studies, we observe that monocytes 

are rather abundant in CF sputum, but are deficient in monocyte maturation gene expression 

markers (MITF, SPI1). Furthermore, CF monocytes were not only abundant, but also highly 

active from the immune perspective, expressing high levels of inflammation-related genes 

(CXCL8, IL1B, CCL3, and Calprotectin). These observations underscore a defect in CF 
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monocyte maturation that preserves a highly pro-inflammatory phenotype and contributes to 

airway damage and aberrant inflammatory cell recruitment (39). 

MΦs recovered from CF lungs are relatively smaller in size and express minimal levels of 

mannose receptor MRC1 or MARCO typically detected on alvMΦ (Supplemental Fig E7) (26, 

27). This has been interpreted as an indication that CF airway MΦs are recruited from the 

circulation, as opposed to tissue-resident alvMΦ which are of embryonic origin. Here, we show 

that most CF airway MΦ originate from recruited monocytes, while the majority of healthy 

control airway cells were bona fide tissue-resident alvMΦ.

In contrast to CF airway monocytes, more mature CF phagocytes (MoMΦ, alvMΦ) 

showed low levels of immune activation markers observed in CF monocytes, and of key 

phagocytic and cytolytic components of the immune response (complement C1Qs, MARCO). 

This underscores that in CF, RLPs that reach maturity exhibit transcriptomic evidence of 

impaired or limited phagocytic function, accounting for the known impaired phagocytic abilities 

of these cells in CF. 

We did not detect a distinct acute exacerbation signature in CF samples. This may reflect 

our stringent gene expression analysis strategy, a lack of paired sputum samples, and sample size 

limitations to perform this subgroup analysis. This is an important question to pursue in the 

future, as paired samples in stable and exacerbation states from the same individual may reveal 

critical genetic modifiers of a patient's clinical course. 

PMN were the most abundant immune cells in the sputum of patients with CF, which is 

consistent with reports in the CF literature, similar to the predominance of alvMΦ in HC sputum 

(19-24). Here, we report the discovery of new archetypes of CF PMN based on inflammatory 

and maturity gene expression markers; one, characterized by high maturity and limited pro-
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inflammatory transcriptional state, and another with higher pro-inflammatory activity and 

delayed expression of maturity markers. Overall, the increased expression of pro-inflammatory 

genes in immature PMN highlights a highly activated and pro-inflammatory state, clearly 

distinguishable from the transcriptional profile of HC PMN. The immature airway PMN 

archetype shares features of a previously described subpopulation of transmigrated PMN with 

increased granule release, immunoregulatory and metabolic activity, and defective bacterial 

killing in in vitro studies, referred to as “GRIM” neutrophils (10, 40). We identified cells with 

similar characteristics, but as part of a spectrum of granulocyte maturation that encompasses 

vigorously activated PMN on one extreme and PMN with decreased expression of maturity 

markers & evidence of recent airway migration on the other extreme. Adding to the complexity 

of these PMN subpopulations, counterproductive pro- and anti-apoptotic signals were present 

across the CF PMN when compared to HC (increased UVRAG, PLPP3, ATG7, decreased 

CASP4, RPS6KA5, CREB5, BCL2A). Taken together, these findings underscore an aberrant pro-

inflammatory state in CF PMN, exacerbated by disruption of immunomodulatory and anti-

inflammatory mechanisms like apoptosis and transcription factor suppression.

The presence of B cells in CF sputum was an intriguing finding. Single nucleotide 

polymorphisms (SNPs) in class II major histocompatibility complex (MHCII) of the F508del 

population are associated with delayed Pseudomonas aeruginosa (PA) colonization and slower 

lung function decline (41-44). Although we observed no differences in MHCII gene expression 

in B cells of CF subjects (Supplemental Fig. E8), a focused study on MHCII SNPs could identify 

B cell subpopulations with a protective role against PA and its associated impact on pulmonary 

health.
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This work includes two technical advances. First, this is the only reported scRNAseq 

study of CF sputum, a notoriously complex biological sample with high variability in cell 

viability and in cellularity between subjects. Second, our sputum processing protocol avoids the 

use of reducing agents to solubilize sputum and instead minimizes immune cell activation and 

injury by using mechanical disruption and filtering. Importantly, ours is the first report of a 

sputum cryopreservation protocol allowing the retrieval of live cells for scRNAseq analysis 

while avoiding sputum solubilizing agents typically used in sputum sample processing 

(Supplementary materials, Supplementary Fig. E9)(45-49). The ability to use cryopreserved cells 

overcomes a major limitation of previous single-cell studies that required fresh samples (13, 16), 

this is particularly important for the recovery of PMN, known for their short life-span ex-vivo 

and susceptibility to immune activation. Our study has several limitations: 1) Large differences 

in predominant cell types between CF and HC subjects make it difficult to generalize gene 

expression changes between disease and control groups. Although we present these comparisons, 

our focus is on understanding CF-specific cell distributions and their spectrum of maturity and 

activation markers; 2) Since HC express minimal sputum if any at all, we used a standardized 

approach for sputum induction in these subjects, while CF cells were obtained from 

spontaneously expectorated sputum. As single cell suspensions are standardized for number of 

cells before any analysis, these sampling differences likely have a minor impact on our 

observations; 3) There was an uneven sex distribution across the study groups. This may be of 

particular importance in CF, as female sex in CF is associated with disparities in life expectancy, 

frequency of exacerbation, and early acquisition of respiratory pathogens(50). However, of the 

differentially expressed genes between CF and controls, we did not observe divergent differential 

gene expression changes in females or males; and finally, 4) Our study has a small sample size; 
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however, we sought to match subjects according to age and sex, and HC were compared to a 

relatively homogeneous CF cohort in terms of CFTR mutation background, CF comorbidities, 

and ongoing therapy. Although a small number of patients were recruited for this study, we 

believe they are representative of patients with CF based on the F508del allele frequency in our 

cohort and the identification of nine distinct cell types representative of airway cells in CF. 

Despite these limitations, our findings are robust and representative of the CF airway 

compartment. 

CF research is progressing rapidly towards clinical, molecular, and functional 

characterization based on individualized high-throughput diagnosis and functional profiling. Our 

application of scRNAseq enabled the discovery of transcriptional archetypes in CF-specific cell 

subpopulations that may underlie subject-specific differences in disease progression and 

response to therapy. As we advance towards early applications of therapeutic and genomic 

technologies, we hope this approach to individualized airway inflammation profiling will serve 

as a foundation for further discoveries that transform the natural history of CF lung disease.
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Tables

Table 1. 

Table 1. Demographic characteristics of study subjects from the Yale Adult Cystic Fibrosis 

Program and healthy controls. HC: Healthy controls; CF: CF subjects; FEV1 Forced expiratory 

Number of Patients (n) HC (5) CF (9)
Age
Age (Mean) 35.4 ± 5.9 30.6 ± 6.5
Age (Range) 26-42 24-43
Sex
Female (n) 2 (40%) 6 (67%)
Male (n) 3 (60%) 3 (33%)
Mutation Background
F508del/F508del (n) NA 7 (77.8%)
F508del/other (n) NA 2 (22.2%)
No F508del mutations (n) NA 0 (0%)
FEV1 (L)
FEV1 (Mean) NA 1.9 ± 0.7
FEV1 (Range) NA 0.68 - 2.85
FEV1 (%)  
FEV1 (Mean) NA 57 ± 21.5
FEV1 (Range) NA 19 - 84
BMI (Kg/m2)
BMI (Mean) NA 22.2 ± 2.1
BMI (Range) NA 19.11 - 25.73
CF Comorbidities
Pancreatic Exocrine 
Insufficiency (n)

NA 9 (100%)

CF-related Diabetes (n) NA 4 (44.4%)
Liver disease (n) NA 1 (11.1%)
Microbiology
Pseudomonas aeruginosa 
Colonization (n)

NA 5 (55.6%)

CFTR Modulators
Ivacaftor/Tezacaftor (n) NA 6 (66.7%)
Ivacaftor/Lumacaftor (n) NA 2 (22.2%)
No modulator (n) NA 1 (11.1%)

Page 30 of 62

 AJRCCM Articles in Press. Published June 30, 2020 as 10.1164/rccm.202004-0991OC 
 Copyright © 2020 by the American Thoracic Society 



volume in the first second; BMI: Body Mass Index; CFTR: Cystic Fibrosis Transmembrane 

conductance Regulator. 
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Figures

Fig. 1. 
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Fig.1. ScRNAseq Reveals an Immune Cell Repertoire Shift from Alveolar MΦ to Recruited 

Monocytes and PMN in CF. (A) Schematic of the experimental design. (i) Spontaneously 

expectorated sputum from patients with cystic fibrosis (CF) and induced sputum from healthy 

controls (HC) was collected. (ii) Sputum was processed into a single-cell suspension. (iii) 

Droplet-based scRNAseq barcoding (iii) library preparation (iv) sequencing (v) and 

computational analysis. (B) Uniform Manifold Approximation and Projection (UMAP) 

visualization of 20,095 sputum cells from nine patients with CF and five controls. Each dot 

represents a single cell, and cells are labelled by (i) cell type, (ii) disease status, and (iii) subject. 

(C) Heatmap of marker genes for all cell types identified. Each column represents the average 

expression value of one subject, grouped by disease status and cell type. Gene expression values 

are unity-normalized from 0 to 1. (D) Boxplots showing percentages of all identified cell types to 

all cells profiled per subject, separated by disease state. Whiskers represent 1.5 x interquartile 

range (IQR). * p < 0.05 determined by a Wilcoxon rank sum test comparing cell percentages of 

CF patients and controls. 

Mo: monocyte; MoMΦ: monocyte-derived macrophage; alvMΦ: alveolar macrophage; 

cDC: classical dendritic cell, pDC: plasmacytoid dendritic cell; B: B-lymphocyte; T & NK: T-

lymphocytes and NK-cells; PMN: polymorphonuclear neutrophil.
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Fig. 2. 

Fig.2. Recruited Lung Mononuclear Phagocytes are a Distinct Cell Population with a Broad 

Spectrum of Maturity and Immune Activation in CF Airways. (A) Potential of Heat diffusion for 

Affinity-based Transition Embedding (PHATE) of monocytes and monocyte-derived 
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macrophages, colored by pseudotime, all starting from quiescent monocytes towards (i) activated 

monocytes, (ii) mature monocyte-derived macrophages, (iii) monocytes expressing a heat-shock 

response. (iv) monocytes and monocyte-derived macrophages, colored by disease state. All three 

archetypes are accompanied by three PHATE plots colored by the gene expression of typical 

genes ramping up along a specific pseudotime. For corresponding UMAP embedding colored by 

gene expressions of the same genes, see Supplemental Fig. E4. For corresponding PHATE 

embedding colored by cell type and subjects, see Supplemental Fig. E5. (B) Heatmap of gene 

expression and regulon activity in monocytes undergoing activation, ordered by pseudotime 

distances along PHATE manifolds that transition from quiescent monocytes towards an activated 

monocyte archetype. (C) Heatmap of gene expression and regulon activity in monocytes 

undergoing maturation, ordered by pseudotime distances along PHATE manifolds that transition 

from quiescent monocytes towards a control-enriched mature monocyte-derived macrophage 

archetype. In both heatmaps: annotation bars represent the pseudotime distance, disease status, 

and subject for each cell; expression values are centered and scaled. (D) Violin plots of pathway 

activity scores, grouped by cell type, separated by disease state. Depicted pathway scores from 

left to right are: GO:0045087 - innate immune response, GO:0006958 - complement activation, 

classical pathway, GO:0019882 - antigen processing and presentation, GO:0006911 - 

phagocytosis, engulfment. * represents FDR-adjusted p-values < 0.05, calculated using the 

Wilcoxon signed-rank test. Mo: monocyte; MoMΦ: monocyte-derived macrophage; alvMΦ: 

alveolar macrophage; PMN: polymorphonuclear neutrophil.
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Fig. 3. 

Fig.3. An Immature Pro-inflammatory Archetype Prevails Among CF Airway PMN. (A) 

PHATEs of PMN, colored by: (i) pseudo time from immature to mature PMNs, (ii) examples of 

canonical marker features of immaturity (CXCR4) and maturity (FCGR3B, CXCR2) in 

peripheral PMN, (iii) disease state. The cells deviating upward are PMN expressing heat-shock 

response genes, for PHATE embedding colored by gene expression of HSPA1A, HSPH1, and 

DNAJB1, see Supplemental Fig. E6A). For corresponding PHATE embedding colored by 

disease state and subjects, see Supplemental Fig. E6B. (B) Heatmap of gene expression and 
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regulon activity in PMNs, ordered by pseudotime distances along PHATE manifolds that 

transition from CF-enriched regions of immature and activated PMN archetype towards control-

enriched mature PMN archetype. Annotation bars represent the pseudotime distance, disease 

status, and subject for each cell; expression values are centered and scaled. (C) Violin plots of 

differentially expressed genes comparing CF and control PMN populations (for p-values see 

Supplemental Data file E3), grouped by disease state, and sorted thematically.
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Materials and Methods

Subject Cohort

A total of nine subjects with a confirmed diagnosis of CF from the Yale Adult CF Program 

provided sputum samples for this study, five during exacerbation and five during periods of 

stability. These subjects were recruited during a) Scheduled routine visits (n=5) and b) 

Unscheduled “sick” visits, in which they reported new respiratory symptoms and were diagnosed 

with a CF exacerbation (n=4). A CF exacerbation was defined by the emergence of four of 

twelve signs or respiratory symptoms, prompting a change in therapy and initiation of 

antimicrobial treatment (modified from Fuchs' criteria (E1)). These criteria included: change in 

sputum; change in hemoptysis; increased cough; increased dyspnea; malaise, fatigue or lethargy; 

fever; anorexia or weight loss; sinus congestion; change in sinus discharge; change in chest 

physical exam; or FEV1 decrease >10% from a previous value (E1). Individuals without new 

symptoms and those that did not meet AE criteria were characterized as "CF Stable". Our 

recruitment period extended through 2019. We also recruited five healthy volunteers (Healthy 

Controls, HC) to undergo sputum induction according to previous protocols (E2). Since we did 

not identify significant differences in the gene expression profiles of stable and exacerbation 

subjects, all CF subjects were grouped as "CF" as compared to healthy control samples for 

analysis as a group. The study protocol was approved by the Yale University Institutional 

Review Board and informed consent was obtained from each subject.

Sputum Collection and Processing

CF subjects expectorated sputum spontaneously for our studies. Induced sputum samples were 

obtained from HC as previously described (E2, E3).  Briefly, subjects inhaled nebulized 3% 
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hypertonic saline for five minutes on three cycles. To reduce squamous cell contamination, 

subjects were asked to rinse their mouth with water and clear their throat. Expectorated sputum 

samples were collected into specimen cups and placed on ice. Sputum plug material from HC 

and CF subjects were selected and weighed prior to washing with 9x their volume of PBS. 

Samples were incubated in Dulbecco's Phosphate-Buffered Saline (PBS) with agitation for 15 

minutes and filtered through 40-micron strainers. Samples were centrifugated at 300 g for five 

minutes and supernatants were stored at -80C. The pellets were suspended in RPMI/10%FBS 

medium with 10% DMSO. Aliquots of 1 ml were saved into cryogenic vials and placed in 

Nalgene Cryo 1 C Freezing Container (Sigma, St. Louis, MO) overnight at -80C. Samples 

were stored in liquid nitrogen the next day. Frozen samples were thawed in a water bath at 37°C, 

resuspended with 20ml DMEM + 10% heat-inactivated FBS (Life Technologies, USA), then 

centrifuged at 300g, 5min, 4°C. Supernatant was discarded, cells were resuspended in 2ml 

DMEM + 10% FCS, passed through a 70µm cell strainer (Fisher Scientific, USA). Non-viable 

cells and debris were removed from the cell suspensions using a OptiPrep (Iodixanol) density 

gradient centrifugation according to the manufacturer’s protocol (OptiPrep Application Sheet 

C13 – Strategy 2). In brief, 1.86ml of the cell suspensions were mixed with 40% OptiPrep in 

DMEM + 10% FCS by repeated gentle inversion, overlaid with a density barrier (density: 

1.09g/ml, 780µl OptiPrep in 2.22ml DMEM + 10% FCS), then overlaid with 500µl DMEM + 

10% FCS. After centrifugation at 800g, 20min, 4°C, viable cells were collected from the top 

interface and diluted with 2ml DMEM + 10% FCS, centrifuged at 400g, 5min, 4°C, then 

resuspended in 1ml PBS + 0.04% BSA (New England Biolabs, USA) and passed through a final 

40µm cell strainer (Fisher Scientific, USA). For cell concentrations, cells were stained with 

Trypan blue and counted on a Countess Automated Cell Counter (Thermo Fisher, USA). 
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Single Cell Barcoding, Library Preparation, and Sequencing 

Single cells were barcoded using the 10x Chromium Single Cell platform, and cDNA libraries 

were prepared according to the manufacturer’s protocol (Single Cell 3’ Reagent Kits v3, 10x 

Genomics, USA). In brief, cell suspensions, reverse transcription master mix and partitioning oil 

were loaded on a single cell “B” chip, then run on the Chromium Controller. mRNA was reverse 

transcribed within the droplets at 53°C for 45min. cDNA was amplified for a 12 cycles total on a 

BioRad C1000 Touch thermocycler. cDNA was size-selected using SpriSelect beads (Beckman 

Coulter, USA) with a ratio of SpriSelect reagent volume to sample volume of 0.6. For qualitative 

control purposes, cDNA was analyzed on an Agilent Bioanalyzer High Sensitivity DNA chip. 

cDNA was fragmented using the proprietary fragmentation enzyme blend for 5min at 32°C, 

followed by end repair and A-tailing at 65°C for 30min. cDNA were double-sided size selected 

using SpriSelect beads. Sequencing adaptors were ligated to the cDNA at 20°C for 15min. 

cDNA was amplified using a sample-specific index oligo as primer, followed by another round 

of double-sided size selection using SpriSelect beads. For qualitative control purposes, final 

libraries were analyzed on an Agilent Bioanalyzer High Sensitivity DNA chip. cDNA libraries 

were sequenced on a HiSeq 4000 Illumina platform aiming for 150 million reads per library. Full 

de-identified sequencing data for all subjects is available in the gene expression omnibus (GEO) 

under accession number GSE145360. 

Data Processing and Computational Analyses 

Basecalls were converted to reads with the implementation mkfastq in the software Cell Ranger 

(v3.0.2). Read2 files were subject to two passes of contaminant trimming with cutadapt (v2.7): 

first for the template switch oligo sequence 
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(AAGCAGTGGTATCAACGCAGAGTACATGGG) anchored on the 5' end; secondly for 

poly(A) sequences on the 3' end. Following trimming, read pairs were removed if the read 2 was 

trimmed below 20bp. Subsequent read processing was conducted with the STAR (v2.7.3a) (E4) 

and its single cell sequencing implementation STARsolo. Reads were aligned to the human 

genome reference GRCh38 release 31 (GRCh38.p12) from GENECODE (E5). Collapsed unique 

molecular identifiers (UMIs) with reads that span both exonic and intronic sequences were 

retained as both separate and combined gene expression assays. Cell barcodes representative of 

quality cells were delineated from barcodes of apoptotic cells or background RNA based on the 

following three thresholds: at least 10% of transcripts arising from intron spanning, i.e. unspliced 

reads indicative of nascent mRNA; more than 750 transcripts profiled; less than 15% of their 

transcriptome was of mitochondrial origin. Technical summaries related to sequencing and data 

processing can be found in Supplemental Data file E4. 

Data Normalization and Cell Population Identification

UMIs from each cell barcode - irrespective of intron or exon coverage - were retained for all 

downstream analysis and analyzed using the R package Seurat (version 3.1.1) (E6). Raw UMI 

counts were normalized with a scale factor of 10,000 UMIs per cell and subsequently natural log 

transformed with a pseudocount of 1. More than double the cell barcodes were detected in two 

subjects compared to all other subjects, so cells were randomly downsampled to a maximum of 

2,250 cells per subject to avoid predominance of those two subjects. 3000 highly variable genes 

were identified using the method “vst”, then data was scaled and the total number of UMI and 

the percentage of UMI arising from mitochondrial genes were regressed out. The scaled values 

were then subject to principle component analysis (PCA) for linear dimension reduction.  A 

shared nearest neighbor network was created based on Euclidean distances between cells in 
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multidimensional PC space (the first 12 PC were used) and a fixed number of neighbors per cell, 

which was used to generate a 2-dimensional Uniform Manifold Approximation and Projection 

UMAP for visualization. For cell type identification, scaled data was clustered using the Leiden 

algorithm. In addition to general filtering based on quality control variables, a curated multiplet 

removal based on prior literature knowledge was performed: Cell barcodes were identified as 

mulitplets if their expression level was higher than 1 in the following marker genes (outside the 

appropriate cluster): MS4A1 (B cells), CD2 (T cells), VCAN (monocytes), FCGR3B (neutrophil 

granulocytes), KRT19 (epithelial), and FABP4 (alveolar macrophages). Cell barcodes flagged as 

multiplets were not included in downstream analyses.

Generation of Cell Type Markers and Differential Expression Between Disease Conditions

In order to evaluated cell-type markers we used Seurat’s FindAllMarkers (to calculate log fold 

changes, percentages of expression within and outside a group, and p-values of Wilcoxon-Rank 

Sum test comparing a group to all cells outside that specific group including adjustment for 

multiple testing) and additionally calculated binary classifier system based on diagnostic odd’s 

ratios as described in our earlier work (E7) (Supplemental Data file E2). For each cell type in the 

data, we identified the genes whose expression was log fold change >= 0.25 greater than the 

other cells in the data. We then calculated the diagnostics odds ratio (DOR) for each of these 

genes, where we binarize the expression values by treating any detection of a gene (normalized 

expression value > 0) as a positive value, and zero expression detection as negative. We included 

a pseudocount of 0.5 to avoid undefined values, as:

DOR = ((TruePositives + 0.5) / (FalsePositives + 0.5)) / ((FalseNegatives + 0.5) / (TrueNegatives 

+ 0.5)) 
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where True Positives represents the number of cells within the group detected expressing the 

gene (value > 0), FalsePositives represents the number of cells outside of the group detected 

expressing the gene, FalseNegatives represents the number of cells within the group with no 

detected expression, and TrueNegatives represents the number of cells outside of the group with 

no detected expression of the gene. For differential expression testing between disease 

conditions, Seurat’s implementation of a Wilcoxon-Rank Sum in FindMarkers was used, only 

testing genes whose expression was log fold change >= 0.25 greater between both disease 

conditions.

Scoring of regulon activity and pathways

A regulon is defined as a group of target genes regulated by a common transcription factor. To 

score the activity of each regulon in each cell, we utilized the package pySCENIC (E8) with 

default settings and the following database: cisTarget databases (hg38__refseq-

r80__500bp_up_and_100bp_down_tss.mc9nr.feather, hg38__refseq-

r80__10kb_up_and_down_tss.mc9nr.feather) and the transcription factor motif annotation 

database (motifs-v9-nr.hgnc-m0.001-o0.0.tbl) which were both downloaded from 

resources.aertslab.org/cistarget/, and the list of human transcription factors (hs_hgnc_tfs.txt) 

which was downloaded from github.com/aertslab/pySCENIC/tree/master/resources. 

In order to calculate pathway activity scores, Gene Ontology (GO; geneontology.org) pathways 

related to monocyte/macrophage functions were downloaded, then scored using Seurat’s 

AddModuleScore using default settings.
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Pseudotime Analysis of PMN and monocytes/macrophages

We observed already in UMAP space that many features in the data were represented by a 

continuum of increasing phenotypic deviation, e.g. increase of maturation markers in neutrophil 

granulocyte, maturation from monocytes to macrophages, and gradual increase of classical 

markers of inflammation in monocytes. Consequently, we sought to implement pseudotime 

analysis of these continua to assess features rather than relying on traditional group-wise 

comparisons. Cell barcodes were subsetted to either only neutrophil granulocytes or 

monocytes/macrophages. Due to major differences in number of cells profiled per subject, PMN 

were randomly downsampled to a maximum of 200 cell barcodes per subject, and in the Mo/MΦ 

subgroup to a maximum of 250 cell barcodes per subject. As for the full dataset, data of the 

subgroups was normalized, variable features were extracted (200 for PMN, 500 for Mo/MΦ), 

scaled, then subject to PC analysis. PHATE (Potential of Heat-diffusion for Affinity-based 

Trajectory Embedding) (E9) embedding was performed which is specifically suitable to continua 

(50 nearest neighbors, 5 PCs, t=50 in Mo/MΦ and t=100 in PMN). Cell barcodes were clustered 

using the cluster_phate function (k=8) for PMN and the Leiden clustering for Mo/MΦ. 

Trajectories were identified using Slingshot (E10) on the PHATE embeddings with default 

settings, and a central starting cluster for the Mo/MΦ. Pseudotime analysis was used to 

distinguish gene expression trajectories, and in turn, the most extreme phenotypes of these 

trajectories defined transcriptional archetypes in sputum (E11-E13). Pearson’s correlation 

coefficients and their p values, including Bonferroni adjustment for multiple testing, were 

calculated between the resulting pseudotime distances of these trajectories and gene expression 

and the regulon activity scores (Supplemental Data file E2). Gene expression and regulon 

activity scores correlating with pseudotime values were visualized by heatmaps.
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Validation of major cell types by Cytometry Time of Flight (CyTOF)

CyTOF-derived fcs files from the study by Yao et al. (E14) were processed using the bead-based 

Normalizer Release R2013a (E15). Normalized files were then processed in Cytobank 

(https://premium.cytobank.org/) using gates to select singlets, remove beads and identify live 

cells. Events identified using this workflow were exported and processed further using the R 

package cytofkit version 1.12.0 (E16). The Rphenograph function in cytofkit was implemented 

to cluster cells using cytofAsinh method, with the tsne dimensionality reduction method applied 

on 80000 events, using k=40. Files were merged using the fixed method and the HLA-DR, 

CD11b, CD8a, CD20, CD16, MIP-1β, TNF, CD45, CD4, IL-6, CD11c, CD14, Cytokeratin, 

CD80, CD15, CD163, IFNγ, EGFR, CD66b, IL-8, CD62L and CD56 markers were used in this 

model. Resulting clusters were manually curated and merged after review of surface marker 

profiles.

Correlation matrix of immune cell populations comparing sputum and lung cell populations

To identify classifier genes, differential gene expression of immune cell types of this study and 

analogue cell types from an independent scRNAseq, a dataset of 28 healthy distal lung samples 

(E7) was established using Seurat’s FindAllMarkers with an absolute log fold change threshold 

of 1 (the lung dataset was downsampled within the FindAllMarkers function using the settings: 

max.cells.per.ident=1000, seed=7). Classifier genes were filtered such that all genes had a 

Bonferroni adjusted p-value < 1E-5. For each cell type and each dataset, the top 50 marker 

genes, ordered by fold change, were selected. We took the intersection of the genes from both 

datasets as top classifiers (n=154). The average gene expression of these 154 genes were 

calculated for each cell type per dataset. Spearman correlation matrix was calculated using base 
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R’s function “cor”. The R package “corrplot” was used to visualize the Spearman correlation 

matrix. Unsupervised hierarchical complete clustering was performed to order the cell types in 

the heatmap.
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Fig. E1. 

Fig. E1. CFTR expression in CF and healthy control sputum cells. (A) UMAP colored by cells in 

which at least one CFTR mRNA molecule was profiled (red). (B) Percentages of cells in which 

at least one CFTR mRNA molecule was profiled, separated by cell type; second column (“all 

subjects”) represents the full dataset, which was divided in the third and fourth column by 

disease state.
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Fig. E2. 

Fig. E2. Validation of the shift in major immune cell types in sputum of CF compared to HC. 

(A) RPhenograph clustering of Sputum CyTOF in patients with cystic fibrosis (CF) and healthy 

controls (HC) demonstrates differences in the populations of immune cells. The sputum of 

patients with CF is characterized by high percentages of neutrophils, while sputum from HC is 
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characterized by high percentages of macrophages. (B) RPhenograph clustering of Sputum 

CyTOF according to Healthy Control (HC) and Cystic Fibrosis (CF) status. (C) Boxplots 

showing percentages of Mo/MΦ, PMN, and other to all cells profiled per subject, separated by 

disease state. Whiskers represent 1.5 x interquartile range (IQR). * p < 0.05 determined by a 

Wilcoxon rank sum test comparing cell percentages of CF patients and controls.
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Fig. E3. 

Fig. E3. Concordance of cell type annotations. Correlation matrix of immune cell populations of 

this study and analogous cell types from an independent scRNA sequencing dataset of distal lung 

samples, subsetting to the 28 healthy controls. Matrix fields are colored by Spearman’s rho, cell 

types are ordered by unsupervised hierarchical clustering. Annotation bars are highlighting the 

two different datasets (dark grey: this dataset, light grey: lung samples from healthy controls 

only from Adams, et al. (7)). 
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Fig. E4. 

Fig. E4. Expression of selected marker genes of Mo/MoMΦ trajectories on UMAPs. (A) UMAP, 

zoomed in on Mo and MoMΦ, colored by expression of inflammatory genes IL1B, NLRP3, 

PTGS2. (B) UMAP, zoomed in on Mo and MoMΦ, colored by expression of mature macrophage 

genes MSR1, APOC1, CD9. (C) UMAP, zoomed in on Mo and MoMΦ, colored by expression 

of heat shock genes HSPA1A, HSPH1, DNAJB1. (D) UMAP, zoomed in on Mo and MoMΦ, 
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colored by (i) cell type, (ii) disease state, (iii) subjects. CF: Cystic Fibrosis, HC: Healthy Control, 

Mo: Monocyte; MoMΦ: monocyte-derived macrophage.
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Fig. E5. 

Fig. E5. Additional annotations of Mo/MoMΦ on PHATE embedding. (A) UMAP of Mo and 

MoMΦ colored by (i) Cell type, (ii) Disease state, (iii) Subjects. 

CF: Cystic Fibrosis, HC: Healthy Control, Mo: Monocyte; MoMΦ: monocyte-derived 

macrophage
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Fig. E6. 

Fig. E6. Additional annotations of PMN on PHATE embedding. (A) PHATE of PMN colored by 

expression of heat shock genes HSPA1A, HSPH1 and DNAJB1. (B) PHATE of PMN colored by 

disease state (HC: Healthy Control, CF: Cystic Fibrosis) and subjects.
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Fig. E7. 

Fig. E7. Violin plots of (A) MARCO and (B) MRC1, grouped by cell type.
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Fig. E8. 

Fig. E8. Violin plots of major histocompatibility complex class 2 genes in B cells, grouped by 

disease state. For all: p>0.05, i.e. not significantly different.
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Fig. E9. 

Fig. E9. Viable cell yield using our sputum processing protocol is comparable to previously 

established approaches for sputum processing (proof-of-principle). Aliquots from the same 

sample were processed using (A) our PBS-only protocol or (B) treated sequentially with DNAse 

(0.56kU/ml, D4527-500KU, Sigma) with gentle agitation for 10 min at room temperature 

followed by DTT (final concentration 1.5-2uM) with gentle agitation for 10 min at room 

temperature. Airway cells were incubated with iridium intercalator (125 nM, Fluidigm) to label 

DNA and analyzed by mass cytometry as previously reported (E14). Representative gating 

strategy for live cells determined following exclusion of DNAlo cellular debris reflecting 

enrichment for CD45+ (Fluidigm, clone # HI30) CD15+ (Fluidigm, clone # W6D3) PMN 

lineages (CD11b, Clone# M1/7, Longwood and CD66b, self-labeled, Clone# 913542, R&D).
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Supplemental Data file E1. Results of Wilcoxon rank-sum test and log transformed diagnostics 

odds ratio of genes for cell types, subsetting to genes with log transformed fold change > 0.25 for 

each cell population compared to all other cell populations. 

Supplemental Data file E2. Results of Pearson correlation between gene expression and 

pseudotime distance values within each trajectory.

Supplemental Data file E3. Results of Wilcoxon rank-sum test on gene expression within each 

cell type comparing CF to HC. 

Supplemental Data file E4. Technical summary of all sequenced and processed libraries of this 

dataset. TSO: template switch oligo.
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Toward Early Detection of Idiopathic Pulmonary Fibrosis

Since their emergence as a frequent and potentially clinically
meaningful finding in computed tomography (CT) screenings
of smokers a decade ago (1), interstitial lung abnormalities (ILAs)
have drawn significant interest and controversy. A specific set
of radiologic abnormalities on chest CT scans, ILAs are
relatively common and can be found in up to 10% of lung cancer
screenings and older smokers (2). ILAs have traditionally been taken
lightly by physicians and affected individuals alike, as symptoms in
subjects with ILA are often lacking or very mild, and the prognostic
significance of ILA was unknown. This has changed in recent years
with the increased recognition that individuals with ILAs are at
higher risk of death and exhibit higher rates of lung restriction (3–5)
and that on tissue histology they often exhibit fibrosis (6). The
possibility that individuals with ILAs may represent a population at
risk for subsequent development of idiopathic pulmonary fibrosis
(IPF) or other interstitial lung disease (ILD) is of particular
importance, because of the potential for more effective interventions
when the disease is diagnosed early. The connection between ILAs
and pulmonary fibrosis has been supported by radiologic
progression of ILAs, the presence of ILAs in asymptomatic family
members of individuals with familial pulmonary fibrosis, and the
significant association of ILAs with rs35705920 in the promotor
region of MUC5B (Mucin 5B, oligomeric mucus/gel-forming) (4),
the same gene variant that accounts for approximately 30% of cases
of IPF (7). However, so far, the genetic overlap between patients with
ILAs and IPF has not been studied in detail.

In this issue of the Journal, Hobbs and colleagues (pp. 1402–
1413) performed a meta-analysis using available genome-wide data of
1,699 subjects with ILA and 10,274 control subjects from six cohorts
and compared the results with genetic associations in patients with
IPF (8). Because subpleural ILAs are believed to be more clinically
relevant, they performed the analysis of ILAs in general and
subpleural ILAs separately. In the ILA analysis, they identified three
genome-wide significant associations that included the known
MUC5B promoter polymorphism rs35705950 and two novel loci:
rs6886640 at 5q12 near IPO11 (importin 11) and rs73199442 at 3q13
near the long noncoding RNA FCF1P3 (FCF1 pseudogene 3). In the
subpleural ILA analysis—in addition to MUC5B—they identified a

genetic association at the 6q15 locus with rs7744971 near HTR1E
(5-hydroxytryptamine receptor 1E). None of the novel ILA loci
replicated in IPF genome-wide association studies. Of the 12 reported
genome-wide association study loci for IPF, only the MUC5B variant
reached genome-wide significance, whereas the genetic variants near
DPP9 (dipeptidyl peptidase 9), DSP (desmoplakin), FAM13A (family
with sequence similarity 13 member A), and IVD (isovaleryl-CoA
dehydrogenase) were nominally associated with ILA.

The findings of this study have several major implications. The
most important is that although individuals with ILAs represent a
population at risk for IPF, they are not synonymous with the IPF
population. Only a subset of individuals with ILA exhibit a genetic risk
profile that is similar to individuals with IPF, whereas others exhibit
genetic associations that do not occur in IPF: the reported odds ratio is
1.97 for rs35705950 for all ILAs, and 2.22 when subsetting to
subpleural ILAs, but 4.84 for IPF. None of the other IPF risk loci were
significant on a genome-wide level, and all of them had a lower odds
ratio in ILA. This could suggest an ILA subpopulation that is at risk of
developing IPF but is being diluted by a larger fraction of subjects with
ILAwho do not share the same genetic risk. The finding of three novel
ILA genetic associations not observed in IPF also indicates a
potentially distinct entity, possibly a predisposition to other non-IPF
ILDs or even the presence of gene variants that reduce the probability
of progression of ILAs to fibrosis andmay be protective. Regardless of
their potential functional relevance, the finding of variants associated
with ILA but not IPF, if replicated, could be useful developing a
polygenic genetic risk profile. This is important because, currently,
chest CT screenings to detect early IPF are not clinically feasible or
justified. The results of this study should encourage investigators to
design further studies assessing whether genetic risk profiling,
potentially combined with other noninvasive biomarkers, could be
used to prioritize individuals for CT screening.

Although exciting and intriguing, this study has some limitations
that should be highlighted. Of course, the most obvious limitation of
the discovered novel ILA associations is the lack of an independent
replication cohort, but the limitations regarding the negative results
should not go unnoticed. Indeed, onlyMUC5B reached genome-wide
significance in this study, but the main study population consisted of
data obtained from several cohorts that were not designed to capture
early ILD. These populations differed in the definitions of ILA, the
depth of phenotyping, and the original aims of the studies. Thus, it is
highly possible that although the strongest association (MUC5B) was
able to emerge, other valid associations simply were drowned by the
sea of differences and may emerge again if comparably sized future
studies are designed to detect ILAs using standard definitions,
adjudicated radiological reading, and patient phenotyping.

In summary, the study by Hobbs and colleagues (8) represents a
major step toward better understanding ILAs as tools for defining
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populations that should be targeted for early detection of IPF. This is
a critically important mission. Although there has been considerable
progress in the development of novel therapeutic options for IPF, it
is highly unlikely that any of the drugs currently in the pipeline will
be able to reverse the extensive lung remodeling that is often
observed when patients initially present. On the other hand, it is
possible that therapeutic targeting of minimal fibrotic lesions—
before extensive remodeling and bronchiolization have occurred—
will allow complete eradication of the disease. Thus, to truly
eradicate IPF, we need a paradigm shift from focusing on developing
cohorts of patients already diagnosed with IPF toward cohorts of
individuals highly likely to develop the disease. We could use
these cohorts to develop and test algorithms for early detection.
Then we could implement a multistep strategy to eradicate IPF:
identification of a population with high risk for ILA and performing
chest CT screenings when appropriate; in subjects with ILA,
identification of patients who will develop IPF; and last, systematic
study of interventions aimed at preventing progression to IPF. In an
editorial in 2012 (9) discussing an early report on ILAs (10), Dr.
David Lederer compared our traditional symptom-linked diagnosis
of IPF to diagnosing coronary artery disease only after the patient
presented with a myocardial infarction and called for new ways for
risk prediction and early detection of IPF. Seven years later, the
article by Hobbs and colleagues (8) suggests that we can move
forward—that we can diagnose IPF while the horse is still in the
barn. n
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The Respiratory Mucosa: Front and Center in Respiratory Syncytial
Virus Disease

Infantile bronchiolitis is a major scourge of early childhood, and
winter outbreaks fill the pediatric wards with wearisome regularity.
Most cases are caused by respiratory syncytial virus (RSV), which
was first isolated in 1956. Despite a vast amount of research in both
human and animal models, a deep understanding of the inefficiency
of protective immunity and, indeed, of the pathogenesis of RSV
disease has been frustratingly slow to come by.

Most infants will be infected by RSV before their second
birthday, with the risk of severe disease peaking at just 2 months of
age. Despite the relative antigenic stability of the virus,
reinfections with RSV occur throughout life. Studying disease in
infants with primary disease presents considerable technical and
logistical challenges; therefore, animal models (especially cotton
rats, mice, and cows) have been widely used to enhance our
understanding of primary infection and vaccine-enhanced
disease. These models have been central in our efforts to
understand the host immune response to RSV and the role of
these responses in causing inflammatory bronchiolitis, but they do
not recapitulate human disease in every detail.

Although animal models have advanced our understanding of
the pathogenesis of bronchiolitis, a role for the type 2 immune
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