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Introduction 

The need to control heat transfer through multilayer materials is ubiquitous and multidisciplinary 
with respect to applications. These applications range from control of volumetric heat deposition 
for surface treatment of materials to thermal management of systems, where there can be localized 
high-temperature regions resulting in system degradation. Optimizing heat transfer through 
multilayer materials requires estimating the thermal response of layered composite materials 
whose fabrication is both feasible and operationally practical. Accordingly, parametric models that 
combine heat-transfer characteristics and thermal material properties, enabling prediction of 
temperature fields within multilayer materials, should be well posed. These models should be 
conveniently adaptable for estimating the thermal response of different types of layered materials. 

A general approach for control of heat transfer through multilayer materials is that of system design 
that includes heat sinks as embedded layers. This approach is motivated by welding processes, 
where work piece temperatures are controlled by thermal contact to base plates, and by electronic 
system designs requiring thermal management. [1] Parametric modeling of heat-sink controlled 
heat transfer can be based on modeling energy flow through a system via a thermal impulse and 
removing a specified amount of energy from the system via a negative thermal impulse at a 
specified location. The mathematical foundation is that of Green’s functions and the inverse 
thermal-analysis approach, where parametric models provide for inclusion of information 
concerning the physical characteristics of heat-transfer processes. The present study concerns 
parametric modeling of a layered material system including heat-sink controlled heat transfer. This 
system is inherently multiscale in nature, and therefore, poses a specific problem with respect to 
parametric modeling. A schematic representation of the multiscale characteristics of layer-
configuration and heat-sink controlled heat transfer in layered-material systems is given in Figure 
1, where the heat-sink layer is assumed to have a thermal diffusivity that is significantly larger 
than those other layers comprising the system. Referring to Figure 1, for the purpose of parametric 
modeling, layer-configuration and heat-sink controlled heat transfer in layered-materials can be 
represented as occurring on three different length scales.  

_____________
Manuscript approved Month 00, 2020.
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Figure 1. Schematic representation of multiscale characteristics of layer and heat-sink controlled 
heat transfer in layered materials, where TH and TL are temperatures of hot body and ambient 
atmosphere, respectively, and TC(y) is temperature of heat sink at location y, along the heat-sink 
layer relative to the cooling bath. 
 
The general physical character of heat sinks is that their thermal diffusivities are substantially 
greater than those of the workpieces whose temperature fields are to be controlled. Accordingly, 
thermal coupling of heat sinks to adjacent layers is such that regions of temperature fields close to 
and within heat sinks can be represented by a negative thermal impulse. [1] 
      
The goal of parametric modeling is the generation of a parameter space for estimating optimal 
parameter values for a given system specification. The parameter space should be an encoding of 
material response functions (e.g., effective thermal diffusivities) that are achievable for realistic 
system design. For complex material systems, the determination of material response functions is 
well posed in terms of inverse analysis. The multiscale character of layer and heat-sink control 
represented by Figure 1 defines three inverse problems, with respect to which the parametric 
models can be applied for inverse analysis. These inverse problems follow from the realization 
that layered-material thermal properties are not the same as those of bulk materials. First, referring 
to Figure 1, it should be noted that heat transfer within the heat-sink layer, which is along scale l1, 
is that of a thin-layer material, coupled to adjacent material surfaces. The thermal diffusivity for 
heat transfer with respect to scale l1 should be a complex function of different physical variables, 
and in general better determined by inverse analysis, rather than approximated using bulk 
properties. Next, referring to Figure 1, heat transfer along scale l2, within a complex multilayer 
material, is characterized by multiple material interfaces. Again, thermal diffusivity for heat 
transfer with respect to scale l2 is not that characteristic of a uniform bulk material having known 
thermal properties, and thus should be determined by inverse analysis. In particular, for layer and 
heat-sink control of temperature fields within layered materials, there is typically thermal transport 
due to advection at bounding surfaces of the layered system. Accordingly, parametrization should 
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be extended to include effective diffusivities, which are based formally on replacing the advection-
diffusion operator with an effective-diffusion operator, i.e., 
 

𝜅𝜅 𝑑𝑑2𝑇𝑇
𝑑𝑑𝑥𝑥2

− 𝑉𝑉 𝑑𝑑𝑇𝑇
𝑑𝑑𝑥𝑥

= 𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑2𝑇𝑇
𝑑𝑑𝑥𝑥2

         Eq. 1 
 
Where V specifies the material flow field and 𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒 is the effective diffusivity, which represents the 
combined influence of both thermal diffusion and advection. Physically, advection is not expected 
to manifest as influencing thermal transport locally within a layered-material system but rather as 
influencing thermal transport over the its entire length l2. Accordingly, the phenomenological 
influence of advection, which is associated with ambient environments at surface boundaries of a 
layered-material system, again poses a problem of inverse thermal analysis for determination of 
effective diffussivities. Finally, referring to Figure 1, heat transfer along scale l3, the heat-sink 
layer, is effectively singular with respect to scales l1 and l2 because of the relatively large thermal 
diffusivity of this layer. Accordingly, with respect to parametric modeling, this layer can be 
represented by an effective heat-sink source having singular characteristics with respect to heat 
transfer. Heat transfer to the localized heat-sink layer from adjacent layers of material will depend 
on the characteristic thermal coupling of layer interfaces, which again is a complex material 
property, not known a priori, and thus appropriately posed for inverse thermal analysis. The 
singular nature of heat-sink coupling was demonstrated in Reference 2. [2] In addition to providing 
quantitative estimation by means of inverse thermal analysis, parametric modeling can provide 
qualitative estimation of system response. For example, in the case of layer-configuration and heat-
sink controlled heat transfer in layered-materials, what general design goals can be achieved by 
adjusting qualitatively relative locations and diffusivities of layers.  
 
The purpose of this analysis is to present a modification to the heat-kernel solution which includes 
the effects of multiple layers with varying thermal diffusivities, interface effects (e.g., large 
changes in thermal properties), contact resistance, and the effects of singular heat-sinks that are 
represented by a negative thermal impulse. Organization of subject areas presented are as follows. 
First, parametric models of temperature fields for layer and heat-sink controlled heat transfer in 
layered materials are presented. Second, prototype analyses using parametric models are 
described. Finally, a discussion and conclusion are given.  
 

Parametric Models 
 

The parametric models presented in this section are phenomenological generalizations of the 
analytical solution to the heat conduction equation for heat transfer through a boundary between 
regions having different thermal properties [3]. The solutions presented here are not bounded; 
therefore, the region extends from negative infinity to positive infinity. The heat sink models 
parametrically represent a 2-D system in 1-D due to the convenience of parameter optimization in 
1-D. The 2-D heat transfer along the heat sink layer is represented by an effective heat-sink source 
having singular characteristics with respect to heat transfer. Note that although this representation 
of the heat sink is that of a negative thermal impulse, it is possible to represent the heat sink by an 
effective diffusivity over a thin, finite layer. The heat sink's effective diffusivity must be 
independently determined for use in the following parametric models as an input parameter. The 
parametric models are formulated for simulating unsteady evolution of the temperature field via 
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modifications to the heat-kernel solution to the heat conduction equation. The analysis in this study 
considers evolution of a delta function impulse at time zero (i.e., heat kernel solution) propagating 
through a layered system with an initial ambient temperature profile, TA. The heat-kernel solution 
presented here propagates from position zero to infinity. Note that the multi-layer material slabs 
presented below are considered to be a finite when N0<N<Nk. The first layer and last layer of the 
material is considered to be an infinite medium in the half-space. 
  
Model 1. Shown in Figure 2 is a schematic representation of Model 1.  
 

 
Figure 2. Schematic representation of Model 1. 

 
For layer and heat-sink control of unsteady temperature fields within layered materials for a delta 
impulse of energy, where effects due to changes in diffusivity at layer interfaces are assumed small, 
parametric representation in terms the heat-kernel solution is of the form 
 

    𝑇𝑇(𝑥𝑥�, 𝑡𝑡) = 𝐺𝐺1(𝑥𝑥, 𝑥𝑥0,𝛽𝛽, 𝑡𝑡, 𝑡𝑡0) − 𝐺𝐺𝑠𝑠(𝑥𝑥, 𝑥𝑥𝑠𝑠, 𝜅𝜅𝑠𝑠, 𝑡𝑡, 𝑡𝑡𝑠𝑠) + 𝑇𝑇𝐴𝐴      Eq. 2 
 
Where 

                              𝐺𝐺1(𝑥𝑥, 𝑥𝑥0,𝛽𝛽, 𝑡𝑡, 𝑡𝑡0) =   𝑢𝑢(𝑡𝑡−𝑡𝑡0)∙𝐶𝐶(𝑥𝑥0)
�4𝜋𝜋∙𝜅𝜅0∙(𝑡𝑡−𝑡𝑡0)

𝑒𝑒−
𝛽𝛽2

4∙(𝑡𝑡−𝑡𝑡0)                   Eq. 3 

 

      𝐺𝐺𝑠𝑠(𝑥𝑥, 𝑥𝑥𝑠𝑠, 𝜅𝜅𝑠𝑠, 𝑡𝑡, 𝑡𝑡𝑠𝑠) = 𝑢𝑢(𝑡𝑡−𝑡𝑡𝑠𝑠)∙𝐶𝐶𝑠𝑠(𝑥𝑥𝑠𝑠)
�4𝜋𝜋∙𝜅𝜅𝑠𝑠∙(𝑡𝑡−𝑡𝑡𝑠𝑠)

𝑒𝑒−
(𝑥𝑥−𝑥𝑥𝑠𝑠)2

4∙𝜅𝜅𝑠𝑠∙(𝑡𝑡−𝑡𝑡𝑠𝑠)       Eq. 4 

 
      𝛽𝛽 = 𝑥𝑥−𝑥𝑥𝑛𝑛

�𝜅𝜅𝑘𝑘
+ ∑ 𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖

�𝜅𝜅𝑖𝑖

𝑁𝑁𝑘𝑘−1
𝑖𝑖=0            Eq. 5 

for 𝑥𝑥𝑛𝑛+1 ≥ 𝑥𝑥 ≥  𝑥𝑥𝑛𝑛, and 

                                                                                                                Eq. 6 
 

                                                                                              Eq. 7 
 
The quantities TA, C(x0), Cs(xs), κs, κk (k = 1,..., Nk), t, and u(t) are the ambient temperature, 
arbitrary scaling parameter, effective diffusivities of the layered system, effective diffusivity of 
the heat-sink, time, and unit step function, respectively [1]. Note that 𝛽𝛽, xn, and 𝑁𝑁𝑘𝑘 are path 
weighted thermal diffusivity, the layer interface behind of the current spatial position, and the 
number of layers up to the current spatial position. The parametric model Eqs. 2-4 (Model 1) adopts 
C(x0), Cs(xs), κs, and κk (k = 1,..., NL) as adjustable parameters for inverse thermal analysis and 
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simulation of layer-configuration and heat-sink controlled heat transfer in layered materials. 
Equation 3 represents the classic heat-kernel solution to the heat conduction equation where the 
delta impulse begins propagating at time t0. The heat sink term is represented by Equation 2 and 4 
where the heat sink effectively removes energy from the system at a specified location beigning at 
time ts. Equation 5 represents the addition of multiple layers where the thermal diffusivity at any 
location  in space, x, is a function of the diffusivities of the entire system. For the purpose of this 
model, the y dependence of temperature, which is with respect to the heat-sink temperature Tc(y) 
along the coordinate axis perpendicular to heat transfer through the layer system described by 
Figure 1, 2, and 3, is effectively disregarded in this 1-D model space. The dependence on the y-
axis location of a heat sink would effectively be captured by the equivalent source term C(xs) where 
the scaling parameter has been evalauted for a system at a specified y-location using inverse 
analysis. Note that the effects of contact resistance between layers are not explicitly shown in 
Model 1 because contact resistance can be expressed as an effective diffusivity determined through 
inverse analysis. 
 
The locations  and temperature values  specify constraint conditions on the temperature field. 
Constraint conditions are imposed on the temperature field spanning the spatial domain of the 
layered material by minimization of the objective function defined by Eq. 7, where  is the target 
temperature for position  = . The input of information into the parametric model, 
defined by Eqs. 2-5 (Model 1) and Eqs. 8-15 (Model 2) presented below, is effected by the 
assignment of individual constraint values to the quantities  and the form of the basis functions 
adopted for parametric representation, which include the influence of boundary and constraint 
conditions (i.e., TH, TL, and TC in Figure 1) and charateristic changes of thermal properties from 
one layer to another. The constraint conditions and parameterized basis functions provide for the 
inclusion of information from both laboratory and numerical experiments.  
 
Model 2. Shown in Figure 3 is a schematic representation of Model 2.  
 

 
Figure 3. Schematic representation of Model 2. 

 
For layer-configuration and heat-sink control of unsteady temperature fields within layered 
materials for a delta impulse of energy, where effects due to changes in diffusivity at layer 
interfaces are significant, parametric representation in terms of the heat-kernel solution is of the 
form 
 

𝑇𝑇(𝑥𝑥�, 𝑡𝑡) = 𝐺𝐺2(𝑥𝑥, 𝑥𝑥0, 𝑡𝑡, 𝑡𝑡𝑜𝑜) − 𝐺𝐺𝑠𝑠(𝑥𝑥, 𝑥𝑥𝑠𝑠, 𝜅𝜅𝑠𝑠, 𝑡𝑡, 𝑡𝑡𝑠𝑠) + 𝑇𝑇𝐴𝐴            Eq. 8 
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        𝐺𝐺𝑠𝑠(𝑥𝑥, 𝑥𝑥𝑠𝑠, 𝜅𝜅𝑠𝑠, 𝑡𝑡, 𝑡𝑡𝑠𝑠 ) = 𝑢𝑢(𝑡𝑡−𝑡𝑡𝑠𝑠)∙𝐶𝐶𝑠𝑠(𝑥𝑥𝑠𝑠)
�4𝜋𝜋∙𝜅𝜅𝑠𝑠∙(𝑡𝑡−𝑡𝑡𝑠𝑠)

𝑒𝑒−
(𝑥𝑥−𝑥𝑥𝑠𝑠)2

4∙𝜅𝜅𝑠𝑠∙(𝑡𝑡−𝑡𝑡𝑠𝑠)                 Eq. 9  

 
Where, for x < x1 and  𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥 + 𝑥𝑥0 − 2𝑥𝑥1, 
  

         𝐺𝐺2(𝑥𝑥, 𝑥𝑥0, 𝑡𝑡, 𝑡𝑡𝑜𝑜) =   𝑢𝑢(𝑡𝑡−𝑡𝑡0)∙𝐶𝐶(𝑥𝑥0)
�4𝜋𝜋∙𝜅𝜅0∙(𝑡𝑡−𝑡𝑡𝑜𝑜)

∙ �𝑒𝑒−
(𝑥𝑥−𝑥𝑥0)2

4∙𝜅𝜅0∙(𝑡𝑡−𝑡𝑡𝑜𝑜) + 𝑊𝑊0 ∙ 𝑒𝑒
−

(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)2

4∙𝜅𝜅0∙(𝑡𝑡−𝑡𝑡0)�   Eq. 10  

         
And for 𝑥𝑥 ≥  𝑥𝑥1,  

     𝐺𝐺2(𝑥𝑥, 𝑥𝑥0, 𝑡𝑡, 𝑡𝑡𝑜𝑜) =   𝑢𝑢(𝑡𝑡−𝑡𝑡0)∙𝐶𝐶(𝑥𝑥0)∙𝑊𝑊1

�𝜋𝜋∙𝜅𝜅1∙(𝑡𝑡−𝑡𝑡𝑜𝑜)
𝑒𝑒−

𝛽𝛽2

4∙(𝑡𝑡−𝑡𝑡𝑜𝑜)         Eq. 11 

      
      𝛽𝛽 = 𝑥𝑥−𝑥𝑥𝑛𝑛

�𝜅𝜅𝑘𝑘
+ ∑ 𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖

�𝜅𝜅𝑖𝑖

𝑁𝑁𝑘𝑘−1
𝑖𝑖=0          Eq. 12 

 
The layer weight coefficients W0 and W1 are given by 
 

    𝑊𝑊0 = 𝑘𝑘0√𝜅𝜅1−𝑘𝑘1�𝜅𝜅0
𝑘𝑘0√𝜅𝜅1+𝑘𝑘1�𝜅𝜅0

       Eq. 13 

And 
 𝑊𝑊1 = 𝑘𝑘0𝜅𝜅1

�𝜅𝜅0�𝑘𝑘0√𝜅𝜅1+𝑘𝑘1�𝜅𝜅0�
       Eq. 14 

 
The quantities TA, C(x0), Cs(xs), κs, κk (k = 1,...,NL), t, and u(t) are are defined as for Model 1. The 
quantities k0 and k1 are the effective conductivities of layers 1 and 2, respectively It should be 
noted that the weight coefficients W0 and W1 represent the reflected and transmitted heat wave due 
to a large change in thermal properties. Also, the coefficients defined by Eqs. 13 and 14 provide a 
metric for estimating the influence on thermal transport due to changes of thermal properties at 
interfaces between layers. Resonably small values of W0 imply that Model 1 is applicable for 
analysis or simulation of layered-material heat transfer. In particular, Eq. 5 provides reasonably 
accurate representation of changes in effective diffusivity as a function of layer.  
 
Referring to Figure 3, the interface between layers, having large differences in effective 
diffusivities, can be placed at any position within the layered system. In which case, the effective 
diffusivity κ0 would be replaced by that determined using Eq. 15 and the k0 would be replaced by 
an effective conductivity given by Eqs. 16 and 17. 
 

𝜅𝜅𝑘𝑘 = (𝑥𝑥−𝑥𝑥0)2

𝛽𝛽2
       Eq. 15 

 
           𝛾𝛾 = 𝑥𝑥−𝑥𝑥𝑛𝑛

�𝑘𝑘𝑘𝑘
+ ∑ 𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖

�𝑘𝑘𝑖𝑖
𝑛𝑛−1
𝑖𝑖=1       Eq. 16 

 
       𝑘𝑘𝑘𝑘 = (𝑥𝑥−𝑥𝑥0)2

𝛾𝛾2
       Eq. 17 
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Note that the effects of contact resistance between layers are not explicitly shown in Model 2 
because contact resistance can be expressed as an effective diffusivity determined through inverse 
analysis. Additionally, contact resistance can be explicitly represented by Eq. 10 where the 
weighting functions, W0 and W1, account for the contact resistance between layers. 
 
The parametric models presented here, Models 1 and 2, specify a general procedure for parametric 
modeling of unsteady temperature fields in layered-material systems. These parametric models are 
characterized by the classic heat-kernal solution coupled with a layered material system and 
negative heat-sink source. The mathematical foundation of Models 1 and 2 is a discrete 
representation of a parabolic partial differential equation which is consistent with the physical 
characteristics of unsteady heat conduction that is unconditionally stable [11]. 
 
      

Heat-Sink Controlled Temperature Fields  
 
This section describes a series of computational experiments describing parametric modeling of 
layer-configuration and heatsink-controlled thermal transport within layered material systems. The 
design of these experiments, which uses physically realistic thermal properties, was not for 
demonstrating optimal materials for layer-configuration and heat-sink thermal control, which is 
certainly beyond the scope of this study, but rather general characteristics of the parametric models 
for modeling and simulation of such control, as well as demonstrating feasibily of such control 
using multilayer and heat-sink materials. The computational experiments described in this section 
represent thermal analysis/simulations; however, inverse thermal anaylsis would be required for 
real world application, the goal of parametric modeling. 
  
The thermal simulations as posed here assume a complex interaction between a heating surface in 
the form of a delta impulse of energy and a multilayer material where all of the complex 
interactions are treated as effective thermal diffusivities, e.g. convective and radiative heat transfer 
are treated as an effective thermal diffusivity. For example, the interaction of a heating body and 
multilayer material can involve flow of material through porous microstructure within layers and 
subsequent evaporation at the outer surface. A first estimate of the thermal response of a layered 
system using inverse analysis, without consideration of details concerning multilayer 
characteristics and heat-sink-layer coupling, is determination of an effective diffusivity averaged 
over a single layer.  
 
For the prototype thermal analyses presented below, it was assumed that determination of effective 
diffusivities was according to an experimentally measured boundary value TH and an 
experimentally measured heat sink temperature reduction, TS, as well as other assumed system 
characteristics.  
 
Model 1. A first estimate of the thermal response of a layered system using Model 1, without 
consideration of details concerning multilayer characteristics and heat-sink-layer coupling, is 
evaluating the effects of thermal diffusivities on temperature distribution over time. Here the 
effective diffusivities (e.g., κ0 (polypropylene, 9.6⸱10-8 m2s-1)) are assumed to be determined 
according to experimentally measured boundary values TH and TL of the layer-material diffusivity 
without boundary and microstructural influences.  Note that in the following simulations, Figures 
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4-12, that the first layer extends to negative infinity, and the last layer extends to positive infinity. 
The graphs have been clipped at a specified distance for graphical presentation purposes. The 
thermal pulse has been scaled, via the arbitrary scaling parameter C(x0), to a magnitude of 100OC 
at T(0, t0), but the pulse at t0 will only be shown in Figure 4 for graphical presentation purposes. 
 

 
Figure 4. Prototype thermal analysis and simulation over time using single-layer parametric 
representation, Model 1, of a multilayer system. This graph is of the form of the classical heat-
kernel solution where the medium extends from negative infinity to positive infinity. 
 

 
Figure 5. Prototype thermal analysis and simulation using single-layer parametric representation, 
Model 1, of a multilayer system at time equals 10s. This graph is of the form of the classical heat-
kernel solution where the medium extends from negative infinity to positive infinity.  
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A more detailed estimate of the thermal response of a layered system, without the presence of a 
heat-sink layer, is by means of effective diffusivities averaged over two layers. This type of inverse 
analysis or simulation assumes prior knowledge concerning the relative values of effective 
diffusivities (i.e., that the diffusivity of one average layer is greater than that of the other). This 
type of thermal-response estimation is described in Figure 5, where the effective diffusivities κ0 
and κ1, are assumed to be determined according to experimentally measured boundary values TH 
and TL, in the case of inverse analysis, or to be values within a parameter space, in the case of 
system simulation. In the case of Model 1, κ0 and κ1 are assumed to be similar enough such that 
effects of large changes in thermal diffusivity, Model 2, can be disregarded. 
 
 
 

 
Figure 6. Prototype thermal analysis and simulation using double-layer parametric representation, 
Model 1, of a multilayer system where layer 1 (-∞ mm to 1 mm) is semi-infinite and layer 2 extends 
to infinity in the half-space. The thermal diffusivity of layers 1 and 2 are κ1 (10⸱κ0) and κ0, 
respectively. 
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Figure 7. Prototype thermal analysis and simulation using triple-layer parametric representation, 
Model 1, of a multilayer system where layer 1 (-∞ mm to 1 mm) is semi-infinite, Layer 2 (1 mm 
to 2 mm) is finite, and layer 3 extends to infinity in the half-space. The thermal diffusivity of layers 
1, 2, and 3 are 10⸱κ0, κ0, and 0.1⸱κ0, respectively. 
 
 
Next, an estimate of the thermal response of a layered system, where there exists a single heat-sink 
layer, is determination of an effective diffusivity averaged over the layered system and an effective 
diffusivity for coupling of the heat sink to the layered system. This type of thermal-response 
estimation is described in Figures 7-9, where the effective diffusivities κk and κs  are assumed, 
with respect to inverse analysis, to be determined according to experimentally measured boundary 
values TH and TL and an initial estimate of the layered-material diffusivity. Consistently, Figures 
7-9 can also describe a simulation where the effective diffusivities κk and κs are assumed to be 
values within a parameter space, which is a complex function of process variables. 
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Figure 8. Prototype thermal analysis and simulation using single-layer parametric representation 
with the inclusion of a heat-sink, Model 1, of a multilayer system where the layer extends from 
negative infinity to positive infinity in the half-space. The thermal diffusivity of the heat sink is 
10⸱κ0, and Cs corresponds to a ΔT of 10OC. The heat sink is located at 0.5mm, and turns on at ts 
equals 4.9s. 
 
 

 
Figure 9. Prototype thermal analysis and simulation using double-layer parametric representation 
with the inclusion of a heat-sink, Model 1, of a multilayer system where layer 1 (-∞ mm to 1 mm) 
is semi-infinite and layer 2 extends to infinity in the half-space. The thermal diffusivity of layers 
1 and 2 are 10⸱κ0 and κ0, respectively. The thermal diffusivity of the heat sink is 10⸱κ0, and Cs 
corresponds to a ΔT of 10OC. The heat sink is located at 0.5 mm, and turns on at ts equals 4.9s. 
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Figure 10. Prototype thermal analysis and simulation using triple-layer parametric representation 
with the inclusion of a heat-sink, Model 1, of a multilayer system where layer 1 (-∞ mm to 1 mm) 
is semi-infinity, Layer 2 (1 mm to 2 mm) is finite, and layer 3 extends to infinity in the half-space. 
The thermal diffusivity of layers 1, 2, and 3 are 10⸱κ0, κ0, and 0.1⸱κ0, respectively. The thermal 
diffusivity of the heat sink is 10⸱κ0, and Cs corresponds to a ΔT of 10OC. The heat sink is located 
at 1.5 mm, and turns on at ts equals 4.9s. 
 
 

 
Figure 11. Prototype thermal analysis and simulation, at time equals 5s, using single-layer 
parametric representation, Model 1, of a multilayer of a multilayer system where the layer extends 
from negative infinity to positive infinity in the half-space. The thermal diffusivity of the heat sink 
is 10⸱κ0, and Cs corresponds to a ΔT of 10OC. The heat sink is located at 0.5 mm, and turns on at 
ts equals 4.9s. 
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Figure 12. Prototype thermal analysis and simulation, at time equals 5s, using the double-layer 
parametric representation, Model 1, of a multilayer of a multilayer system where layer 1 (-∞ mm 
to 1 mm) is semi-infinite and layer 2 extends to infinity in the half-space. The thermal diffusivity 
of the heat sink is 10⸱κ0, and Cs corresponds to a ΔT of 10OC. The heat sink is located at 0.5 mm 
and turns on at ts equals 4.9s. 
 
Model 2. A more detailed estimate of the thermal response of a layered system, without the 
presence of a heat-sink layer, considers the effects of large changes in thermal properties between 
layers or the effects of contact resistance between layers. As stated previously, this type of inverse 
analysis or simulation assumes prior knowledge concerning the relative values of effective 
diffusivities (i.e., that the diffusivity of one average layer is greater than that of the other). This 
type of thermal-response estimation is described in Figures 13 and 14, where the effective 
diffusivities, κk, are assumed to be determined according to experimentally measured boundary 
values TH and TL, in the case of inverse analysis, or  to be values within a parameter space, in the 
case of system simulation. .  Note that in the following simulations, Figures 13-17, that the first 
layer extends to negative infinity, and the last layer extends to positive infinity. The graphs have 
been clipped at a specified distance for graphical presentation purposes. 
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Figure 13. Prototype thermal analysis and simulation, at time equals 5s, using double-layer 
parametric representation, Model 2, of a multilayer system where layer 1 is semi-infinite (-∞ mm 
to 1 mm) and layer 2 extends to infinity in the half-space. The thermal diffusivity of layers 1 and 
2 are 10⸱κ0 and κ0 for configuration 1 and κ0 and 10⸱κ0 for configuration 2, respectively. 
 

 
Figure 14. Prototype thermal analysis and simulation, at time equals 5s, using double-layer 
parametric representation, for both Model 1 and 2, of a multilayer system where layer 1 is semi-
infinite (-∞ mm to 1 mm) and layer 2 extends to infinity in the half-space. The thermal diffusivity 
of layers 1 and 2 are 10⸱κ0 and κ0, respectively. 
 
Figure 15, 16, and 17 show the thermal response of the system, presented in Figures 11 and 12, 
with the inclusion of a heat-sink layer, where the effective diffusivities κk and κs, are assumed to 
be determined according to experimentally measured boundary values TH and TL, in the case of 
inverse analysis, or to be values within a parameter space, in the case of system simulation. 
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Figure 15. Prototype thermal analysis and simulation, at time equals 5s, using double-layer 
parametric representation with the inclusion of a heat-sink, Model 2, of a multilayer system where 
layer 1 is semi-infinite (-∞ mm to 1 mm) and layer 2 extends to infinity in the half-space. The 
thermal diffusivity of layers 1 and 2 are 10⸱κ0 and κ0 for configuration 1 and κ0 and 10⸱κ0 for 
configuration 2, respectively. The thermal diffusivity of the heat sink is 10⸱κ0, and Cs corresponds 
to a ΔT of 10OC. The heat sink is located at 0.5 mm and turns on at ts equals 4.9s. 
 

 

 
Figure 16. Prototype thermal analysis and simulation, at time equals 5s, using the double-layer 
parametric representation, Model 2, of a multilayer of a multilayer system where layer 1 (-∞ mm 
to 1 mm) is semi-infinite and layer 2 extends to infinity in the half-space. The thermal diffusivity 
of layers 1 and 2 are 10⸱κ0 and κ0, respectively. The thermal diffusivity of the heat sink is 10⸱κ0, 
and Cs corresponds to a ΔT of 10OC. The heat sink is located at 1.5 mm and turns on at ts equals 
4.9s. 
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Figure 17. Prototype thermal analysis and simulation, at time equals 5s, using the double-layer 
parametric representation, for both Models 1 and 2, of a multilayer of a multilayer system where 
layer 1 (-∞ mm to 1 mm) is semi-infinite and layer 2 extends to infinity in the half-space. The 
thermal diffusivity of layers 1 and 2 are 10⸱κ0 and κ0, respectively. The thermal diffusivity of the 
heat sink is 10⸱κ0, and Cs corresponds to a ΔT of 10OC. The heat sink is located at 1.5 mm and 
turns on at ts equals 4.9s. 
 
 

Discussion 
      
For the prototype thermal analyses presented above, it was assumed that the heat source and heat 
sinks were thermal impulses represented by a delta function (i.e., the heat kernal solution), where 
the energy enters the domain and decays to the ambient temeprature as time approaches infinity. 
The results show that the addition of the heat sink term properly reduced the local temeprature 
fields and decayed to zero as time approached infinity. The additional layers added to the system 
demonstrated the effects of various materials and their interface effects on the temperature fields 
throughout the layered system.  
 
Although not yet explicity included in these models other than as an effective diffusivity, another 
boundary value for thermal analysis and simulation is that of the heat-flux QL, which depends on 
material properties of the outer surface and ambient environment, Figure 16.  
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Figure 16. Schematic representation of heat-flux boundary condition QL on outer surface of 
layered-material system. 
 
In particular, QL equals the rate of heat transfer between the outer surface and ambient environment 
due to convection (advection and diffusion) and thermal radiation, and may be expressed by 
 
    𝑄𝑄𝐿𝐿 =  ℎ𝑐𝑐(𝑇𝑇𝐿𝐿 − 𝑇𝑇𝐴𝐴) +  𝜀𝜀𝜀𝜀(𝑇𝑇𝐿𝐿4 − 𝑇𝑇𝐴𝐴4)                              Eq. 17 
 
Where hc, ε, σ, and TA are the convective heat-transfer coefficient, emissivity of the outer surface 
(e.g., 0.97 for polypropylene), Stefan-Boltzmann Constant (5.6704⸱10-8 W⸱m-2⸱K-4, and the 
ambient-environment temperature, respectively. The second term in Eq. 17 is the Stefan-
Boltzmann-Law model of radiant heat [12]. For design optimization of layered material systems 
with respect to heat transfer, one seeks to minimize the difference TL - TA.   
 
The prototype thermal analyses, using Models 1 and 2, adopt effective diffusivities and equivalent 
sources. This separation of parameters may provide some insight concerning the scaling of 
effective diffusivities relative to estimated bulk heat-transfer properties of materials comprising a 
layered system. Formally, however, the quantities C(x0)/�4𝜋𝜋〈𝜅𝜅0〉 and Cs(xs)/�4𝜋𝜋〈𝜅𝜅𝑠𝑠〉 are not 
independent parameters, and for inverse thermal analysis and simulation, they may be combined 
phenomenologically into single adjustable parameters C(x0) and Cs(xs), respectively.  
       
Formally, Models 1 and 2 also provide parametric representation of heat transfer through layered 
material system where effective diffusivities are functions of position within layers. This follows 
in that Eqs. 5 and 12 of Models 1 and 2, respectively, can be adopted for approximate discrete 
representation of effective diffusivities whose forms are that of continuous functions. 
       
General features of the parametric Models 1 and 2 were presented in this study with respect to 
thermal analysis and simulation. As previously described, given that a parameter space has been 
generated for a given system, a selected parametric model can be used for system simulation and 
prediction of required parameters to achieve a given target temperature field. For example, the 
calculations shown in Figures 13 and 14 can be interpreted as prototype simulations of heat sink 
properties required to achieve a target temperature at a position, xs, in space, given that a parameter 
space of encoded thermal response properties is available. In principle, this parameter space would 
include effective diffusivities for different layered and heat sink materials, for a sufficient range 
of boundary conditions.  
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As discussed in the introduction, heat transfer within the heat-sink layer, along scale l1 described 
schematically in Figure 1, is that of a thin-layer material, interface-coupled to adjacent material 
surfaces. In general, experimental measurement and modeling of temperatures within this layer 
are for a temperature field spanning a two-dimensional surface, which is coupled to a cooling bath 
at specified locations along its edge. Development of parametric-model representations of this 
temperature field, which is on a different scale than that of heat transfer through a multilayer 
system, poses a separate problem, and is dependent on the system of interest.  
 

Conclusion 
 
Determination of optimal process parameters for achieving a given target temperature field for 
heat transfer through a layered material using layer configurations and heat sinks poses a specific 
problem. The results of this study demonstrate use and general features of parametric models, 
whose parameterization should provide convenient generation of parameter spaces for 
optimization of layered materials with respect to target heat-transfer characteristics. These models 
consist of general parametric representations that are structured for further extension and 
modification, which should be the focus of future studies. Further studies should also investigate 
hot boundary sources where the energy introduced to the system is not that of a single delta 
function impulse. 
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