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EXECUTIVE SUMMARY

This basic research program has sought to develop the mathematical tools and language to refocus sensor 
array and machine olfaction design away from the predominant ad hoc approach to one based on rigorous 
statistical estimation. This program has demonstrated that the physics of the underlying sensor mechanisms 
in concert with statistical models of their attendant noise can rigorously define and assess the sensing capa-
bilities of sensor arrays. These assessments must be made within the context of a systematic description of 
sensing tasks, which was shown to correspond to specific vectors in a geometric space spanning all potential 
mixture combinations. The resolving power oriented in the direction of a particular sensing task is governed 
by the measurement error imparted by the sensors and the projection into chemical stimulus space indicated 
by the sensor response functions. Figures of merit for multivariate sensor arrays based on general statisti-
cal notions and agnostic to sensor-specific quantities were developed using information-theoretic measures, 
including the Fisher information and Kullback-Leibler information divergences. General measures of array 
sensitivity, selectivity, and resolving power were derived in this work. Important accompanying investiga-
tions regarding the chemical environment in which these sensor arrays might operate were also performed, 
demonstrating approaches to characterizing the impact of chemical background on sensor performance. 
Models for realistic chemical background mixtures were developed as well as an information-theoretic ap-
proach for assessing the efficacy of chemical simulants under different b ackgrounds. Finally, this framework 
was used to explain how the fundamental transduction mechanism associated with a particular type of sen-
sor limits the chemical informing power achievable by arrays of those type of sensors, as well as how the 
informing power can be expressed and compared between different sensor types. In total, this work indi-
cates that a reliable understanding of sensor array performance is significantly p redicated o n t he e xtent to 
which one understands how the sensors function on a molecular basis as well as the extent to which one 
understands the nature of the sensing tasks that are to be accomplished.

This work has demonstrated a rational, quantitative approach for designing and optimizing sensor ar-
rays for chemical detection. The degree to which sensor array capabilities and limitations can be properly 
understood is unavoidably linked to the degree to which the underlying response mechanism has been char-
acterized, including a characterization of sensor noise. Further, expressions of sensor array capabilities are 
inextricably linked to specific formulations of sensing t ask. In scenarios where detailed knowledge of sens-
ing task is available (i.e. specification desired discernible chemical stimuli and characterization of chemical 
background) efficient sensor arrays can be designed at the expense of r o bustness. When the sensing task is 
poorly understood, additional complexity can be engineered into the detection system to compensate for this 
uncertainty. This suggests that investigation of the molecular basis of sensor response mechanism and prac-
tical investigations into the nature of the sensing tasks that one wishes to address are equally as important as 
development of the sensor technology itself.
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DESIGN THEORY FOR CHEMICAL SENSING

1. INTRODUCTION

Chemical detection and analysis is a critical component of many DoD and government activities and
takes place in a wide variety of environments, under a wide range of needs and contexts. For example, 
both submarine crew and naval aviators need ongoing situational awareness of breathing atmosphere qual-
ity, including the ability to detect and identify trace contaminants at particular actionable levels, but on 
significantly different platform. Warfighters in forward operations may require specific capabilities to detect 
trace explosives or chemical agents in harsh, low-resource environments, while security agencies may wish 
to detect the same compounds at domestic checkpoints, but with drastically different available resources, 
throughput requirements and tolerance for false positives. Trace chemical analysis is needed to validate 
pristine clean rooms as well as to remediate contaminated sites. Others may require chemical detection 
systems to ensure critical, chemically complex materials, such as aviation fuel, conform to product specifi-
cations prior to use. In some cases, it is critical to quantitatively assess the amount of a particular chemical 
present, while in others it is sufficient to provide a qualitative assessment of the presence of one of a partic-
ular class of compounds. As one might expect, correctly identifying the proper chemical detection strategy 
is thus essential for successfully support the needs of a given sensing application and context.

In general, chemical measurement encompasses a wide range of qualitatively distinct types of processes 
that can be loosely indexed by some notion of complexity. At one extreme are relatively simple operations, 
like target analyte detection in the absence of a chemical background. At the other extreme are more complex 
problems, such as analytical determination of the content of unknown chemical mixtures. Most chemical 
sensing applications occupy intermediate locations on this scale, representing varying degrees of complexity. 
Chemical sensor arrays represent a promising strategy for addressing a variety of resource-constrained, 
complex chemical sensing tasks [1]. Such devices have generated considerable interest over the past 40 
years, both by virtue of their analogy to biological olfaction (in which an array of several hundred different 
olfactory receptor neurons support perception of thousands of distinct olfactory perceptions) as well as 
because they represent a promising intermediate between a need to design and field highly specific chemical 
sensors for each potential sensing task and the costs and logistical burdens associated with using analytical 
instruments.

Intuitively, and perhaps a bit simplistically, one might expect that a more complicated sensing tasks 
require a commensurate increase in sensing hardware complexity to be successfully addressed, and con-
versely, that simpler sensing tasks should require less complex technical solutions. While this intuition may 
be supported by practical experience in chemical measurement, there is no general principal governing the 
design of chemical measurement technology that says as much,and there is no general description of what 
exactly “complexity” means for the purposes of chemical detection system design. There is massive diver-
sity in the scope of possible configurations of arrays of nonspecific chemical se nsors, both an  advantage 
and a drawback of such systems. The advantage is that, in theory, instrumental complexity can be tailored 
to an analytical task of arbitrary scope. However, designing a sensor array configuration that addresses a

Manuscript approved TBD.
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2 Kevin J. Johnson and Adam C. Knapp

complex sensing task to a desired performance level can be difficult and there is limited specific guidance
and theory as to how such systems should be built. This has doubtless slowed their adoption and commercial
prospects in the past few decades [2–6]. Nevertheless, the idea of sensor arrays as a potential alternative
to more costly analytical instrumentation remains popular and continues to be an active area of research
in the sensing community, where, owing to a persistent desire in most applications to utilize simpler, less
costly hardware whenever possible, there remains significant motivation to develop and build sensor arrays
for complex sensing tasks.

The underlying thesis of this work is that a sensing technology should be designed so that its information-
generating capacity is appropriately matched to the complexity of the sensing task (or tasks) that it is re-
quired to accomplish, and thus that design should be informed by an understanding of how information
flows through these systems as well as by an understanding of the parameters of the sensing tasks to be ac-
complished. Doing this in a systematic manner requires a quantitative understanding of how sensor response
translates to chemical information for multisensory systems, how this relates to the informational require-
ments of chemical sensing tasks, and finally how aleatoric uncertainty in sensor response and epistemic
uncertainty regarding the sensor task impact this process. We show how concepts and approaches from
information theory, a branch of mathematics associated with describing and solving problems in communi-
cations, signal processing and cryptography is uniquely suited to address this challenge, enabling derivation
of quantitative measures to predict the information-generating capacity of specific chemical measurement
technologies under uncertainty.

1.1 Sensing Tasks

Fig. 1—Examples of analytical tasks involving a two-dimensional space describing all possible mixtures
of two analytes, a1 and a2. Top row: detection of a1, quantitation of a1, detection of a2, quantitation
of a2. Bottom row: quantification of both a1 and a2, identification of a particular mixture composition,
detection of mixtures belonging to contiguous and non-contiguous arbitrary subregions of the space.

Regardless of context or complexity, the fundamental task in any chemical sensing application is to use
a measured response from the sensing system to discern between two or more possible chemical stimuli.
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The term “chemical stimulus” refers to a specific chemical environment impinging upon the active portion
of a chemical sensing system. The term “sensing task” refers to a specification of two or more chemical
stimuli that one wishes to discern. It is helpful to think of the range of possible chemical stimuli in a given
scenario as occupying a K-dimensional Euclidean space with each axis corresponding to the concentration
of one of K possible chemical compounds. Each unique mixture of chemical compounds is represented by
a vector of K concentrations, providing Cartesian coordinates in the space. Movement along the direction
described by this vector indicates change in the amount of the mixture present, while angular displacement
from this vector indicates changes in mixture composition. Thus, the space contains all possible mixtures
of the K different compounds in a continuous fashion, with specific mixtures having specific locations, and
displacements in particular directions associated with specific changes in mixture composition. Any sensing
task can thus be described as a requirement to be able to resolve particular regions of this space from each
other, as illustrated in Fig. (1).

Qualitative tasks involve a requirement to discern stimuli from discrete regions of the space, while
quantitative tasks involve a requirement to be able to discern incremental displacements in the space in
particular directions. More generally, a given analytical task can be described mathematically at each point
in the space as a requirement on resolving power associated with incremental displacement in any direction.
This provides a means to begin understanding sensing task complexity in a more rigorous manner that is
related to the amount of information about the chemical environment it represents. For example, complete
quantitative analysis of mixture composition requires every incremental volume of the space to be mutually
discernible to the same degree. Alternatively, qualitative detection of one target analyte requires only that
points falling on one side of a hyperplane defined by the desired detection threshold be discernible from those
falling on the other side. Likewise, identification of a particular chemical mixture from others requires that
points that lie along the vector describing that mixture be discernible from those that do not. This geometric
interpretation provides a useful framework for objectively assessing chemical sensor system capabilities for
specific sensing tasks.

1.2 Sensors and Sensor Arrays

Fig. 2—Example sensor response function and associated metrics. Left: sensor response as a function of
concentration, showing dynamic range, linear range, and signal roll-off due to concentrations leading to
sensor saturation or below response threshold. Middle: sensitivity of nominal sensor response function
at left. Right: limit of detection as a function of baseline noise sigma in sensor response.

Next, we consider complexity of chemical measurement devices. Devices employed for simple sensing 
tasks, such as detection of specific target analytes, are often categorized as chemical sensors or detectors 
while those employed to address the most complex sensing tasks are often categorized as instruments. The
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former tend to provide univariate responses corresponding to individual target analytes, while the latter of-
ten provide a multivariate response pattern that changes shape with different target analytes. Here, the term
“chemical sensor” will be used as a general term to reference any device that is employed to interrogate a
chemical mixture and is capable of transducing a measurable response from a molecular interaction with
that mixture, with a characteristic uncertainty according to a particular measurement error distribution. Crit-
ical aspects of and individual sensor’s functional relationship are associated with standard figures of merit
analytical chemistry, illustrated in Fig. (2).

The derivative of sensor response with respect to stimulus concentration corresponds to analytical sen-
sitivity. The uncertainty associated with sensor measurement error, combined with sensitivity gives rise to
characteristic concentrations at which a chemical stimulus can be reliably detected or quantified, as well as
to signal-to-noise ratios associated with specific concentrations. Finally, notions of analytical selectivity rest
on the degree of similarity between sensor response functions corresponding to different chemical stimuli.

Fig. 3—. Example response functions of three different sensors (left , right and middle) exhibiting cross-
sensitivity against three different analytes (solid, dot and dash.)

Sensor arrays consist of multiple different sensors, each interacting with the same chemical stimulus 
according to its own response function, thus generating a vector response from the array with each mea-
surementas illustrated by the simple example in Fig. (3). Chemical sensors generally exhibit significant 
sensitivity over a range of chemical compounds (i.e., cross-sensitivity) due to a fundamental trade-off be-
tween selectivity and reversibility in sensor transduction mechanisms [7]. Although cross-sensitivity can be 
an undesirable feature in applications where individual sensors are used, it is an important feature in sensor 
arrays because it allows each sensor to simultaneously convey information about multiple analytes when 
the sensor responses are used in aggregate to provide an analytical result. Thus, the goal of sensor array 
design is to assemble sensors whose individual capabilities will complement each other in an analytically-
relevant fashion. A central challenge in realizing the potential of this approach lies in the combinatorial 
nature of sensor array design, which means that even a modestly sized pool of candidate sensors will result 
in a substantial number of possible array configurations.

Sensor array complexity is governed by the number of component sensors within the array as well as 
the diversity in sensor response. Booksh and Kowalski presented a theory of analytical chemistry in which 
analytical instruments are categorized by the tensor order of the data they produce [8]. In this theory, 
individual chemical sensors that generate a scalar value per measurement are categorized as “zero order” 
instruments, while sensor arrays and instruments providing a spectral response are “first order” instruments. 
This distinction is important, as there is a quantum difference between the capabilities of instruments from 
each category. In particular, zero order instruments are fundamentally incapable of resolving multicom-
ponent mixtures in which more than one concentration is unknown. In contrast, first order instruments do
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allow such resolution in principle, provided they exhibit sufficient complexity allow some marginal unique
response to each mixture component. Importantly, this means that it is not necessary for a first order in-
strument to exhibit a one-to-one correspondence between individual sensors and mixture components, but it
does indicate that the size of a sensor array and the diversity of sensor response functions are related directly
to the scope of sensing tasks it is capable of addressing.
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2. INFORMATION THEORY

The field of information theory began with the seminal work of Claude Shannon in which he laid out a
generalized, probabilistic framework to describe the nature of information and how it can be encoded and
transmitted [9]. Shannon’s generalized framework considers the propagation of information through five
basic components: an information source, a transmitter, a channel, a receiver, and a destination. The infor-
mation source produces a “message” that is encoded by the transmitter. The channel is medium by which
the encoded message is conveyed to the receiver, which decodes the message and delivers it to the destina-
tion, who is the recipient of the message. During transmission, the message is subject to corruption with
noise. Messages are selected from a set of possible messages, and have meaning. That is, they correlate to
different “physical or conceptual entities” and thus the ability to tell one message from another is important.
Shannon’s insight was that information sources can be characterized as stochastic processes that generate
specific messages from the set of n possible discrete messages according to some probability, and that the
information content of a source can be characterized by a measure of the form:

H =−
n

∑
i=1

pi log2(pi) (1)

This quantity is known as the Shannon entropy, or information entropy, and can intuitively thought of as 
a measure of the complexity of the messages generated from that source. Sources with higher entropy are 
associated with a greater span of messages than those with lower entropy. The quantity is expressed in units 
defined by the base of the logarithm, which provides the combinatorial context for interpreting the value. 
For example, using base two renders the entropy in “bits,” with one bit reflecting the amount of information 
carried by a boolean variable with uniform probability of each state (i.e., an unbiased coin flip.) Thus, 
an expression of the information entropy of a source in bits can be interpreted as the number of boolean 
variables required to accurately represent it. For example, the English alphabet contains 26 letters and 
thus is theoretically capable of being expressed with 4.7 bits of information per letter, although in practice, 
computers represent characters with 8 bits.

Information entropy and subsequent measures derived from it for both discrete and continuous distri-
butions provided a quantitative, theoretical understanding of the nature of information and had profound 
implications in the development of modern communication, computing, and data storage technologies. 
For instance, Shannon showed that the information entropy of a random variable represented the mini-
mal amount of information required to fully describe it, and thus presented a theoretical limit on the degree 
to which data can be compressed in a lossless fashion. Continuing the example above, it has been exper-
imentally estimated that the English language only actually conveys 1.3 bits of information per letter, due 
to the constraints imposed by phonology and grammar [10]. Thus, English text carries a significant degree 
of redundancy and can be highly compressed using a suitable encoding scheme. Shannon was also able to 
show that, for a given level of noise, a channel has a theoretical capacity (expressed in units of informa-
tion per unit time, e.g. bits per second) that reflects the highest rate at which messages can be transmitted 
losslessly using error-correcting schemes. In other words, he was able to quantitatively express the minimal 
channel capacity required to noiseless transmit data from a particular information source, as well as the 
amount by which channel capacity must increase to minimally compensate for increases in channel noise. 
This can explain, for example, the practical function of the apparent significant redundancy in written En-
glish, as this redundancy, in principle, allows a significant measure of error-correcting capability for noisy 
communication channels. This is evident by the widely observed fact that readers can generally successfully
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parse English sentences even when the vowels are removed or the middle letters of each word are mixed
up. Numerous other information theoretic measures have been derived and explored [11]. Of particular
importance is the relative entropy, or Kullback-Liebler (KL) divergence:

DKL(p||q) =
∫

dxp(x) log
p(x)
q(x)

(2)

which describes the difference in information conveyed by two distributions over random variable X. For
example, in coding theory, it can be interpreted as describing the additional amount of information required
to represent a message from an information source represented by p with a code optimized for the informa-
tion source represented by q. KL divergence is greater than zero unless p and q are identical, in which case
it is equal to zero. It is also not symmetric, i.e. the KL divergence of p from q is not equal to that of q from
p. KL divergence is also closely related to information entropy. The information entropy associated with a
distribution p is related to the divergence of p from a uniform distribution over the same support, and thus
decreases as p becomes less uniform.

The mutual information between two random variables, X and Y, is defined as:

I(x,y) =
∫ ∫

dxdyp(x,y) log
p(x,y)

p(x)p(y)
(3)

and is related to the KL divergence as:

I(x,y) = DKL(p(x,y)||p(x)p(y)) (4)

Mutual information is thus a measure of correlation between the two variables, in the sense that it reduces 
to zero if the joint distribution of X and Y is equal to the product of the two marginal distributions, showing 
the variables are independent and increases as the joint distribution deviates from the product of the marginal 
distributions. In other words, it provides a general expression of the amount of information one can gain 
about one variable through measurement of the other.

Information theory has also had significant i mpact b eyond t he a rea o f t elecommunications a nd data 
storage. Information theory has found direct application in cryptography[refs], signal and language pro-
cessing [11], machine learning and pattern recognition [12], neurobiology [13], bioinformatics [14], and 
mathematical study of combinatorics and complexity [15]. The apparent analog between information en-
tropy and thermodynamic entropy has provided important insight into thermal and quantum physics, includ-
ing quantum computing.[refs] Accordingly, one might expect that information theory would also occupy a 
key role in analytical chemistry and chemical sensing. However, this has not been the case, with relatively 
little literature focused on this topic. Some 20 years after Shannon’s initial publication, Kaiser published a 
notable exception in which he used concepts from information theory to describe concepts of “informing 
power of an analytical procedure” and “information required for an analytical problem” in the context of 
elemental analysis using spectrochemical instrumentation [16, 17]. Critically, Kaiser identified that each 
can be measured in informational units such as bits and noted that these bits represent a kind of currency 
that is “earned” by an analytical procedure and “spent” in the resolution of analytical problems. This allows, 
in principle, an objective assessment of how the two can be matched, although he states that, “there is no
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simple transformation from the space of problems to the space of procedures leading to the solution of a
specific problem. The whole system is a very complicated network through which the analyst has to find his
way.” And expresses his hope that, “. . . this rather abstract picture of the two spaces may eventually lead to
formal or empirical partial transitions from the space of problems into that region of the space of procedures
where the solution of a problem may be found.”

Kaiser emphasizes that this approach requires complete numerical characterization of not just the in-
forming power of an instrument but of the information the analytical problem required, something he called
“pre-information.” Kaiser observes that rigorous descriptions of analytical problems are often neglected in
practical situations, it being a “very common offense not to give all informations [sic] about the samples,
their origin and history and not to say what knowledge is wanted and what the requirements are as to pre-
cision, time, et cetera,” and he laments that “In general, it is not realized what an enormous amount of
information may be hidden in an exclusion, in particular if this is made as a positive statement.” This may
offer some explanation for why an information theoretic approach has not gained greater traction in the field
of analytical chemistry: computational complexity, and a lack of alignment with the mindset of the typical
practitioners of analytical chemistry.

Nonetheless, information theoretics have made increasing appearance in chemical sensing and adjacent
fields, particularly in descriptions of neural response to chemical stimuli.[refs] In particular, the utility of
mutual information in rigorous assessment of sensor limit of detection has been described [18], as well as
some of the implications of sensor array response diversity on information-generating capacity of sensor
arrays [19, 20]. Finally, the work of Pierce, et al. [6, 21–28] formally connected earlier geometric notions
of the chemical resolving power of sensor arrays to the Fisher information, a quantity closely related to the
KL divergence.
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3. COVARIANCE AND CHEMICAL MEASUREMENT

3.1 How Well Can You Know a Measurement? An Introduction to Practical Problems with Chemi-
cal Sensing

A persistent problem in chemical sensing lies in developing and implementing sensor systems that are 
capable of reliably addressing complex sensing tasks and environments. Such conditions are regularly en-
countered in a highly diverse range of practical endeavors, including environmental monitoring, industrial 
process control, toxic chemical and fire detection, flavor and fragrance assessment, and medical diagnostics, 
among other applications. Often, these tasks are centered on the detection of chemical signatures rather than 
individual chemical compounds. However, even seemingly-basic sensing tasks centered on detection of in-
dividual analytes are often complicated significantly by unavoidable environmental conditions and nuances 
that surround any realistic application, such as backgrounds with relatively dynamic physical conditions and 
multiple potentially interfering chemical species. This can lead to surprisingly poor performance in “real 
world” environments after excellent results have been demonstrated in the laboratory [2–4]. Thus, it is not 
only a matter of knowing and addressing the target analytes themselves, but also an understanding of the 
surrounding contextual details of a chemical sensing problem that is critical to finding a solution.

Further complicating matters, there is often a considerable degree of uncertainty regarding the underly-
ing parameters of a sensing task. This includes uncertainty regarding which potential analytes and interfering 
species may or may not be present and what environmental conditions might be encountered, as well as more 
fundamental problems such as a lack of a priori knowledge as to the identity and number of potential target 
analytes and interferants. Perniciously, the existence of such uncertainties are often, themselves, poorly un-
derstood prior to implementation of a sensor system. Explicit recognition of this situation leads to the logic 
of an open-world assumption [29], implying that this state of affairs must place some limits on the extent of 
inference and deduction that may be derived from measured sensor responses.

Importantly, while development of individual sensors is generally driven by a desire to improve selec-
tivity and sensitivity relative to current alternatives, complex environments make these metrics difficult to 
evaluate. Selectivity, which is defined by IUPAC in strictly qualitative t erms, [30] only has meaning in the 
context of a specific background of potential interferants. In a practical sense, selectivity subsumes the prob-
lem of sensitivity, as it reflects the challenge of maximizing sensitivity to the chemical species of interest in 
the sensing task while minimizing sensitivity to others. Even in a best case scenario where an exhaustive 
catalog of the potential interferants and target analytes is known, design and implementation of a rigorous, 
exhaustive series of laboratory experiments for evaluating sensor performance becomes impractical unless 
there is a relatively small number of analytes and the field environment i n which t he sensor i s t o imple-
mented is known to be fairly static. In more typical scenarios, such evaluation is essentially impossible due 
to the uncertainties described above. Thus, sensing in complex environments can be seen as an exercise in 
general-purpose chemical analysis of unknown samples rather than straightforward target analyte detection.

3.2 Sensor Response Models

3.2.1 Sensor Response Types

There is significant diversity in the modes of chemical sensor t ransduction and the corresponding re-
sponses that are observed, leading to a wide assortment of candidate sensor technologies that can be brought 
to bear on complex sensing tasks. Numerous articles and reviews have been published over the past few
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decades, covering various sensor technologies as well as chemical sensing technology in general [31, 32]. 
These techniques exist at varying levels of technological maturity, from commercially-available commodity 
devices to cutting-edge research prototypes and offer widely divergent capabilities, although no single tech-
nology presents a definitive solution to general-purpose chemical sensing. While an exhaustive review of all 
sensor technologies is not within the scope of this work, the sensor types that are most commonly reported 
in chemical sensing applications can be grouped as belonging to one of three major families according to 
transduction mechanism: electrochemical, mechanical, or optical.

Electrochemical sensors function by measuring a change induced in the electrical properties of the sens-
ing material induced by analyte vapor. They include chemiresisters based on metal oxide semiconductors 
[33] conducting polymers [34] metal-organic frameworks [35], and nano-structured materials [36–38] as
well as those based on other metal oxide semiconductor field effect t ransistors (MOSFET) and potentio-
metric devices [39, 40]. Mechanical sensors function by measuring change in the physical properties of the
sensing material induced by analyte vapor [41]. They include devices based on quartz crystal microbalances
(QCM) and surface acoustic wave sensors (SAW) [42, 43], and microelectromechanical systems (MEMS)
[44]. In both QCM and SAW sensors, this is a change in resonant frequency of an oscillator induced by
absorption of analyte vapor into a polymer coating. In MEMS sensors, this is generally either deflection
or change in oscillating frequency of a polymer-coated microcantilever. Finally, Optical sensors include
those based on materials in which analyte vapor induces a change in the way light is absorbed, emitted,
or refracted by the sensing material [45–53]. These include sensors based on vapochromic dyes [47–50],
fluorescence [51, 52], c hemiluminescence [53, 54], and surface plasmon r esonance [55, 56].

Although the specific data processing and feature extraction methods vary with each type of sensor, in 
each case the goal is to derive a response value that is related to analyte concentration according to some 
known function. These response curves are evaluated by traditional analytical figures of merit such as sen-
sitivity, limit of detection/signal-to-noise ratio, dynamic range and selectivity [57]. The first three of these 
all describe sensor performance with respect to individual analytes while selectivity is related to sensor’s 
ability to preferentially respond to one analyte in the presence of one or more others. Thus, any concept or 
calculation of selectivity is inherently bound to the parameters of a specific sensing t ask. Specificity is the 
hypothetical ultimate of selectivity: a “specific” sensor responds only to analytes of interest while a “non-
specific” sensor exhibits varying responses to both target analytes and other compounds, i .e. interferants. 
Often, sensors are designed for particular target analytes for which sensitivity and selectivity are optimized 
relative to a particular sample matrix. In general, greater sensitivity places greater demands on selectivity 
while, conversely, greater selectivity places reduced demands on sensitivity. Thus, a significant portion of 
sensor research and development for complex sensing environments lies in engineering progressively greater 
selectivity into such devices.

Of course, the end goal of sensor optimization is producing an overall detection system which best pro-
vides the information one is seeking to measure. For instance, a device intended for toxic vapor detection 
might be evaluated in terms of a receiver operating characteristic (ROC) curve, which summarizes the trade-
off between detection and false positive rates over a range of decision thresholds applied to the sensor data 
[58]. Alternatively, sensor data could be used to provide quantitative predictions of analyte vapor concentra-
tion, which would typically be evaluated in terms of calibration model fit and estimates of error of prediction 
[59, 60]. In either case, it is important to understand that the success of the overall detection system rests 
fundamentally on the capability of the sensor responses to support the informational output that is desired 
and that this is related to both the sensor response characteristics and the parameters of the analytical task.
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Chemical sensors are usually not truly specific, especially for a rbitrary, complex detection tasks with 
uncertain parameters. In the absence of guaranteed specificity, a significant limitation of sensors with uni-
variate output (i.e. those that provide one response value per measurement) for complex sensing tasks, is 
that they are generally incapable of estimating analyte concentration in the presence of unknown amounts 
of other compounds and are thus not useful in analysis of mixtures or in the presence of unknown amounts 
of interfering species [8]. This limitation can be addressed by augmenting the sensor with one or more 
others to provide complementary information, forming an array of non-specific sensors. From a mathemat-
ical standpoint, the data from such an array is thus analogous to a low-resolution version of the multivariate 
data one might acquire from conventional spectroscopic or mass spectrometric laboratory instrumentation. 
Identification of pure compounds in these cases is often based on spectral patterns rather than on any one 
channel within the spectrum, enabling identification of more compounds than the number of channels in the 
spectrum. Additionally, multivariate regression enables calibration of individual mixture components in the 
presence of unknown amounts of others [61].

The vertebrate olfaction system is a common inspiration for using arrays of non-specific sensors to solve 
difficult chemical detection tasks. This system incorporates an array of roughly 100 million olfactory recep-
tor neurons, each expressing one of about 1000 unique receptor types, all exhibiting varying non-specific 
interactions with potential odorant molecules. Patterns of neural activity within the peripheral olfaction sys-
tem are then transmitted to the olfactory cortex of the brain where they are mapped in a highly non-linear 
fashion to enable perception of tens of thousands of unique odors [62]. Despite the equally analogous 
relationship between spectral analytical instrumentation and its utility in chemical identification, olfaction 
is arguably the motivating ideal behind much of the chemical sensor array work performed to date, and a 
reason why such devices have commonly been referred to as ”electronic noses” (or “electric tongues” for 
liquid sample sensors) and ”machine olfaction” in the technical literature. However, it should be noted that 
despite considerable overlap, electronic noses are not synonymous with chemical sensor arrays. First, the 
term “electronic nose” is a generic descriptor for odor-profiling devices, including those based on analytical 
instrumentation. Second, not all chemical sensing tasks are properly termed as ”olfaction” as this refers 
specifically to problems involving perception of odors.

In an early review of machine olfaction [27], Pearce discusses the origins of the approach as the result 
of the confluence of the development of chemical sensors in the 1950s and 1960s, and early work describing 
signal processing in neural olfaction systems in the late 1960s, which culminated in Persaud and Dodd’s 
first description of a three-sensor electronic nose in 1 982 [63]. Following this, there was a rapid expansion 
of reports of sensor arrays for chemical detection, for examples, see [64–68].

Since this early work, sensor arrays of nearly every type of chemical sensor technology available have 
been reported in the literature. For example, Grate et al. have reported extensively on the use of SAW and 
other sorption-based sensor arrays in detection of chemical vapors [69–72]. Zellers and colleagues have 
reported microfabricated arrays of chemiresister and hybrid arrays applied to binary and ternary chemical 
mixtures [73–76]. Suslick and colleagues have reported colorimetric sensor arrays applied to many com-
plex chemical sensing problems [47, 77–79]. Promising work on surface-functionalized nanostructures has 
recently garnered much attention [80–83] and Marco, et al., have developed a very large-scale array of 
conducting polymer chemical sensors for biomimetic olfaction [6].

An alternative to a physical array of sensors is the notion of ”adaptable” sensors that are capable of 
adjusting their operating parameters or environment to alter their response functions during use [84]. In 
this way, adaptable sensors acquire what is effectively sensor array data with a single sensing element
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at some cost in data acquisition time over a comparable multisensor array. They also open the potential
to build sensor systems that can adapt to changing environments and sensing tasks, gaining efficiency by
limiting the number of measurements made to only those that are necessary [85]. For example, micro-
hotplate sensors precisely control the temperature of a metal oxide sensor surface, thus altering the sensor
response characteristics in a repeatable, programmable fashion [86, 87]. This approach has been demon-
strated to provide enhanced information for complex sensing tasks such as detection of chemical vapors in
backgrounds of common commercial cleaning products. In other examples, sensors have been coupled to
reagent chemistries, catalysts, or filters to enable variable selectivity [88–93]. Finally, sensors can be cou-
pled to sampling devices that provide spatial or temporal separation of analyte mixtures prior to detection
[28].

Numerous books and reviews of sensor array technology have since been authored with at least one
published nearly every year since 1997, demonstrating the continued interest in and vitality of the approach
[5, 20, 27, 28, 41, 42, 80, 86, 94–118]. The majority of these reviews are focused on describing various
sensor technologies and applications for which sensor arrays have been used, while a smaller fraction focus
instead on data analysis strategies for sensor arrays. However, only a few provide any focus on optimization
strategies for arrays [84, 100, 101, 115, 116]. There have been also been periodic surveys of commercially
available sensor-array devices, generally uncovering several new manufacturers with each iteration [5, 28,
105, 108, 112]. Applications of these arrays are frequently reported in the literature where they have been
described as successfully applied to a wide variety of tasks. (See, for example those reviewed in [80]))
However, it has been noted repeatedly that such devices do not seem to have made significant progress
towards widespread commercial use [5, 6]. The reason for this is likely an overestimation of sensor array
capabilities combined with an underestimation of sensing task complexity and a lack of sound validation
and design principles [2–4]. As is often the case with new technologies, enthusiasm can outpace actual
utility, leading to subsequent disappointment that perhaps unfairly clouds any realistic assessment of the
capabilities of these devices.

3.2.2 Models of Sensor Response: Transduction Models and Sensor Noise

In order to perform an information-theoretic analysis of a chemical sensor system, a functional model of
sensor response must be developed. This model does not necessarily need to fully embody the underlying
molecular interaction between the sensor and chemical stimulus, but the more completely it does, the more
accurately the capabilities of a sensor system can be predicted and understood. Importantly, information-
theoretic measures are generally agnostic with respect to the exact form of functional response, although
they do require that the function be differentiable. This allows an information-theoretic approach to be
applied across different sensor types and offer directly comparable assessments of sensor array capability.
It should be noted that certain functional forms may preclude derivation of analytic expressions for some
information theoretic measures, and will require numerical solution instead. A generic chemical sensor
can be modeled as a function that transforms a particular chemical stimulus into a response value with a
characteristic uncertainty according to a particular error distribution. The actual form of a sensor response
function depends on the nature of the molecular interaction between the chemical stimulus and sensor, and
thus on molecular properties of both. Thus, the underlying physics of the analyte-sensor interaction drive the
nature of the three critical components of a sensor’s functional response: mean response with concentration,
measurement error distribution, and additivity of response to chemical mixtures. Consider an arbitrary
chemical stimulus with k chemical components, represented as a vector of k concentrations,

ccc = [c1,c2,c3, . . . ,ck, ] (5)
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The observed response, r, of a chemical sensor to this stimulus has a mean that is a function of c, and is
distributed according to a measurement error distribution with parameters, θθθ .

r = µ(ccc)+ ε(θθθ) (6)

Many chemical sensors exhibit approximately linear mean response with concentration, at least over partic-
ular concentration ranges, which gives the relationship

µ = ac (7)

where a is a constant corresponding to the sensitivity the sensor exhibits to a particular analyte. For example,
with surface acoustic wave sensors (and other MEMS sensors) response is proportional to the mass of analyte
absorbed by a polymer coating from vapor, and thus linear with vapor concentration for sensors with thin
films and relatively low analyte vapor concentrations [42]. Likewise, sensors based on an integrated optical
absorbance measurement are known to provide a linear response with respect to analyte concentration [119].

However, there is often uncertainty regarding the exact form of functional response a given sensor tech-
nology exhibits. Assessments of functional response typically come from empirical fitting to measured data
and theoretical models of response based on a hypothesized sensor transduction mechanism. For example,
consider sensors based on conducting polymers. Ellis, et al. [120] observed that a particular sensor they
were investigating exhibited a response that could be approximated as an exponential of the form shown
below,

µ = beac (8)

A review of conducting polymers described published work in which conducting polymer sensor response
was modeled according to a Langmuir isotherm model of the form,

µ = b
(

ac
1+ac

)
(9)

under the assumption that analyte absorption to the polymer was governed by a Langmuir adsorption process
[121]. Still other work cited in this review started from an assumption that analyte absorption is governed by
a partitioning process between the gas phase and polymer phase, suggesting a linear dependence as shown
in eqn. (??) instead.

Other types of sensors have been reported to exhibit other non-linear response with concentration. Metal
oxide sensors have long been observed to exhibit a power law dependence,

µ = b(ca) (10)

which has been explained via various theoretical models [122–124].
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And biological systems, such as olfactory receptor neurons are often modeled as sigmodal functions,
such the logistic function [125]

µ =

(
a

1+ e−b(c−d)

)
(11)

or the Hill equation [126],

µ =

(
a

1+(d
c )

b

)
(12)

Which are generally interpreted in the context of receptor-ligand binding interactions.

Depending on the mechanism by which it functions, chemical sensors can exhibit various response
dependences with other variables related to sensor construction or the physical environment around the
sensor. In scenarios where these variables can’t be held constant, their effect should also be considered to
evaluate their impact in addressing sensing tasks. In some situations, time-dependent variation of sensor
parameters can be used to systematically vary analyte response functions, effectively generating multiple
distinct responses from a single sensor [86].

Next, we consider the manner in which sensors respond to mixtures. Again, this is highly dependent on
the particular mechanism by which the sensor interacts with the chemical stimulus. Generally, if one can
assume that the different components of a mixture interact with a sensor in an independent fashion, then
mixture response can be modeled as additive, as shown in the example below for a sensor exhibiting linear
response to the k different components of a chemical mixture

µ =
k

∑ ai ci (13)
i=1

For many sensors, this assumption is reasonable for chemical stimuli at relatively low concentrations, 
becoming less valid at high concentrations as the sensor response saturates and competitive interactions 
between analytes become more significant. In some systems, interactions between the sensor and different 
mixture components cannot be considered independent, and specific a nalyte-analyte d ependencies must 
be explicitly incorporated into the response model. For example, olfactory receptor neurons are known 
to exhibit non-additive response to chemical mixtures, due to competitive binding and potential masking 
effects induced by one component of the mixture upon one or more others [127, 128].

The final component of a  sensor response model i s the measurement error d istribution. While this is 
a critical aspect of observed sensor response, it is also typically one of the least characterized aspects in 
published work on sensor development, likely due to its perception as a nuisance parameter. However, as 
implied in the discussion of the previous section, the specific s tatistical q ualities o f s ensor measurement 
error can have profound implications in information-theoretic analysis of sensor arrays. In particular, differ-
ent noise distributions lead to different expressions of information-theoretic measures, and either allow or 
preclude tractable analytical expressions of these measures for sensor arrays.
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In general, sensor measurement error is the result of stochastic fluctuations within the molecular inter-
action with the sensor, or the transduction process employed by the sensor. Commonly, these are either
Gaussian or Poisson processes. For example, all electronic circuits exhibit Johnson-Nyquist, or thermal
noise, which exhibits a Gaussian amplitude distribution. Certain detectors, such as photomultiplier tubes,
may exhibit Shot noise, which is Poisson-distributed. Other specific processes may exhibit noise distri-
butions that are better modeled by other statistical distributions, such as with systems involving bio or
chemiluminescence, which have been observed to exhibit Laplacian-distributed noise [26, 129].

If there is no known noise model for a sensor system, an assumption of Gaussian-distributed mea-
surement error is usually a reasonable approximation. This is because measurement error is generally the
aggregate result of a series of stochastic fluctuations from different sources, and thus tends to be normally
distributed according to the central limit theorem [130]. Further, from an information-theoretic perspec-
tive, Gaussian distributions represent the hypothetical “worst case” scenario for a distribution of a random
variable, in that it conveys the least amount of information and thus will provide conservative estimates
sensor capability in the event that the measurement error is not actually Gaussian [130]. Conversely, devia-
tions from this common assumption of independent, identically distributed Gaussian noise can be leveraged
to provide additional chemical information from sensor measurements. Next, measurement error is often
assumed to homogenous, but error models may also explicitly incorporate concentration dependence if nec-
essary. Finally, although measurement error is generally assumed to be independent from sensor to sensor, it
is possible for correlation in noise to occur in a sensor array, and this correlation may be significant enough
to require explicit consideration in an informatics analysis.

3.3 Fisher Information

Both Fisher information (FI) and its generalization to multi-parameter estimation, the Fisher information
matrix (FIM), are relevant to the design of statistical estimators (i.e. sensors) as their respective inverses act
as lower bounds to the (co)variances of the subject estimator, a property which is referred to as the Cramér-
Rao lower bound [11].

To more concretely motivate this assertion, consider a chemical sensor array response, µµµ(θθθ)+ δδδ (θθθ),
where µµµ(θθθ)and δδδ (θθθ)are the idealized sensor response vector and noise vector respectively. θθθ denotes an
external parameter vector which is environmentally dependent. For chemical sensors and sensor arrays, this
is typically the analyte concentration vector. Such a sensor array response may then be modeled with a
probability density function, ρ(XXX ; µµµ(θθθ)) [25], as follows, µµµ(θθθ) =

∫
dXXX XXXρ(XXX ; µµµ(θθθ)), with a covariance

matrix given by,

ΣΣΣ(θθθ) =
∫

dXXX (XXX−µ(θθθ))(XXX−µ(θθθ))T
ρ(XXX ; µµµ(θθθ)) (14)

A typical goal of sensor array optimization is to minimize the global error of the sensor array. This quantity 
is captured by det(ΣΣΣ(θθθ )), the determinant of the covariance matrix. Since ΣΣΣ(θθθ )is a positive definite matrix, 
its determinant describes a strictly positive volume that may act as a score or metric for the global error 
[131]. Thus, from the standpoint of global noise, the goal of the sensor array designer is to minimize this 
determinant.

Unfortunately, it is often either impractical or computationally intensive to directly calculate µµµ(θθθ ) and 
ΣΣΣ(θθθ ) in a way that allows for the analytic optimization and design of arrays, particularly if a complicated
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estimator is used. It is also worth considering that many different physical sensor system setups or statis-
tical estimators may be constructed for the same system i.e. sensor response probability distribution. This
multitude of specific estimator possibilities forces the practitioner to seek a design criterion that is robust
in the face of many potentially similar but varying covariance matrices or array responses. Fortunately, via
the Cramér-Rao inequality, FI/FIM provide a lower bound in the positive definite sense for the covariance
matrix of such a sensor array that is independent of the actual estimator being used. This provides a useful
expression of the fundamental analytical potential of the device. Importantly, if the practitioner tunes or
re-tunes their setup, this quantity will never change. Thus, we conclude that the FI/FIM provides a robust
metric to optimize in the design of chemical sensor arrays.

3.3.1 The Cramer-Rao Bound

Before showing how to utilize the FI/FIM in the context Further manipulation of the integrand yields
optimization for sensor selection, it is informative to first derive the FI/FIM relation to the Cramér-Rao lower
bound. As a prelude, the FI is defined as [132],

f (µ;θ) =
∫

dxρ(µ;θ |x)
(

∂ ln(ρ)
∂θ

)2

(15)

and each element of the FIM itself is defined as,

FFF(µ;θθθ)i j =
∫

dXXXρ(µ;θθθ |XXX)

(
∂ ln(ρ)

∂θi

)(
∂ ln(ρ)

∂θ j

)
(16)

with the FIM reducing to the FI in the univariate case. Informally, the FI/FIM may be thought of as con-
veying how much information an observed random variable, x, or set of random variables, XXX , carry about a
parameter(s), θ or θθθ .

In the event those deterministic parameters θθθ are being statistically estimated, the FI/FIM provides a
lower bound to their (co)variance independent of the employed statistical estimator(s). Beginning with the
univariate case, the FI may be derived [133] by first considering the following expectation value,

EEE[θ̂(x)−θ ] =
∫ (

θ̂(x)−θ
)

ρ(x;θ) = 0 (17)

where θ̂(x) is an unbiased statistical estimator for θ . Next, differentiating by the deterministic parameter
yields,

∂

∂θ

∫
dx
(
θ̂(x)−θ

)
ρ(x;θ) =

∫
dx
(
θ̂(x)−θ

)∂ρ

∂θ
−
∫

dxρ = 0 (18)

Recognizing that since ρ is a probability distribution,

∫
dxρ(x;θ) = 1 (19)
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and
∂ρ

∂θ
= ρ

∂ ln(ρ)
∂θ

(20)

which implies ∫
dx
(
θ̂(x)−θ

)
ρ(x;θ)

∂ ln(ρ)
∂θ

= 1 (21)

Further manipulation of the integrand yields,

∫
dx
((

θ̂(x)−θ
)√

ρ
)(∂ ln(ρ)

∂θ

√
(ρ)

)
= 1 (22)

Applying the Cauchy-Schwartz inequality1 to this manipulated integrand gives,

(∫
dx
((

θ̂(x)−θ
)√

ρ
)(∂ ln(ρ)

∂θ

√
(ρ)

))2

= 12

=1≤
(∫

dxρ
(
θ̂(x)−θ

)2
)(∫

dxρ

(
∂ ln(ρ)

∂θ

)2
)

(23)

After some manipulation of the preceding integrand, the expression resolves itself as,

1(∫
dxρ

(
∂ ln(ρ)

∂θ

)2
) ≤ (∫ dxρ

(
θ̂(x)−θ

)2
)
→ 1

f (θ)
≤
(
Var(θ̂)

)
(24)

which is the Cramér-Rao lower bound for the univariate case.

The derivation of the Fisher information matrix (FIM) for the multivariate case [132] is performed in a
similar fashion to the univariate case by first considering,

EEE[θ̂θθ(XXX)−θθθ ] =
∫

dXXXρ(XXX |θθθ)(θ̂θθ(XXX)−θθθ) = 000 (25)

And then differentiating this equation so that,

∂θθθ

∫
dXXXρ(XXX |θθθ)

(
θ̂θθ(XXX)−θθθ

)
=∫

dXXX (∂θθθ ρ(XXX |θθθ))
(

θ̂θθ(XXX)−θθθ

)
− (∂θθθ θθθ)︸ ︷︷ ︸

III

∫
dXXXρ(XXX |θθθ)︸ ︷︷ ︸

1

= 0 (26)

1|〈uuu,vvv〉|2 ≤ 〈uuu,uuu〉 · 〈vvv,vvv〉 where uuu and bbb are vectors with the inner product 〈·, ·〉
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where ∂θθθ indicates a derivative with respect to the vector θθθ . Rearranging terms as before, it becomes,

∫
dXXXρ∂θθθ ln(ρ)

(
θ̂θθ(XXX)−θθθ

)
=∫

dXXX
(
(θ̂θθ(XXX)−θθθ)

√
ρ

)
(
√

ρ∂θθθ ln(ρ)) = III (27)

and applying the Cauchy-Schwartz inequality gives,

III ≤
∫

dXXXρ

((
θ̂θθ(XXX)−θθθ

)(
θ̂θθ(XXX)−θθθ

)T
)
·
∫

dXXXρ

(
(∂θθθ ln(ρ))(∂θθθ ln(ρ))T

)
(28)

so that the FIM provides a lower bound to the covariance matrix,

FFF(µµµ;θθθ)−1 ≤ ΣΣΣ(θθθ) (29)

with the ≤ relation is in the sense of a positive definite matrix and the FIM and covariance matrix (FFFand ΣΣΣ

respectively) defined as,

FFF(µµµ;θθθ) =
∫

dXXXρ

(
(∂θθθ ln(ρ))(∂θθθ ln(ρ))T

)
(30)

and

ΣΣΣ(θθθ) =
∫

dXXXρ

(
θ̂θθ(XXX)−θθθ

)(
θ̂θθ(XXX)−θθθ

)T
(31)

Clearly, the so-derived FIM also implies the univariate case.

3.4 The Fisher Information Matrix Formulated for Chemical Sensing

The literature contains multiple examples regarding explicit treatment of the manner in which sensor 
measurement error impacts analytical performance of sensor arrays. Gardner and Bartlett described an 
approach [134] to characterizing sensor array performance based on a ratio of sensor measurement standard 
error volume to the total volume of the sensor array measurement space, i.e. the geometric n-dimensional 
space described by the span of all possible response values from an array of n sensors. Performance could 
then be described in terms of the maximum number of resolvable regions in the measurement space of the 
array. Pearce and colleagues [25] extended this approach to incorporate the reduction in resolving capacity 
induced by correlation in response functions among sensors, and then demonstrated an approach to directly 
propagating sensor measurement error into sample mixture space using an inverse of the geometric transform 
implied by the sensor array response functions. The sample space is an m-dimensional geometric space 
describing the span of all possible mixtures containing some ratio of m analytes to be sensed. The sample 
space and measurement space are related by the analyte-specific sensor response f unctions. By explicitly 
casting chemical analysis as a statistical estimation problem, they demonstrated that the Fisher information 
derived from this set of response functions could be used to provide a lower bound on the expected variance
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of estimating sample mixture concentration from sensor measurements and demonstrated this approach’s
connection to the geometric error propagation model considered earlier.

The Fisher information provides a measure of the capability of an observed variable to convey informa-
tion regarding an unknown parameter to which it is functionally related, in the presence of measurement
error. Consider a set of parameters, θ , that are functionally related to a set of measured variables, X . Each
variable is associated with some type of measurement noise, and is thus characterized by a probability dis-
tribution, p(X |θ). The elements of the Fisher information matrix (FIM) for prediction of θ are given by
eqn. 32.

J j j′(θ) =
∫

dXp(X|θ)
(

∂

∂θ j
ln p(X|θ)

)(
∂

∂θ j′
ln p(X|θ)

)
(32)

The inverse of the FIM is related to the expected covariance matrix of an unbiased estimator of the parame-
ters, θ̂ , via the Cramér-Rao inequality,

J−1(θ)≤ E
[(

θ − θ̂
)(

θ − θ̂
)T
]
= cov(θ) ,

∣∣J−1(θ)
∣∣≤ |cov(θ)| (33)

where the matrix inequality is in the positive semidefinite s ense. In this way, the Fisher information can 
be used to provide a lower bound for the variance of any such estimator, and thus quantitative measures 
regarding the fundamental capability of a given measurement system to estimate a set of parameters. Impor-
tantly, the variance bound derived from the Fisher information is independent of the post hoc data analysis 
techniques that may be applied to generate those estimates, and is thus a measure of the potential analytical 
capability of the measurement system, rather than a direct prediction of what may be observed in practice. 
Fisher information matrices are currently used in a wide variety of fields and a pplications. For example, 
they are the basis of optimization criteria commonly used in computer-aided design of experiments (DOE)
[135]. In both DOE and sensor array design, a varied set of design choices are combined with a set of exter-
nal constraints which, taken together, provide a design space for optimization. In DOE, the parameters to be 
estimated are the coefficients of the functional relationship between independent and dependent experimen-
tal variables. The goal is to create an optimized experimental design that most efficiently enables accurate 
and efficient estimation of these coefficients, and thus an understanding of how the variables are re lated. In 
sensor array optimization, the parameters to be estimated are chemical concentrations. The sensor response 
functions to the library of target chemicals are known a priori with the goal being to create an optimized 
set of sensors that best enables accurate prediction of chemical mixture composition from measured sensor 
responses.

Pearce proposed using the trace of the inverse of the FIM as a criterion for sensor array optimization. 
The minimization of this quantity is termed A-optimization in DOE, and can be interpreted as minimizing 
the average variance of the estimated coefficients. However, care should be taken with this interpretation 
in a sensor array optimization context. The diagonal of the inverse of the FIM only strictly corresponds to 
minimum variance bounds for each mixture component concentration when the sensor response vectors to 
each chemical component are orthogonal. While the rows of a design matrix in DOE are commonly orthog-
onal by design, this is often not the case with response arrays of non-specific s ensors. Another commonly 
used optimization criterion is the determinant of the inverse FIM. Minimization of this criterion is termed 
D-optimization in DOE. This results in minimizing the global variance of the estimated coefficients and can
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lead to non-orthogonal design matrices. As discussed previously, non-orthogonal sensor response vectors
are commonly observed and not necessarily problematic for sensor array optimization. Because the deter-
minant criterion convolves variance from all of the estimated parameters, it effectively expresses a global
measure of average discernibility among adjacent regions of the analyte mixture space in a signal-to-noise
ratio sense. Equivalently, maximization of the determinant of the FIM could be thought of as a maximization
of the global sensitivity of the array to displacements in the sample space. However, neither the trace nor
the determinant criteria provide an immediate measure of analytical task-specific selectivity for sensor array
configurations with non-orthogonal responses.

3.5 Chemical Sensing in an “Open World”: Environmental Models for Chemical Noise

In this section, we will analyze two different probability distributions, the multivariate normal distri-
bution and the multivariate lognormal distribution These distributions will be used to describe both the re-
sponses of our chemical detectors and the concentrations of chemical interferents present in the background
environment.

The multivariate normal distribution, N (XXX ; µµµ,ΣΣΣ), is defined as

N (XXX ; µµµ,ΣΣΣ) = |2πΣΣΣ|−1/2e−
1
2 (XXX−µµµ)T ΣΣΣ

−1(XXX−µµµ) (34)

where XXX is a random vector whose individual members range over (−−−∞∞∞,∞∞∞), µµµ is the vector of parameters
which dictate the means of the assi and ΣΣΣ is the covariance matrix. Its moment generating function is given
by M(t) = eµµµ·ttt+ 1

2 tttT ΣΣΣttt where taking the derivative the number of times equal to the order of the moment
desired with respect to the appropriate variables and setting ttt = 000 yields the desired value(s).

The multivariate lognormal distribution, L N (XXX ; µµµ,ΣΣΣ), is defined as

L N (XXX ; µµµ,Σ) = |2πΣ|−1/2

(
d

∏
i=1

x−1
i

)
e−

1
2 (lnX−µµµ)T Σ−1(lnX−µµµ) (35)

XXX is the random variable ranging over (000,∞∞∞), µµµ is a parameter vector and ΣΣΣ is a positive definite scale matrix
(matrix of parameters). The lnX term denotes a vector where each element is lnXi. The mean values of Xi

may be calculated following Halliwell [136] as,

〈Xi〉= eeeei·µµµ+ 1
2 eeeT

i Σeeei = eµi+
1
2 Σii (36)

where ei is a standard basis vector of appropriate dimension with a scalar 1 in the ith dimension and scalar
0 in all other dimensions. The covariance for the multivariate lognormal distribution is given by [136],

Cov(Xi,X j) = 〈XiX j〉−〈Xi〉〈X j〉= 〈Xi〉〈X j〉
(
eΣi j −1

)
(37)

The parameters µi and Σi j for the multivariate lognormal distribution may be expressed in terms of the
desired mean 〈Xi〉 and the desired covariance values Cov(Xi,Xi) and Cov(Xi,X j) as

µi = log

(
〈Xi〉2√

〈Xi〉2 +Cov(Xi,Xi)

)
(38)
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and

Σi j = log
(

1+
Cov(Xi,X j)

〈Xi〉〈X j〉

)
(39)

The concentrations of the chemical interferents in the background environment are described by the mul-
tivariate lognormal distribution. This distribution has been repeatedly found to describe lower bounded phe-
nomena like pollutant concentrations, prices, and organism counts [137–141]. Background chemical con-
centrations will also be modeled using the multivariate normal distribution since this distribution has been
shown to be a reasonable when interferents are either unnaturally distributed due to machinery/human inter-
vention or when the concentrations have a empirically measured variance such that the lowest 2σ boundary
is above 0 mols/volume [140].

Using these probability models for detector response and chemical intereferent concentrations in the
external, 4 different distributions which jointly describe the detector and environment may be derived. We
generically denote these joint distributions by the following,

PD+E(XXXD,XXXE ,BBBE ; µµµD(XXXE ,bbb),µµµE ,ΣΣΣD(XXXE),ΣΣΣE)PE,B(BBBE) (40)

where PE,B(BBBE) is the discrete boolean distribution for the presence and absence of the various chemical
interferents. separated out The response of the detector is modeled as the moment 〈XD,i〉D of the detector’s
probability distribution which represents the response of a sensor or instrument channel i. For this paper we
assume that this response is linear with respect to the detected chemical concentrations so that

〈XD,i〉D = ∑
j

a jc j +∑
k

akbkXE,k (41)

where the linear response coefficients which convert a concentration into a detection response are given by
either a j or ak, the known chemicals’ concentrations are given by c j and the concentrations of the unknown
chemical interferents are given by the random variables associated with the external chemical environment
XE,k. Finally, bk are boolean random variables associated with the presence or absence of a chemical interfer-
ent. Since bk are random variables with a discrete distribution, they may be safely ignored in the following
derivation which focuses on integrating out the continous random variables. Our final computation will sum
over discrete boolean variables.

We assume that the (co)variance of the detector’s variables are independent of the concentrations of
the chemical interferents. Thus for a chemical detector with a response modeled as a multivariate normal
distribution the parameters of that distribution may be modeled as

µi = ∑
j

a jc j +∑
k

akbkXE,k (42)

and ΣΣΣ is just a matrix of constant scalars. The 2 possible distributions for the joint response of the detector 
and environment which are solvable in closed-form for the KLD measures given by eqns. (107) and (108)
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are given by

ND(XXXD; µµµD(XXXE ,BBBE),ΣΣΣD)NE(XXXE ; µµµE ,ΣΣΣE)PE,B(BBB) (43)

ND(XXXD; µµµD(XXXE ,BBB),ΣΣΣD)L N E(XXXE ; µµµE ,ΣΣΣE)PE,B(BBB) (44)

where µµµD and ΣΣΣD are defined as given earlier in this section. The distribution denoted by PE,B(BBB) is the
discrete distribution for the presence or absence of each chemical interferent.

The joint detector and environment distributions which require Monte Carlo evaluation of some of their
integrals for the KLD measures given by eqns. (107) and (108) are given by

L N D(XXXD; µµµD(XXXE ,BBBE),ΣΣΣD(XXXE ,BBBE))NE(XXXE ; µµµE ,ΣΣΣE)PE,B(BBB) (45)

L N D(XXXD; µµµD(XXXE ,BBBE),ΣΣΣD(XXXE ,BBBE))L N E(XXXE ; µµµE ,ΣΣΣE)PE,B(BBB) (46)

All parameters have the same definitions as given earlier in this section. The evaluation of the suppressed
boolean variables which represent the presence or absence of particular chemical interferents will be eval-
uated by either direct summations or via Monte Carlo simulation depending on the size of the chemical
interferent library.

For the purposes of mathematical convenience, we have opted to model the inclusion and exclusion of
specific chemical interferents or groupings of chemical interferents as a binary distribution separate from
the one that determines the proposed concentration of those chemical interferents. To include this binary
distribution, we multiply the concentrations of the chemical interferents in the sensor response term by a
boolean variable bk so that it becomes

〈XD,i〉D = ∑
j

a jc j +∑
k

bkakXE,k (47)

In this paper, we are assuming that the (co)variances of the detector response are independent of the chem-
ical intereferent concentrations, they may be made chemical interferent presence-dependent using a similar
approach to that used for the detection response. For eqns. (107) and (108), the KLD measures when
evaluated with respect to the binary variables become

〈DKLD(PTA
D+E(XXXD;XXXE)||PS

D+E(XXXD;XXXE))〉B = DKLD(PTA
E,B||PS

E,B)+ 〈DKLD((L )N TA
D ||(L )N S

D)〉E,B (48)

where the average over the binary variables may be evaluated via either direct summation or Monte Carlo
sampling. DKLD(PTA

B ||PS
B), the KLD between the boolean distributions associated with the environments of

the TA and the CS, may be evaluated as

DKLD(PTA
E,B||PS

E,B) = ∑
i

PTA
E,B(Bi) log

PTA
E,B(Bi)

PS
E,B(Bi)

(49)
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4. FIGURES OF MERIT FOR SENSOR ARRAYS

Analytical chemistry uses a variety of figures of merit (FoMs) for quantifying and ranking the quality
and capabilities of various aspects of chemical measurement and instrumentation. Among the FoMs which 
are considered to be basal to analytical chemistry are: sensitivity, selectivity/specificity, limit of detection, 
limit of recognition, and resolving power. Given this basal nature, it is thus surprising that in their formal 
IUPAC definitions [ 142], t hese F oMs f ail t o c apture m ultivariate d escriptions o f t heir s ubject quantities 
and often are only qualitatively described. In the following sections, we briefly describe e ither available 
multivariate FoMs for sensor arrays and analytical instruments from the literature or present our own work 
on the subject.

4.1 Sensitivity

Sensitivity is defined a nd u sed i n m ultiple, d istinct ways i n fi elds th at th e in experienced practitioner 
might assume would share common definitions owing to their similar abstract goals like chemical detection 
or estimation. Complicating this state of affairs is that analytical chemists occasionally use the term sensi-
tivity as it is defined in other fields without detailing the di fference. If we first consider IUPAC’s approach 
[142], sensitivity is defined to be the slope of the sensor response with respect to a particular analyte concen-
tration. This is simply a constant in the case of an individual sensor with linear response, and can be more 
generally expressed as the derivative of the sensor response function with respect to analyte concentration. A 
multivariate generalization for sensor arrays may then be defined as a vector of derivatives of sensors/sensor 
channels with respect to the chemical stimulus. The multivariate sensitivity of a sensor array for multiple 
analytes thus generalizes as the Jacobian matrix whose elements consist of the partial derivatives of each 
sensor response function with each analyte. This matrix offers a purely geometric description of the trans-
form between chemical stimulus space and array response space, with sensitivity corresponding to the extent 
to which responses to adjacent chemical stimuli are separated in the response space. Multivariate sensitivity 
can be thought of, then, in a global sense as a distortion of the chemical stimulus space as it is projected 
into the sensor array response space. However, if we want to connect sensitivity to the term’s broader usage 
in fields of study which concern themselves with detection and estimation in areas beyond analytical chem-
istry, such as signal processing, medicine, and machine learning, we must be cautious, as the term is used 
with different meaning, owing to its definition by the statistics c ommunity [143]. In these fields, sensitivity 
is generally defined as the true positive rate of a binary classifier, or in terms of chemical detection, the rate 
at which a chemical is successfully detected when it is present. While at first glance, these two concepts 
appear completely distinct, there is an underlying connection between the two. As previously discussed, 
chemical sensing tasks can be systematically framed as binary classification problems in which one seeks 
to discern one region of the chemical stimulus space from another. When multivariate sensitivity to the 
chemical stimulus increases, so does the relative displacement in response space to infinitesimal changes in 
stimulus concentration. Increased displacement along a given axis of the response space associated with a 
sensing task thus has the impact of reducing the overlap in measurement error distribution between locations 
associated with that task, necessarily increasing the ability of an optimal classifier to correctly detect one 
from another. This demonstrates that the two notions are congruent in spirit, although not identical in a 
chemical sensing context.

The Fisher information itself can be considered as a measure of multivariate sensitivity in a chemical 
detection context. In particular, it can be derived as the Hessian of the relative entropy of array response 
distribution as a function of chemical stimulus, and thus expresses the local curvature of this quantity in 
chemical stimulus space [144]. This corresponds to an informational distance between adjacent locations,
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which, again, relates directly to the ability of an optimal classifier to discern between them. As discussed
previously, the Fisher information is inversely related to a lower bound on the estimation error when an
unbiased estimator is used to infer a location in chemical stimulus space from sensor array response. The
advantage of using Fisher information as a sensitivity measure is that both sensor error and the geometric
projection provided by the sensor array response functions are taken into account by this metric.

4.2 Selectivity

Viewed as a chemical detection system, biological olfaction is a large sensor array consisting of hun-
dreds olfactory receptor neurons. These receptor neurons do not generally exhibit specificity with respect to
any single chemical compound, but rather provide varying levels of response to multiple compounds. While
the precise mechanism for olfactory perception remains unclear, the aggregate responses of this sensor ar-
ray provide the fundamental chemical information that drives a capability to distinguish tens of thousands
of unique odors. This suggests that there might be significant potential in building chemical sensor arrays
consisting of collections of non-specific sensors for multiple analyte detection, rather than striving to build
fully selective sensors for each [3]. Interestingly, the literature and application of arrays of non-specific
sensors for general purpose chemical detection presents an incongruous mixture of apparent enthusiasm for
the approach and general disappointment upon implementation. Although such arrays have been frequently
reported and have been the subject of numerous reviews over the past 30 years, there remain relatively few
examples of successfully commercialized devices. Tellingly, the topic of sensor array design has been infre-
quently explored, either independently, or in particular depth alongside reports of sensor array development
and evaluation [145]. Rather, the focus in such research is often on the individual sensors themselves or on
the application for which the sensor array is to be used. While sensor arrays can be empirically evaluated in
much the same manner as any analytical device, prediction of their performance for realistic, complex sce-
narios remains elusive. Thus, sensor array design, optimization, and implementation remains time-intensive
and costly, leading to arrays that, when fielded, tend to underperform relative to observed laboratory test-
ing. In this work, we explore the utility of Fisher information-derived metrics for evaluation of analytical
capability in arrays of non-specific chemical sensors, directing attention specifically to notions of analyti-
cal selectivity and the tradeoffs between selectivity and other sensor array performance measures. First we
review contemporary notions of selectivity in analytical chemistry, followed by a discussion of the work of
Pearce, et. al [25] in developing Fisher information as a measure of sensor array performance. The relation-
ship between the estimation error bounds provided by Fisher information and selectivity is then developed
using the Fisher information Bayes rule analog of Zachariah and Stoica [146] to provide a generalized se-
lectivity measure for sensor arrays that is both congruent with previous selectivity definitions and applicable
to a wider variety of potential response functions. Finally, the implications of this selectivity measure on
sensor array design are explored and discussed using simulated sensor array examples.

Recently, Cramér-Rao bound analogs of the chain rule and Bayes rule have been described in the liter-
ature [146]. The derivation of these analogs involves defining joint and conditional variance bounds, and
allows exploration of the impact estimation of one subset of analytes imposes on estimation of another. This
enables quantitative assessment of the effect a chemical background imposes on the fundamental analytical
capability of a given sensor array, and thus a measure of selectivity that is rooted both in the geometry of
sensor response functions and in the measurement error of the sensors.

Zachariah and Stoica derived Cramér-Rao bound analogs of the chain rule and Bayes rule as follows.

Defining CRB(θ),
∣∣J−1(θ)

∣∣, and dividing the parameter set into two groups θ =
[
θ T

α θ T
β

]T
, the joint bound
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of θα and θβ is given by CRB(θ),

CRB(θ) =CRB
(
θα ,θβ

)
=

∣∣∣∣∣
[

Jα Jαβ

Jβα Jβ

]−1
∣∣∣∣∣ (50)

which is also the D-optimal, or determinant criterion discussed in the previous section. The bound for θα

with known θβ is given by

CRB
(
θα |θβ

)
=
∣∣J−1

α

∣∣ (51)

which is also the bound for estimating θα alone. The variance bound for θα with unknown θβ (i.e., where
both parameter sets must be estimated) is given by

CRB(θα) =

∣∣∣∣(Jα − Jαβ J−1
β

Jβα

)−1
∣∣∣∣ (52)

These lead to the Cramér-Rao bound analog of the chain rule,

CRB
(
θα ,θβ

)
=CRB

(
θα |θβ

)
CRB

(
θβ

)
=CRB

(
θβ |θα

)
CRB(θα) (53)

and the Cramér-Rao bound analog of the Bayes rule,

CRB(θα) =
CRB

(
θβ

)
CRB

(
θβ |θα

)CRB
(
θα |θβ

)
(54)

The ratio in eqn. (54) is thus the factor by which the Cramér-Rao bound for θα increases when θβ must be
simultaneously estimated from X . Alternatively, the inverse of this ratio is the factor by which the bound
for θα is decreased by obtaining knowledge of θβ through external means. As the authors of [146] note,
this measure could be used to provide a quantitative cost versus benefit measure for the prospect of fielding
an additional, independent measurement technique for estimating nuisance parameters. This ratio can also
serve as a general measure of the analytical selectivity a sensor array provides between defined analyte
groups. For instance, if θα is taken as a single target analyte, and θβ is comprised of the remaining analytes
as a potential chemical background, eqn. (51) corresponds to the variance bound one would arrive at with
the naı̈ve assumption that the chemical interferences were not present. Eqn. (52) corresponds to the bound
one would calculate with the assumption that the chemical interferences are present. The ratio between the
two thus expresses the impact that background levies on the analytical capability of the system in terms of
lower-bound estimation variance of the target analyte concentration. It is straightforward to show that this
ratio is indeed closely related with chemometric notions of selectivity and spectral similarity in multivariate
measurement systems. Consider an array of m sensors with linear response functions characterized by a
fixed sensitivity value over the sensor’s dynamic range for each of n possible analytes and Gaussian noise.
The sensor response is

X = Sθ + e (55)
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where S is an m x n matrix of sensor response sensitivities for each sensor/analyte combination and is a n-
dimensional multivariate Gaussian noise with covariance matrix σ2I. Dividing the parameter set into target
analytes θα and potential interferences θβ ,

θ =

[
θα

θβ

]
, S = [A B] (56)

the sensor response is

X = Aθα +Bθβ + e (57)

Using the analytic expression derived in R5 for linear sensors with Gaussian noise, the resulting FIM is

J(θ) =
[

Jα Jαβ

Jβα Jβ

]
=

1
σ2

[
AT A AT B
BT A BT B

]
(58)

Applying the Bayes rule analog, we get

CRB(θα) =

∣∣∣∣σ2
(

BT B−BT A
(
AT A

)−1AT B
)−1
∣∣∣∣∣∣∣σ2(BT B)−1

∣∣∣ CRB
(
θα |θβ

)
(59)

which reduces to

CRB(θα) =

∣∣BT B
∣∣∣∣BT Π⊥A B
∣∣CRB

(
θα |θβ

)
(60)

or equivalently, through substitution,

CRB(θα) =

∣∣AT A
∣∣∣∣AT Π⊥B A
∣∣CRB

(
θα |θβ

)
(61)

The denominator of the ratio in eqn. (61) is directly related to the chemometric concept of net analyte
signal (NAS) which is defined as the portion of the signal arising from a given mixture component that is
orthogonal to the space spanned by the responses of the other component [147],

NASθα
=
√

AT Π⊥B A (62)

and, as mentioned previously, forms the basis of many figures of merit in multivariate c alibration [148].
Considering again the case with θα as a single target analyte and θβ the remaining library of potential 
interferences, the selectivity ratio in eqn. (61) is simply the ratio of the square of magnitude of the response
vector to θα to that of the corresponding NAS vector. The inverse of this ratio is directly interpretable as 
the reduction in signal to noise for the target analyte that is incurred by orthogonal signal correction against
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the background presented by θβ and is identical to the multivariate selectivity metric proposed by Lorber in
[147]. This ratio is also directly dependent on the angle, φ , between the sensor array response to θα and the
subspace spanned by the responses to the elements of θβ , as shown in eqn. (63).

∣∣AT Π⊥B A
∣∣

|AT A|
=
‖NASA‖2

‖A‖2 = sin2
φ = 1− cos2

φ (63)

Accordingly, the ratio is also closely related to the cosine distance, a commonly used to measure spectral
similarity [149],

dcos = 1− cosφ (64)

While the selectivity measure in eqn. (63) is applicable to systems with linear response functions only, this
is not true for the corresponding ratio in the Cramér-Rao bound analog of Bayes rule postulated by [146],
which only requires that the FIM be nonsingular, that θ be continuous, and that p(X |θ) be defined according
to the measurement error distribution observed for X . In this way, the ratio suggested by the Cramér-Rao
bound analog for Bayes’ rule would appear to provide a reasonable generalized measure of sensor array
selectivity, selα,β between analyte subsets θα and θβ , as shown in eqn. (65).

selα,β =
CRB(θα)CRB

(
θβ

)
CRB(θ)

(65)

The selectivity measure above ranges from zero to one due to the condition

CRB(θ)≥CRB(θα)CRB
(
θβ

)
(66)

(See Appendix for proof A.1.) The above exhibits equality only if the responses due to each analyte set 
are statistically independent, leading to a selectivity of one. The ratio approaches zero as analyte responses 
become indistinguishable from each other, and CRB(θ ) grows larger relative to the numerator. Thus, the de-
terminant of the inverse Fisher information matrix, CRB(θ ), reflects both a generalized error volume bound 
in parameter space and an inverse measure of the global sensitivity of the sensor array to displacements in 
parameter space. The selectivity measure above is equivalent to or consistent with other selectivity measures 
and is also directly interpretable as the factor by which the error bound associated with one analyte subset 
is reduced by removing the requirement to estimate the remaining analytes using the same data. Alterna-
tively, 1 − selα,β can be interpreted as the fraction of the global error volume that is attributable to overlap 
in response between analyte subsets.

4.3 Resolving Power

Resolving power is a figure of merit that describes the ability of a sensor, sensor array or other analytical 
instrument to discriminate between two or more chemical analytes, stimuli or other relevant states. Com-
mon expressions of resolving power as a figure of merit in chemical sensing include measures of “limit of 
detection” and “limit of recognition” for chemical stimuli. As with sensitivity, the concept of “resolution” 
is used in varied ways in analytical chemistry. It often refers to specific capabilities of specific analytical
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instruments, which are thus are not agnostic with respect to measurement technique, nor do they necessar-
ily correspond directly to discernment of chemical stimuli implied by sensing tasks. (For example, mass
spectrometry, chromatography, and optical spectroscopy are all characterized by particular resolution-based
instrumental figures of merit that do not translate to any other type of instrument [150]. For the purposes
of this work, the focus will remain on resolving power as it pertains to sensing tasks and discernment of
chemical stimuli.

4.3.1 Limit of Detection

Qualitatively, the limit of detection may be thought of as being the lowest detectable concentration of a
given analyte against a blank chemical background. IUPAC [142] defines it as

xL = x̄bi + ksbi (67)

where xL is the limit of detection, x̄bi is the average of the blank measurements, sbi is the standard deviation 
of those blank measurements, and k is the numerical factor associated with the desired confidence level.

A multivariate limit of detection for nonlinear sensor arrays was recently described by Alsaedi et. al.
[151]. In that paper, the authors present a Monte Carlo simulation algorithm which incorporates the statisti-
cal criterion recommended by IUPAC for a limit of detection measurement: that such a measure incorporate 
(1) the Neyman-Pearson criterion for hypothesis testing for false positives (Type I errors) and false nega-
tives (Type II errors) and that all known noise sources are included. It is assumed that the noise sources in
question are statistical in nature and can be averaged and are not in fact unwanted signal as in the case of
chemical “noise.”

4.3.2 Limit of Recognition

Despite regular appearances in the analytical chemistry literature over the past 20 years [75, 152], the 
IUPAC Gold Book [142], does not appear to contain an official definition of  limit of  re cognition. Quali-
tatively, limit of recognition refers to the maximum recognizable composition range [75]; in other words, 
it is a FoM for how well an instrument may ascertain the quantitative composition of a chemical mixture. 
Unlike, other FoMs, it is inherently a multivariate measurement due to the need to identify and quantitate 
different chemicals in those mixtures.

Zeller and his co-workers explore the limit of recognition in a way that generalizes limit of detection to 
a multivariate vector-based context at the expense of narrowly focusing that definition on a surface acoustic 
wave sensor [152]. However, much of their work is a numerical nature and defines the limit of detection as 
the lowest concentration at which they can recognize the target chemical. The influence of chemical noise 
is not explored with mathematical rigor nor is the formal definition of the subject as a statistical quantity.

4.3.3 Resolving Power for Arbitrary Sensing Tasks

In a general sense, resolving power for an arbitrary sensing task can be defined as t he ability t o dis-
tinguish one chemical stimulus from another on the basis of measured sensor data. This connects directly 
with the previous discussion of sensitivity. A given displacement in chemical stimulus space for which the 
mean array responses associated with each end of the displacement is not equal can be resolved to the extent
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allowed by the measurement error distributions of the sensor responses. This can be expressed, for example,
as a “signal-to-noise” metric in which the displacement between the two mean response vectors is divided
by the average measurement error (e.g. standard deviation multiplied by a scalar value reflecting the degree
of certainty required) or as a receiver-operator characteristic (ROC)curve generated from the array response
distributions and a particular classifier rule. However, as discussed previously, the Fisher information yields
a more direct measure of resolving power by providing a lower-bound estimate of the error in determining
a particular location in chemical stimulus. Sensing task-specific resolving power can thus be characterized
by the lower-bound error of estimation oriented along the direction of that task in the appropriate region of
the chemical stimulus space. This error implies a particular relationship between displacement along this
direction and the degree of certainty with which this displacement can be detected that can be expressed in
various statistical or decision theoretic terms, such as particular significance tests or ROC curve analysis.
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5. SENSOR SELECTION VIA CONVEX OPTIMIZATION

5.1 Introduction to Sensor Selection

In situ chemical sensing for field applications presents significant challenges for the practitioner. The
deployed technology must be selective and robust against the chemical background of the subject environ-
ment while remaining sensitive to the target chemical species. As almost no sensor technologies present
truly target-specific 2 capabilities, the success of a particular sensing strategy in a given application is driven
by the complexity and composition of the chemical background in which the sensing is to take place. This
observation is at odds with the approach of much of the chemical sensing literature, which tends to prioritize
the discussion of target analyte response characteristics under controlled laboratory conditions over consid-
eration of the impact of realistic, complex chemical background conditions. Consequently, the effects of
such backgrounds embody combinatorial parameter spaces that are impractical to thoroughly investigate in
experimental laboratory testing.

Moreover, the design of chemical sensor arrays from the standpoint of chemical sensor selection and
error quantification has historically proceeded as an ad hoc process. Frequently, chemical sensors are devel-
oped not as general purpose sensing devices, but as analyte or chemical class specific detectors. When such
single purpose devices are integrated together as a chemical sensor array, it is unclear a priori how well they
will function in concert with each other to provide expanded capabilities, an observation that is true of the
integration of analytical instruments as well [1]. Further complicating the combination and optimization
of these devices is that it is semantically unclear precisely what the combined device or array ought to do.
Defining what a combined sensing device ought to do is difficult and highly dependent upon the analytical
task the array will be intended to support as well as the specific goals of the array designer.

One commonly proposed way to deal with difficult selectivity requirements is to implement an array of
purposely non-specific sensors, with the idea that such systems will provide an aggregate detection capability
significantly greater than that of any individual sensor. This approach is rooted in analogy to biological
exemplars of selectivity. For instance, vapor sensor arrays have been called “electronic noses,” referring
to the array of non-specific olfactory receptor neurons that comprise the olfactory system. The resultant
combined output of such a composite array to a stimulus is often referred to as a “fingerprint,” due to the
presumed uniqueness of this stimulus pattern.

However, these analogies only go so far. For example, the human olfactory system contains approxi-
mately 350 different receptor types, suggesting it is significantly more complex than any electronic nose
system that has been constructed to date, where the number of receptors is typically less by an order of mag-
nitude. In terms of information-generating capacity, the olfactory system would, at least superficially, seem
to have a greater resemblance to an analytical laboratory instrument than to current multisensor systems.
This makes sense, as intuitively one would expect a proportionate relationship between the information-
generating capacity of a system and the range of analytical tasks (or degree of uncertainty in a given task)
that it can reasonably be expected to support. The central challenge in building a successful sensor array for
a complex detection task is thus one of optimizing sufficient information-generating capacity to minimally
enable an acceptable likelihood that the system will be able to answer the analytical challenge posed by the
uncertainty of the parameters of the task at hand.

2The term specific is defined as “the ultimate of selectivity,” as recommended by IUPAC in [30]
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That said, in the face of an otherwise unspecified sensing task, it is reasonable to assume that the practi-
tioner ought to attempt to minimize the global error of the array, or conversely, to maximize the signal. This 
is the approach is taken by the authors within this paper. The question remains, however, as to how to best 
fulfill this objective. While a hypothetical practitioner may be able to take an exhaustive approach to sensor 
array design by experimentally evaluating all possible sensor combinations, this method quickly becomes 
infeasible as the number of sensors relative to array slots becomes coequal or large.

In the rare cases when a sensor array optimization has been attempted (as opposed to using whatever 
sensors were immediately available), it is this aforementioned approach of combinatorial experimentation 
which historically has typified chemical sensor array design, and thus, severely limited the optimization of 
sensor arrays. Alternative approaches to array design based on neural networks and machine learning have 
also been tried e.g. [1, 153–155]. However, due to their opacity, these methods fail to provide significant 
insight into the chemical detection problem or to suggest subsequent ways to further improve the array 
design. Consequently, an explicit, precise, and mathematically rigorous approach to chemical sensor array 
design and optimization is greatly desired.

Given its wide range of applications it is surprising that the literature centered on chemical sensor array 
optimization strategies is rather sparse, despite the relative frequency of papers describing specific sensor 
arrays and applications. A notable exception is the Fisher information matrix-based approach proposed by 
Pearce and Sánchez-Montañes and theoretically applied to simple linear sensor systems with uncorrelated 
noise [21, 22, 25]. Unfortunately, this methodology has not been greatly developed since its inaugural set 
of papers. In the view of this paper’s authors, this is most likely due to the mathematical complexities and 
difficulties presented by implementing this program as well as the accompanying change in mentality this 
forces upon the typical practitioner in the chemical sensing field.

This chapter presents a methodology for designing near-optimal chemical sensor arrays with minimal 
statistical error by extending Pearce and Sánchez-Montañes’s (PSM) Fisher information matrix-based ap-
proach [23, 24]. Originally, PSM demonstrated the FIM-based methodology for statistically uncorrelated 
chemical sensor arrays by selecting optimal sensors by hand. We extend this framework to a more realistic 
situation by considering statistical correlation amongst the sensor responses and use convex optimization 
techniques for sensor selection. Using convex optimization for sensor selection is not without precedent, 
Joshi and Boyd [156] performed sensor selection with convex optimization for a sensor array system with 
uncorrelated uniform Gaussian noise. Our improvements are made possible by taking advantage of the posi-
tive definite nature of the FIM as a rich source of objectives for sensor selection via fast convex optimization 
techniques without recourse to the combinatorial simulation, so that the possibility of “on-the-fly” chemical 
sensor array design is apparent.

We further develop the use of the Fisher information matrix as a quantitative descriptor for hypothetical 
chemical sensor array scenarios in which a collection of co-located sensors respond to chemical mixtures 
resulting from a pool of possible analytes. We assume that the underlying sensors provide additive linear 
responses with respect to the system of analytes and that they may exhibit statistically correlated noise. 
The latter is important as correlated measurement error is realistic, yet frequently unacknowledged in the 
literature. The former is generally a reasonable assumption in low concentration regimes, which typify the 
bulk of analytical sensing applications, and present the greatest challenges regarding desired sensitivity and 
selectivity.This work describes how the positive (semi)definite nature of the Fisher information matrix en-
ables algorithmic chemical sensor array design via convex optimization techniques. This property is a rare 
bit of mathematical good fortune as the general case of global optimization is generally computationally
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intractable. The use of elliptically contoured distributions as a general-purpose means of modeling corre-
lated sensor noise is introduced and developed for convex optimization of sensor arrays. Ultimately, this
paper presents a theoretical description and practical implementation of this approach to chemical sensor
array design and optimization by showing how to (nearly) best select a subset of sensors for a sensor array
from a much larger collection while assuming correlated noise and the specific challenges of a chemical
environment.

5.2 Approaches to Chemical Sensor Array Design

5.2.1 Introduction

The design, development, and implementation of sensor array systems capable of performing robust de-
tection tasks in chemically complicated environments present enormous challenges to practitioners. Among
the many design decisions to be considered are: the anticipated operating environment and target set of
chemicals or class of chemicals under consideration, the likely chemical interferants in the operating envi-
ronment, the noise associated with nonchemical sources, the selection of sensor type and number and the
likely correlations amongst the chosen sensors, and how to process the generated sensor array data. More-
over, the metrics used to evaluate the quality of a sensor often transfer poorly to a sensor array in a complex
chemical environment due to the unknown effects of noise and the biases of chemical system specific phe-
nomena. Consequently, developing task agnostic design criteria for sensor arrays is critically important
for their robust design and development as such such a framework inherently provides the metrics for the
optimization of such a sensor array.

5.2.2 Theoretical Design Criteria for Chemical Sensor Arrays

A useful way to conceptualize sensing task and sensor array complexity is to describe them as geometric
spaces, one describing the span of analyte mixtures to be sensed and the other describing the span of response
vectors the array is capable of generating. The sensor response functions provide a transformation from one
space to the other. This enables a general geometric description of signal processing based on a linear
algebraic model of sensor arrays [21, 25]. For example, assuming an array of sensors with linear response
curves and additive response to analyte mixtures, the response, r, of a particular sensor to a mixture of m
analytes will be:

r =
m

∑
i=1

cisi (68)

where ci is the concentration of the ith analyte and si is the sensitivity of the sensor to the ith analyte.
Extending this relationship for an array of n sensors leads to a system of linear equations:

rrrT = cccT SSS, (69)

where the entries, si j, of the sensitivity matrix, SSS, encode the sensitivity of the jth sensor to the ith analyte 
and each r j is the response from the jth sensor. The matrix of the sensitivity values, SSS, for a sensor array 
specifies the geometric transform that maps locations in the sample space to corresponding locations in the 
measurement space of that array. The characteristics of this geometric relationship directly relate to the 
analytical performance achievable by the sensor array.
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The Fisher information matrix methodology [21, 25, 157] expands the applicability of this geometric
framework to array systems with probabilistically defined noise and nonlinear and non-additive sensor re-
sponses. It has been used in many applications involving statistical estimation, including quantum chemistry,
experimental design, and neural programming [158–161]. For a single sensor, i, and concentration vector ,
ccc, the Fisher information matrix f is defined as,

Ji
j j′(ccc) =

∫
dri p(ri|ccc)

(
∂

∂c j
ln p(ri|ccc)

)(
∂

∂c j′
ln p(ri|ccc)

)
, (70)

where p(ri|ccc) is the conditional probability of a response of the ith sensor, given ccc.

Assuming uncorrelated noise, the Fisher information matrix of the array is the sum of the matrices for
each sensor. According to the Cramér-Rao bound, the total expected squared reconstruction error for an
unbiased estimator across the entire array is related to the Fisher information matrix by eqn. (71).

σ
2(ĉcc|ccc) =

m

∑
j=1

σ
2(ĉcc j|ccc)≥

m

∑
j=1

σ
2(J−1(c)) j j ≡ 〈ε2

c j
〉 (71)

Thus, one can derive a measure of how the geometric framework of the detection problem itself imposes a
limitation on the certainty to which a target analyte concentration can be estimated.

Using these metrics of optimization, the Pearce et. al. [25] were able to illustrate the importance of
careful design in sensor array development for a well-defined sensing task. They demonstrated for a simple
example that choosing a random sensor configuration would result in significantly sub-optimal performance
with relatively high probability. To optimally select sensors for their array, they resorted to brute force search
for an optimal solution. Fortunately, other work due to Joshi and Boyd (J-B) [156] has addressed the related
issue of sensor selection under Gaussian noise using convex optimization. While J-B did not consider the
selection of sensors using the Fisher information matrix, the method they used is applicable to optimizing
the Fisher information matrix for a sensor array with multivariate Gaussian noise. This paper generalizes
and expands this approach to optimizing a chemical sensor array with noise distributed according to an
arbitrary multivariate probability distribution and specifically applies this approach to a sensor array with
correlated noise with elliptically contoured distribution.

5.3 Convex Optimization of the Fisher Information matrix

Recall the definition of the FIM,

FFF(µµµ;θθθ) =
∫

dXXXρ(µµµ;θθθ |XXX)

(
∂ ln(ρ)

∂θθθ

)(
∂ ln(ρ)

∂θθθ

)T

(72)

Due to its structure as matrix defined by an integral over an exterior vector product, the FIM is a  positive 
semidefinite m atrix, i .e. aaaT FFFaaa ≥ 0 , where aaa i s an arbitrary real-valued vector of appropriate dimension. 
Positive semidefiniteness is crucial as this property allows for the so-described sensor array to be optimized 
with respect to sensor configuration via convex optimization techniques.
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In order to properly implement this idea for sensor array optimization, specifications for of an appropri-
ate objective function as well as a set of constraints are required. To setup this problem, first the objective
function will be defined and then the relevant constraints detailed. In the process of setting up the con-
straints and detailing the supporting mathematical elements for the convex optimization, appropriate sensor
responses and noise models for the chemical sensor array will be proposed.

Barring other priorities or specific knowledge of the analytical task, a reasonable design goal for a gen-
eral purpose chemical sensor array is to minimize the global error (maximize the signal) of the chemical
sensor array. A useful measure for this global error is the volume of the ellipsoid cast by the covariance ma-
trix of the relevant estimators since this provides a reasonable metric for the global uncertainty of estimated
chemical concentrations and thus for the discernability of similar chemical mixtures. The volume of this
error ellipsoid is given by the following expression [131],

vvvooolll(ΣΣΣ) =
2πd/2

dΓ
(d

2

)det(ΣΣΣ)1/2 (73)

where ΣΣΣ is the covariance matrix and d is the dimension of the volume. Minimizing this volume term,
vvvooolll(ΣΣΣ), ultimately requires the minimization of det(ΣΣΣ)1/2 as all other terms for the volume expression are
related to the system dimension, which is not subject to optimization.

Since the composition of convex functions are themselves convex and both the square root function of
x > 0 and the determinant of a positive semidefinite matrix like ΣΣΣ are convex functions themselves, the
objective function may be further simplified todet(ΣΣΣ). For reasons of subsequent numerical convenience,
this objective function is composed with the natural logarithm to give ln(det(XXX)) as the final objective
function. It is proven below that this function is concave (convex up) for all positive semidefinite matrices,
XXX , by showing that this function satisfies concavity [162].

First consider the following,

g(t) = ln(det(XXX))

= ln(det(ZZZ + tVVV )) (74)

where XXX = ZZZ + tVVV > 0. XXX , ZZZ, and VVV are positive definite matrices and t ≥ 0 is a scalar parameter. Manipu-
lating the matrix function in question to ensure positive definite matrices yields,

g(t) = ln(det(ZZZ + tVVV ))

= ln(det(ZZZ1/2(III + tZZZ−1/2VVV ZZZ−1/2)ZZZ1/2))

= ln(det(III + tVVV ))+ ln(det(ZZZ)) (75)

so that the first and second derivatives of g(t) may be taken as,

g′(t) =
n

∑
i=1

λi

1+ tλi
(76)
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and

g′′(t) =−
n

∑
i=1

λ 2
i

(1+ tλi)2 (77)

Since λi > 0 due to the definition of positive definite matrices, it follows that g′(t) > 0 and g′′(t) < 0 for
t ≥ 0. This implies that ln(det(XXX)) is a convex function for positive definite XXX [162].

Having shown that this objective function is valid for the optimization problem, it is now important
to consider what variables to actually use to optimize the ln(det(XXX)) objective. Specifically, it is not the
covariance matrix that is being input into the objective function, but the inverse Fisher information matrix.
This substitution is justified due to the Cramér-Rao lower bound (just as the Gaussian FIM substitution
would be in the case of the upper bound).

Consequently, it is the FIM of a probability distribution and not its covariance matrix which is parametrized
for optimization and the objective function thus becomes,

ln(det(CCC(θθθ)))≥ ln(det(FFF−1(θθθ ;sss))) =− ln(det(FFF(θθθ ;sss))) (78)

where sss are the slack variables subject to the optimization. For a given convex optimization in addition to
the inequality and equality constraints, the practitioner must supply the convex optimization routine with
gradient and Hessian routines for the objective function in the slack variables as well [162].

The gradient for − ln(det(FFF(θθθ ;sss))), the objective function, is given by,

−∇ ln(det(FFF(θθθ ;sss))) =−
#(sss)

∑
i=1

êeeiTr(FFF−1 ∂FFF
∂ si

) (79)

where #(sss) is the cardinality of the slack variables, sss, and êeei denote the relevant vector basis set. The matrix
elements for the Hessian, hhh(θθθ ;sss), are defined by,

hi j(θθθ ;sss) =− ∂ 2

∂ si∂ s j
ln(det(FFF(θθθ ;sss)))

= Tr(FFF−1 ∂FFF
∂ si

FFF−1 ∂FFF
∂ s j

)−Tr(FFF−1 ∂ 2FFF
∂ si∂ s j

) (80)

To evaluate these quantities it is necessary to first choose a noise model, so that the FIM may be properly
parametrized for optimization. This matter is discussed in the following section.

5.4 Elliptically Contoured Distributions: A Correlated Noise Model for Chemical Sensor Arrays

5.4.1 Introduction to Elliptically Contoured Distributions

Elliptically contoured distributions (ECDs) [163] are a class of statistical model which generalize the
multivariate Gaussian and includes many standard statistical models like the multivariate Student’s t-distribution.
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They are defined as follows

g((xxx−µµµ(θθθ))T ΣΣΣ(θθθ)(xxx−µµµ(θθθ)))

N(θθθ)
(81)

where g(·) is an arbitrary univariate probability distribution, θθθ are the external deterministic parameters
being bounded by the FIM, µµµ(θθθ) is the mean response function, is a positive definite scale matrix which
reduces to the covariance matrix if g(·) = exp(−(·)), and N(θθθ) is the normalization constant for the prob-
ability density function. These distributions are chosen to model the correlated noise of chemical sensor
arrays as they can model correlation among sensor responses while remaining both analytically tractable
and relatively general.

Examples of FIMs for various well-known probability distributions are given by following: The FIM for
the multivariate Gaussian is given by the so-called Slepian-Bangs formula as [164],

Fi j(θθθ) = 2
(

∂ µµµT

∂θi

)
ΣΣΣ
−1(θθθ)

(
∂ µµµ

∂θ j

)
+Tr(ΣΣΣ−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j) (82)

where ΣΣΣi =
∂ΣΣΣ

∂θi
and the FIM for the multivariate Student-t distribution [164] is

Fi j(θθθ) =2
d +M

d +M+1

(
∂ µµµT

∂θi

)
ΣΣΣ
−1(θθθ)

(
∂ µµµ

∂θ j

)

− 1
d +M+1

Tr(ΣΣΣ−1
ΣΣΣi)Tr(ΣΣΣ−1

ΣΣΣ j)

+
d +M

d +M+1
Tr(ΣΣΣ−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j) (83)

where d is the degrees of freedom, a distribution specific quantity, of the Student-t distribution and M is the
rank of the scale matrix ΣΣΣ.

The FIM for ECDs [164] has been recently derived as a generalization of the Slepian-Bangs formula as

Fi j(θθθ) =2
EEE p[qφ 2(q)]

M

(
∂ µµµT

∂θi

)
ΣΣΣ
−1(θθθ)

(
∂ µµµ

∂θ j

)

+

[
EEE p[q2φ 2(q)]
M(M+1)

−1
]

Tr(ΣΣΣ−1
ΣΣΣi)Tr(ΣΣΣ−1

ΣΣΣ j)

+
EEE p[q2φ 2(q)]
M(M+1)

Tr(ΣΣΣ−1
ΣΣΣiΣΣΣ

−1
ΣΣΣ j) (84)
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where M is the scalar dimensionality or rank of the scale matrix, ΣΣΣ ∈ RM×M, EEE p[·] denotes an expectation
value with regard to a probability density,

p(q) =
1

δM,g
qM−1g(q) (85)

so that,

EEE p[·] =
1

δM,g

∫
∞

0
dq(·)qM−1g(q) (86)

where

δM,g =
∫

∞

0
dt tM−1g(t) (87)

and

φ(t) =
g′(t)
g(t)

(88)

Using ECDs and their corresponding FIMs as reasonable models for correlated chemical sensor arrays
allows the practitioner to propose a specific model for convex optimization.

5.4.2 Gradients and Hessians for the Fisher Information Matrices of Elliptically Contoured Distributions

Recall from the prior section that the model dependent components of the gradient and Hessian matrix
for the convex optimization of the FIM are the matrices ∂FFF

∂ sp
and ∂ 2FFF

∂ sp∂ sq
. The expressions for the matrix

elements of these matrices are developed in the following subsection.

First, express the ECD FIM elements as follows,

FFFECD(i, j) =α
∂ µµµT

∂θi
ΣΣΣ
−1 ∂ µµµ

∂θ j︸ ︷︷ ︸
G

+β Tr(ΣΣΣ−1
ΣΣΣi)Tr(ΣΣΣ−1

ΣΣΣ j)︸ ︷︷ ︸
J

+ γ Tr(ΣΣΣ−1
ΣΣΣiΣΣΣ

−1
ΣΣΣ j)︸ ︷︷ ︸

K

(89)
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where α , β , and γ are distribution specific constants that are not dependent upon the slack variables, sp and
sq, and are given by,

α =
2EEE p[qφ 2(q)]

M
(90)

β =
EEE p[q2φ 2(q)]
M(M+1)

−1 (91)

γ =
EEE p[q2φ 2(q)]
M(M+1)

(92)

where the subscript p denotes an average with respect to p(q) and ΣΣΣi =
∂ΣΣΣ

∂θi
, and G, J, and K are so defined

to simplify the derivation and presentation.

The derivatives of each of these sub-expressions are given as follows,

∂G
∂ sp

=
∂ 2µµµT

∂ sp∂θi
ΣΣΣ
−1 ∂ µµµ

∂θ j
+

∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1 ∂ µµµ

∂θ j

+
∂ µµµT

∂θi
ΣΣΣ
−1 ∂ 2µµµ

∂ sp∂θ j
(93)

∂J
∂ sp

= Tr(ΣΣΣ−1
ΣΣΣspΣΣΣ

−1
ΣΣΣi +ΣΣΣ

−1
ΣΣΣspi)Tr(ΣΣΣ−1

ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣi)Tr(ΣΣΣ−1

ΣΣΣspΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣsp j) (94)

∂K
∂ sp

= Tr(ΣΣΣ−1
ΣΣΣspΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣspiΣΣΣ

−1
ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣiΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣsp j) (95)

where ΣΣΣsp =
∂ΣΣΣ

∂ sp
and ΣΣΣspi =

∂ 2ΣΣΣ

∂ sp∂θi
.
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The Hessian elements for the G and J terms are given by,

∂ 2G
∂ sp∂ sq

=
∂ 3µµµT

∂ sp∂ sq∂θi
ΣΣΣ
−1 ∂ µµµ

∂θ j

+
∂ 2µµµT

∂ sp∂θi
ΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1 ∂ µµµ

∂θ j

+
∂ 2µµµT

∂ sp∂θi
ΣΣΣ
−1 ∂ 2µµµ

∂ sq∂θ j
+

∂ 2µµµT

∂ sq∂θi
ΣΣΣ
−1 ∂ 2µµµ

∂ sp∂θ j

+
∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1 ∂ 2µµµ

∂ sp∂θ j
+

∂ µµµT

∂θi
ΣΣΣ
−1 ∂ 3µµµ

∂ sq∂ sp∂θ j

+
∂ 2µµµT

∂ sq∂θi
ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1 ∂ µµµ

∂θ j

+
∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspΣΣΣ
−1 ∂ µµµ

∂θ j
+

∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣsqspΣΣΣ
−1 ∂ µµµ

∂θ j

+
∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1 ∂ µµµ

∂θ j

+
∂ µµµT

∂θi
ΣΣΣ
−1

ΣΣΣspΣΣΣ
−1 ∂ 2µµµ

∂ sq∂θ j
(96)
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∂ 2J
∂ sp∂ sq

= Tr(ΣΣΣ−1
ΣΣΣ j)Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣi +ΣΣΣ
−1

ΣΣΣsqspΣΣΣ
−1

ΣΣΣi)

+Tr(ΣΣΣ−1
ΣΣΣ j)Tr(ΣΣΣ−1

ΣΣΣspΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣi)

+Tr(ΣΣΣ−1
ΣΣΣ j)Tr(ΣΣΣ−1

ΣΣΣspΣΣΣ
−1

ΣΣΣsqi +ΣΣΣ
−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspi)

+Tr(ΣΣΣ−1
ΣΣΣ j)Tr(ΣΣΣ−1

ΣΣΣsqspi)

+Tr(ΣΣΣ−1
ΣΣΣspΣΣΣ

−1
ΣΣΣi +ΣΣΣ

−1
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ΣΣΣsqΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1
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ΣΣΣsqΣΣΣ

−1
ΣΣΣi +ΣΣΣ

−1
ΣΣΣsqi)Tr(ΣΣΣ−1

ΣΣΣspΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣsq j)

+Tr(ΣΣΣ−1
ΣΣΣi)Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1
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ΣΣΣ j +ΣΣΣ
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−1
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ΣΣΣi)Tr(ΣΣΣ−1
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−1
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−1
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−1

ΣΣΣsp j +ΣΣΣ
−1
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and the Hessian element for K is setup as follows,

∂ 2K
∂ sp∂ sq

=
∂

∂ sq
Tr(ΣΣΣ−1

ΣΣΣspΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j)︸ ︷︷ ︸
A1

+
∂

∂ sq
Tr(ΣΣΣ−1

ΣΣΣspiΣΣΣ
−1

ΣΣΣ j)︸ ︷︷ ︸
A2

+
∂

∂ sq
Tr(ΣΣΣ−1

ΣΣΣiΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣ j)︸ ︷︷ ︸
A3

+
∂

∂ sq
Tr(ΣΣΣ−1

ΣΣΣiΣΣΣ
−1

ΣΣΣsp j)︸ ︷︷ ︸
A4

(98)
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where the derivatives of each of the sub-terms of the expression are given by the following:

∂A1

∂ sq
= Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣspsqΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣspΣΣΣ

−1
ΣΣΣsqΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣspΣΣΣ

−1
ΣΣΣsqiΣΣΣ

−1
ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣspΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣsq j) (99)

∂A2

∂ sq
= Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣspiΣΣΣ
−1

ΣΣΣ j +ΣΣΣ
−1

ΣΣΣspsqiΣΣΣ
−1

ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣspiΣΣΣ

−1
ΣΣΣsqΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣspiΣΣΣ

−1
ΣΣΣsq j) (100)

∂A3

∂ sq
= Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣspΣΣΣ
−1

ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣspiΣΣΣ

−1
ΣΣΣsqΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣsqΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣiΣΣΣ

−1
ΣΣΣsqspΣΣΣ

−1
ΣΣΣ j)

+Tr(ΣΣΣ−1
ΣΣΣiΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣsqΣΣΣ

−1
ΣΣΣ j +ΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣspΣΣΣ

−1
ΣΣΣsq j) (101)

∂A4

∂ sq
= Tr(ΣΣΣ−1

ΣΣΣsqΣΣΣ
−1

ΣΣΣiΣΣΣ
−1

ΣΣΣsp j +ΣΣΣ
−1

ΣΣΣsqiΣΣΣ
−1

ΣΣΣsp j

+Tr(ΣΣΣ−1
ΣΣΣiΣΣΣ

−1
ΣΣΣsqΣΣΣ

−1
ΣΣΣsp j +ΣΣΣ

−1
ΣΣΣiΣΣΣ

−1
ΣΣΣspsq j) (102)

where ΣΣΣab =
∂ 2ΣΣΣ

∂a∂b and ΣΣΣabc =
∂ 3ΣΣΣ

∂a∂b∂c .
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6. CHARACTERIZING CHEMICAL SIMULANTS

6.1 Introduction

Chemical simulants (CSs) are chemical additives and substitutes employed as replacements for targeted 
analytes (TAs) in situations like a training sessions or an experimental trial when those analytes are too 
dangerous, rare, illegal, and/or expensive to be actually used. In a qualitative, but technical sense, CSs are 
chemical stand-ins for TA(s) in the sense that they cause a given chemical sensing system’s response to be 
identical or nearly identical to the response caused by the targeted analytes.

While they are employed in a wide variety of regulatory and security related settings, CSs are, perhaps, 
most familiar from their usage as canine training aids for drug, explosive, and cadaver recovery detection 
by security and law enforcement agencies worldwide [165–167]. CSs have also been developed to simulate 
chemical warfare agents when testing protective equipment [168] and validating the capabilities of environ-
mental remediation techniques for end-of-life hazardous chemical cleanup and disposal [169]. Moreover, 
CSs are not just relevant to military and security-related settings, but to consumer safety protection as well. 
The counterfeit ingredients and adulterants often found in fraudulent food [170, 171] and pharmaceutical 
products [172] are, in essence, CSs intended to fool regulatory tests. Consequently, quantitatively under-
standing CSs is an important endeavor as the practical impact of their deployment and use is felt broadly 
throughout society.

Considering these critical applications, it is surprising that while there are end use-specific figures of 
merit (FOMs), such as those for a lunar regolith simulant [173] or detecting chemical warfare agent (CWA) 
simulants in consumer grade containers [174], no general, domain transferable, and system agnostic ana-
lytical framework for understanding and interpreting the relationships among of CSs, TAs, and analytical 
instruments is known by the authors to exist. Contributing to this paucity of work is the general lack of 
explicit recognition that a CS, and thus its FOM, is indivisible from the chemical detection system and the 
TA(s) to which they are associated. Further complicating the more practical exploration of an already fraught 
subject is that CSs are often deployed outside of controlled laboratory environments in real world scenarios 
subject to unknown and uncharacterized chemical interferents. Consequently, any CS FOM should be able 
to include the effects of the external environment via unknown chemical interferents, a caveat which can 
significantly increase the technical requirements of any viable, proposed FOM.

Other fields h ave d eveloped F OMs f or d efining th e qu ality of  si mulant-like qu antities. In  particular, 
steganography [175], the study of hidden writing, has a now field-standard FOM for theoretically determin-
ing the quality of the undetectability of a hidden message embedded in a covertext i.e. an image or similar 
lossy file. This FOM utilizes the Kullback-Leibler divergence ( KLD) [11, 176] to compare the divergence 
or relative entropy between the probability distributions associated with image containing the hidden mes-
sage and the reference image. Using this approach, a steganalyst is able to develop a lower bound for the 
probability of the hidden message’s success of not being detected.

An analogous approach for a CS FOM is developed in this paper using an information theoretic inequal-
ity in this paper. This result is expanded upon as bounds are given both for the probability of detection of 
the chemical simulant as well as in terms of a ROC curve which bounds the quality of the CS FOM under 
a variety of detection scenarios. We further generalize this approach by including the effects of the external 
chemical environment in the KLD FOM. This addition allows us to describe bounds on various ROC curves 
in a variety of environmental backgrounds and to tune our CS to specific analytical task r equirements. Fi-
nally, simulations of CSs and their accompanying ROC curves are provided for a variety of scenarios using 
both synthetic and experimental data.
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6.2 Prior Work on Chemical Simulants

As has already been mentioned, CSs have a relatively sparse literature and little readily available quan-
titative data. Nonetheless, CSs have a long, practical history due to their undeniable utility. Much of 
that which is available is found in patents, corporate white papers, and government reports and not in the 
peer-reviewed literature. To reiterate what was previously mentioned: CSs are often deployed for training 
purposes, such as training canines to detect narcotics or cadavers, or design, such as designing and testing 
defenses against CWAs as well as surrogates for toxic chemicals in chemical remediation scenarios. In a 
rather less benign context, CSs make an appearance as cheap substitutes for more expensive ingredients in 
fraudulent consumer products or as adulterants specifically intended to defeat regulatory tests.

When designing a CS, some approaches in the literature attempt to replicate key chemical structures 
or functional groups of the simulated analyte and its possible breakdown products [177] or target the 
response(s) of the chemical detection system by replicating the key physical aspects of the such as the 
headspace or chemical vapor profile [ 178]. Materials intended to t rain military and police working dogs 
for scent detection or canine training aids are a large CS class, typically meant to replicate the scents of 
explosives, narcotics and human cadavers. Often, their specific composition is proprietary and quantitative 
information, not typically part of the sales literature, is often unavailable.

Nonetheless, due to their importance for investigative forensics, several peer-reviewed studies exist that 
detail the chemical composition and quality of these aids [179, 180]. In the instance of human remains-
related training aids [179], concerns were raised by researchers as to the relevance of many of the simulant’s 
constituent compounds to canine remains detection. Simulants for explosives are similarly analyzed by 
Harper et. al. [180]. Studies and articles associated with CWA CSs [169, 181–184] provide a useful 
perspective concerning how CSs themselves are used and reported in the literature; often they are employed 
for the research itself, but the actual subject is the TA with relatively little effort spent describing how the 
CS differs from the TA.

Perhaps unsurprisingly given these applications and oversights, if one is specifically interested in quan-
titative measurements of the quality of a CS, only a single case of a materials specific physico-mechanical 
FOM for lunar regolith colloquially known as ”moon soil” is known by the authors to exist. Various lunar 
regolith simulants (LRSs) have been developed in academic labs and government agencies throughout the 
world [185–190]. These particular simulants attempt to exactly replicate the physical and material composi-
tion of lunar regolith, the moon’s functional equivalent to terrestrial soil [190], for the purpose of designing 
exploratory equipment and developing lunar relevant studies and experiments. Interestingly, a FOM has 
been developed for quantifying the quality of LRSs [173]. This FOM characterizes LRS by their com-
position, granular size and shape assortment, and density. This LRS FOM is narrowly focused on criteria 
relevant to its application and presents itself as a scalar quantity from 0 to 1 with 0 being no correlation to 
lunar regolith and 1 being a perfect match. While this FOM is not chemical detection-oriented, it is the only 
quantitative FOM for a CS or CS-adjacent quantity found by the authors in their literature search.

6.3 Developing Figures of Merit: From Steganography to Chemical Simulants

6.3.1 Introduction and Overview

We begin the development of our approach to CS quantitation via analogy with the development of a 
FOM for steganography, the study of information hiding to inform our ultimate goal of creating a system-
agnostic FOM for CSs. FOMs for steganography provide a direct analogue to CSs due to the functional
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similarity of a steganographic payload and a CS. Steganography has a well-developed information theo-
retic FOM based on the KLD for assessing the quality of the steganographic scheme in question. After
presenting that steganographic FOM scheme, we consider the analytical task of a CS in the presence of
background/environmental chemical interferents and show how to analogously develop such an FOM to the
measure the quality of a CS. Using an information processing inequality [11], we relate the KLDs for a
CS and its corresponding TA to the decision concerning the presence or absence of the chemical simulant
using a testing framework. We develop receiver operating characteristic (ROC) curve boundaries which help
define CS quality and constrain the maximal effectiveness of that CS with a particular KLD pair.

6.3.2 A Figure of Merit from Steganography for the Quality of Information Hiding

Steganography is a cryptographic adjacent field of study concerning itself with hiding data in an oth-
erwise innocuous and ultimately fungible file called a covertext, often a lossy image. The archetypical
example for the application of steganography is Simmons’ “Prisoners’ Problem” [191], which involves 2
prisoners attempting to secretly communicate under the watchful eye of an antagonistic warden. C. Cachin
has provided an information-theoretic interpretation and FOM for this problem and for steganography itself
by a mathematically formalized interpretation of what this problem requires to declare a participant “suc-
cessful.” We briefly sketch and define the mathematical details of Cachin’s approach and refer the interested
reader to [175, 192].

A stegosystem is a communication protocol between two users, Alice and Bob, in which Alice wants to
send a seemingly innocuous message with hidden information through an open channel to Bob. This channel
is subject to the scrutiny of an adversarial third party, Eve. Alice and Bob are deemed successful if Eve,
who has access to all content transmitted through that open channel, is unable to detect that hidden messages
are being transmitted. We call Alice inactive when she sends a message without hidden content. We refer to
such a message as a covertext, C, which may be modeled as being generated by a probability distribution PC.
We call her active if she sends a message with an embedded message, E, from a message space, E , encoded
into the covertext with an embedding function, F . The resultant covertext with an embedded message is
referred to in totality as a stegotext, and modeled by the distribution PS. Moreover, an independent private
random source R is available solely to Alice and the independent, random secret key, K, is available to
both Alice and Bob, but not Eve. Likewise, Bob has an extracting algorithm, G , which he uses to extract a
decision value Ê from S using K with the hope that this procedure imparts information about E. We assume
that Bob has access to some oracle that tells him whether or not Alice is active. This is not an implausible
assumption since if Bob in actuality were to try to extract a hidden message from a covertext without an
embedded message he would extract meaningless garbage with very high probability.

Cachin defined the security of this stegosystem by the KLD or relative entropy between the distribution
for the covertext and the stegotext as,

D(PC||PS) = ∑
i

PC(i) log
PC(i)
PS(i)

(discrete)

=
∫

dX PC(X) log
PC(X)

PS(X)
(continuous) (103)

1
nA stegosystem is deemed to be perfectly secure if limn→∞ D(PC||PS) tends to 0 over n text transmissions, 

which means Eve has no way of detecting the difference between an empty covertext and a stegotext and
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ε-secure if limn→∞
1
n D(PC||PS) ≤ ε over n text transmissions. Since Eve is successful if she can detect the

presence of a hidden message in a stegotext, ε-secure suggests the existence of a probabilistic, KLD-related,
upper bound to Eve’s successful detection of a stegotext. Ultimately this measure of Eve’s success may be
clarified and formalized using methods drawn from hypothesis testing.

Hypothesis testing is a binary decision rule for discriminating between a hypothesis H0 and another
hypothesis H1. For this steganographic problem, we let H0 signify the hypothesis that just a covertext
is transmitted between Alice and Bob, and we let H1 signify the hypothesis that Alice has transmitted a
stegotext to Bob. The probability of a type I error, accepting H1 when H0 is true, is denoted by α and the
probability of a type II error, accepting H0 when H1 is true, is denoted by β [175].

As a consequence of the data-processing inequality [11], no amount of post collection information pro-
cessing, which does not add additional assumptions to the data, can increase the KLD or relative entropy
between PC, the probability associated with measuring a covertext, and PS, the probability associated with
measuring a stegotext. Consequently, this inequality implies D(PH0 ||PH1)≤D(PQ0 ||PQ1) where PH the prob-
ability of the hypotheses are calculated from the measurement probabilities PQ. Formally we define the
function f : Q→H , which maps the space of measurements, Q, to the space of binary hypotheses, H ,
such that H0 = f (Q0) and H1 = f (Q1).

Since the decision process for determining between H0 and H1 is a binary decision subject to type I
and type II errors, we may set D(PH0 ||PH1) = D(Pα ||Pβ ), which is explicitly expressed as D(Pα ||Pβ ) =

α log2
α

1−β
+(1−α) log2

1−α

β
, where this expression follows the binary log convention for the KLD used

by Cachin [175]. Inserting this result into the information processing inequality yields α log2
α

1−β
+(1−

α) log2
1−α

β
≤D(PQ0 ||PQ1) which may used to directly relate the probabilities of the type I and type II errors

and the KLD of the measurement probabilities. For instance, if we assume that Eve never makes a type I
error (α = 0) i.e. never falsely believes an unloaded covertext to be a stegotext, Eve’s probability for making
a type II error may be bounded from below as β ≥ 2−D(PQ0 ||PQ1 ) [175].

6.3.3 Figures of Merit for Chemical Simulants in the Presence of Background Chemical Interferents: Mod-
els, Figures, and Intrepretations

Introduction

Adapting Cachin’s KLD-based approach to a FOM for steganography to a FOM for CSs in an idealized, 
interferent-free environment is relatively straightforward: The probability distributions of the covertext and 
the loaded text are replaced with the probability distributions of the detection responses of the TA and of 
the CS respectively. Afterwards, all subsequent calculations proceed in a similar fashion to that followed by 
Cachin.

However, when one moves from the idealized case to a CS in the presence of chemical noise in a 
realistic environment, a more nuanced approach focused on the practitioners’ end goals must be developed. 
In a laboratory environment, one may safely assume that the majority of a detector’s response is due to the 
TA, some well-characterized spectator analytes, and the inherent zero-mean noise of the detector. In most 
operational settings, however, a significant fraction of that signal will be due to chemical noise representing 
uncharacterized and unwanted signal whose origins lie in the presence of unknown chemical interferents. 
As it is a legitimate, if unwanted, signal, chemical noise does not average out like true random noise.
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A Model for the Chemical Environment for Figure of Merit Analysis

Since much of the novelty of this approach resides in the probabilistic description of the external chemi-
cal environment, the remainder of this subsection will focus on the formulation of PE (XXXE ;θθθ E), the probabil-
ity distribution associated with the chemical intereferents present in the external chemical environment and
their concentrations. This external chemical environment model generates multiple random variables which
define the identities of the unknown chemical interferents as well as their concentrations. Our probabilistic
model for the external chemical environment may be expressed as a probability distribution,

PE (XXXE ;θθθ E) = Pccc (ccc|aaa)Paaa (aaa) (104)

This expression generates variables which determine the number, identity, and concentrations of the chemi-
cal unknowns present in the external environment. Paaa(aaa) is the probability distribution which generates the
number and identity of the chemical interferents present in the environmental background. This distribution
accomplishes this by generating a vector of boolean variables aaa of total length N where N is the total num-
ber of compounds being considered as chemical interferents. Pccc (ccc|aaa) is the probability distribution which
generates the concentration vector ccc associated with aaa. Both of these vectors ccc and aaa are of length N which
means that concentrations of excluded intereferents are calculated but since they are multiplied by 0, the
boolean value of their presence, they are effectively excluded. This somewhat artificial formalism is used
for the dual purposes of mathematical and computational convenience.

The probabilistic responses of the chemical detection system defined by the probability distribution
PD(XXXD|XXXE ;θθθ D) are dependent upon the chemical interferents generated by PE(XXXE ;θθθ E). The specifics of
this preconditioning are dependent upon the sensing system in question, the known chemical spectators and
the TA itself. Our explicit consideration of them is deferred until a later section.

Figures of Merit for Chemical Simulants

The interactions between the CS(s) or the TA(s) and chemical noise present in the background envi-
ronment are central to our approach to a rigorous FOM. Mathematically, we describe them by a two part
statistical model for a joint chemical detector/environmental system: The first piece is a model for the re-
sponse of the chemical detector conditionally dependent upon the internal noise of the detector, the TAs
and/or the CSs and the known chemical background. The second piece is a model for the environment
comprised of the unknown chemical interferents and concentration. The joint distribution of these models
is given by the following equation:

PD+E (XXXD+E ;θθθ D+E) = PD (XXXD|XXXE ;θθθ D)PE (XXXE ;θθθ E) (105)

where XXXD+E , XXXD, and XXXE are the random variables generated by the combined detector and environment, 
detector, and environment respectively. Likewise, θθθ D+E , θθθ D, and θθθ E denote the parameters for the whole 
system, the detection system, and chemical environment respectively.

Using this detector/environment system model, a CS FOM may be formulated in a variety of different 
ways depending on the specific goal(s) of the p ractitioner(s). The following divergences may be used to 
assess various CS design scenarios given below: Using this detector/environment system model, a CS FOM
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may be formulated in a variety of different ways depending on the specific goal(s) of the practitioner(s). The
following divergences may be used to assess various CS design scenarios given below:

D(PTA
D|E ||P

S
D|E) =

∫
dXXXD PTA

D|E(XXXD;XXXE) log
PTA

D|E(XXXD;XXXE)

PS
D|E(XXXD;YYY E)

(106)

This first FOM, eqn. (106), measures the divergence between a TA and a CS detector system such that the
external chemical environments of both detector systems are fixed but necessarily equivalent. This FOM
allows practitioners to investigate how a CS fares in an external environment different from that of the TA
so that they may investigate the covering capacity of chemical noise.

〈D(PTA
D ||PS

D)〉E =
∫

dXXXEPTA
E (XXXE)·(∫

dXXXD PTA
D (XXXD|XXXE) log

PTA
D (XXXD|XXXE)

PS
D(XXXD|XXXE)

)
(107)

This second FOM, eqn. (107), measures the divergence between a detector’s responses when subjected to a
TA and a CS subject to the same external chemical environment. The influence of this external environment
is then averaged out to yield an average KLD for the detection system. This FOM allows practitioners to
design the best CS on average for a system subjected to a set of possible external chemical environments.

D(PTA
D+E ||PS

D+E) =
∫

dXXX PTA
D+E(XXX) log

PTA
D+E(XXX)

PS
D+E(XXX)

(108)

Finally, this third FOM, (108), measures the divergence between joint detector-environment systems in the
presence of a TA and a CS while assuming that all of the background interferents are the same for each
instance of the system. This FOM is targeted toward assessment of the CS if the practitioner wants it to truly
simulate the TA response even for unknown chemical interferents.



48 Kevin J. Johnson and Adam C. Knapp

7. INTERPRETING FIGURES OF MERIT FOR CHEMICAL SIMULANTS: DERIVING
INEQUALITIES FOR ROC CURVE ANALYSIS

Going beyond the interpretation of the CS FOMs as non-metric KLD-based measures of relative worth in
a fashion appropriate for practical effect requires more work. While Cachin developed an inequality relating
his FOM for steganography to the probability of falsely declaring an embedded message not to be present,
we improve on this approach both in the quality of the bound and in the ease-of-use to the end user. Like
Cachin, we combine hypothesis testing methods with the information processing inequality, but instead of
weakening bounds in order to get an analytic result, we use numerical solving techniques to draw receiver
operating characteristic (ROC) curves. These ROC curves provide both equivalent to or tighter bounds than
analytic result while providing practitioners with relevant, interpretable diagrams.

We utilize the information processing inequality [11, 176] to relate the various KLD quantities given by
eqns. (106), (107), and (108),

D(HTA
D:E(XXX)||HS

D:E(XXX))≤ D(PTA
D:E(XXX)||PS

D:E(XXX)) (109)

to decisions concerning hypotheses denoted by HTA
D:E and HS

D:E . Probability distributions for Two hypotheses
H defines a hypothesis which has binary testing function operating on the random variable XXX generated by
the probability distribution denoted by the super and subscripts on both the binary testing function and the
relevant probability distributions and the “:” operator is meant to stand in for “+”, “|” or the implication
“marginalized over E” as appropriate. Inequalities relevant to applications and practitioners may then be
derived from the KLDs for binary hypothesis testing.

To help set up the decision structure of our CS FOM, HTA
D:E acts as our null hypothesis and asserts the

presence of the TA and not the CS; likewise, HS
D:E asserts the presence of the CS and not the TA. Following

the analogous approach given by Cachin, the respective binary distributions for the Type I and Type II errors
are given by (α,1−α) and (β ,1−β ) where α is the probability of falsely accepting HS

D:E (Type I error)
and β is the probability of falsely accepting HTA

D:E (Type II error).

The KLD for these decision probabilities is given by

D(HTA
D:E(XXX)||HS

D:E(XXX)) = D(P(α)||P(β ))

= α log
α

(1−β )
+(1−α) log

(1−α)

β
(110)

which is just the discrete KLD for a binary decision between the presence or absence of a CS with the
absence signified by HTA

D:E acting as the null hypothesis. Using this relation we may derive bounds on the
probability β of detecting a CS. Beginning with the following inequality,

D(PTA
D:E(XXX)||PS

D:E(XXX))≥ D(HTA
D:E(XXX)||HS

D:E(XXX))

= α log
α

(1−β )
+(1−α) log

(1−α)

β
(111)
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we may regroup terms on the rhs so that this expression becomes,

D(PTA
D:E(XXX)||PS

D:E(XXX))≥α logα +(1−α) log(1−α)

− logβ +α logβ −α log(1−β ) (112)

Recognizing that Hα = −α logα − (1− α) log(1−α) is the information theoretic entropy for the α’s
binary distribution, we rewrite the inequality as

D(PTA
D:E(XXX)||PS

D:E(XXX))≥−Hα − logβ +α logβ −α log(1−β ) (113)

which may be re-expressed as β (1+α)(1−β )α ≥ e−D(PTA
D:E (XXX)||PS

D:E (XXX))−Hα .

Recognizing that 1≥ (1−β )α and then rearranging the inequality yields the lower bound β ≥ e−
1

(1+α)(D(PTA
D:E (XXX)||PS

D:E (XXX))−Hα).
Similarly, recognizing that 1≥ β (1+α) allows for an upper bound β ≤ 1− e−

1
α (D(PTA

D:E (XXX)||PS
D:E (XXX))−Hα).

Combining these expressions yields,

e−
1

(1+α)(D(PTA
D:E (XXX)||PS

D:E (XXX))−Hα) ≤ β ≤ 1− e−
1
α (D(PTA

D:E (XXX)||PS
D:E (XXX))−Hα) (114)

which allows us to bound the probability of acceptance of a CS in lieu of a TA (Type II error) in terms of
the KLD of the chemical detection scenarios.

As an aside, it is worth noting that the entirety of the preceding derivation applies to eqn. (107) as well
since an average may be considered to be independent of the variables α and β and are hence immaterial to
the derivation of these relationships.

Interpreting Figures of Merit for Chemical Simulants: ROC Curve Analysis

While inequalities like those given by eqn. (114) are useful analytical results, a more direct and im-
mediately useful approach is available. Returning our attention to the processing inequality given by eqn.
(113), we may change the inequality to an equality to define a soluble expression for a boundary line for the
inequality as

D(PTA
D:E(XXX)||PS

D:E(XXX)) =−Hα − logβ +α logβ −α log(1−β ) (115)

Assuming that a KLD value is available, we may then use a nonlinear numerical solver to solve for either 
α or β as a function of β or α respectively. The α and β values may then be used to plot a ROC curve for 
determining the presence or absence of a CS.

A ROC curve is a plot which allows a practitioner to easily and rapidly evaluate the diagonostic ability of 
a binary classifier, e.g. a hypothesis test, as its discrimination threshold is v aried [193]. Specifically, a ROC 
curve plots the true positive rate (the probability a positive result is actually positive) vs the false positive 
rate (the probability a positive result is actually negative). Ideally this plot results in a concave curve in the 
upper left hand quadrant of the chart with a dashed line often included along the diagonal stretching from
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the lower left hand corner to the upper right hand corner. This dashed line represents the binary classifier
attributed to a “50:50” coin flip or a random guess.

For typical binary classifiers, a ROC curve closer to the upper left hand corner of the chart is better than
one closer to the diagonal. However, the ROC curve for a CS is read differently. Since in this case a CS is
intended to replicate the TA in a detection scenario so a ROC curve closer to the diagonal line is preferred
as it indicates that the CS is hard to distinguish from the TA.

α and β may be used to define the axes of the ROC curve. α is the false positive rate since it is the
probability of falsely accepting the CS as the TA, likewise β is the false negative rate so 1−β is the true
positive rate. This allows the end user to plot an upper ROC curve boundary under which the true ROC
curve must exist. If the role of the PTA

D:E(XXX) and PS
D:E(XXX) in the KLD is switched a second boundary curve

may be found as follows:

D(HS
D:E(XXX)||HTA

D:E(XXX)) = β log
β

(1−α)
+(1−β ) log

(1−β )

α
(116)

The intersection of these two curves indicates the best available boundary curve with this technique. For
a CS, the true ROC curve for this detection system lies to the right of this boundary curve and the diagonal
line representing a random guess between the hypotheses. The area beneath this ROC boundary defines
the probability that a detector will be able to distinguish between the presence of a CS and a TA. If that
probability is 0.5, the detector is totally unable to distinguish between them as it is not better than randomly
guessing [193].
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Fig. 4—This image depicts ROC boundary curves calculated with various KLD values. The solid lines
depict curves calculated with the eqn. (115) and the dashed lines depict curves calculated with eqn. (116).
If one presumes that each color represents a single detection/environment system then the boundary line
made by joining them represents the upper limit for the location for the location of the true ROC curve
for that detector system.
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Fig. 5—This image depicts the filled area beneath a ROC boundary curve described as the joint line
formed by a solid line calculated with the eqn. (115) and a dashed line calculated with eqn. (116). The
shaded area is equivalent to the maximum probability that a detector with the displayed KLDs could
distinguish between a CS and a TA. The green line is a plausible true ROC curve described by the
boundary cuves.



Design Theory for Chemical Sensing 53

8. ROBUSTNESS OF DETECTION IN AN OPEN WORLD: THE IMPACT OF EXTERNAL
KNOWLEDGE ON SENSOR CAPABILITY

8.1 Introduction

Electronic nose (e-nose) technology attempts to mimic mammalian olfaction through combined cross-
correlated sensor inputs and post-processing, in the ideal becoming a system greater than the sum of its 
parts. Unfortunately the result is often less than satisfying, leading to perceptions of the e-nose as the 
perpetual sensor system of tomorrow [3]. A principal reason for this is that it is often unclear how to quan-
titatively predict the analytical capability of an e-nose for realistic chemical sensing scenarios, particularly 
those involving partially unknown chemical backgrounds, sometimes referred to as “chemical noise.” Con-
sequently, it is often possible to significantly over- or under- estimate the value of a given e-nose system in 
a new sensing context.

Practitioners typically already possess some knowledge regarding the subject chemical environment 
and the parameters describing the e-nose’s interactions with it. For example, there might be a particular 
class of chemical likely to be present as unknown interferents, leading to a bounded interval of possible 
sensor response characteristics to the chemical noise that are of particular concern. A method is needed that 
allows practitioners to incorporate this type of information in a systematic fashion to predict the quantitative 
impact they will have on e-nose capability for targeted sensing tasks. Typical pattern recognition or machine 
learning strategies used for post-processing of e-nose data [106, 194] do not enable this and can even 
undermine a quantitative and causal understanding of the information flow through an e-nose system if they 
are implemented in a “black box” fashion.

In this chapter, we take a more statistically basal approach to e-nose quality using a Fisher information-
based metric. A quantitative approach to assessing the quality of an e-nose for a particular sensing task is 
presented. The approach uses experimentally accessible values, chemical sensing databases, and qualitative 
knowledge and assumptions about the sensing environment and the e-nose itself. Moreover, the methodol-
ogy can be inverted to assess not only the value of the e-nose itself but the value of the chemical database 
and qualitative knowledge/assumptions as well.

Specifically, we propose using an empirically calculable lower bound to the Fisher information which 
allows us to avoid having an analytical model for the statistical error of the e-nose. Next, by using quanti-
tative and qualitative external knowledge, like sensor response type, chemical databases, the likely class of 
chemical unknown, manufacturing process, analytical task etc., we show that the quality of the e-nose for a 
particular sensing task may be inferred via a Bayes’-type rule for the Cramér-Rao bound. Equivalently, we 
may invert this procedure and use it to estimate the quality of our external knowledge against a set of inter-
nal knowns. Additionally, once calculated these values may be used as “prior”-like values for a Bayesian 
approach to Cramér-Rao bounds and additional experimental and qualitative information may be used to 
sequentially update our understanding of the quality of our e-nose for a particular sensing task.

8.2 Quantitative Metrics and Methodology for E-Nose Quality

8.2.1 Overview

Among the many challenges in quantitatively assessing an e-nose is the metric associated with its global 
quality for a specific task. Typically within analytical chemistry there are three central figures of merit
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for an analytical instrument: precision, sensitivity and selectivity. An ideal measure for an e-nose should
encompass precision and sensitivity; selectivity inherently quantifies the degree of independence in the
data and is thus unsuited for a sensor array or e-nose being used to detect an unknown quantity as this
task requires correlation to be detectable [195]. An efficient measure for the capability of an e-nose for a
particular task is given by the Cramér-Rao lower bound (CRB), a quantity which bounds the global error
det(ΣΣΣ(θθθ))≤CRB(θθθ) = det(FFF−1(θθθ)) where ΣΣΣ(θθθ) is the covariance matrix for a statistical estimator vector
and its determinant describes a strictly positive volume that may act as a score or metric for the global error
[131] and FFF(θθθ) is the Fisher information matrix for the covariance matrix.

8.2.2 The Fisher Information Matrix and its Lower Bound

In statistical estimation systems like an e-nose, it is often useful to have estimator-independent lower
bounds for the (co)variance of its estimates like the inverse of the Fisher information (matrix) (FI/FIM)
which is given by

FFF(θθθ) =
∫

dXXXρ(XXX ;θθθ)
(
(∂θθθ ln(ρ))(∂θθθ ln(ρ))T

)
(117)

and

ΣΣΣ(θθθ) =
∫

dXXXρ(XXX ;θθθ)
(

θ̂θθ(XXX)−θθθ

)(
θ̂θθ(XXX)−θθθ

)T
(118)

such that the FIM, FFF(µµµ;θθθ), provides the aforementioned CRB [11] to the covariance matrix, ΣΣΣ(θθθ),

FFF(θθθ)−1 ≤ ΣΣΣ(θθθ) (119)

where the ≤ relation is in the sense of a positive definite matrix. Since the CRB is independent of an
estimator’s specifics, it acts as a global lower bound for that estimate.

Unfortunately, a precise statistical model is often not available or practical to calculate for an FIM.
Nonetheless, particularly for e-nose designers, it is very useful to have a way to rigorously quantify the
quality of an e-nose using experimentally obtained values. A lower bound to the FIM may be obtained by
considering the reparametrized form of the FIM [196]

FFF(θθθ) =

(
∂ηηη

∂θθθ

)
FFF(ηηη(θθθ))

(
∂ηηη

∂θθθ

)T

(120)

and then substituting via the CRB for a known vector estimator that may be transformed into the desired
estimator via the Jacobian,

(
∂ηηη

∂θθθ

)
,

FFF(θθθ)≥
(

∂ηηη

∂θθθ

)
ΣΣΣ
−1(ηηη(θθθ))

(
∂ηηη

∂θθθ

)T

(121)

which provides a lower bound to the Fisher information matrix (LBF) of interest via an experimentally 
accessible covariance matrix and a sensor response dependent Jacobian; an alternate derivation for eqn.
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(121) is provided by Stein et. al. [197]. This result shows that the FIM for a system with parameter
independent Gaussian noise is the global lower bound to any sensing device and thus a conservative approach
for analysis and optimization which may be subsequently improved upon with more careful study.

8.2.3 A Bayes’-Type Theorem for the Cramér-Rao Lower Bound

Given eqn. (121), a LBF for an arbitrary e-nose in the presence of known chemicals may be calculated
and a corresponding global error bound or capability metric for that e-nose for an underlying analytical task
calculated. This known estimate may then be combined with either rigorously known or qualitatively known
responses and correlations from a database of chemical sensor responses to give an estimate of the quality
of the e-nose in presence of a previously unanalyzed chemical (class).

Bayes’-type reasoning for the Cramér-Rao bound may be formulated via the following expressions [146]
where,

FFF(θθθ) =

[
FFFααα FFFαααβββ

FFFβββααα FFFβββ

]
(122)

is the FIM for an vector estimator θθθ = (ααα,βββ ), where ααα and βββ are subvectors that divide θθθ into 2 blocks.

The CRB for an FIM FFF(θθθ) is given by

CRB(ααα,βββ ) =

∣∣∣∣∣
[

FFFααα FFFαααβββ

FFFβββααα FFFβββ

]−1
∣∣∣∣∣ (123)

The CRB for an FIM where there is no uncertainty for βββ is given by

CRB(ααα|βββ ) = |FFF−1
ααα | (124)

and the CRB for just the ααα component which excludes βββ while still being influenced by it is given by

CRB(ααα) = |(FFFααα −FFFαααβββ FFF−1
βββ

FFFβββααα)
−1| (125)

Using the Schur decomposition, these equations may be related by a chain rule,

CRB(ααα,βββ ) =CRB(ααα|βββ )CRB(βββ ) (126)

for the CRB and by a Bayes’-type rule,

CRB(ααα) =
CRB(βββ )

CRB(βββ |ααα)
CRB(ααα|βββ ) (127)

for the CRB [146].
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8.2.4 Estimating the Quality of an E-Nose and the Value of External Quantitative and Qualitative Knowl-
edge

Using the equations from the preceding subsections, we are now equipped to estimate the quality of an e-
nose in the presence of a chemical unknown(s) or conversely to quantitatively value our external knowledge
of a chemical sensing situation. To do this, we set up an approximate covariance matrix,

Σ̃ΣΣ(θθθ) =

[
ΣΣΣααα(θθθ) Σ̃ΣΣαααβββ (θθθ)

Σ̃ΣΣβββααα(θθθ) Σ̃ΣΣβββ (θθθ)

]
(128)

where ΣΣΣααα(θθθ) is an experimentally measured covariance matrix for known relevant chemical components,
the tilde indicates an approximated quantity i.e. Σ̃ΣΣαααβββ (θθθ), Σ̃ΣΣβββααα(θθθ), Σ̃ΣΣβββ (θθθ), the subscript ααα denotes known
measured chemical quantities and the subscript βββ denotes the unknown chemical quantities, and the sub-
scripts αααβββ and βββααα denote the covariances caused by the interaction between the known and unknown
chemicals.

While ΣΣΣααα(θθθ) is either just the measured covariance matrix for the chemical quantities in question or may
be derived using eqn. (121), Σ̃ΣΣβββ (θθθ) must be estimated from known qualitative data. Despite not knowing
the exact chemicals present as either interferents or as targets, a chemical analyst frequently knows what
class(es) of chemicals might be present or at least are of interest for the analytical task at hand. He or she
may then use sensor or instrument specific chemical databases, quantitative structure–activity relationship
models (QSAR) [198] or related semi-empirical methods to model the chemical-sensor interaction and
response as reflected in the FIM or covariance matrix.

In doing so, we are specifically interested in probing how the error term given by the combination of the
experimental LBF and the numerical fitting of the qualitative knowledge changes with different assumptions
for our unknowns or knowns depending upon the analytical task. From a mathematical standpoint, the
volumetric portion of the CRB for the unknowns β given an imprecisely known α are calculated as

CRB(βββ ) =
CRB(ααα)

CRB(ααα|βββ )
CRB(βββ |ααα) (129)

for the covariance form of the CRB. Similarly, the total CRB is given as

CRB(ααα,βββ ) =
ΣΣΣααα Σ̃ΣΣαααβββ

Σ̃ΣΣβββααα Σ̃ΣΣβββ

(130)

and the CRB for an imprecisely known α with an imprecisely known β is given as

CRB(ααα|βββ ) = |ΣΣΣααα | (131)

Finally, a direct calculation of the error attributable to an imprecisely known α and β respectively are given
by

CRB(ααα) = |ΣΣΣααα − Σ̃ΣΣαααβββ Σ̃ΣΣ
−1
βββ Σ̃ΣΣβββααα | (132)
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CRB(βββ ) = |Σ̃ΣΣβββ − Σ̃ΣΣβββαααΣΣΣ
−1
ααα Σ̃ΣΣαααβββ | (133)

The preceding equations provide a quantitative methodology for evaluating and accounting for the error
given by known and unknown quantities using strictly empirical methods and qualitative assumptions or
data for the analytical situation. Just as importantly the resulting CRB(ααα,βββ ) is useful as a sort of “prior” in
a Bayesian approach to updating this LBF quantity [146].

8.3 Conclusion

This chapter has sought to show that since the chemical unknowns or chemical noise are frequently
“known” in a qualitative fashion when an e-nose is used to sense a chemical environment that this additional
information may be used and leveraged in modeling the capability of an e-nose for a particular analytical
task. Often due to the analytical task or the manufacturing and refinement processes, the chemical unknowns
belong to a likely class or classes of known chemicals. This is useful information as it shows how well a
new detection strategy for a chemical unknown may integrate into a previously developed e-nose system.
These quantitative inputs for qualitative knowns may be developed by fitting to trends presented in chem-
ical databases for various chemical correlations amongst and within sensors. Ultimately, by utilizing the
Bayes’ rule setup given by eqns. (126) and (127), it is possible to quantify how much value our qualitative
knowledge may provide for developing our e-nose system by formally analyzing its influence upon the error
bound for the target knowns and unknowns. Depending upon the immediate goals and desires of the ana-
lytic practitioner, the resulting information may be used to make quality judgments upon the e-nose itself,
the assumptions made, or as a prior for a global error bound to be subsequently updated through experiment.
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9. CHEMICAL GAMUT: UNDERSTANDING THE ”EXPRESSIVENESS” OF A SENSING
TECHNIQUE

In sensor array design, one is generally concerned with optimization of sensor array configuration against
a specific set of sensing tasks. However, it is occasionally useful to consider the capability of a chemical
measurement strategy in the absence of a specific sensing application or task family. In particular, this
becomes more important as the span of potential sensing tasks of concern, and thus the potential sensing
task complexity becomes very large. As with sensor array configuration, the complexity of potential sensing
tasks is subject to combinatorial explosion, with the number of potential mixtures increasing exponentially
with the number of potential independently-varying chemical compounds. In the logical extreme, one is left
with the intractable problem of an essentially infinite-dimensional sample space encompassing all possible
chemicals. Obviously, no finite-dimensional sensor array can be configured to “solve” what amounts to a
completely generalized mixture characterization problem in analytical chemistry. However, it is also true
that a given sensor array will be capable of addressing various subspaces within this infinite-dimensional
problem. The span of sensing tasks addressable by a given measurement strategy form what might called
the “chemical gamut” of that strategy, in analogy to color theory in which color gamut expresses the portion
of the full color space that can be represented, or reproduced by a system. This can be thought of as a
measure of the general chemical informing power of a given sensor array. An assessment of this measure
could provide a useful criterion for selecting one measurement strategy over another or, alternatively, for
selecting one to augmenting another, when resources are limited and there is an expectation of a need to be
able to address a wide range of sensing tasks.

Consider a nominal, hypothetical linear sensor system exhibiting additive response. The mean response
vector, µµµ , from an array of n sensors to a chemical stimulus ccc with m components can be expressed as a
system of linear equations:

µµµ = Accc (134)

Where A is an n by m matrix with elements ai, j corresponding the linear sensitivity of the ith sensor
to the jth chemical component. In this example, the role of the molecular interaction between the sensor
and chemical stimulus is clearly observed, with the matrix of sensitivities providing a linear transform
from chemical stimulus space to sensor array response space. The concentrations of the components of the
chemical stimulus can be calculated from the measured sensor response vector as:

ccc = A−1
µµµ (135)

provided the left inverse of A exists, which requires m ≤ n (i.e. more sensors than chemical mixture compo-
nents) and for the rank of A to be equal to m. To examine sensor array performance when these conditions 
do not hold, consider two chemical stimuli, ccc1 and ccc2. These stimuli will result in two corresponding re-
sponse vectors, µµµ1 and bsµ2. The difference between these chemical stimuli, ∆ccc is related to the difference 
in response,∆bsµ by:
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∆ccc = A−1
∆µµµ (136)

If the sensor array produces identical responses for two chemical stimuli the following system of ho-
mogenous linear equations results:

A−1
∆µµµ = 000 (137)

Thus, if matrix A has a non-empty null space, then any difference vector within this space indicates that 
the corresponding stimuli are not distinguishable. This condition arises when the rank of A is exceeded by 
the number of chemical components describing the stimulus space and reflects the underlying ambiguity of 
projecting from a high-dimensional space to a lower-dimensional space. In practical terms, this means that 
a given sensor array exhibits an inability to address the span of sensing tasks described by the basis set of 
the null space of A, or in other words, will be “blind” to variation along specific directions in the space of 
possible chemical stimuli.

Likewise, any difference between chemical stimuli that is within the row space of matrix A will result 
in a non-zero difference in array response vector. Thus, the row space of A provides a direct expression of 
chemical gamut, in that, in principle, the sensing tasks represented within this row space are addressable by 
the sensor array. However, sensor measurement error will degrade the ability to resolve adjacent locations 
in the space of potential array responses along the response difference vector, ∆bsµ , and the projection 
performed by A on will vary the magnitude of the response difference observed across different differences 
in chemical stimulus.

These concepts connect directly to the variance bound derived from Fisher information. For systems 
with a non-empty null space, the geometric limitation described above leads to an infinite e rror bound, 
interpretable as an inability to project data from a lower dimensional space to a higher-dimensional space 
without ambiguity. For systems with a full-rank row space, the variance bound will reflect the impact of 
measurement error on inferring location in chemical stimulus space, given matrix A. Thus, displacements 
in chemical stimulus space associated with smaller response difference and/or increased measurement error 
will exhibit greater marginal error bounds.

Next, we consider the contributions of sensor array and chemical stimulus on the sensitivity matrix, and 
their impact on design of sensor arrays for general-purpose analysis of chemical mixtures. As discussed ear-
lier, sensor response is dependent on the nature of the molecular interaction between the sensor and chemical 
stimulus. This means that, in theory, such interactions can be parameterized by molecular properties of both 
the potential chemical stimuli and the sensor. For example, consider a hypothetical sensor response mech-
anism in which sensitivity of a given sensor to a specific analyte is given by the sum of the products of k 
matched pairs of analyte and sensor parameters.
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a =
k

∑
i=1

ps,i pa,i (138)

Where pa,i and ps,i are the ith matched pair of analyte and sensor parameters, respectively. Thus, the
matrix A is equal to the product of matrices Ps and Pa, whose rows and columns contain the k parameters
for each of the n sensors and m analytes, respectively:

A = PsPa (139)

Giving array response model:

µµµ = PsPaccc (140)

Matrix multiplication by the left inverse of Ps gives:

P−1
s µµµ = Paccc (141)

In practical terms, the matrix of sensor parameters, Ps, depends only on the sensor array configuration 
while Pa is defined in the context of the chemical compounds over which ccc is defined. The equivalence above 
shows that the informational linkage between chemical stimulus and sensor array response lies in an inter-
mediate k-dimensional parameter space, owing to the k independent parameters describing the molecular 
interaction between the sensors and chemical stimuli. Thus, intuitively, one can view a chemical sensor ar-
ray as a physical instantiation of a data compression algorithm that is governed by the molecular complexity 
of the interaction between the sensors and chemical stimuli.

The left hand side of the equation allows consideration of the impact of sensor array configuration. 
Sensor responses are projected into this intermediate parameter space via the inverse of the sensor parameter 
matrix and analyte concentrations via the analyte parameter matrix. The sensor parameter matrix needs to be 
invertible for this equivalence to hold, implying that sensors should be chosen to span the parameter space, 
i.e., the sensor parameter matrix should be of rank k, ensuring an empty null space. This suggests that
sensor array size should not be less than k and also that there is limited utility in configuring sensor arrays
with a number of unique sensors that greatly exceeds k, as the rank is limited by the molecular interaction
complexity. The relative capabilities of two sensor array configurations can be compared by examining their
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respective sensor parameter matrices and evaluating Fisher information metrics related to variance bound 
associated with estimating locations in the intermediate parameter space. Sensor array optimization is thus 
straightforward and independent of chemical stimulus.

The right hand side of equation the above equation allows consideration of the ability of the sensor trans-
duction mechanism to address specific chemical sensing tasks. The complexity of this molecular interaction 
will limit the number of chemical components that can be independently determined to k. Highly complex 
chemical stimuli will have greater that k chemical components, and thus the analyte parameter matrix will 
exhibit a non-empty null space with a basis set that encompasses all of the sensing tasks in the chemical stim-
ulus space which result in no corresponding displacement in the intermediate parameter space. Importantly, 
the inability to address these tasks is not a function of sensor array configuration, but rather a limitation on 
the sensing technique itself. The row space of the analyte parameter matrix encompasses the span of sensor 
tasks that produce a non-zero displacement in the parameter space, and thus a fundamental measure of the 
span of sensing tasks achievable by the sensing technique within the context of a chemical stimulus space 
of arbitrary dimension. The row space will also describe the relative magnitude of displacement in the pa-
rameter space that will be associated within the span of addressable chemical sensing tasks in the chemical 
stimulus space, and together with the sensor parameter matrix, will enable calculation of variance bounds 
for these tasks via the Fisher information. Two different sensing techniques can thus be compared to one 
another by comparing the null and row spaces of their respective analyte parameter matrices, defined on an 
arbitrary chemical stimulus space of interest. The impact of fusing two sensor techniques can be evaluated 
by examining the augmented analyte parameter matrix they form, showing additional capability as specific 
reduction in the span of the null space and increase in the span of the row space.

Conceptually, the intermediate parameter space “throttles” the amount of information that can be con-
veyed through the sensor array: first, by limiting the total number of chemical stimuli that can be described 
at once, and second, by compressing the representations of the chemical stimulus space according similarity 
in molecular interaction parameters among the chemical components, resulting in increased estimation error 
bounds, as implied by the relevant Fisher information metrics. The total amount of chemical information a 
given sensor array can convey can be extended by implementing operations that reduce a complex chemical 
sensing task to a series of simpler tasks performed in series. For example, a chromatographic separation 
performed prior to the sensor array will decrease the sensing task complexity associated with a chemical 
mixture to a series of one-dimensional tasks performed in series, assuming each mixture component is fully 
resolved. Even under conditions where only partial chromatographic resolution is achieved, a significant 
reduction in mixture complexity as a function of time can be provided, rendering the underlying sensing 
tasks within the capability of a sensing technique.

The example shown in this section is limited to a nominal array of linear sensors, with a sensor response 
mechanism that allows direct expression via linear algebra. However, the general concept of this analysis 
should hold for non-linear response functions and more complex sensor response mechanisms. Namely, 
all sensor response mechanisms will depend on molecular properties of both the sensor and the chemical 
with which it interacts. Provided this interaction is separable into components specific t o e ach, sensor 
array configuration optimization against the intermediate parameter space can be considered independently 
using Fisher information metrics. Likewise, the generalized analytical capability of a sensing technique 
can be assessed through analysis of the span of molecular properties it interrogates in chemical stimuli 
through explicit calculation of the span of sensing tasks within the chemical stimulus space that result in 
zero displacement in the intermediate molecular parameter space. The finite span of possible molecular
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interactions will provide a finite span of addressable sensing tasks, or chemical gamut, that is intrinsic to the
sensing technique.
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10. CONCLUSIONS

This work has demonstrated that an information-theoretic approach can provide quantitative guidance
in the design and evaluation of sensor arrays for chemical detection. Such arrays have been (and continue 
to be) of significant interest because they mirror evolution-optimized biological solutions to chemical per-
ception, as well as because they present the possibility of relatively low-cost, low-complexity field-portable 
hardware for detection and analysis of chemical mixtures, relative to the analytical instrumentation that is 
currently used for such tasks in the laboratory. However, despite the excitement engendered by this ap-
proach, sensor arrays tend to offer disappointing performance in real applications and have been relegated 
to niche applications. One likely reason for this is that sensor arrays are generally constructed in an ad hoc, 
intuitive manner rather than by rational design, and thus the capabilities and limitations of sensor arrays are 
poorly understood prior to use.

A central tenet of this work is that sensor array design is optimized by properly specifying the sensing 
tasks the sensor array will be required to accomplish and then engineering appropriate complexity into the 
sensor array to match those tasks. While this may sound obvious, sensing tasks are often poorly specified 
or overly simplified in literature, and almost never defined in rigorous mathematic te rms. Here, we provide 
a systematic approach for mathematical expression of sensing tasks. In this approach, the span of the n 
possible chemical stimuli that may impinge upon the sensor array form an n-dimensional Euclidean space 
in which each axis describes the concentration of a particular compound. Sensing tasks are essentially 
represented as vectors within this space that describe the difference between locations in the space. A 
sensing task can be successfully addressed if the sensor array responses due to each location can be discerned 
from one another with a specified level of a ccuracy. Thus, sensor array capability ultimately resides in the 
array’s ability to provide a bijective mapping between the span of possible array response vectors and the 
locations in the chemical stimulus space that are relevant to the required sensing tasks as well as the degree 
of measurement error that is oriented along the vectors describing the sensing tasks.

As described earlier by Pearce, et al., the Fisher information can be used to provide lower-bound on 
the error of inferring chemical concentration from sensor array measurements, via the Cramer-Rao bound 
[21–23, 25, 27, 28, 199]. Specifically, the inverse of the Fisher information matrix provides a lower-bound 
estimate of the covariance in chemical stimulus space associated with a given set of sensor response func-
tions and sensor noise models. This bounded estimate does not provide knowledge of the error associated 
with a particular device, but it does provide a measure of the theoretical limits to device capability, making 
it useful in optimizing sensor array design. Pearce centered discussion on use of the diagonal elements of 
the matrix as error bounds associated with individual components within a chemical stimulus. This work 
expanded beyond Pearce’s to further develop sensor array optimization metrics and place them within a 
more rigorous framework for sensing tasks and for use in more complex sensing scenarios.

As it is directly calculated from the chemical stimulus-specific sensitivities provided by each element 
of the sensor array together with a statistical distribution modeling sensor noise, the Fisher information 
matrix intrinsically captures a notion of aggregate sensor array sensitivity relative to specific directions 
in chemical stimulus space. More specifically, i t embodies a  notion of a  “signal-to-noise” t ype measure 
as greater aggregate sensitivity to a given sensing task under constant sensor measurement error leads to 
smaller estimation error bounds in chemical stimulus space. The lower-bound covariance matrix derived 
from the Fisher information matrix can thus be used to assess sensing task-specific sensitivity or signal-
to-noise by calculating the marginal variance associated along the direction in chemical stimulus space 
associated with that task. Alternatively, if general capability against a specific chemical stimulus space is
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desired, the determinant of the bounded covariance matrix can be used as a global error criterion that can be 
minimized in sensor array configuration problems.

A sensor array-specific notion of selectivity that is congruent with classic notions of analytical selectiv-
ity was also derived from Fisher information. Qualitatively, all common notions of selectivity pertain to the 
degree of shared response a sensor (or sensor array) exhibits between different chemical stimuli. A signifi-
cant consequence of this is that selectivity in sensor arrays can be characterized quantitatively as the degree 
of correlation induced in bounded estimation error in chemical stimulus space, and thus will exhibit specific 
impacts on specific sensing tasks. For example, a sensor array with lower selectivity between two chemical 
components will exhibit greater estimation error bounds for sensing tasks involving discernment of different 
mixtures of those components, but also an improved capability to discern between different concentrations 
of a given mixture of those compounds.

A central problem in sensor array design is its combinatorial nature, which can render array selection an 
impractical (if not intractable) problem for even modest array sizes with a large number of potential sensor 
variants to select from. Fisher information-derived metrics were shown to be positive definite, allowing 
the use of convex optimization algorithms for efficient searching of potentially large configuration spaces. 
Theoretically, techniques in algorithmic differentiation can be used to speed Fisher information calculation 
in optimization algorithms, further improving optimization efficiency. It was also demonstrated that corre-
lated noise in sensor arrays (for example, via noise introduced by the sensor transduction electronics) can 
be incorporated to an algorithmic optimization framework using elliptically-contoured distribution models.

The information-theoretic approach to sensor array design can also provide a powerful framework 
for assessing and optimizing sensor arrays against uncertain and complex backgrounds. An information 
divergence-based measure for evaluating chemical simulant efficacy was developed and linked to receiver-
operator characteristic (ROC) curves for easy interpretability. This measure allows generalized consideration 
of the ability of one chemical stimulus to represent another under varying chemical backgrounds. This has 
significant implications in both the design of chemical simulants for developing new sensor technologies of 
hazardous materials, as well as in the evaluation of likely interferences for new and existing sensor tech-
nologies. The ability to consider varying backgrounds, together with the development of statistical models 
of chemical background variation can reduce the risk of surprise in real-world performance relative to lab-
oratory conditions. The capabilities of sensor arrays for particular sensing tasks under different, uncertain 
chemical backgrounds can be assessed by Shurr decomposition of the underlying Fisher information prob-
lem, which allows separation of the chemical stimulus space into analyte and background subspaces such 
that capabilities can be probed against varying background composition, as well as quantitative evaluation 
of the potential capability gain of acquiring external knowledge of the background.

Finally, an analytical approach for understanding the fundamental chemical expressiveness of a sensor 
type was described. As sensor response is the result of molecular interactions between the chemical stimulus 
and the sensor, this interaction should be parameterized according to properties of both. This carries impor-
tant implications. First, it implies that the manner in which the sensor technology interacts with the chemical 
environment presents a critical informational bottleneck that fundamentally limits the span of addressable 
sensor tasks, both through limitations on the ability of arrays to provide a bijective mappings between sensor 
arrays and chemical stimulus spaces relevant to particular sensing tasks, as well as though the degree of ar-
ray selectivity the allow, which limits the capabilities of the technique in addressable sensing tasks. Second, 
it implies that sensor design considerations can be globally optimized against this bottleneck, as opposed 
to against a vast, and potentially unknowable chemical stimulus space. Last, it shows the theoretical utility
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of hybrid arrays that combine multiple types of sensors using fundamentally different transduction mecha-
nisms, as this approach offers the potential to widen the span of potential information that can be conveyed
across a sensor array beyond what can be achieved by merely expanding the size of an array utilizing only
one sensor technology. This work has demonstrated a rational, quantitative approach for designing and op-
timizing sensor arrays for chemical detection. The degree to which sensor array capabilities and limitations
can be properly understood is unavoidably linked to the degree to which the underlying response mech-
anism has been characterized, including a characterization of sensor noise. Further, expressions of sensor
array capabilities are inextricably linked to specific formulations of sensing task. In scenarios where detailed
knowledge of sensing task is available (i.e. specification desired discernible chemical stimuli and character-
ization of chemical background) efficient sensor arrays can be designed at the expense of robustness. When
the sensing task is poorly understood, additional complexity can be engineered into the detection system to
compensate for this uncertainty. This suggests that investigation of the molecular basis of sensor response
mechanism and practical investigations into the nature of the sensing tasks that one wishes to address are
equally as important as development of the sensor technology itself, although neither typically receives as
much attention in the literature of chemical sensors.
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Appendix A 

A.1 Chain Rule Theorem

First consider the selectivity selα,β ,

1≥ selα,β =
detJ−1

α detJ−1
β

detJ−1 =
detJ

detJα detJβ

> 0 (A1)

Given

J =

(
Jα Jαβ

Jβα Jβ

)
(A2)

where Jαβ is a matrix, Jαβ = (Jβα)
T , and J(n+m)×(n+m), J

n×n

α , and J
m×m

β
are positive definite matrices. It may

be shown that detJα ·detJβ ≥ detJ > 0 and hence 1≥ detJ
detJα ·detJβ

> 0.

First consider the matrix equation(
Jα Jαβ

Jβα Jβ

)(
In 0

−Jβ
−1Jβα Im

)
=

(
Jα − Jαβ Jβ

−1Jβα 0
Jβα Jβ

)
(A3)

Taking the determinant of both sides using the Leibniz block matrix determinant formula yields

detJ = detJβ ·det(Jα − Jαβ Jβ
−1Jβα) (A4)

Since

Jαβ Jβ
−1Jβα = Jαβ Jβ

−1/2Jβ
−1/2Jβα

= Jαβ Jβ
−1/2(Jαβ Jβ

−1/2)
T

= |Jαβ Jβ
−1/2| (A5)

Jαβ Jβ
−1Jβα is a positive semidefinite matrix. Since J and Jβ are positive definite matrices, detJ > 0,detJβ >

0, and det(Jα − Jαβ Jβ
−1Jβα) > 0 as well. So, Jα � Jαβ Jβ

−1Jβα � 0, which implies detJα ≥ det(Jα −
Jαβ Jβ

−1Jβα). Consequently, detJα ·detJβ ≥ detJwhich proves the starting proposition,

1≥ selα,β =
detJ−1

α detJ−1
β

detJ−1 =
detJ

detJα detJβ

> 0 (A6)
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