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INTRODUCTION
Pulmonary Fibrosis (PF) describes a chronic lung disease in which lung tissue becomes scarred over time
in response to microinjuries leading to progressive shortness of breath and ultimately to death within 3-5
years. This condition can be idiopathic, as in idiopathic pulmonary fibrosis (IPF), or secondary to genetic or
autoimmune disorders, or to exposure to environmental toxins, chemical warfare, or radiation. IPF is the
most common idiopathic form of pulmonary fibrosis that affects approximately 120,000 patients in the US
with a steady increase in both incidence and mortality.
Histologically, IPF is characterized by marked fibrosis with or without honeycombing in a predominantly
subpleural and paraseptal location with central areas relatively spared. The fibrosis is distributed
heterogeneously, with normal lung adjacent to established fibrosis. At the boundary between these regions,
there are fibroblast foci, defined by accumulation of immature hyaluronic acid rich matrix underneath
epithelial cells undergoing injury and cell death. In response to the cell death, there is an attempt at
replacement with type Il cell hypertrophy and hyperplasia. Temporal heterogeneity — the presence of acute
or active disease (fibroblastic foci with or without epithelization) along with progressive disease (mature
fibrotic scar) and non-diseased lung, as well as spatial heterogeneity — the presence of fibrotic lung
adjacent to histologically normal lung are a molecular disease mechanism specific to IPF.
The application of high throughput transcript profiling approaches to pulmonary fibrosis discovered that the
IPF lung exhibits dramatically different patterns of gene expression with over 2000 significant differentially
expressed genes. However, conventional bulk RNA sequencing methods lack the ability to unravel the
unique histopathologic features of IPF — temporal heterogeneity, alveolar cell hyperplasia, abundance of
myofibroblast foci and aberrant remodeling — on a cellular level, and cell-type specific molecular networks
that regulate disease progression are poorly understood. Recent technological advances led to the
development of single cell and single nuclei sequencing. The overall objective of this proposal is to create a
unique dataset of single nuclei transcriptomes of well-characterized, differentially affected regions within
the IPF lung, so we can unravel the microenvironment in IPF by systems biology approaches. Based on
these observations and technological innovations, we hypothesized that investigating the single nuclei
transcriptomes of well-characterized, differentially affected regions within the IPF lung would allow us to
investigate cell-type-specific regulatory networks associated with disease progression and to discover

novel, more specific, drugable targets. We aim to identify aberrant cell compositions and aberrant gene
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expression profiles in cellular subpopulations in differentially affected regions within the IPF lung.
Furthermore, we plan to establish cell-type-specific regulatory networks in the microenvironment of IPF and
cell-type-specific pathways of disease progression. Last, we aim to discover cell-type-specific biomarkers
of disease progression as well as targets for novel therapeutics.

The successful completion of the specific aims of this application will substantially impact our
understanding of pulmonary fibrosis and its disease progression, and to discover cell type-specific

candidates for novel therapeutics for patients suffering from PF.

2. KEYWORDS
Idiopathic pulmonary fibrosis; single nuclei RNA sequencing; regulatory networks; disease progression;

lung; biomarker; gene expression; spatial resolution.

3. ACCOMPLISHMENTS

What were the major goals of the project?

Goal 1: To identify aberrant cell compositions and aberrant gene expression profiles in cellular
subpopulations in differentially affected regions within the IPF lung,

Goal 2: To establish cell-type-specific regulatory networks in the microenvironment of IPF and cell-type-
specific pathways of disease progression.

Goal 3: To discover cell-type-specific biomarkers of disease progression as well as targets for novel

therapeutics.

What was accomplished under these goals?

Major activities:

a) Single nuclei RNA sequencing experiments to compare isolation and clean-up of nuclei by either
Fluorescence activated cell sorting (FACS) sorting or enrichment of high-quality nuclei using a
OptiPrep-based density cushion centrifugation

b) Single cell RNA sequencing of all remaining samples after enrichment of high-quality nuclei using a

OptiPrep-based density cushion centrifugation — in progress
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c) Development of an automated computational pipeline for data preprocessing including identification
of valid barcodes and removal of background contamination, and an analytical protocol. This
computational pipeline was field-tested on an independently generated dataset of sputum cells from

patients with cystic fibrosis and controls.

Specific objectives:

a) ldentification of the optimal nuclei isolation and purification method
b) Generating the single nuclei RNA sequencing dataset based on the optimal method of a) — in
progress

c) Development of an automated computational pipeline for data preprocessing

Significant results or key outcomes:

First, we performed a comparison of

AVERAGE Sorting (n=8) Density Cushion (n=4)
Raw Reads [*106 ] 73.025 83.675
nuclei isolated and cleaned by either @) gaagswith valid Barcodes [%] 97.34% 98.63%
Sequencing Saturation [%] 73.78% 27.48%
Fluorescence activated cell sorting (FACS) Q30 Bases inCBandUMI [%] 98.16% 95.95%
Q30 Bases in RNA read [%)] 67.55% 68.43%
sorting (n=8) or b) enrichment of high- TsoTrimmed [%) 6.83% 26.78%
PolyA Trimmed [%] 11.98% 5.88%
quality nuclei using an OptiPrep-based Pass Trimming [%] 98.50% 99.33%
Reads Pass Filter [¥1046 ] 71.9 231
density cushion centrifugation (n=4) in two Mapped Unique [%] 86.91% 81.49%
Mapped Multi [%] 4.00% 7.43%
independent single nuclei RNA seq Reacstooshort [%] 8.46% 10.43%
Splice Junctions [*106 ] 3.375 4,75
MNon-Canonical Splices Junctions [ 4,10% 2.92%

experiments. In both cases, nuclei were

Table 1: Data processing summary of the two single nuclei RNA seq

. . . . runs. Fluorescence activated cell sorting (FACS) sorting (“Sorting”, n=8)
isolated using a hypotonlc sucrose solution and enrichment of high-quality nuclei using a OptiPrep-based density
cushion centrifugation (“Density cushion”, n=4)

with  an additional mechanical tissue

disruption using the gentleMACS Dissociator. Regarding FACS sorting, isolated nuclei were stained
with DAPI, then sorted at our FACS core facility. The OptiPrep-based density cushion centrifugation
was performed such that the isolated nuclei were resuspended in media containing 25% OptiPrep, then
overlaid over cushions of 35% and 30% OptiPrep-containing solutions. These layered solutions were
centrifuged at 4696g for 20min at 4°C and the nuclei collected at the 35%-30%-interphase. With both
methods, nuclei with little contaminant debris were obtained. Both were nuclei preparations were then

subjected to single nuclei RNA barcoding, library preparation and sequencing using our standard
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protocol. The data processing QC measurements in general are were similar and are summarized in
Table 1. However, two crucial differences were observed: The median number of UMI of the nuclei
purified with the density cushion centrifugation (median 1,328 UMI) was roughly 500 UMI higher
compared to the FACS sorted nuclei. Furthermore, the sequencing saturation with a dramatically lower
in the density cushion samples (27.48% vs. 73.78%), which means that if we increase the reads per
sample the advantage of the density cushion samples with regards to the median number of UMI will
further increase. Taken together, the amount of information per nuclear transcriptome is radically higher
in the samples isolated by the density cushion and could be further improved by a higher sequencing
depths. This clearly favors density-cushion- based nuclei isolation method, which we will use now on

the whole cohort.

Second, were processed the data from our

single nuclei RNA seq experiment with nuclei isolated

Mast

using the density cushion method using our newly

developed pipeline (see next paragraph). We could 5 Celizoycle
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Figure 1: Preliminary embedding of 35,784 single nuclei

i i transcriptomes of the density cushion experiment.
data was QOOd enoth’ even with this low Preliminary Uniform manifold approximation and projection

(UMAP) embedding of 35,784 of the density cushion trial run

; ; ; ; ; without removal of multiplets. Each dot is a single nucleus
sequencing saturation, that we could identify all major  iz1ccrintome, colored by cell type identity

cell populations of the human lung (see figure 1). In the single IPF sample from a severely affected
lung, we clearly observed a loss of AT1 and AT2 cells, and a shift towards bronchial epithelial cells and
fibroblasts, suggesting that our goal of analyzing differences in areas of mild and severe fibrosis is

feasible.

In the meantime, we developed a computational pipeline for processing of raw sequencing data
and analysis protocol, which was field-tested on a dataset of cystic fibrosis samples (see publication
“Single Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis” under “6. Products”).

As we automated all major steps of this computational pipeline, we will be able to perform this step on
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the final dataset of IPF and control single nuclei RNA seq data within less than two weeks. Our
computational pipeline consists of the following
steps: Basecalls are converted to reads with the
implementation mkfastq in the software “Cell
Ranger”. Read? files are subject to two passes

Fraction.Mito

of contaminant trimming with cutadapt: first for

04

L E
02
01
0o

the template switch oligo sequence anchored on

Fraction Intronic

the 5' end; secondly for poly(A) sequences on
the 3' end. Following trimming, read pairs are

removed if the read 2 was trimmed below 20bp.

Subsequent read processing is conducted with

300
nUMILfull

« ” i i Figure 2: Quality characteristics of barcodes. Plotted are the
the software STAR and its Smgle cell number of Unique Molecule Identifiers (UMI) on the x-axis versus the

fraction of intronic, i.e. unspliced, mRNA per barcode on the y-axis.

. . . « » Valid barcodes can be found in the top right quadrant and were
sequencing implementation “STARsolo”. Reads igentified using nUMI >700 and faction.infronic >50% as filters.

Barcodes are colored by the fraction of UMIs originating from the

. mitochondrial genome. Valid barcodes have very low fraction of
are aligned to the human genome reference mitochondrial reads (data not shown) and are filtered with a maximum

of 5% mitochondrial reads.
GRCh38. Collapsed unique molecular identifiers (UMIs) with reads that span both exonic and intronic
sequences are retained as both separate and combined gene expression assays. Cell barcodes
representative of quality cells are delineated from barcodes of apoptotic cells or background RNA
based on the following three thresholds: fraction of intron spanning UMI, i.e. unspliced reads indicative
of nascent mRNA,; total number of UMI; fraction of UMI of mitochondrial origin. It is important to mention
that the identification of valid barcodes deviates from CellRanger’s standard workflow, but utilizing this
threshold-based methods enables to adapt to the lower total UMI counts of nuclei, as alternatively, the
majority of valid nuclei barcodes might get discarded. Raw UMI counts are normalized with a scale
factor of 10,000 UMIs per cell and subsequently natural log transformed with a pseudocount of 1.
Highly variable genes are identified using the method “vst” of the R package Seurat, then data is scaled
and the total number of UMI and the percentage of UMI arising from mitochondrial genes are regressed
out. The scaled are were then subject to principle component analysis (PCA) for linear dimension
reduction. A shared nearest neighbor network is created based on Euclidean distances between cells

in multidimensional PC space and a fixed number of neighbors per cell, which is used to generate a 2-

dimensional Uniform Manifold Approximation and Projection (UMAP) for visualization. For cell type
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identification, scaled data is clustered using the Leiden algorithm. In addition to general filtering based
on quality control variables, a curated multiplet removal based on prior literature knowledge is
performed. In order to evaluated cell-type markers we use Seurat’s FindAlIMarkers to calculate log fold
changes, percentages of expression within and outside a group, and p-values of Wilcoxon-Rank Sum
test comparing a group to all cells outside that specific group including adjustment for multiple testing

and to compare differential gene expression in specific cell types.

Other achievements:

Supported by this grant, we published an editorial “Towards Early Detection of IPF” (see “6.
Products”) in which we discuss steps necessary for an early identification of patients with IPF or of
subjects with increased risk for developing IPF in the context of interstitial lung abnormalities. An early
diagnosis will enable treatment of minimal fibrotic lesions, before extensive remodeling and
bronchiolization have occurred, which is a critically important mission. We argue for a paradigm shift
from focusing on developing cohorts of patients already diagnosed with IPF toward cohorts of

individuals highly likely to develop the disease.

What opportunities for training and professional development has the project provided?

The PI, Jonas Schupp, mentored by Naftali Kaminski, has been trained in developing automated
computational pipelines as well as expanded his expertise in experimental methods with regards to
sample processing for single nuclei RNA sequencing. In addition, his scientific writing skills have been
developed, as highlighted by the editorial "Towards Early Detection of IPF". The "Professional
development" activities of Jonas Schupp included the participation in the annual conference of the

American Thoracic Society.

How were the results disseminated to communities of interest?

Nothing to report.

What do you plan to do during the next reporting period to accomplish the goals?
Having established the best method to isolate and purify nuclei and confirmed the usefulness of the
generated data for cell type identification and already observed basic differences in severely affected

IPF samples, we will now finalize generating the single nuclei RNA seq dataset samples from
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differentially affected regions within 10 IPF lungs (3 tissue cores per lung) and 10 controls lungs. As
outlined in the paragraph “5. CHANGES/PROBLEMS”, our automated computational pipeline will allow
preprocessing of the data within less than 2 weeks, once the whole raw data is ready. We will then
continue as outlined in the SOW and identify aberrant gene expression profiles in cellular
subpopulations, establish cell-type-specific regulatory networks in the microenvironment of IPF and
cell-type-specific pathways of disease progression and discover cell-type-specific biomarkers of

disease progression as well as targets for novel therapeutics.

IMPACT

What was the impact on the development of the principal discipline(s) of the project?

Nothing to report.

What was the impact on other disciplines? Nothing to report.

What was the impact on technology transfer? Nothing to report.

What was the impact on society beyond science and technology? Nothing to report.

5. CHANGES/PROBLEMS

Changes in approach and reasons for change:

Nothing to report.

Actual or anticipated problems or delays and actions or plans to resolve them:

Two major problems/issues caused a delay of milestones of this project. First, the secondary ethics
review by the DoD approved the use of the tissue samples on 12/26/2019. Following the DoD’s
regulations, we therefore were not allowed to perform any research on those samples before that date.
Second, due to the outbreak of the Covid-19 pandemic, Yale shut down all non-Covid-19-related
research at the beginning of March 2020, which included all core facilities and our lab. Any bench work
for this project including single nuclei RNA sequencing was therefore not allowed. Furthermore, also
the sequencing core facility was shut down for non-Covid19 related projects. Our lab was only partially
reopened on June 12, 2020. Both issues, the longer than expected secondary ethics review by the DoD

and the shutdown of all labs at Yale, caused a major delay of goals and milestones, in particular, we
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could only generate a small part of the single nuclei RNAseq dataset which is the foundation of all
downstream goals. As our lab has partially reopened now, we are working full steam to finalize the
dataset. To speed up the completion of the downstream goals, significant parts of the computational
pipeline have been automated (see “significant results” under “achievements”) such that we will be able
to perform task 2 of Goal 1 and Goal 2 in a fraction of the time stated in the original SOW (presumably
in less than 2 weeks). Goal 3 is highly dependent on the complete dataset and the results of Goal 2 and

will be carried out as originally outlined.

Changes that had a significant impact on expenditures:

Nothing to report.

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or

select agents:

Significant changes in use or care of human subjects

Nothing to report.

Significant changes in use or care of vertebrate animals.

Not applicable. No research on vertebrate animals.

Significant changes in use of biohazards and/or select agents

Nothing to report.

6. PRODUCTS

Publications, conference papers, and presentations

Journal publications:

Schupp JC, Khanal S, Gomez JL, Sauler M, Adams TS, Chupp GL, Yan X, Poli S, Montgomery

RR, Rosas IO, Dela Cruz CS, Bruscia EM, Egan ME, Kaminski N, Britto CJ. Single Cell
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Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis. Am J Respir Crit Care

Med. 2020 Jun 30. DOI: 10.1164/rccm.202004-09910C.

Status of publication: published

Acknowledgement of federal support: yes

Schupp JC, Kaminski N. Towards Early Detection of IPF. Am J Respir Crit Care Med. 2019

Aug 14. DOI: 10.1164/rccm.201908-1530ED

Status of publication: published

Acknowledgement of federal support: yes

Books or other non-periodical, one-time publications: Nothing to report

Other publications, conference papers, and presentations:

Schupp JC, Adams T, Ahangari F, Poli De Frias S, Deluliis G, Yan Y, Rosas 10, Homer R,
Kaminski N. Single Cell Transcriptomics Reveals Novel COL15A1+ Endothelial Population in
Pulmonary Fibrosis and Lung Cancer. Conference abstract. Annual conference of the American

Thoracic Society 2020.

Status of publication: published
Acknowledgement of federal support: during submission: yes; funding is however not visible on the

congress homepage

Website(s) or other Internet site(s): Nothing to report
Technologies or techniques: Nothing to report
Inventions, patent applications, and/or licenses: Nothing to report

Other Products: Nothing to report

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

What individuals have worked on the project?

Name: Jonas Christian Schupp

Project Role: PI



https://doi.org/10.1164/rccm.202004-0991oc
https://doi.org/10.1164/rccm.201908-1530ED

Researcher
Identifier (e.g.
ORCID ID):

ORCID iD: 0000-0002-7714-8076

Nearest person
month worked:

4

Contribution to
Project:

Jonas Schupp developed the data processing pipeline and established
analytical algorithms to be used on the final dataset. He performed two
preliminary single nuclei RNA experiments and analyzed them and is
generating the final dataset at the moment.

Name:

Naftali Kaminski

Project Role:

Mentor

Researcher
Identifier (e.g.
ORCID ID):

ORCID iD: 0000-0001-5917-4601

Nearest person
month worked:

<1

Contribution to

Project:

Supervision of this project and mentoring of Jonas Schupp.
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Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since

the last reporting period?

Nothing to report.

What other organizations were involved as partners?

Nothing to report.

SPECIAL REPORTING REQUIREMENTS

Nothing to report.

. APPENDICES

The appendix includes the two publications (details see above in “6. Products”) supported by this grant:

a) “Single Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis”

b) “Towards Early Detection of IPF”
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single cell barcoding library construction. Data was processed, curated and visualized by JCS
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under the supervision of XY, CJB, and NK, and analyzed by JCS, EMB, MS, CSD, and CJB.
CyTOF data were reanalyzed by JLG, RRM, and EMB. JCS, TSA, PS, IOR, and NK created and
provided scRNAseq data of control distal lungs, TSA calculated the correlation matrix. YZ and
RRM performed the sample processing comparison experiments. The manuscript was drafted by

JCS and CJB, and was reviewed and edited by all other authors.
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Some of the results of these studies have been previously reported in the form of a preprint

(medRxiv, 10 March 2020 https://10.1101/2020.03.06.20032292v1).

This article has an online data supplement, which is accessible from this issue's table of content

online at www.atsjournals.org.
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At a Glance
Scientific Knowledge:

Functionally different subsets of neutrophils and mononuclear phagocytes with defective
bacterial killing, impaired phagocytic function, and enhanced cytokine production have been
described in CF. However, the broad spectrum of transcriptional alterations underlying immune

dysfunction in individual CF airway cells has not been characterized.
Add to the Field:

This is the first single-cell RNA sequencing characterization of airway immune cells from CF
and healthy control subjects. We observed a shift in the airway immune cell repertoire of CF
subjects from alveolar macrophages to a predominance of recruited monocytes and neutrophils.
We identified a novel population of recruited lung mononuclear phagocytes in CF, with three
distinct transcriptional archetypes: activated monocytes, monocyte-derived macrophages, and
heat-shock activated monocytes, and characterized neutrophil subpopulations, highlighting a
dominant immature proinflammatory archetype. Our findings offer an opportunity to understand

subject-specific immune dysfunction and its potential contribution to CF pathogenesis.

AJRCCM Articlesin Press. Published June 30, 2020 as 10.1164/rccm.202004-09910C
Copyright © 2020 by the American Thoracic Society



Abstract:

Rationale: Cystic fibrosis (CF) is a life-shortening multisystem hereditary disease caused by
abnormal chloride transport. CF lung disease is driven by innate immune dysfunction and
exaggerated inflammatory responses that contribute to tissue injury. In order to define the
transcriptional profile of this airway immune dysfunction, we performed the first single-cell

transcriptome characterization of CF sputum.

Objectives: To define the transcriptional profile of sputum cells and its implication in the

pathogenesis of immune function and the development of CF lung disease.

Methods: We performed single-cell RNA sequencing of sputum cells of nine subjects with CF
and five healthy controls. We applied novel computational approaches to define expression-

based cell function and maturity profiles, here called transcriptional archetypes.

Measurements and Main Results: The airway immune cell repertoire shifted from alveolar

macrophages in healthy controls to a predominance of recruited monocytes and neutrophils in
CF. Recruited lung mononuclear phagocytes were abundant in CF, separated into three
archetypes: activated monocytes, monocyte-derived macrophages, and heat-shock activated
monocytes. Neutrophils were most prevalent in CF, with a dominant immature pro-inflammatory
archetype. While CF monocytes exhibited pro-inflammatory features, both monocytes and

neutrophils showed transcriptional evidence of abnormal phagocytic and cell-survival programs.

Conclusions: Our findings offer an opportunity to understand subject-specific immune
dysfunction and its contribution to divergent clinical courses in CF. As we progress towards

personalized applications of therapeutic and genomic developments, we hope this inflammation

AJRCCM Articlesin Press. Published June 30, 2020 as 10.1164/rccm.202004-09910C
Copyright © 2020 by the American Thoracic Society
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profiling approach will enable further discoveries that change the natural history of CF lung

disease.

Total word count - abstract: 242 words

MeSH key words: Neutrophils, RNA-Seq, Gene Expression Profiling, Macrophages, Monocytes,

Cystic Fibrosis
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Introduction

Cystic Fibrosis (CF) is a life-shortening, multiorgan hereditary disease affecting over
33,000 individuals in the United States (1, 2). Clinical manifestations of CF are caused by
mutations in the CFTR gene that cause abnormal chloride and bicarbonate transport on epithelial
surfaces (3, 4). The disruption of epithelial and innate immune functions is a key contributor to
CF lung disease, the primary cause of morbidity and mortality in CF (5, 6). Non-CFTR disease-
modifying genes also contribute to immune dysfunction, clinical phenotype, and disease

progression in CF(7, 8).

Airway inflammation is crucial in the development of CF lung disease, where recruited
cells cause tissue damage (9-11). Inflammatory cell populations are heterogeneous, with
increasingly recognized CF-specific polymorphonuclear neutrophil (PMN) and macrophage
(M®) subclasses (10). CF Immune cells from blood and lung biopsies have been profiled using
bulk RNA sequencing to characterize transcriptional profiles associated with disease progression
and clinical outcomes(12-15). Flow-cytometry studies, including our group's mass cytometry
characterization of CF immune cells, also shed light on functional defects of CF immune cell
subsets and distinct patterns of immune activation across subpopulations (10, 16-18). These
studies have been constrained by the limited number of protein or genetic markers available per
assay to define population clusters and assess immune responses. A study providing
individualized cellular data on sputum cell types with the granularity afforded by single-cell

RNA sequencing (scRNAseq) has not been reported in CF or any other lung disease.

Airway PMN in CF have been characterized in the past (19-24). However, progress in
high-throughput single-cell immune profiling has been slow relative to other immune cells like

peripheral blood mononuclear cells (PBMC). This may be in part due to the overall limited
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viability and increased fragility of airway PMN ex vivo. CF PMNs generally have a
proinflammatory profile, yet some studies reveal functionally different subsets, including
populations with abnormal immune function and defective bacterial killing (10). Airway M® and
other mononuclear phagocytes are also present in CF airway secretions (25-27). Specifically, CF
airway monocytes have impaired phagocytic function and enhanced cytokine production (28,

29), playing an important role in driving exaggerated airway inflammation in CF (9, 25).

Single-cell transcriptome profiling is a powerful tool to study innate immune defects and
define cell subpopulations that contribute to pathogenesis (30). The use of immune cells from
sputum instead of circulating cells or cells differentiated in vitro allows us to investigate gene
expression profiles that reflect airway transmigration, response to the airway microenvironment,

and cell-cell and cell-pathogen interactions key to CF pathogenesis.

Previously identified CF inflammatory cell subpopulations from other studies suggested
to us that these cells exist as a continuum of immune maturation and function, rather than
isolated, clearly defined, subpopulations. To define this spectrum, we applied scRNAseq
followed by pseudotime analysis, and novel approaches to visualize high-dimensional data. In
the continuum of sputum inflammatory cells, those with most extreme gene expression features
defined functional and maturity trajectories, here called transcriptional archetypes (31). These
archetypes constitute a dynamic, more inclusive way to understand transcriptional differences
within immune cells. Our approach also allowed us to investigate the relationship between
transcription factors and genes involved in immune activation and cell maturation, not previously

possible due to an inability to sequence the full cellular transcriptome.

This work is the first to characterize the spectrum of maturation and immune activation

states of inflammatory cell populations in CF airways at an unprecedented resolution enabled by
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scRNAseq. Transcriptional profiling of inflammatory cell archetypes could open the door for
highly-targeted therapeutic interventions in subjects with similar CF-causing mutations who

experience divergent clinical courses.

Methods

Detailed methods are provided in the online data supplement.

Results

Disease-Specific Cell Distributions of CF Airway Inflammatory and Epithelial Cells

The primary objective of this study was to characterize sputum cell subpopulations in CF
using unbiased transcriptome analysis of single cells obtained from CF and healthy control (HC)
subjects. Our recruitment period extended from December 2018 through December 2019. Nine
subjects with a confirmed CF diagnosis from the Yale Adult CF Program provided sputum
samples. We also recruited five HC to undergo sputum induction according to previous protocols
(16).

Study subjects were closely age-matched, with a higher inclusion of female subjects in
the CF group (67% CF, n=6; 40% HC, n=2). The CF cohort was comprised primarily of F508del
homozygous subjects (78%, n=7) with only two F508del heterozygotes harboring either one
deletion or one frameshift mutation in one CFTR allele and an F508del in the other. The CF
cohort's degree of lung function impairment, as determined by Forced Expiratory Volume in the
first second (FEV)), ranged from mild to severe (FEV; 19-84% of predicted), with a mean FEV,
of 57%. All CF subjects had pancreatic exocrine insufficiency and 44% (n=4) carried a diagnosis
of CF-related diabetes. Pseudomonas aeruginosa was isolated in the sputum of 56% of CF

subjects (n=5). The majority of CF subjects were receiving CFTR-modulator therapy (89%, n=8)
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with a combination of either Ivacaftor/Tezacaftor (67%, n=6) or Ivacaftor/Lumacaftor (22%,

n=2). For further demographic and clinical details see Table 1.

We developed a standardized scRNAseq workflow for sputum sample analysis (Fig. 1A)
and profiled a total of 20,095 sputum cells (12,494 CF, 7,601 HC). We identified nine distinct
sputum cell populations based on known transcriptomic markers (Fig. 1C, Supplemental Data
file E1): mononuclear phagocytes (recruited lung monocytes, monocyte-derived M® (MoM®),
and alveolar M® (alvM®)); classical and plasmacytoid dendritic cells (¢cDC, pDC); PMN;
lymphocytes (B, T, and NK cells); and airway epithelial cells from buccal and tracheobronchial
mucosa (Fig. 1B-D). The expression of CFTR in sputum cells was overall very low and CFTR

was detected in most cell types in frequencies ranging from 0 to 6.84% (Supplemental Fig. E1).

The Inflammatory Cell Repertoire of CF Sputum Displays a Shift from alvM® to Airway

Monocytes and PMN

The dominant cell populations in CF and HC samples were strikingly different. PMNs
contributed 64% of all CF cells, with minimal numbers of alvM® (0.4%). In contrast HC
samples were composed of 80.2% alvM® with almost no detectable PMN (<2%, both p <0.002).
Further, CF subjects also exhibited increased numbers of airway monocytes (19% CF, 1% HC,
p=0.001) and B cells (4% CF, 1% HC, p = ns), and lower numbers of MoM® (1% CF, 6% HC,
p=0.007) (Fig. 1B-D). Disease-associated PMN, M®, and monocyte cellular distributions were
confirmed on mass cytometry data from a previously published study by our group, comparing
surface markers of inflammatory sputum cells in CF and HC (Supplemental Fig. E2) (16).
Furthermore, correlation of cell type gene classifiers in this study and analogous cell types in the
largest scRNAseq dataset of the distal lung available to date (n=28) revealed a greater correlation

between HC cell types from each dataset than within other cell types from the same dataset,
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confirming our cell annotations (Supplemental Fig. E3)(31). Our findings indicate that immune
cell populations in CF sputum are distinguishable from HC through scRNAseq, and that our cell
annotations and shifts in major cell distributions in CF are consistent with other mass cytometry

(CyTOF) and scRNAseq studies.

Recruited CF Lung Mononuclear Phagocytes Display Distinct Maturation and Immune

Activation Archetypes

AIlVM® were rare in CF sputum; however, we identified a distinct subpopulation of
Recruited Lung mononuclear Phagocytes (RLPs, Fig. 1B) that included recruited lung
monocytes and MoM®. These RLPs were defined by high expression of mononuclear
phagocyte-associated genes (LYZ, CTSB, CTSH, CTSL, CTSS, CTSZ, HLA-DRA, HLA-DRBI,
LGALSI, FTL, CD74). RLPs were relatively abundant in CF (20% of CF cells) and were rarely
identified in HC sputum (7% of HC cells, p=0.06). RLPs were a heterogeneous group, with
pronounced and notably different plasticity in CF. This suggested that RLPs would differ not

only in abundance, but also in transcriptional profiles between HC and CF.

To characterize the spectrum of immune activation and maturation of monocytes and
MoM® contained within CF and HC RLPs, we performed a Pseudotime analysis using
“Potential of Heat diffusion for Affinity-based Transition Embedding” (PHATE). Pseudotime
analysis is a computational technique that allows the distribution of single-cell expression
profiles along the continuum of a biologic process marked by gene expression changes (in this
case cell maturation, immune activation, and heat-shock response gene expression). Pseudotime
analysis demonstrated three distinct gene expression trajectories, and in turn, the most extreme
phenotypes of these trajectories defined three RLP transcriptional archetypes in sputum (Fig.

2A)(31, 32). Two of these archetypes were CF-predominant archetypes: activated pro-

AJRCCM Articlesin Press. Published June 30, 2020 as 10.1164/rccm.202004-09910C
Copyright © 2020 by the American Thoracic Society

Page 10 of 62



Page 11 of 62

inflammatory monocytes and heat-shock activated monocytes. The third RLP archetype, mature

resting MoM®, was more prevalent in HC.

Next, we examined the sequence of gene expression changes leading to the mature
resting MoM® and activated pro-inflammatory monocyte archetypes, correlating gene
expression changes with Pseudotime distance values. The trajectory towards activated pro-
inflammatory monocytes was characterized by a gradual and steady increase of pro-
inflammatory chemokine and cytokine gene expression. This trajectory was characterized by
increasing expression of ILIB, CXCL2, CCL3, CCL4, CCL20, VEGFA and EREG, Calprotectin
(S10048, S10049)(33), anti-apoptotic proteins MCLI and BCL2L1, the inflammasome subunit
NLRP3(34), inducible cyclooxygenase 2 (PTGS2), and transcription factor NFKBI (Fig. 2B,
Supplemental Fig. E4, ES5, Supplemental Data file E2). In the activated monocyte archetype,
imputed regulating factors of common activator/repressor genes (i.e. regulons), suggested
increased expression of NFKBI and pro-inflammatory transcription factors NFKB2, ETS and
IRF'I. Pro-inflammatory cytokines 7NF and IL1A were expressed only towards the extreme end
of the trajectory, in the most activated monocytes. In contrast to CF RLPs, we did not observe
similar immune activation archetypes in MoM®, or in alvM® from HC. Remarkably, although
pro-inflammatory CF monocytes exhibited increased overall cytokine expression, they also
showed impaired expression of key phagocytic and cytolytic components of the immune
response (complement C1Q), markers of maturation towards a M® phenotype (APOCI, APOE),

and phagocytic function (MARCO) compared to other RLP archetypes (Fig. 2B, D).

The mature resting MoM® archetype was enriched in HC, and none of the CF M®
reached the distal end of this archetype (Fig. 2C). Key regulons involved in monocyte to M®

maturation were active, and increasingly expressed towards the distal end of the archetype
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trajectory, including canonical SPI! (PU.1), as well as MITF and USF2. Maturation of MoM®
was accompanied by a gradual transcriptional increase of scavenger and pattern-recognition
receptors MSRI and MRCI, surface markers CD9 and CDS&I, apolipoproteins APOCI and

APOE, and FABPS.

MoM® were overall rare in sputum, but more evenly distributed between CF and HC
subjects, these were distinguished by expression of PLA2G7, an enzyme that inactivates platelet-
activating factor, monocyte chemokine CCL2, LGMN a cysteine-protease involved in MHC-II
presentation and differentiation towards DC, and activated-leukocyte cell adhesion molecule
ALCAM. The majority of sputum cells in HC were alvM®. These highly abundant HC alvM®
expressed the expected levels of phagocytosis-associated genes, underscoring the transcriptional
readiness of healthy immune cells to participate in phagocytic functions and coordinate
inflammatory cell recruitment, without the basal pro-inflammatory activity noted in the CF-
predominant monocytes. Taken together, these findings show that CF RLPs have high pro-
inflammatory gene expression but limited phagocytosis-associated transcriptional responses,
consistent with excessive inflammation and impaired host defense responses known to occur on

CF airways.
An Immature Pro-Inflammatory Archetype Prevails among CF Airway PMN

CF Sputum contained 64% PMN, in contrast with HC where PMN constituted 2% of
sputum cells (Fig. 1D). PHATE of the PMN spectrum of gene expression (PMN manifold)
enabled us to identify three PMN archetypes based on canonical markers of PMN immaturity
(CXCR4, IGF2R) and maturity (FCGR3B, ALPL, CXCR?2), as well as a heat-shock response
archetype (Fig. 3A, 3B, Supplemental Fig. E6). To analyze gradual changes within the PMN

manifold, we applied trajectory inference and correlated the resulting pseudotime distances with
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gene expression and regulon activity. When tracing PMN maturation, we observed that
expression of calprotectin (S10048, S10049), S100411, CSF3R and antiapoptotic factor BL2A 1
are gained relatively early, in contrast to classical maturation markers FCGR3B, ALPL, CXCR2
and CD14 which ramp up in expression relatively late (Fig. 3B, Supplemental Data file E2)(35,
36). In immature PMN, we observed a gradual increase of transcription factors TFEC, MITF,
STAT3, and maturation-associated transcription factors CEBPB and NFIL3. The CF-predominant
immature PMN archetype was further defined by increased expression of PMN-activating
chemokine MIP (CCL3, CCL4) and downstream transcription factor and adapter molecules
IRAK3 and TRAF3. These findings suggest that CF airway PMNs have an overall pro-
inflammatory phenotype, with a large subpopulation of PMNs exhibiting a functional and

maturity transcriptional shift, consistent with an immature PMN gene expression profile.
CF PMN Archetypes Have Decreased Phagocytic Marker and Tyrosine Kinase Expression

We compared the gene expression profiles of CF and HC PMN to understand transcriptomic
differences associated with their immune function (Supplemental Data file E3). We categorized
the top gene expression differences between CF and HC accordingly into: 1) Cell adhesion and
maturation markers, 2) MHC class I molecules; 3) Pattern and IgG recognition, 4) Transcription
factors and adaptor molecules; 5) Tyrosine Kinase expression; and 6) Survival and apoptosis
genes (Fig. 3C). In CF PMN, cell adhesion and maturation markers were overall lower than in
HC (CSF2RB, CSF3R, CXCR2, ICAM3, PECAM]I), except for ITGAX. The decreased expression
of these markers in CF reflects a higher prevalence of the immature PMN archetype described
above. In addition to decreased CXCR- and CSF-receptor expression, CF PMN also expressed
lower CXCRI, ILIRN, and ILIB that could condition further defects in phagocytosis and

inflammatory cell recruitment. We identified striking differences in antigen presentation,
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pathogen recognition, and phagocytosis-associated genes between CF and HC PMN. CF PMN
showed decreased expression of numerous members of the MHC-I molecules (HLA-A/B/C/E),
immunoglobin receptors (FCGR3B, FCGR24, FCGRT), decreased pathogen recognition
receptors CD14, TLR2, and NLRPI, and decreased expression of lysozyme (LYZ). Interestingly,
two genes involved in the assembly of lipid rafts and primary neutrophil granule release were
increased (SYK, CD63) suggesting that although PMN may suffer from defective phagocytic
activity, the transcriptional infrastructure needed to express tissue proteases and inflammatory
mediators into the airways is preserved. CF PMN demonstrated increased transcriptomic
activation characterized by expression of transcription factors and pro-inflammatory adapter
molecules (increased PI3, IRAK2/3, TRAF3, TANK), yet this activation did not translate into
increased expression of inflammatory cytokines. Interestingly, the downstream response to
cytokine activation appeared to be blunted, as shown by decreased overall tyrosine kinase gene
expression (ITPK1, MAP3KS5, MAP2K4, CAMKI1D, PIK3CD, HIPK3). Finally, we observed the
induction of genes involved in the hypoxic response (HIFIA, VEGFA, FGF13, PTGS2) and
diverging proapoptotic signals with lower expression of CASP4, RPS6KAS5, CREBS5, BCL2A, and
increased expression of HES4, KRAS, and CREM in CF. These observations underscore the
presence of a hypoxic airway environment in CF and a dysfunctional cell death program that
enhances the survival of functionally ineffective PMN. Taken together, these findings indicate
that CF PMN do not carry out an effective transcriptional response to inflammatory stimuli and

lack essential components for pathogen recognition and removal.
Discussion

This is the first single-cell transcriptome characterization of immune cells in CF sputum.

We identified CF-specific differences in cell subpopulations including alvM®, RLPs, and PMN.
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Furthermore, these cells had markedly different transcriptional profiles when compared to their
HC counterparts. Previous CF studies have used transcriptomic analysis to determine the
likelihood of adverse outcomes in CF lung disease, however they have not focused on
establishing differences between healthy and CF airway inflammatory cells, or characterizing
their immune activation profiles (12-15). The most remarkable finding from this study is the
discovery of novel archetypes of RLPs, enabled by an unprecedented depth of gene expression
profiling. These inflammatory cell subpopulations exhibit a wide spectrum of maturity and
immune activation in CF. Airway M® and other mononuclear cells have been described in
human CF airway secretions (25, 26) and their role in driving exaggerated airway inflammation
in CF has been well characterized in animal models (9, 25). However, a broader genomics
approach to define sputum RLPs, their potential functional impairments, and pathogenic role has

not been reported.

We identified three novel archetypes of CF RLP including activated monocytes, mature
MoM®, and heat-hock activated monocytes. Airway monocytes in CF have impaired ion
transport and phagocytic function, however their role in CF lung disease remains undefined (28,
37). Others have described dramatic changes in monocyte cell adhesion and chemotaxis that
perpetuate inflammation in CF lungs, along with enhanced chemokine production that sustains
PMN recruitment and injury (38). In agreement with these studies, we observe that monocytes
are rather abundant in CF sputum, but are deficient in monocyte maturation gene expression
markers (MITF, SPII). Furthermore, CF monocytes were not only abundant, but also highly
active from the immune perspective, expressing high levels of inflammation-related genes

(CXCLS, ILIB, CCL3, and Calprotectin). These observations underscore a defect in CF
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monocyte maturation that preserves a highly pro-inflammatory phenotype and contributes to

airway damage and aberrant inflammatory cell recruitment (39).

M®s recovered from CF lungs are relatively smaller in size and express minimal levels of
mannose receptor MRC1 or MARCO typically detected on alvM® (Supplemental Fig E7) (26,
27). This has been interpreted as an indication that CF airway M®s are recruited from the
circulation, as opposed to tissue-resident alvM® which are of embryonic origin. Here, we show
that most CF airway M® originate from recruited monocytes, while the majority of healthy

control airway cells were bona fide tissue-resident alvM®.

In contrast to CF airway monocytes, more mature CF phagocytes (MoM®, alvM®)
showed low levels of immune activation markers observed in CF monocytes, and of key
phagocytic and cytolytic components of the immune response (complement C/Qs, MARCO).
This underscores that in CF, RLPs that reach maturity exhibit transcriptomic evidence of
impaired or limited phagocytic function, accounting for the known impaired phagocytic abilities

of these cells in CF.

We did not detect a distinct acute exacerbation signature in CF samples. This may reflect
our stringent gene expression analysis strategy, a lack of paired sputum samples, and sample size
limitations to perform this subgroup analysis. This is an important question to pursue in the
future, as paired samples in stable and exacerbation states from the same individual may reveal

critical genetic modifiers of a patient's clinical course.

PMN were the most abundant immune cells in the sputum of patients with CF, which is
consistent with reports in the CF literature, similar to the predominance of alvM® in HC sputum
(19-24). Here, we report the discovery of new archetypes of CF PMN based on inflammatory

and maturity gene expression markers; one, characterized by high maturity and limited pro-
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inflammatory transcriptional state, and another with higher pro-inflammatory activity and
delayed expression of maturity markers. Overall, the increased expression of pro-inflammatory
genes in immature PMN highlights a highly activated and pro-inflammatory state, clearly
distinguishable from the transcriptional profile of HC PMN. The immature airway PMN
archetype shares features of a previously described subpopulation of transmigrated PMN with
increased granule release, immunoregulatory and metabolic activity, and defective bacterial
killing in in vitro studies, referred to as “GRIM” neutrophils (10, 40). We identified cells with
similar characteristics, but as part of a spectrum of granulocyte maturation that encompasses
vigorously activated PMN on one extreme and PMN with decreased expression of maturity
markers & evidence of recent airway migration on the other extreme. Adding to the complexity
of these PMN subpopulations, counterproductive pro- and anti-apoptotic signals were present
across the CF PMN when compared to HC (increased UVRAG, PLPP3, ATG?7, decreased
CASP4, RPS6KAS5, CREBS, BCL2A4). Taken together, these findings underscore an aberrant pro-
inflammatory state in CF PMN, exacerbated by disruption of immunomodulatory and anti-

inflammatory mechanisms like apoptosis and transcription factor suppression.

The presence of B cells in CF sputum was an intriguing finding. Single nucleotide
polymorphisms (SNPs) in class II major histocompatibility complex (MHCII) of the F508del
population are associated with delayed Pseudomonas aeruginosa (PA) colonization and slower
lung function decline (41-44). Although we observed no differences in MHCII gene expression
in B cells of CF subjects (Supplemental Fig. E8), a focused study on MHCII SNPs could identify
B cell subpopulations with a protective role against PA and its associated impact on pulmonary

health.
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This work includes two technical advances. First, this is the only reported scRNAseq
study of CF sputum, a notoriously complex biological sample with high variability in cell
viability and in cellularity between subjects. Second, our sputum processing protocol avoids the
use of reducing agents to solubilize sputum and instead minimizes immune cell activation and
injury by using mechanical disruption and filtering. Importantly, ours is the first report of a
sputum cryopreservation protocol allowing the retrieval of live cells for scRNAseq analysis
while avoiding sputum solubilizing agents typically used in sputum sample processing
(Supplementary materials, Supplementary Fig. E9)(45-49). The ability to use cryopreserved cells
overcomes a major limitation of previous single-cell studies that required fresh samples (13, 16),
this is particularly important for the recovery of PMN, known for their short life-span ex-vivo
and susceptibility to immune activation. Our study has several limitations: 1) Large differences
in predominant cell types between CF and HC subjects make it difficult to generalize gene
expression changes between disease and control groups. Although we present these comparisons,
our focus is on understanding CF-specific cell distributions and their spectrum of maturity and
activation markers; 2) Since HC express minimal sputum if any at all, we used a standardized
approach for sputum induction in these subjects, while CF cells were obtained from
spontaneously expectorated sputum. As single cell suspensions are standardized for number of
cells before any analysis, these sampling differences likely have a minor impact on our
observations; 3) There was an uneven sex distribution across the study groups. This may be of
particular importance in CF, as female sex in CF is associated with disparities in life expectancy,
frequency of exacerbation, and early acquisition of respiratory pathogens(50). However, of the
differentially expressed genes between CF and controls, we did not observe divergent differential

gene expression changes in females or males; and finally, 4) Our study has a small sample size;
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however, we sought to match subjects according to age and sex, and HC were compared to a
relatively homogeneous CF cohort in terms of CFTR mutation background, CF comorbidities,
and ongoing therapy. Although a small number of patients were recruited for this study, we
believe they are representative of patients with CF based on the F508del allele frequency in our
cohort and the identification of nine distinct cell types representative of airway cells in CF.
Despite these limitations, our findings are robust and representative of the CF airway

compartment.

CF research is progressing rapidly towards clinical, molecular, and functional
characterization based on individualized high-throughput diagnosis and functional profiling. Our
application of scRNAseq enabled the discovery of transcriptional archetypes in CF-specific cell
subpopulations that may underlie subject-specific differences in disease progression and
response to therapy. As we advance towards early applications of therapeutic and genomic
technologies, we hope this approach to individualized airway inflammation profiling will serve

as a foundation for further discoveries that transform the natural history of CF lung disease.
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Tables

Table 1.

Number of Patients (n)
Age

Age (Mean)

Age (Range)

Sex

Female (n)

Male (n)

Mutation Background
F508del/F508del (n)
F508del/other (n)

No F508del mutations (n)
FEV, (L)

FEV, (Mean)

FEV, (Range)

FEV, (%)

FEV, (Mean)

FEV, (Range)

BMI (Kg/m?)

BMI (Mean)

BMI (Range)

CF Comorbidities
Pancreatic Exocrine
Insufficiency (n)
CF-related Diabetes (n)
Liver disease (n)
Microbiology
Pseudomonas aeruginosa
Colonization (n)

CFTR Modulators
Ivacaftor/Tezacaftor (n)
Ivacaftor/Lumacaftor (n)
No modulator (n)

HC (5)

354+£59
26-42

2 (40%)
3 (60%)

NA
NA
NA

NA
NA

NA
NA

NA
NA

NA

NA
NA

NA
NA

NA
NA

CF (9)

30.6+ 6.5
24-43

6 (67%)
3 (33%)

7 (77.8%)
2 (22.2%)
0 (0%)

1.9+£0.7
0.68 - 2.85

57+21.5
19 - 84

222+2.1
19.11-25.73

9 (100%)

4 (44.4%)
1 (11.1%)

5 (55.6%)
6 (66.7%)

2 (22.2%)
1 (11.1%)

Table 1. Demographic characteristics of study subjects from the Yale Adult Cystic Fibrosis

Program and healthy controls. HC: Healthy controls; CF: CF subjects; FEV; Forced expiratory
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volume in the first second; BMI: Body Mass Index; CFTR: Cystic Fibrosis Transmembrane

conductance Regulator.
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Fig.1. ScCRNAseq Reveals an Immune Cell Repertoire Shift from Alveolar M® to Recruited
Monocytes and PMN in CF. (A) Schematic of the experimental design. (i) Spontaneously
expectorated sputum from patients with cystic fibrosis (CF) and induced sputum from healthy
controls (HC) was collected. (ii) Sputum was processed into a single-cell suspension. (iii)
Droplet-based scRNAseq barcoding (iii) library preparation (iv) sequencing (v) and
computational analysis. (B) Uniform Manifold Approximation and Projection (UMAP)
visualization of 20,095 sputum cells from nine patients with CF and five controls. Each dot
represents a single cell, and cells are labelled by (i) cell type, (ii) disease status, and (iii) subject.
(C) Heatmap of marker genes for all cell types identified. Each column represents the average
expression value of one subject, grouped by disease status and cell type. Gene expression values
are unity-normalized from 0 to 1. (D) Boxplots showing percentages of all identified cell types to
all cells profiled per subject, separated by disease state. Whiskers represent 1.5 x interquartile
range (IQR). * p < 0.05 determined by a Wilcoxon rank sum test comparing cell percentages of

CF patients and controls.

Mo: monocyte; MoM®: monocyte-derived macrophage; alvM®: alveolar macrophage;
cDC: classical dendritic cell, pDC: plasmacytoid dendritic cell; B: B-lymphocyte; T & NK: T-

lymphocytes and NK-cells; PMN: polymorphonuclear neutrophil.
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macrophages, colored by pseudotime, all starting from quiescent monocytes towards (i) activated
monocytes, (ii) mature monocyte-derived macrophages, (iii) monocytes expressing a heat-shock
response. (iv) monocytes and monocyte-derived macrophages, colored by disease state. All three
archetypes are accompanied by three PHATE plots colored by the gene expression of typical
genes ramping up along a specific pseudotime. For corresponding UMAP embedding colored by
gene expressions of the same genes, see Supplemental Fig. E4. For corresponding PHATE
embedding colored by cell type and subjects, see Supplemental Fig. ES. (B) Heatmap of gene
expression and regulon activity in monocytes undergoing activation, ordered by pseudotime
distances along PHATE manifolds that transition from quiescent monocytes towards an activated
monocyte archetype. (C) Heatmap of gene expression and regulon activity in monocytes
undergoing maturation, ordered by pseudotime distances along PHATE manifolds that transition
from quiescent monocytes towards a control-enriched mature monocyte-derived macrophage
archetype. In both heatmaps: annotation bars represent the pseudotime distance, disease status,
and subject for each cell; expression values are centered and scaled. (D) Violin plots of pathway
activity scores, grouped by cell type, separated by disease state. Depicted pathway scores from
left to right are: GO:0045087 - innate immune response, GO:0006958 - complement activation,
classical pathway, GO:0019882 - antigen processing and presentation, GO:0006911 -
phagocytosis, engulfment. * represents FDR-adjusted p-values < 0.05, calculated using the
Wilcoxon signed-rank test. Mo: monocyte; MoM®: monocyte-derived macrophage; alvM®:

alveolar macrophage; PMN: polymorphonuclear neutrophil.
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regulon activity in PMNs, ordered by pseudotime distances along PHATE manifolds that
transition from CF-enriched regions of immature and activated PMN archetype towards control-
enriched mature PMN archetype. Annotation bars represent the pseudotime distance, disease
status, and subject for each cell; expression values are centered and scaled. (C) Violin plots of
differentially expressed genes comparing CF and control PMN populations (for p-values see

Supplemental Data file E3), grouped by disease state, and sorted thematically.
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Online Data Supplement

Single Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis
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Materials and Methods

Subject Cohort

A total of nine subjects with a confirmed diagnosis of CF from the Yale Adult CF Program
provided sputum samples for this study, five during exacerbation and five during periods of
stability. These subjects were recruited during a) Scheduled routine visits (n=5) and b)
Unscheduled “sick” visits, in which they reported new respiratory symptoms and were diagnosed
with a CF exacerbation (n=4). A CF exacerbation was defined by the emergence of four of
twelve signs or respiratory symptoms, prompting a change in therapy and initiation of
antimicrobial treatment (modified from Fuchs' criteria (E1)). These criteria included: change in
sputum; change in hemoptysis; increased cough; increased dyspnea; malaise, fatigue or lethargy;
fever; anorexia or weight loss; sinus congestion; change in sinus discharge; change in chest
physical exam; or FEV, decrease >10% from a previous value (E1). Individuals without new
symptoms and those that did not meet AE criteria were characterized as "CF Stable". Our
recruitment period extended through 2019. We also recruited five healthy volunteers (Healthy
Controls, HC) to undergo sputum induction according to previous protocols (E2). Since we did
not identify significant differences in the gene expression profiles of stable and exacerbation
subjects, all CF subjects were grouped as "CF" as compared to healthy control samples for
analysis as a group. The study protocol was approved by the Yale University Institutional

Review Board and informed consent was obtained from each subject.

Sputum Collection and Processing

CF subjects expectorated sputum spontaneously for our studies. Induced sputum samples were

obtained from HC as previously described (E2, E3). Briefly, subjects inhaled nebulized 3%
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hypertonic saline for five minutes on three cycles. To reduce squamous cell contamination,
subjects were asked to rinse their mouth with water and clear their throat. Expectorated sputum
samples were collected into specimen cups and placed on ice. Sputum plug material from HC
and CF subjects were selected and weighed prior to washing with 9x their volume of PBS.
Samples were incubated in Dulbecco's Phosphate-Buffered Saline (PBS) with agitation for 15
minutes and filtered through 40-micron strainers. Samples were centrifugated at 300 g for five
minutes and supernatants were stored at -80°C. The pellets were suspended in RPMI/10%FBS
medium with 10% DMSO. Aliquots of 1 ml were saved into cryogenic vials and placed in
Nalgene Cryo 1° C Freezing Container (Sigma, St. Louis, MO) overnight at -80°C. Samples
were stored in liquid nitrogen the next day. Frozen samples were thawed in a water bath at 37°C,
resuspended with 20ml DMEM + 10% heat-inactivated FBS (Life Technologies, USA), then
centrifuged at 300g, Smin, 4°C. Supernatant was discarded, cells were resuspended in 2ml
DMEM + 10% FCS, passed through a 70um cell strainer (Fisher Scientific, USA). Non-viable
cells and debris were removed from the cell suspensions using a OptiPrep (Iodixanol) density
gradient centrifugation according to the manufacturer’s protocol (OptiPrep Application Sheet
C13 — Strategy 2). In brief, 1.86ml of the cell suspensions were mixed with 40% OptiPrep in
DMEM + 10% FCS by repeated gentle inversion, overlaid with a density barrier (density:
1.09g/ml, 780ul OptiPrep in 2.22ml DMEM + 10% FCS), then overlaid with 500ul DMEM +
10% FCS. After centrifugation at 800g, 20min, 4°C, viable cells were collected from the top
interface and diluted with 2ml DMEM + 10% FCS, centrifuged at 400g, Smin, 4°C, then
resuspended in Iml PBS + 0.04% BSA (New England Biolabs, USA) and passed through a final
40um cell strainer (Fisher Scientific, USA). For cell concentrations, cells were stained with

Trypan blue and counted on a Countess Automated Cell Counter (Thermo Fisher, USA).
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Single Cell Barcoding, Library Preparation, and Sequencing

Single cells were barcoded using the 10x Chromium Single Cell platform, and cDNA libraries
were prepared according to the manufacturer’s protocol (Single Cell 3’ Reagent Kits v3, 10x
Genomics, USA). In brief, cell suspensions, reverse transcription master mix and partitioning oil
were loaded on a single cell “B” chip, then run on the Chromium Controller. mRNA was reverse
transcribed within the droplets at 53°C for 45min. cDNA was amplified for a 12 cycles total on a
BioRad C1000 Touch thermocycler. cDNA was size-selected using SpriSelect beads (Beckman
Coulter, USA) with a ratio of SpriSelect reagent volume to sample volume of 0.6. For qualitative
control purposes, cDNA was analyzed on an Agilent Bioanalyzer High Sensitivity DNA chip.
cDNA was fragmented using the proprietary fragmentation enzyme blend for Smin at 32°C,
followed by end repair and A-tailing at 65°C for 30min. cDNA were double-sided size selected
using SpriSelect beads. Sequencing adaptors were ligated to the cDNA at 20°C for 15min.
cDNA was amplified using a sample-specific index oligo as primer, followed by another round
of double-sided size selection using SpriSelect beads. For qualitative control purposes, final
libraries were analyzed on an Agilent Bioanalyzer High Sensitivity DNA chip. cDNA libraries
were sequenced on a HiSeq 4000 Illumina platform aiming for 150 million reads per library. Full
de-identified sequencing data for all subjects is available in the gene expression omnibus (GEO)

under accession number GSE145360.

Data Processing and Computational Analyses

Basecalls were converted to reads with the implementation mkfastq in the software Cell Ranger
(v3.0.2). Read?2 files were subject to two passes of contaminant trimming with cutadapt (v2.7):

first for the template switch oligo sequence
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(AAGCAGTGGTATCAACGCAGAGTACATGGG) anchored on the 5' end; secondly for
poly(A) sequences on the 3' end. Following trimming, read pairs were removed if the read 2 was
trimmed below 20bp. Subsequent read processing was conducted with the STAR (v2.7.3a) (E4)
and its single cell sequencing implementation STARsolo. Reads were aligned to the human
genome reference GRCh38 release 31 (GRCh38.p12) from GENECODE (ES5). Collapsed unique
molecular identifiers (UMIs) with reads that span both exonic and intronic sequences were
retained as both separate and combined gene expression assays. Cell barcodes representative of
quality cells were delineated from barcodes of apoptotic cells or background RNA based on the
following three thresholds: at least 10% of transcripts arising from intron spanning, i.e. unspliced
reads indicative of nascent mRNA; more than 750 transcripts profiled; less than 15% of their
transcriptome was of mitochondrial origin. Technical summaries related to sequencing and data

processing can be found in Supplemental Data file E4.

Data Normalization and Cell Population Identification

UMIs from each cell barcode - irrespective of intron or exon coverage - were retained for all
downstream analysis and analyzed using the R package Seurat (version 3.1.1) (E6). Raw UMI
counts were normalized with a scale factor of 10,000 UMIs per cell and subsequently natural log
transformed with a pseudocount of 1. More than double the cell barcodes were detected in two
subjects compared to all other subjects, so cells were randomly downsampled to a maximum of
2,250 cells per subject to avoid predominance of those two subjects. 3000 highly variable genes
were identified using the method “vst”, then data was scaled and the total number of UMI and
the percentage of UMI arising from mitochondrial genes were regressed out. The scaled values
were then subject to principle component analysis (PCA) for linear dimension reduction. A

shared nearest neighbor network was created based on Euclidean distances between cells in
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multidimensional PC space (the first 12 PC were used) and a fixed number of neighbors per cell,
which was used to generate a 2-dimensional Uniform Manifold Approximation and Projection
UMAP for visualization. For cell type identification, scaled data was clustered using the Leiden
algorithm. In addition to general filtering based on quality control variables, a curated multiplet
removal based on prior literature knowledge was performed: Cell barcodes were identified as
mulitplets if their expression level was higher than 1 in the following marker genes (outside the
appropriate cluster): MS4AT1 (B cells), CD2 (T cells), VCAN (monocytes), FCGR3B (neutrophil
granulocytes), KRT19 (epithelial), and FABP4 (alveolar macrophages). Cell barcodes flagged as

multiplets were not included in downstream analyses.

Generation of Cell Type Markers and Differential Expression Between Disease Conditions

In order to evaluated cell-type markers we used Seurat’s FindAllMarkers (to calculate log fold
changes, percentages of expression within and outside a group, and p-values of Wilcoxon-Rank
Sum test comparing a group to all cells outside that specific group including adjustment for
multiple testing) and additionally calculated binary classifier system based on diagnostic odd’s
ratios as described in our earlier work (E7) (Supplemental Data file E2). For each cell type in the
data, we identified the genes whose expression was log fold change >= 0.25 greater than the
other cells in the data. We then calculated the diagnostics odds ratio (DOR) for each of these
genes, where we binarize the expression values by treating any detection of a gene (normalized
expression value > 0) as a positive value, and zero expression detection as negative. We included

a pseudocount of 0.5 to avoid undefined values, as:

DOR = ((TruePositives + 0.5) / (FalsePositives + 0.5)) / ((FalseNegatives + 0.5) / (TrueNegatives

+0.5))
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where True Positives represents the number of cells within the group detected expressing the
gene (value > 0), FalsePositives represents the number of cells outside of the group detected
expressing the gene, FalseNegatives represents the number of cells within the group with no
detected expression, and TrueNegatives represents the number of cells outside of the group with
no detected expression of the gene. For differential expression testing between disease
conditions, Seurat’s implementation of a Wilcoxon-Rank Sum in FindMarkers was used, only
testing genes whose expression was log fold change >= 0.25 greater between both disease

conditions.

Scoring of regulon activity and pathways

A regulon is defined as a group of target genes regulated by a common transcription factor. To
score the activity of each regulon in each cell, we utilized the package pySCENIC (E8) with
default settings and the following database: cisTarget databases (hg38 refseq-
r80_ 500bp up and 100bp down tss.mc9nr.feather, hg38 refseq-
r80  10kb up and down tss.mc9nr.feather) and the transcription factor motif annotation
database  (motifs-v9-nr.hgnc-m0.001-00.0.tb]) which were both downloaded from
resources.aertslab.org/cistarget/, and the list of human transcription factors (hs hgnc_tfs.txt)

which was downloaded from github.com/aertslab/pySCENIC/tree/master/resources.

In order to calculate pathway activity scores, Gene Ontology (GO; geneontology.org) pathways
related to monocyte/macrophage functions were downloaded, then scored using Seurat’s

AddModuleScore using default settings.
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Pseudotime Analysis of PMN and monocytes/macrophages

We observed already in UMAP space that many features in the data were represented by a
continuum of increasing phenotypic deviation, e.g. increase of maturation markers in neutrophil
granulocyte, maturation from monocytes to macrophages, and gradual increase of classical
markers of inflammation in monocytes. Consequently, we sought to implement pseudotime
analysis of these continua to assess features rather than relying on traditional group-wise
comparisons. Cell barcodes were subsetted to either only neutrophil granulocytes or
monocytes/macrophages. Due to major differences in number of cells profiled per subject, PMN
were randomly downsampled to a maximum of 200 cell barcodes per subject, and in the Mo/M®
subgroup to a maximum of 250 cell barcodes per subject. As for the full dataset, data of the
subgroups was normalized, variable features were extracted (200 for PMN, 500 for Mo/M®),
scaled, then subject to PC analysis. PHATE (Potential of Heat-diffusion for Affinity-based
Trajectory Embedding) (E9) embedding was performed which is specifically suitable to continua
(50 nearest neighbors, 5 PCs, t=50 in Mo/M® and t=100 in PMN). Cell barcodes were clustered
using the cluster phate function (k=8) for PMN and the Leiden clustering for Mo/M®.
Trajectories were identified using Slingshot (E10) on the PHATE embeddings with default
settings, and a central starting cluster for the Mo/M®. Pseudotime analysis was used to
distinguish gene expression trajectories, and in turn, the most extreme phenotypes of these
trajectories defined transcriptional archetypes in sputum (E11-E13). Pearson’s correlation
coefficients and their p values, including Bonferroni adjustment for multiple testing, were
calculated between the resulting pseudotime distances of these trajectories and gene expression
and the regulon activity scores (Supplemental Data file E2). Gene expression and regulon

activity scores correlating with pseudotime values were visualized by heatmaps.
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Validation of major cell types by Cytometry Time of Flight (CyTOF)

CyTOF-derived fcs files from the study by Yao et al. (E14) were processed using the bead-based
Normalizer Release R2013a (E15). Normalized files were then processed in Cytobank
(https://premium.cytobank.org/) using gates to select singlets, remove beads and identify live
cells. Events identified using this workflow were exported and processed further using the R
package cytofkit version 1.12.0 (E16). The Rphenograph function in cytofkit was implemented
to cluster cells using cytofAsinh method, with the tsne dimensionality reduction method applied
on 80000 events, using k=40. Files were merged using the fixed method and the HLA-DR,
CDl11b, CD8a, CD20, CD16, MIP-1B, TNF, CD45, CD4, IL-6, CDl11c, CD14, Cytokeratin,
CD80, CD15, CD163, IFNy, EGFR, CD66b, IL-8, CD62L and CD56 markers were used in this
model. Resulting clusters were manually curated and merged after review of surface marker

profiles.

Correlation matrix of immune cell populations comparing sputum and lung cell populations

To identify classifier genes, differential gene expression of immune cell types of this study and
analogue cell types from an independent scCRNAseq, a dataset of 28 healthy distal lung samples
(E7) was established using Seurat’s FindAllMarkers with an absolute log fold change threshold
of 1 (the lung dataset was downsampled within the FindAlIMarkers function using the settings:
max.cells.per.ident=1000, seed=7). Classifier genes were filtered such that all genes had a
Bonferroni adjusted p-value < 1E-5. For each cell type and each dataset, the top 50 marker
genes, ordered by fold change, were selected. We took the intersection of the genes from both
datasets as top classifiers (n=154). The average gene expression of these 154 genes were

calculated for each cell type per dataset. Spearman correlation matrix was calculated using base
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R’s function “cor”. The R package “corrplot” was used to visualize the Spearman correlation
matrix. Unsupervised hierarchical complete clustering was performed to order the cell types in

the heatmap.
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Fig. E1. CFTR expression in CF and healthy control sputum cells. (A) UMAP colored by cells in
which at least one CFTR mRNA molecule was profiled (red). (B) Percentages of cells in which
at least one CFTR mRNA molecule was profiled, separated by cell type; second column (“all
subjects”) represents the full dataset, which was divided in the third and fourth column by

disease state.
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Fig. E2. Validation of the shift in major immune cell types in sputum of CF compared to HC.
(A) RPhenograph clustering of Sputum CyTOF in patients with cystic fibrosis (CF) and healthy
controls (HC) demonstrates differences in the populations of immune cells. The sputum of

patients with CF is characterized by high percentages of neutrophils, while sputum from HC is
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characterized by high percentages of macrophages. (B) RPhenograph clustering of Sputum
CyTOF according to Healthy Control (HC) and Cystic Fibrosis (CF) status. (C) Boxplots
showing percentages of Mo/M®, PMN, and other to all cells profiled per subject, separated by
disease state. Whiskers represent 1.5 x interquartile range (IQR). * p < 0.05 determined by a

Wilcoxon rank sum test comparing cell percentages of CF patients and controls.
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Fig. E3. Concordance of cell type annotations. Correlation matrix of immune cell populations of
this study and analogous cell types from an independent scRNA sequencing dataset of distal lung
samples, subsetting to the 28 healthy controls. Matrix fields are colored by Spearman’s rho, cell

types are ordered by unsupervised hierarchical clustering. Annotation bars are highlighting the

two different datasets (dark grey: this dataset, light grey: lung samples

only from Adams, et al. (7)).
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Fig. E4.
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Fig. E4. Expression of selected marker genes of Mo/MoM® trajectories on UMAPs. (A) UMAP,
zoomed in on Mo and MoM®, colored by expression of inflammatory genes IL1B, NLRP3,
PTGS2. (B) UMAP, zoomed in on Mo and MoM®, colored by expression of mature macrophage
genes MSR1, APOCI1, CD9. (C) UMAP, zoomed in on Mo and MoM®, colored by expression

of heat shock genes HSPA1A, HSPHI1, DNAJBI. (D) UMAP, zoomed in on Mo and MoM®,
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colored by (i) cell type, (ii) disease state, (ii1) subjects. CF: Cystic Fibrosis, HC: Healthy Control,

Mo: Monocyte; MoM®: monocyte-derived macrophage.
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Fig. E5.
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Fig. ES. Additional annotations of Mo/MoM® on PHATE embedding. (A) UMAP of Mo and

MoM® colored by (i) Cell type, (ii) Disease state, (iii) Subjects.

CF: Cystic Fibrosis, HC: Healthy Control, Mo: Monocyte; MoM®: monocyte-derived

macrophage
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Fig. E6. Additional annotations of PMN on PHATE embedding. (A) PHATE of PMN colored by
expression of heat shock genes HSPA1A, HSPH1 and DNAJBI1. (B) PHATE of PMN colored by

disease state (HC: Healthy Control, CF: Cystic Fibrosis) and subjects.
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Fig. E7. Violin plots of (A) MARCO and (B) MRC1, grouped by cell type.
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Fig. ES.
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Fig. E8. Violin plots of major histocompatibility complex class 2 genes in B cells, grouped by

disease state. For all: p>0.05, i.e. not significantly different.
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Fig. E9. Viable cell yield using our sputum processing protocol is comparable to previously
established approaches for sputum processing (proof-of-principle). Aliquots from the same
sample were processed using (A) our PBS-only protocol or (B) treated sequentially with DNAse
(0.56kU/ml, D4527-500KU, Sigma) with gentle agitation for 10 min at room temperature
followed by DTT (final concentration 1.5-2uM) with gentle agitation for 10 min at room
temperature. Airway cells were incubated with iridium intercalator (125 nM, Fluidigm) to label
DNA and analyzed by mass cytometry as previously reported (E14). Representative gating
strategy for live cells determined following exclusion of DNA® cellular debris reflecting

enrichment for CD45" (Fluidigm, clone # HI30) CD15" (Fluidigm, clone # W6D3) PMN

lineages (CD11b, Clone# M1/7, Longwood and CD66b, self-labeled, Clone# 913542, R&D).
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Supplemental Data file E1. Results of Wilcoxon rank-sum test and log transformed diagnostics
odds ratio of genes for cell types, subsetting to genes with log transformed fold change > 0.25 for

each cell population compared to all other cell populations.

Supplemental Data file E2. Results of Pearson correlation between gene expression and

pseudotime distance values within each trajectory.

Supplemental Data file E3. Results of Wilcoxon rank-sum test on gene expression within each

cell type comparing CF to HC.

Supplemental Data file E4. Technical summary of all sequenced and processed libraries of this

dataset. TSO: template switch oligo.
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3 Toward Early Detection of Idiopathic Pulmonary Fibrosis

Since their emergence as a frequent and potentially clinically
meaningful finding in computed tomography (CT) screenings

of smokers a decade ago (1), interstitial lung abnormalities (ILAs)
have drawn significant interest and controversy. A specific set

of radiologic abnormalities on chest CT scans, ILAs are

relatively common and can be found in up to 10% of lung cancer
screenings and older smokers (2). ILAs have traditionally been taken
lightly by physicians and affected individuals alike, as symptoms in
subjects with ILA are often lacking or very mild, and the prognostic
significance of ILA was unknown. This has changed in recent years
with the increased recognition that individuals with ILAs are at
higher risk of death and exhibit higher rates of lung restriction (3-5)
and that on tissue histology they often exhibit fibrosis (6). The
possibility that individuals with ILAs may represent a population at
risk for subsequent development of idiopathic pulmonary fibrosis
(IPF) or other interstitial lung disease (ILD) is of particular
importance, because of the potential for more effective interventions
when the disease is diagnosed early. The connection between ILAs
and pulmonary fibrosis has been supported by radiologic
progression of ILAs, the presence of ILAs in asymptomatic family
members of individuals with familial pulmonary fibrosis, and the
significant association of ILAs with rs35705920 in the promotor
region of MUC5B (Mucin 5B, oligomeric mucus/gel-forming) (4),
the same gene variant that accounts for approximately 30% of cases
of IPF (7). However, so far, the genetic overlap between patients with
ILAs and IPF has not been studied in detail.

In this issue of the Journal, Hobbs and colleagues (pp. 1402-
1413) performed a meta-analysis using available genome-wide data of
1,699 subjects with ILA and 10,274 control subjects from six cohorts
and compared the results with genetic associations in patients with
IPF (8). Because subpleural ILAs are believed to be more clinically
relevant, they performed the analysis of ILAs in general and
subpleural ILAs separately. In the ILA analysis, they identified three
genome-wide significant associations that included the known
MUCS5B promoter polymorphism rs35705950 and two novel loci:
rs6886640 at 5q12 near IPO11 (importin 11) and rs73199442 at 3q13
near the long noncoding RNA FCF1P3 (FCF1 pseudogene 3). In the
subpleural ILA analysis—in addition to MUC5B—they identified a

8This article is open access and distributed under the terms of the Creative
Commons Attribution Non-Commercial No Derivatives License 4.0
(http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage
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genetic association at the 6q15 locus with rs7744971 near HTR1E
(5-hydroxytryptamine receptor 1E). None of the novel ILA loci
replicated in IPF genome-wide association studies. Of the 12 reported
genome-wide association study loci for IPF, only the MUC5B variant
reached genome-wide significance, whereas the genetic variants near
DPP9 (dipeptidyl peptidase 9), DSP (desmoplakin), FAM13A (family
with sequence similarity 13 member A), and IVD (isovaleryl-CoA
dehydrogenase) were nominally associated with ILA.

The findings of this study have several major implications. The
most important is that although individuals with ILAs represent a
population at risk for IPF, they are not synonymous with the IPF
population. Only a subset of individuals with ILA exhibit a genetic risk
profile that is similar to individuals with IPF, whereas others exhibit
genetic associations that do not occur in IPF: the reported odds ratio is
1.97 for rs35705950 for all ILAs, and 2.22 when subsetting to
subpleural ILAs, but 4.84 for IPF. None of the other IPF risk loci were
significant on a genome-wide level, and all of them had a lower odds
ratio in ILA. This could suggest an ILA subpopulation that is at risk of
developing IPF but is being diluted by a larger fraction of subjects with
ILA who do not share the same genetic risk. The finding of three novel
ILA genetic associations not observed in IPF also indicates a
potentially distinct entity, possibly a predisposition to other non-IPF
ILDs or even the presence of gene variants that reduce the probability
of progression of ILAs to fibrosis and may be protective. Regardless of
their potential functional relevance, the finding of variants associated
with ILA but not IPF, if replicated, could be useful developing a
polygenic genetic risk profile. This is important because, currently,
chest CT screenings to detect early IPF are not clinically feasible or
justified. The results of this study should encourage investigators to
design further studies assessing whether genetic risk profiling,
potentially combined with other noninvasive biomarkers, could be
used to prioritize individuals for CT screening.

Although exciting and intriguing, this study has some limitations
that should be highlighted. Of course, the most obvious limitation of
the discovered novel ILA associations is the lack of an independent
replication cohort, but the limitations regarding the negative results
should not go unnoticed. Indeed, only MUCS5B reached genome-wide
significance in this study, but the main study population consisted of
data obtained from several cohorts that were not designed to capture
early ILD. These populations differed in the definitions of ILA, the
depth of phenotyping, and the original aims of the studies. Thus, it is
highly possible that although the strongest association (MUC5B) was
able to emerge, other valid associations simply were drowned by the
sea of differences and may emerge again if comparably sized future
studies are designed to detect ILAs using standard definitions,
adjudicated radiological reading, and patient phenotyping.

In summary, the study by Hobbs and colleagues (8) represents a
major step toward better understanding ILAs as tools for defining
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populations that should be targeted for early detection of IPF. This is
a critically important mission. Although there has been considerable
progress in the development of novel therapeutic options for IPF, it
is highly unlikely that any of the drugs currently in the pipeline will
be able to reverse the extensive lung remodeling that is often
observed when patients initially present. On the other hand, it is
possible that therapeutic targeting of minimal fibrotic lesions—
before extensive remodeling and bronchiolization have occurred—
will allow complete eradication of the disease. Thus, to truly
eradicate IPF, we need a paradigm shift from focusing on developing
cohorts of patients already diagnosed with IPF toward cohorts of
individuals highly likely to develop the disease. We could use

these cohorts to develop and test algorithms for early detection.
Then we could implement a multistep strategy to eradicate IPF:
identification of a population with high risk for ILA and performing
chest CT screenings when appropriate; in subjects with ILA,
identification of patients who will develop IPF; and last, systematic
study of interventions aimed at preventing progression to IPF. In an
editorial in 2012 (9) discussing an early report on ILAs (10), Dr.
David Lederer compared our traditional symptom-linked diagnosis
of IPF to diagnosing coronary artery disease only after the patient
presented with a myocardial infarction and called for new ways for
risk prediction and early detection of IPF. Seven years later, the
article by Hobbs and colleagues (8) suggests that we can move
forward—that we can diagnose IPF while the horse is still in the
barn.

Author disclosures are available with the text of this article at
www.atsjournals.org.
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3 The Respiratory Mucosa: Front and Center in Respiratory Syncytial

Virus Disease

Infantile bronchiolitis is a major scourge of early childhood, and
winter outbreaks fill the pediatric wards with wearisome regularity.
Most cases are caused by respiratory syncytial virus (RSV), which
was first isolated in 1956. Despite a vast amount of research in both
human and animal models, a deep understanding of the inefficiency
of protective immunity and, indeed, of the pathogenesis of RSV
disease has been frustratingly slow to come by.
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Most infants will be infected by RSV before their second
birthday, with the risk of severe disease peaking at just 2 months of
age. Despite the relative antigenic stability of the virus,
reinfections with RSV occur throughout life. Studying disease in
infants with primary disease presents considerable technical and
logistical challenges; therefore, animal models (especially cotton
rats, mice, and cows) have been widely used to enhance our
understanding of primary infection and vaccine-enhanced
disease. These models have been central in our efforts to
understand the host immune response to RSV and the role of
these responses in causing inflammatory bronchiolitis, but they do
not recapitulate human disease in every detail.

Although animal models have advanced our understanding of
the pathogenesis of bronchiolitis, a role for the type 2 immune
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