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FOREWORD 

This report is one of a series that compile the best of the experience, wisdom and tools that the 
Air Force has accumulated in its selection and classification work, and best practices from 
industry and academia. These reports draw upon the experiences of the Air Force Personnel 
Center/Strategic Research and Assessment branch (AFPC/DSYX) and leading researchers and 
practitioners in the field of Industrial/Organizational Psychology to provide guides to cover a 
variety of topics. Each begins with a section describing AFPC/DSYX and the background of 
their research to provide context for the series. This report addresses best practices in reporting 
and briefing results of data driven research.  
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EXECUTIVE SUMMARY 

This series of reports is intended to consolidate the experience, wisdom, and tools that the Air 
Force has accumulated in its selection and classification work, and to blend these with best 
practice recommendations from industry. The reports cover a wide variety of material, including 
chapters on test development and validation, selection/classification model development, 
reporting/briefing results, and ethical and legal considerations. The goal is to ensure consistency 
as AFPC/DSYX continues to develop assessments and refine selection and classification models 
for a large number of Air Force career fields 

We begin with an introduction to AFPC/DSYX. The background and history are covered, 
describing how the Air Force Human Resources Laboratory and its elimination left a need for 
providing research in human capital management. That was resolved in 2010 with funding to 
create DSYX which is intended to review, evaluate, develop, validate, and manage personnel 
programs to improve recruiting, selection, classification, and utilization of military personnel. 
The chapter describes how DSYX contributes to strategic human capital management, tools it 
makes available for testing, experience and expertise it provides, and looks ahead to the future 
and how DSYX can build on its capabilities. 

The body of this report describes best practices for presenting results of validation studies. A 
guiding principal of employee selection continues to be the use of empirically based decision 
making. Selection systems involve collecting data on the psychometric quality, job relevance and 
predictive accuracy of assessments, and using those results to make informed decisions about 
whether assessments can be successfully implemented.  

The utility of those assessments depends both on the quality of the data used, choices in the 
design and implementation of the assessments, careful handling and cleaning of the data, and 
proper interpretation of the results. Therefore, it is critical that research reports be transparent 
with regard to the methodology employed, as well as research reports and findings.  

Proper deployment of selection techniques requires a high degree of technical sophistication to 
properly use and interpret results from complex psychometric and statistical analyses. Because of 
this, the selection expert, in communicating this information must execute a careful balancing 
act, maintaining the precision and transparency demanded by professional standards, while 
simultaneously conveying the essence of findings to a non-technical audience. 

This report provides a review of relevant professional standards that exist to guide reporting of 
research findings, both at a broad level and specific to criterion related validation. It then 
discusses general considerations for reporting criterion-related validity results, and specific 
guidance for information that should be minimally provided. Finally, it covers strategies and 
techniques for effectively communicating validity evidence in a way that retains the required 
technical information, but making it accessible to audiences. 
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Introduction to the Air Force Personnel Center Strategic Research and Assessment Branch 
(AFPC/DSYX) 

Background/History 

Human Capital Management Mandates. The Air Force Policy Directive, AFPD 36-XX, Air 
Force Personnel Assessment Program, raised the bar for validation of Air Force operations 
affecting human capital management. The policy directive laid out Air Staff-defined objectives 
in support of both 1) DoD initiatives, such as the Testing Modernization Program, supported by 
major influxes of research and development funding and 2) the Human Capital Annex of the Air 
Force Strategic Personnel Plan (moving ahead with several active Air Force-level working 
groups). The Air Force’s way forward in support of these flow-down mandates included both the 
objectives and the scope of this initiative:  

• Establish processes to apply scientific analysis and technology in support of recognized 
best practices to support personnel assessment. The goal of the Air Force Personnel 
Assessment Program is to support effective force management by ensuring that the right 
persons having the right aptitudes, characteristics, skills, and abilities are identified and 
accessed into the Air Force, are properly trained, and then optimally utilized to support 
the Air Force mission.  

• The Air Force Personnel Assessment Program includes, but is not limited to, selection 
and classification, promotion, and proficiency assessment; and survey capability for 
assessing attitudes and opinions, job performance, and Air Force Specialty (AFS) 
requirements and characteristics. 

Air Force Human Resources Laboratory  

In 1968, the broad personnel research efforts (e.g., manpower, personnel, training) from various 
programs across the Air Force were consolidated into the Air Force Human Resources 
Laboratory (AFHRL). The name “Air Force Human Resources Laboratory” was only used as the 
official designation for the combined program from 1968 to 1991. However, it was the name 
used for the longest period of time and is the one that has the greatest familiarity to professionals, 
in and out of the government, with an interest in military psychology. The antecedents of 
AFHRL can be traced to the Psychological Research Units of the Aviation Psychology Program 
in the Army Air Corps during World War II. After the Air Force became a separate service in 
1947, AFHRL was called the Human Resources Research Center (1949-1953), Personnel and 
Training Center (1954-1958), Personnel Laboratory (1958-1962), and Personnel Research 
Laboratory (1962-1968). In 1991, the name Air Force Human Resources Laboratory was retired 
and the mission was absorbed by successor organizational units within the Armstrong Laboratory 
(1991-1996) and the Air Force Research Laboratory (1997-1999). In 1999, the personnel 
research function in the Air Force (Manpower and Personnel Research Division) was eliminated, 
leaving no organizational entity for research in the domains of personnel selection and 
classification.  



vii 

The Rise of the Strategic Research and Assessment Branch (AFPC/DSYX) 

The need for research in strategic human capital management within the Air Force did not end 
with the elimination of AFHRL funding. After the elimination of AFHRL, minimal funding was 
provided to manage testing-related contracts and provide basic support for operational testing 
programs. In 2010, additional funding was provided to create the AFPC/DSYX program and 
several billets were created to continue the work that ended with the elimination of AFHRL in 
1999. 

AFPC/DSYX Program Overview 

With the additional funding, the DSYX program was tasked to review, evaluate, develop, 
validate, and manage personnel programs to improve recruiting, selection, classification, and 
utilization of military personnel. The current responsibilities of DSYX include Air Force- and 
Department of Defense-related testing programs, research and analysis, and development and 
validation of new assessment processes and measures. The DSYX program now develops 
person-job match screening processes to support optimal personnel utilization for the entire 
personnel life cycle including pre-recruiter job exploration (e.g., interest inventories, realistic job 
previews); applicant assessment, screening, and classification of recruits (e.g., cognitive, 
personality, psychomotor, occupation-specific assessment of skills), retraining, and specialized 
assignments.  

The DSYX program also helps maintain a mission-ready force by managing Air Force Specialty 
Code (AFSC) structures using scientific standards to establish desirable and mandatory 
occupational entry requirements and adjust occupational structures to optimize training 
investment, career progression, utilization, and retention for total force integration. Thus, the 
ultimate purpose of the DSYX program is to provide: 1) consultation to program managers and 
Air Force leadership on selection and classification issues, 2) development, revision, and 
validation of personnel tests, 3) technical oversight of the operational testing program, and 4) 
management of contracts in support of personnel-related research. 

AFPC/DSYX Organizational Structure    

The DSYX branch is now embedded within the Air Force Personnel Center (AFPC) Directorate 
of Staff. As previously mentioned, while no longer supported by a multitude of scientists and 
psychologists, DSYX provides an array of services and tools similar to AFHRL. The current 
structure of DSYX includes the branch chief, a program manager, seven personnel research 
psychologists, and two research assistants. While many of the tasks assigned to DSYX and much 
of the funding to accomplish them come from Air Staff (A1) and Air Force Testing Policy 
(A1PT), DSYX is officially under the command of AFPC.  

Synergistic Relationships 

The AFPC Promotions, Evaluations, and Recognition Branch (AFPC/DP3SP) manages the 
operational personnel testing program. Thus, while DSYX has the responsibility of developing 
and validating the tests within the personnel testing program, the operational responsibility of 
military testing resides with DP3SP. The one current exception is the Pilot Candidate Selection 
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Method (PCSM; described later in this report) which has been developed, validated, and 
operationally maintained by DSYX.  

The Air Force Recruiting Service (AFRS) Operations Division’s Analysis Branch 
(AFRS/RSOA) supports DSYX through participation in the regular working group conference 
calls with AF/A1PT and DSYX, pre-accession process advisories, data collection facilitation, 
collaborative ad hoc analyses, and unrestricted access to relevant operational data. AFRS/RSOA 
also assists in implementation of new selection and classification assessment measures and 
processes. These activities are consistent with an operational mandate to support improving 
selection and classification systems (tests and processes) to optimize recruiting efficiency for Air 
Force Officer and Enlisted accessions while continuously adapting to changing population 
characteristics, training dynamics/criteria, and needs of the Air Force. 

The AFPC/DSYX Contribution to Human Capital Management and Strategic Human 
Resources Management through Mission Alignment 

DSYX makes contributions to the Air Staff by following the mission as tasked by AFMAN 36-
2664: 

• Provide technical guidance to and consult with AF/A1PT in identifying and overseeing 
strategic human resource capital initiatives. 

• Support human capital studies and research to support decision-making involving 
recruiting, selection, classification, promotion, utilization, and retention. 

• Coordinate changes to Air Force Officer Classification Directories (AFOCD) and Air 
Force Enlisted Classification Directories (AFECD). 

• Support revision and validation of the Air Force Officer Qualifying Test (AFOQT), the 
Pilot Candidate Selection Method (PCSM), and the Test of Basic Aviation Skills 
(TBAS). 

• Conduct development, validation, and revision of tests and assessments. 
• Evaluate enlistment and commissioning standards. 
• Provide technical oversight of operational selection, classification, utilization, promotion, 

and proficiency testing and assessments to ensure they meet professional and legal 
standards. 

• Technically review requests to develop/implement new tests/assessments. 
• Manage the Applied Performance and Assessment Testing Center at Lackland AFB. 

DSYX makes contributions to the Air Force Personnel Center by following the mission as tasked 
by AFPC Mission Directive 37, 2003 [1-up]: 

• Manage and operate Air Force military personnel data and information systems, execute 
policies that govern active duty accessions, testing, classification, assignments, personnel 
record systems, and personnel assessment. 

• Manage and operate Air Force civilian personnel data and information systems and 
personnel assessment programs. 
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The DSYX Testing Toolbox 

General Ability/Aptitude Tests 

Air Force Officer Qualifying Test (AFOQT). The (AFOQT is used to help select candidates 
for officer commissioning programs and to classify commissioned officers into utilization 
specialties such as manned aircraft pilot, RPA pilot combat system operators, air battle manager, 
or technical. Air Force Officer Qualifying Test scores are also used as a quality metric in the 
integrated officer classification model. The AFOQT is available in two versions (Form T1 and 
T2). Each version consists of 12 subtests. Subtests are used to compute one or more of the five 
aptitude composites. Scores on the subtests relate to performance in certain types of training. 
AFOQT composite scores are reported in percentiles.  

Armed Services Vocational Aptitude Battery (ASVAB). The ASVAB evaluates specific 
aptitude areas and provides a percentile score related to requirements for selecting and 
classifying individuals for the Armed Services. There are two ASVAB testing programs—
Student and Enlistment. The Student Testing Program applies to ASVAB testing in educational 
institutions such as high schools and vocational trade schools. The Enlistment Testing Program 
applies to Armed Services Vocational Battery testing in authorized accessions testing facilities 
such as Military Entrance Processing Stations (MEPS) and Military Entrance Test Sites (METS). 
The Army is the executive agent for the overall ASVAB Testing Program. The Defense 
Personnel Assessment Center in the Office of People Analytics is the executive agent for the 
ASVAB. The Air Force computes four training classification composite scores for the ASVAB: 
Mechanical (M), Administrative (A), General (G), and Electronics (E). These scores are 
predictive of training success in a variety of military occupations. 

Electronic Data Processing Test (EDPT). The EDPT evaluates the basic ability to complete 
formal courses for programming electronic data processing equipment. The EDPT is a multiple-
choice test that contains measures of verbal ability, symbolic reasoning, and arithmetic 
reasoning. It is used to screen and select Airmen for career fields requiring this ability. It is 
available by paper-and-pencil and electronically on the Personnel Testing Station1 platform.  

Vocational Interests 

Air Force Work Interest Navigator (AF-WIN). The AF-WIN is an internet-delivered interest 
inventory that matches examinees’ interests on the dimensions of functional communities, job 
contexts, and work activities to AFSC job profile markers to identify their “best fit” Air Force 
Specialties. It takes 15-20 minutes to complete with the examinee indicating level of interest on a 
5-point scale for 52 items. There is a version of the AF-WIN for enlisted AFSCs and two officer 
versions. One officer version is designed for use at the beginning of college to help examinees 
plan their curriculum to include coursework required for particular AFSCs. The second version is 

                                                 

1 The Personnel Testing Station was formerly called the Test of Basic Aviation Skills test station. 
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for use closer to commissioning when finalizing the AFSC assigned to a cadet upon 
commissioning. 

Personality 

Tailored Adaptive Personality Assessment System (TAPAS). The TAPAS uses a trait 
taxonomy that assesses facets of the Big Five personality factors using a multidimensional 
pairwise preference (MDPP) format. The assessment requires about 30 minutes to complete. It is 
completed by all new recruits at the Military Entrance Processing Station at the same time they 
complete the Armed Services Vocational Aptitude Battery. It is also administered on the 
Personnel Testing Station platform for selected retraining AFSCs. 

Self-Description Inventory (SDI). The SDI was first implemented on AFOQT Form S as a 220 
item, trait-based personality assessment of the Big Five personality domains and two Air Force 
related scales (Team Orientation and Service Orientation). Factor analyses of SDI item content 
revealed broad six domains encompassing the Big Five domains plus Machiavellianism, with 
subsequent factor analyses of domain content revealing a total of 20 narrower trait facets. The 
AFOQT Form T version of the SDI contains 240 items that assess the Big Five personality 
domains and Machiavellianism and 30 underlying facets.  

Although the SDI was initially developed for the U.S. Air Force, a collaborative initiative with 
allied forces led to adaptations of the SDI for research purposes in the militaries of Canada, 
United Kingdom, New Zealand, and Australia. 

Miscellaneous/Specialty  

Test of Basic Aviation Skills (TBAS). The TBAS is a battery of cognitive, multi-tasking, and 
psychomotor subtests administered on a computer test station. Examinees are required to respond 
to computerized tasks using a keypad, joysticks, and foot pedals. The TBAS includes subtests 
measuring psychomotor coordination, cognitive abilities, and multi-tasking capabilities. A pilot 
candidate’s AFOQT Pilot composite score (or, where applicable, Enlisted Pilot Qualifying Test 
[EPQT] score) and Federal Aviation Administration certified flying hours are combined with the 
TBAS measurements to formulate a PCSM score. Manned aircraft Pilot and RPA pilot selection 
boards receive each candidate’s PCSM composite score on a percentile scale of 1 to 99. PCSM 
assists pilot selection boards to select candidates most likely to successfully complete 
undergraduate pilot training.  

Air Traffic Scenarios Test (ATST). The Air Traffic Scenarios Test is part of the classification 
screening process for candidates for the enlisted Air Traffic Control (ATC) AFSC. The Air 
Traffic Scenarios Test consists of simulated Air Traffic Control scenarios where the examinee is 
scored on how effectively they manage the departure, landing, tracking, etc. of aircraft with 
minimal safety violations. The test is administered on the TBAS testing platform and takes about 
an hour to complete. 

Multi-Tasking Test (MTT). The Multi-Tasking Test measures the ability to shift attention from 
one task to another over a short period of time. The test includes four component tasks: Math, 
Visual, Memory, and Listening. In the math task, participants add three-digit numbers. In the 
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memorization task, a list of letters is initially presented and then disappears; after a delay, a 
probe letter is presented and participants indicate whether or not the probe letter was included in 
the list. In the listening task, participants respond with a mouse click when they hear a high-
pitched tone and ignore a low-pitched tone. Finally, in the visual monitoring task, a needle 
moves from right to left across a display resembling a fuel gauge and the goal is to reset the 
needle when it nears the end of the display. The test is administered on the PTS testing platform 
and takes about 45 minutes to complete. 

The DSYX Expertise and Resources Toolbox 

Staff Expertise 

• Test Development/Validation – Professionals in the DSYX team have decades of 
experience in item writing, item selection, scale development, test development, and test 
validation. Current DSYX team members have experience developing DoD tests such as 
AFOQT, ASVAB, SDI, and AF-WIN. In addition, the team has experience in 
commercial test development including globally-recognized tests such as the Wechsler 
scales, the Beck inventories, and employee selection tests such as the Watson-Glaser 
Critical Thinking Appraisal and the Bennett Mechanical Comprehension Test.   

• Predictive Model Development/Validation – Numerous occupational-specific predictive 
models have been developed by DSYX using pre- and post-accession tests. Numerous 
empirical and regression-based formulas to predict important performance-based 
outcomes have now been operationalized for selection and classification purposes. 

• Job/Occupational Analysis – DSYX members have extensive expertise in 
job/occupational analysis to include task, trait, and competency analysis. The results of 
numerous DSYX-based job analysis studies are now used in developing predictive 
models, responding to career field inquiries, and setting standards for classification (e.g., 
based on ASVAB profiles).  

• Vocational Interest – DSYX personnel have enlisted- and officer-level vocational interest 
inventories. The tools developed by DSYX have moved beyond traditional, generic 
vocational interest inventories and are specific to Air Force occupational specialties. The 
inventories provide information on the ideal match between a potential recruit and an 
occupational specialty and provide guidance to the examinee regarding the cognitive and 
physical requirement for the job. 

• Job Satisfaction – DSYX personnel have conducted studies of job satisfaction using 
USAF Occupational Analysis (OA) data and internally-developed surveys to determine if 
DSYX tests and/or predictive models are contributing to improved satisfaction.  

• Structured Interviews – DSYX has worked with USAF career fields to create structured 
interviews, structured interview guides, and video-based instructions for conducting valid 
structured interviews.  

• Ethics/Integrity – DSYX staff members have extensive experience in ethical behavior, 
integrity, and counterproductive behavior. DSYX has developed integrity tests and valid 
tests designed to detect the propensity to engage in counterproductive behavior.  

• Realistic Job Preview Creation – DSYX staff members have extensive expertise in 
developing realistic job preview videos based on SME input video-based interviews. 
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• Leadership – DSYX staff members have extensive expertise in assessing theories/models 
of leadership competencies and in the evaluation of leadership potential to help senior 
leaders attract, develop, and retain talent to effectively and efficiently accomplish mission 
requirements. The expertise encompasses experiences gained through work in academia, 
private industry, and military/government, which aid in providing customers with 
valuable tools, analysis, and innovative insights designed to improve organizational 
performance. 

Contractor Expertise 

Consulting Firms. DSYX has had the opportunity work with the most well-known consulting 
firms in industrial and organization psychology and government research. In addition, DSYX has 
been able to contract out some work to the most recognized experts in their respective fields, 
including former presidents of the Society of Industrial and Organization Psychology (SIOP) and 
leading authors in academia and cutting-edge commercial innovation. 

Forward Looking: The Future of DSYX 

Increased Effort to have DSYX Expertise, Services, and Interventions Recognized 
throughout the Air Force 

Recent efforts by DSYX have improved the visibility of the branch throughout the Air Force. 
Specifically, efforts to educate Career Field Managers (CFMs) on the tools and services provided 
by DSYX have resulted in operational Predictive Success Models for numerous career fields and 
expansion of the use of existing tests for selection and classification purposes. In addition, 
updated internal marketing materials (e.g., slide decks, tri-fold brochures) are being prepared to 
provide additional exposure for the beneficial offerings of DSYX. Finally, high-profile attention 
to quality products such as AF-WIN are providing additional recognition for how DSYX can 
provide high-quality and cost-effective services to the Air Force. Additional efforts will need to 
be expended in this area in order for DSYX to continue to thrive as a valuable internal asset.  

Improved Technology 

Recent and future advances in available technology will provide DSYX with the capability to 
provide services and tools in a more efficient manner. Examples include item-banking, a 
combined test-development and test-delivery platform, and even sophisticated tools such as text 
analysis.  

Improved Access to Data 

Current processes to procure and process necessary data (e.g., test scores, training grades) are 
somewhat inefficient and hinder the efficiency and effectiveness of the branch. Future 
enhancements are being vetted and implemented to automate and streamline the process. This 
will allow DSYX to provide real-time decision support to internal clients and will improve the 
speed in which DSYX can build the tests and tools required for effective selection and 
classification purposes.  

Exiting the Operational Testing Domain 



xiii 

DSYX historically has been involved in many aspects of operational testing (e.g., test delivery, 
scoring, coding) which limits the time and resources available to devote to true mission-specific 
activities. Current efforts are being conducted to ensure a more efficient hand-off from DSYX to 
the operational entities after successful development of tests and selection/classification tools.  

Repeatable and Scalable Processes 

DSYX is currently striving to develop repeatable (e.g., consistent analyses, similar technical 
report templates) and scalable analyses and processes (e.g., processes that can be applied to large 
and small requests throughout the Air Force). This Guide is one small step in achieving that goal. 
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1.0 BEST PRACTICES FOR BRIEFING VALIDATION RESULTS 

Scott B. Morris 

1.1 Introduction 

Evidence-based decision making has long been a guiding principal of employee selection. The 
design of a selection system involves collecting data on the psychometric quality, job relevance 
and predictive accuracy of assessments, and using the results to make informed decisions about 
whether assessments should be adopted, modified, or eliminated.  

The usefulness of empirical results depends greatly on the quality of the data used in an analysis. 
Choices in the design and implementation of research, cleaning of data, and analysis can 
substantially impact the legitimacy and generalizability of results, and it is therefore critical that 
research reports be transparent with regard to the methodology employed. Responsible research 
practice also requires full transparency of research reports and findings.  

Selection research requires a high degree of technical sophistication in order to properly use and 
interpret results from complex psychometric and statistical analyses. At the same time, the 
selection expert must be able to communicate this information to policy-makers and other 
stakeholders who often have limited technical backgrounds. Effectively communicating the 
results of selection research requires a careful balancing act, maintaining the precision and 
transparency demanded by professional standards, while simultaneously conveying the essence 
of findings to a non-technical audience.  

This report will start with a review of relevant professional standards, followed by specific 
recommendations for reporting criterion-related validity results. Several strategies for effectively 
communicating validity evidence will then be discussed. 

1.2 Professional Standards for Reporting Validity Evidence 

Several professional standards exist to guide reporting of research findings, including both broad 
standards for scientific work as well as guidelines specific to criterion-related validation. The 
following section provides a brief overview of several relevant standards, followed by an 
integrated set of recommendations for writing validation reports. 

1.2.1. Sources of Professional Standards 
Standards for Educational and Psychological Testing  
Developed through a collaboration between the American Educational Research Association, the 
American Psychological Association, and the National Council on Measurement in Education 
(2014), the Standards provide broad guidance for the development and evaluation of tests, 
including recommendations for demonstrating the psychometric quality of measures (reliability 
and validity), test fairness, as well as recommendations for test administration and proper use of 
test scores. Relevant standards for validation research are found in Chapter 1, Validity, and 
Chapter 11, Workplace Testing and Credentialing.  
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Principles for the Validation and Use of Personnel Selection Procedures 
Developed by the Society for Industrial and Organizational Psychology (2018), the Principles 
specify established scientific and professional practices related to the choice, development, 
evaluation, and use of personnel selection procedures designed to measure constructs related to 
work behavior. Recommendations for preparation of a technical validation report are provided 
on pp. 33-35. 
 
Uniform Guidelines on Employee Selection Procedures (1978) 
The Uniform Guidelines were developed to establish a uniform set of standards by which federal 
enforcement agencies can evaluate employee selection procedures in the context of prohibiting 
employment discrimination. These guidelines have been adopted by the Equal Employment 
Opportunity Commission, Department of Labor, Department of Justice, and Civil Service 
Commission.  
 
While the Uniform Guidelines were informed by scientific principles and professional practices, 
they represent regulatory requirements imposed by government agencies, and are not a statement 
of scientific or professional principals. As such, the Uniform Guidelines tend to be more specific 
and directive in comparison to the broad principles stated in other guidelines. Unlike other 
professional standards, which have been regularly revised to represent advances in scientific 
understanding, the Uniform Guidelines have not been updated since 1978. Testing professionals 
have criticized the Uniform Guidelines for failing to keep pace with advances in validation 
methodology (Jeanneret & Zedeck, 2010; McDaniel, Kepes & Banks, 2011). 
 
Journal Article Reporting Standards 
The American Psychological Association (Appelbaum, Cooper, Kline, Mayo-Wilson, Nezu & 
Rao, 2018) published the Journal Article Reporting Standards (JARS) in an effort to promote 
rigor and transparency in scientific work by providing recommendations to authors and journal 
editors regarding the information to be included in research reports. Because the JARS are 
intended to be applicable to a broad spectrum of research areas, the recommendations tend to be 
very general, and do not specifically target reporting of validation research. JARS is available 
online at https://apastyle.apa.org/jars/ 
 
American Statistical Association Statement on Statistical Significance and P-Values 
Statistical significance testing is a central component of most quantitative research, including 
validation studies. Despite its widespread use, the practice of significance testing has been 
widely criticized due to the common misinterpretation and misuse of significance tests (e.g., 
Schmidt, 1996). Through this statement (Wasserstein & Lazar, 2016), the American Statistical 
Association sought to clarify several accepted principles regarding the proper use and 
interpretation of significance tests. Due to the specific and technical nature of the 
recommendations, these guidelines are discussed in a later section of the report that focuses on 
significance testing. 

1.2.2. Summary of Scientific and Professional Standards for Presenting Validation 
Research  

Appendix A provides a summary of scientific and professional standards relevant to research on 
criterion-related validity in employment contexts. Standards related to other research contexts, 

https://apastyle.apa.org/jars/
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other types of validity evidence (content, construct), and other aspects of selection systems (e.g., 
test fairness) are not included. The following guidelines were derived by integrating 
recommendations across the multiple professional and scientific standards. 

A research report documenting a criterion-related validation study should include the following 
information: 

1. Describe the intended uses of the selection system and the justification for the assessment 
procedures. What job-related qualifications is the test intended to assess? How will scores 
be used to make selection decisions (e.g., ranking vs. cutoff, multiple hurdles, combining 
multiple predictors)? The validation study should be designed to evaluate the intended 
interpretation and use of test scores. 

2. Fully describe all variables included in the validation study: 
a. Identify all predictor and criterion variables, as well as any control variables used 

in the analyses. Identify all variables examined, even those that were not retained 
in the final analyses. 

b. Provide information on the psychometric properties of all measures (reliability, 
construct validity). 

c. Fully describe the test or assessment procedures being validated, including a 
description of the predictor constructs, test content, response process, and scoring 
procedures. When scoring involves judgment, information about rater selection, 
training, and scoring criteria should be provided. Include references for additional 
information on test development or technical manuals. 

d. Fully describe criterion measures and the data collection process, including steps 
taken to enhance the quality of measurements (e.g., training, use of multiple 
raters, etc.).  

e. Provide evidence that criterion measures reflect important work behaviors or 
work outcomes (e.g., linking measures to job analysis).  

3. Describe the sample of individuals included in the validation study. 
a. Report the demographic composition (e.g., race, ethnicity, sex, age) and relevant 

work-related characteristics (e.g., applicants vs. incumbents, positions held, work 
experience). Discuss the representativeness of the sample in relation to the target 
population.  

b. Describe the procedures for recruiting participants and report the percent of 
recruited participants who were included in the final sample. Describe any 
inclusion/exclusion criteria and number of candidates excluded for each specific 
reason. 

c. Report the sample size (separately for each analysis if different) and power 
analysis. 

4. Data collection procedures should be described in enough detail that testing professionals 
can evaluate the appropriateness of conclusions and make independent recommendations. 
Sufficient detail should be provided that a testing professional competent in personnel 
selection could replicate the study. Any research design factors that might impact the 
interpretation or generalizability of findings (e.g., low reliability, criterion contamination, 
range restriction, missing data, etc.) should be clearly stated. 

5. Describe any data diagnostics conducted, including examination of data distributions or 
identification of statistical outliers. Specify any modification of the data resulting from 
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data cleaning, including variable transformations, exclusion of scores or participants, etc. 
Report sensitivity analysis on the impact of data cleaning procedures.  

6. Provide details on the statistical analyses conducted: 
a. Describe the extent of missing data and how missing values were handled (e.g., 

case-wise or pairwise deletion, imputation).  
b. Provide descriptive statistics (e.g., frequencies, means, standard deviations) on all 

variables, both for the full sample and any relevant subgroups. For multivariate 
analyses, provide the full correlation or covariance matrix of variables.  

c. Report any problems with statistical assumptions (e.g., non-normal distributions, 
unequal error variance) that might impact the validity of findings. 

d. When reporting statistical significance tests, provide the test statistic, degrees of 
freedom (if appropriate) and p-value. Report the results of all tests conducted, not 
only those that were statistically significant. 

e. Report measures of effect sizes and confidence intervals where appropriate.  
f. When conducting complex analyses (e.g., structural equation modeling, 

hierarchical linear modeling, etc.), specify the software used in the analysis, and 
any relevant options used in the analysis (e.g., estimation method). 

7. The presentation of results should strive to accurately and comprehensively portray the 
findings.  

a. A clear distinction should be made between the primary analysis, planned 
secondary analyses, and exploratory analyses. 

b. Report results for all variables examined, not just those that were statistically 
significant. When multiple analyses are conducted before identifying a final 
model, those preliminary analyses should be briefly described (although not in as 
much detail as the final model). 

c. When statistical adjustments are made (e.g., corrections for range restriction or 
measurement error), both adjusted and unadjusted coefficients should be reported, 
as well as the specific procedure used and all statistics used in the adjustment. 

8. Conclusions and recommendations should be explicitly linked to study findings.  
a. Research findings that qualify conclusions or limit generalizability should be 

discussed. 
b. Efforts should be made to help readers correctly interpret results and avoid 

common misinterpretations. 
c. Research design factors or data analysis choices that potentially limit the validity 

or generalizability of findings should be acknowledged, and the potential impact 
on the findings discussed. 

1.2.3. Targeting Presentation to the Audience 

Professional standards for reporting research seek to promote scientific rigor, transparency, and 
replicability. At the same time, comprehensive reporting requirements demand time and space 
that is not available in all reporting formats. It is simply not feasible to include all required 
elements in concise presentation formats, such as briefing reports or oral presentations. 
Additionally, the depth of technical information could be overwhelming to a non-technical 
audience. For individuals with limited background in statistics, psychometrics, and validation 
research, the central findings could easily be lost in the excess of statistical details. 
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An important component of effective communication is understanding the audience (Aguinis, 
Werner, Abbott, Angert, Park & Kohlhausen, 2010). Different types of stakeholder tend to focus 
on distinct outcomes. While selection researchers might be interested in the technical quality of 
assessments (e.g., reliability and validity), hiring managers will be most concerned with the 
ability to meet staffing needs and performance standards. Others will focus on outcomes directly 
relevant to specific strategic objectives, such as increasing the representation of under-
represented minority groups. Research reports will be most effective when framed in terms of the 
objectives valued by the intended audience. 

It is useful to distinguish three levels of detail for research reports. A technical report is a written 
document intended to provide a comprehensive summary of the validation study and findings. 
Technical reports should strive for transparency and should generally include all elements 
recommended by scientific and professional standards. The primary audience will be selection 
researchers and therefore it is appropriate to include highly technical information. All findings 
should be fully reported, including relevant descriptive statistics, complete results of statistical 
analyses, and supplementing analyses.  

A briefing report is a one to two page written document offering a concise summary of key 
findings and recommendations. The briefing report should be accessible to a non-technical 
audience.  

A briefing presentation is a formal oral presentation of findings. Key information is presented in 
a concise format through a slide deck and supplemented with explanations delivered by the 
presenter. Like the briefing report, briefing presentations should be accessible to non-technical 
audiences. Additionally, presenters often operate under strict time limits, requiring selective 
presentation of findings. Finally, excessive text and data on slides can compete for the audience’s 
attention rather than supporting the speaker’s message and can lead to information overload 
(Mayer & Moreno, 2003).  

In the following sections, recommendations for reporting validation results will initially be 
presented in the comprehensive format appropriate for a technical report, followed by more 
concise formats typical of briefing reports and presentations. 

1.3 General Considerations in Presenting Statistical Results 

A variety of statistical analyses are used in validation research, each with its own statistical 
indices and reporting traditions. Common to all analyses is the need to convey two basic types of 
information: an estimate of effect size and an indication of the precision of that estimate. 

1.3.1. Effect Size 

An effect size is a statistic representing the magnitude of some phenomenon (Kelley & Preacher, 
2012). In the context of a validation study, effect size is a quantitative index of the strength and 
direction of the relationship between predictor and criterion variables. Effect size statistics help 
the researcher to understand the practical significance of findings; that is, how useful a predictor 
will be in identifying successful employees.  
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In order to be useful as a measure of practical significance, an effect size should be reported on a 
scale that has an easily understood metric. Some statistics, such as percentages, have a metric 
that is widely understood by most audiences (Kuncel & Rigdon, 2013). For example, most 
audiences would intuitively understand a report that 70 percent (%) of employees hired using a 
selection system would be successful. However, for many statistics, the metric is less clear, 
especially to those who do not have extensive experience with statistics to provide a common 
frame of reference (e.g., is a validity coefficient of 0.2 good or bad). In such cases, it is useful to 
provide benchmarks for representing different levels of practical significance (e.g., small, 
medium and large effect; Cohen, 1988). Such benchmarks have been criticized for being 
somewhat arbitrary and because the standards for usefulness vary depending on the specific 
research context (Bosco, Aguinis, Singh, Field & Pierce, 2015). Nevertheless, benchmarks 
provide a common frame of reference that helps the reader interpret the strength of relationships. 

Measures of effect size are often standardized, resulting in a consistent metric regardless of the 
scale of the variables involved. Because the range of scores can vary substantially across 
different measures, results reported in terms of raw scores are often uninterpretable to those not 
familiar with a particular measure.  

The use of standardized effect size statistics (e.g., correlation coefficients or standardized mean 
differences) is useful to researchers because it provides a consistent and readily interpretable 
index of the magnitude of results. However, the abstract nature of these statistics, which allows 
them to be generalized across settings, also makes them more difficult to interpret from the 
perspective of non-researchers. Aguinis et al. (2010) note the distinction between effect size 
statistics and information about practical significance. Information about whether a result is of 
practical significance is necessarily specific to a particular context and problem. Thus, when 
reporting the practical significance of results, efforts should be made to contextualize and 
interpret results in light of the priorities of the stakeholder, and should be communicated in terms 
of how the client views the problem. Several strategies to communicate the practical significance 
of validation results are discussed in a later section of the report. 

1.3.2. Statistical Inference 

In addition to the effect size, reports of statistical findings should indicate the degree of precision 
that the effect size estimates. In understanding the concept of precision, it is useful to distinguish 
between a population parameter and a sample statistic. The parameter is the theoretical value that 
would be obtained if data were available on the entire population of interest, while the statistic is 
the actual value computed from the data available. Due to the fact that the statistic was estimated 
using a limited sample, the value of a statistic will differ from the parameter. In other words, if 
you repeated a validation study, you would not obtain exactly the same estimate of the 
relationship. These differences, due to the limited sample of individuals included in a validation 
study, are called ‘sampling errors’. These sampling errors tend to be larger when sample size is 
small and shrink as sample size increases. 

The sample statistic provides a point estimate (our best guess) of the population parameter. 
However, we also need to report the degree of uncertainty in that estimate. There are several 
ways to quantify the uncertainty resulting from sampling error. The standard error of the statistic 
represents the standard deviation of sampling errors, or the typical size of sampling error.  
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The standard error can be used to construct a confidence interval around the sample estimate. To 
construct a confidence interval, we choose a confidence level (CL = 95% is common) and build 
an interval around the point estimate. Say we compute a correlation of .3 with a 95% confidence 
interval of [.2, .4]. We know that the population correlation is probably not .3 exactly and the 
confidence interval indicates how far off our estimate might be. Specifically, if we construct a 
large number of intervals in this manner, 95% of the intervals will contain the population value.  

Another common way to represent uncertainty due to sampling error is to conduct a test of 
statistical significance. We start with a null hypothesis, generally that the parameter of interest is 
0. For example, for testing a correlation coefficient, the null hypothesis would be H0: ρ = 0. We 
then compute a test statistic and corresponding p-value. The p-value indicates the probability of 
obtaining the observed data if the null hypothesis were true. If the p-value is very small 
(typically p < .05), we reject H0, and conclude that there is a significant result. Conversely, if p > 
.05, we fail to reject the H0, and the result is considered non-significant. It is most common to 
report p-values associated with a non-directional or two-tailed test, where significance does not 
depend on the direction of the result (i.e., either a positive or negative correlation would be 
significantly different from 0). 

It is important to note that non-significance is a statement of uncertainty. If a result is not 
significant, the data do not provide enough evidence to conclude the results is different from 0. 
This is very different from concluding that the validity is 0. In other words, non-significance 
does not mean you should accept H0. A common mistake in interpreting significance tests is to 
conclude that a predictor is unimportant because the test is non-significant. This tendency to treat 
a finding as true if p < .05 and false if p > .05 is not appropriate. 

Statistical significant tests tend to be sensitive to sample size. For small samples, sampling errors 
tend to be large. Consequently, a particular result (say r = .3), might be due to either sampling 
error or a true non-zero correlation. With small samples, the data cannot tell the difference 
between these alternatives. Conversely, with very large sample sizes, even trivial results might 
be statistically significant. With a large enough sample size, a relationship of r = .01 might be 
statistically different from 0, but that does not make it practically important or useful in 
prediction. 

There has been much criticism of statistical significance testing in the scientific literature, largely 
driven by the complicated logic and common misinterpretation of p-values and significance tests. 
In 2016, the American Statistical Association published a formal statement to address several 
common misconceptions of significance tests (Wasserstein & Lazar, 2016). They offer several 
principles to guide the interpretation of p-values: 

1. P-values provide a measure of how incompatible the data are with the null hypothesis. 
The smaller the p-value, the more statistically incompatible the data are with the null 
hypothesis. If the underlying assumptions used to calculate the p-value hold, this 
incompatibility can be interpreted as casting doubt on or providing evidence against the 
null hypothesis. 

2. P-values do not measure the probability that the studied hypothesis is true, or the 
probability that the data were produced by random chance alone. 
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3. No decisions, whether scientific conclusions or business decisions, should be based only 
on whether a p-value passes a specific threshold. Interpreting relationships as true or false 
based on whether they fall below or above a “bright-line” rule such as p < .05 can lead to 
poor decisions. “The widespread use of ‘statistical significance’ (generally interpreted as 
‘p ≤ .05’) as a license for making a claim of a scientific finding (or implied truth) leads to 
considerable distortion of the scientific process.” (Wasserstein & Lazar, 2016)  

4. Proper inference requires full reporting and transparency. Conducting multiple tests and 
then only reporting those analyses that were significant (known as cherry-picking or ‘p-
hacking’), compromises the valid interpretation of those results. At minimum, valid 
scientific conclusions require knowing how many analyses were conducted and how 
those analyses were selected for reporting.  

5. A p-value, or statistical significance, does not measure the size of an effect or the 
importance of a result. A trivial effect might be statistically significant if sample size is 
large enough. Conversely, large effects might produce non-significant findings when 
sample size is small. 

6. By itself, a p-value does not provide a good measure of evidence regarding a model or 
hypothesis. A large p-value indicates the data are consistent with the null hypothesis, but 
there may be other models that are also compatible with the data.  

 
Flagging Significant Results 
When tabling results, it is common to use superscripts to indicate significant findings, often with 
different symbols depicting differing levels of significance. A benefit of this approach is that it 
avoids clutter and enhances the readability of slides, especially when many results are reported. 
Common superscripts are: *p < .05, **p < .01, ***p < .001. 

When space permits, it is generally preferable to report the exact p-value rather than the ranges 
reflected in the significance flags (Aguinis et al., 2010). Reporting exact p-values conveys more 
information about the degree to which that data are inconsistent with the null hypothesis and 
allows the reader to apply a decision rule that differs from that of the researcher. Additionally, it 
makes more transparent the arbitrary distinctions near cutoff values (e.g., .052 vs. .049).  

Significance flags can be an efficient mechanism for concisely communicating statistical 
significance in briefing presentations where additional statistical information might clutter the 
display and distract from the central message. In full technical reports, it is recommended that 
exact p-values and confidence intervals be reported. 

1.4 Relevant Statistical Results for Criterion-Related Validity 

When reporting validity results for individual assessment tools, at minimum, the following 
information should be included: 

• Validity coefficient  
• Significance level and confidence interval 
• Information on adjustments for statistical artifacts 

Each of these is discussed in detail below. 
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1.4.1. Validity Coefficient 

The most common way to represent criterion-related validity evidence is through the correlation 
coefficient. This statistic provides a standardized index of the strength of linear relationships 
between two variables (predictor and criterion). That is, whether individuals with high (low) 
scores on the predictor tend to have higher (lower) scores on the measure of job performance.  

The correlation coefficient has a theoretical range from -1 to 1 with 0 indicating a lack of 
relationship, 1 indicating a perfect positive relationship and -1 a perfect negative relationship. 
Figure 1 depicts data with varying degrees of correlation typical of validation research. 

In some contexts, negative correlations are expected and the evidence provided can be just as 
strong as positive correlations. For example, when predicting counterproductive work behavior, 
we would want strong negative correlations between conscientiousness and the number of 
disciplinary actions. In other cases, a mix of positive and negative correlations might be 
expected. For example, individuals who experience low levels of Stress Under Pressure (SUP) 
would be expected to have higher performance than those who experience high levels of SUP. 
Thus, it is important to report the direction of the relationships and to highlight findings that are 
in a direction inconsistent with the theoretical rationale for the measure.  

In order to make interpretation more straightforward, it can be helpful to reverse score measures 
that reflect negative characteristics. That way all correlations are expected to be in the same 
direction, and negative correlations would reflection relationships inconsistent with theory. If 
predictors are reverse coded, it is important that this be clearly noted in research reports. In order 
to reverse code a variable while maintaining the original range of scores, the following 
conversation can be used, 

Score(Reversed) = Min + Max - Score  (1) 

where Score is the person’s score on the original predictor variable, and Min and Max are the 
minimum and maximum scores that can be obtained on the predictor measure. 

 

Figure 1. Scatter plots of data with varying levels of correlation 
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Correlation Benchmarks 
Although the correlation coefficient has a standardized scale, it does not have a particularly 
intuitive scale. Those who are unfamiliar or do not regularly conduct statistical analyses may 
have difficulty determining whether a particular value, say r = .2, indicates a useful level of 
validity. Additionally, individuals unfamiliar with typical levels of validity might have 
unrealistic expectations. For these reasons, it is useful to have professional benchmarks that 
serve as a guide to interpreting the usefulness of results. 

The U. S. Department of Labor (1999) provided a guide for interpreting validity coefficients for 
individual predictor variables (see Table 1). These values are intended to serve as general 
guidelines, and whether a particular value is acceptable depends on the context. The Department 
of Labor (1999) notes that the validity coefficient should be considered alongside several other 
factors, including: the level of adverse impact, the number of applicants relative to the number of 
openings, the cost of a hiring error, the cost of the selection tool, and the probability of hiring 
qualified applicant based on chance alone. 

 

Table 1. Department of Labor Guidelines for Interpreting Validity Coefficients of 
Individual Tests 

Validity Range Interpretation % Variance 
Above .35 “Very beneficial” > 12% 
.21 - .35 “Likely to be useful” 4%-12% 
.11 - .20 “Depends on circumstances” 1%-4% 

Below .11 “Unlikely to be useful” < 1% 
 
 
Coefficient of Determination  
Another way to convey the magnitude of correlation is through the coefficient of determination 
(r2). The square of the correlation conveys the proportion of variance of the criterion measure 
that is explained by the predictor. For example, a validity of r = .32 indicates that the predictor 
explains 10% of the variance in job performance. Typical values for the proportion of variance 
explained are summarized in Table 1. 
 
Statistical Significance and Confidence Intervals 
A t-test can be used to evaluate the null hypothesis of no relationship (H0: ρ = 0). The necessary 
statistics can be obtained from most statistical packages. For example, to obtain the correlation 
between variables x and y using the cor.test() function from the stats package in R, the command 

 cor.text(x,y) 

would yield the following output, 
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Pearson's product-moment correlation 
data: x and y 
t = 2.9166, df = 98, p-value = 0.004387 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
0.09126199 0.45383936 
sample estimates: 
 cor 
0.2826141 

 

When reporting results in text, include the value of the t-statistic, degrees of freedom (df = N-2) 
and the p-value. For example, 

 r = .28 [.09,.45], t(98) = 2.92, p = .004,     (2) 

indicates a validity coefficient of .28 with a 95% confidence interval ranging from .09 to .45, the 
value of the t-statistic with 98 df is 2.92, and the p-value is .004, which would be considered 
statistically significant at α = .05. 

In tabled results and presentations, a condensed presentation is used, reporting only the 
correlation coefficient, confidence interval or standard error, and one or more asterisks indicating 
the level of significance. A footnote on the table should indicate the sample size and provide a 
key to interpreting asterisks. The two formats are presented below (only one of these should be 
included). 
 
 

Table 2. Brief validity presentation formats 
Predictor r [95% CI]  r (SE) 
Test A .28 [.09,.45]**  .28 (.10)** 
Test B .22 [.03,.40]*  .22 (.10)* 

N = 100, *p <.05, **p<.01 
 
 
Statistical Adjustments 
It is common for validity coefficients to be corrected for attenuation due to statistical artifacts, 
such as measurement error or range restriction. These adjustments are discussed in greater depth 
in Ployhart (2020). While these adjustments are common in validation research, many 
researchers are skeptical of the ability of post-hoc statistical corrections to overcome the 
weaknesses of poorly conducted research (e.g., LeBreton, Scherer & James, 2014; Schmitt, 
2007). Thus, care should be taken that adjusted results are not viewed as attempting to overstate 
the evidence for validity. This can be achieved primary through transparency regarding the 
adjustments applied and their impact on results. 
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The corrections applied should be consistent with the available data and the purpose of the 
research. It is typically appropriate to adjust for measurement error in the criterion but not the 
predictor, because the goal of the research is to demonstrate the operational validity of the 
predictor measure and measurement error is an inextricable part of that measure. Similarly, 
adjustment for range restriction should apply a correction formula that matches the nature of the 
process that generated the restricted range of scores (Beatty, Barratt, Berry, & Sackett, 2014; 
Sackett & Yang, 2000). 

It is important to be fully transparent regarding the statistical adjustments that are used. The 
technical report should identify which corrections were applied, the specific values used in the 
correction, and how those values were obtained. In the absence of data on artifacts in the current 
context, corrections are sometimes made using typical values obtained from the selection 
literature. In such cases, it should be noted that corrected validities are speculative. In general, 
both corrected and uncorrected validity should be presented in technical reports. For brief 
formats or with non-technical audiences, reporting only the corrected result is acceptable, as long 
as the nature of the correction is clearly noted. 

When applying statistical corrections, it is important to account for these corrections in 
significance tests and confidence intervals. Using a corrected correlation in standard formulas for 
statistical significance testing can result in inaccurate conclusions. Corrections for statistical 
artifacts increase the standard error of the corrected correlation (Hunter & Schmidt, 2004). The 
higher validity produced by the corrections tends to be offset by the increased standard error, 
such that conclusions about statistical significance are unchanged. The simplest way to address 
this issue is to conduct significance tests on the uncorrected validity coefficient. 

The increased uncertainty created by statistical adjustments must also be addressed when 
computing confidence intervals. The most straightforward approach is to compute a confidence 
interval on the uncorrected correlation, and then apply the statistical adjustment to the endpoints 
of this interval (Hunter & Schmidt, 2004). Although this approach requires some hand 
calculation, it can be readily adapted to whatever statistical correction is applied. 

Using the previous example, we have an uncorrected correlation of .28 with an 95% confidence 
interval of [.09,.45]. Say we have determined that the reliability of our performance measure is 
ryy = .64. The correction for unreliability can be applied to the estimate as well as the endpoint so 
of the confidence interval, as illustrated in Table 3. 

 

Table 3. Calculation of confidence intervals on a corrected validity coefficient. 

 Lower CI Limit Estimate Upper CI Limit 

Uncorrected .09 .28 .45 

Corrected 
. 09
√. 64

= .11 
. 28
√. 64

= .35 
. 45
√. 64

= .56 
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Thus, the results for the corrected correlation and its 95% confidence interval should be reported 
as r = .35 [.11, .56]. 

1.4.2. Multiple Regression Analysis 

In many cases, validation studies examine a collection of tests that are intended to be used 
together as a test battery. In such cases, multiple regression analysis can provide useful insights 
into how the collection of predictors function together. Multiple regression analysis involves 
creating an optimally-weighted composite of predictor variables. That is, each predictor is 
assigned a weight (the regression coefficient) and the weighted sum of the predictors can be used 
as summary variable, combining information from all of the predictors into a single score.  

The results of a multiple regression analysis can be used to address two types of research 
questions: 

• Overall predictive validity using the set of predictors, and 
• Incremental validity for each predictor 

 
Validity for the Set of Predictors 
Two related statistics can be used as an overall index of how well a set of tests predict the 
criterion variable. The coefficient of determination (R2) indicates the proportion of variance in 
the criterion variable accounted for by the set of predictors. The square root of this value is the 
multiple correlation coefficient (Multiple R), which represents the correlation of an optimally-
weighted composite of the predictors with the criterion variable. The Multiple R is directly 
comparable to a validity coefficient, and therefore is the preferred method of presenting the 
overall predictive power of a set of tests. 

If a set of predictors were all uncorrelated with each other, the R2 for the set of predictors would 
be equal to the sum of the squared validity of each predictor. However, because predictors are 
usually somewhat intercorrelated, there is some redundancy in their prediction and the overall 
variance explained is typically less than the sum of the individual r2 values. For this reason, it is 
important to assess how well the set of tests predict as a group, as well as individually. 

A statistical significance test can be conducted on the model as a whole, testing the null 
hypothesis that the population multiple correlation is 0, or equivalently that none of the 
predictors are related to the criterion variable. An overall model F-test is reported in the output 
of most statistical packages. It is also possible to report a confidence interval on the Multiple R2 
(Cohen, Cohen, Wes, & Aiken, 2003) although this is less likely to be included in standard 
packages. 

While the Multiple R is a useful summary statistic, it will often overestimate the level of validity 
that will be obtained when a battery is used in practice. Steps should be taken to avoid 
overstating the strength of the validity evidence. 

First, the predictor weights used in the validation should match how test scores will be used in 
practice. The Multiple R from the regression equation represents the validity of a composite 
computed using the regression weights (which are computed to optimize prediction). Often, an 
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operational selection system will use some other weighting scheme, for example, giving all 
predictors equal weight, or applying rationally derived weights (Hattrup, 2012). In such cases, 
the Multiple R may overestimate the operational validity, although the difference in the validity 
estimate is often quite small (Bobko, Roth, & Buster, 2007). Nevertheless, it would be best to 
report validity based on a composite score using the operational weights. 

A second concern regarding the Multiple R is that regression weights have a tendency to overfit 
the data. Predictors are weighted to optimize prediction within the dataset used for the analysis 
and may pick up on idiosyncrasies that improve prediction for this sample but will not generalize 
to other applicants. Consequently, the Multiple R obtained in the regression analysis will tend to 
overestimate the level of prediction that will be achieved when the system is used in practice, a 
phenomenon known as ‘shrinkage’.  

Cross-validation provides a methodology to obtain a more realistic estimate of expected validity. 
In cross-validation, the regression weights are estimated in one sample, and then a composite 
score based on these weights is validated in a second ‘holdout’ sample (Schmitt & Ployhart, 
1999). Because obtaining two large samples for the purpose of validation is often impractical, a 
number of alternative strategies exist for estimating the cross-validated Multiple R. 
Computationally intensive methods, such as K-fold cross-validation, involve conducting several 
replications of the analysis where cases are alternatively used for the estimation or holdout 
samples in different replications (Putka, Beatty, & Reeder, 2018).   

It is also possible to numerically approximate the cross-validated results without actually 
conducting a cross-validation study, by computing a so-called ‘adjusted’ R2 or Multiple R 
statistic. Two different types of adjusted R2 are available (Raju, Bilgic, Edwards, & Fleer, 1997). 
Estimates of the population R2 reflect the R2 that would be expected if using the population 
regression equation. Estimates of population cross-validity represent the R2 that would be 
obtained if the weights derived in the current sample were used to predict outcomes for a new set 
of individuals from the same population. A variety of such adjusted R2 estimates exist (Raju, et 
al., 1997, 1999). While many software packages report an adjusted R2, this is typically the 
Wherry/Ezekiel formula, which is an estimate of population R2, whereas an estimate of 
population cross-validity is more relevant to validation research (Schmitt & Ployhart, 1999).  

While estimates of population cross-validity are not as common in statistical software, they are 
fairly easy to calculate by hand. The Burket formula is an attractive option due to its simplicity 
and the fact that it directly estimates the cross-validated Multiple R. Many other estimates, 
including the Browne formula, estimate the cross-validated squared Multiple R. The Burket 
formula is, 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴 𝑅𝑅 =  �𝑁𝑁𝑅𝑅
2−𝑘𝑘�

𝑅𝑅(𝑁𝑁−𝑘𝑘)    (3) 

and the Browne formula is,  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴 𝑅𝑅2 = (𝑁𝑁−𝑘𝑘−3)𝑅𝑅4+𝑅𝑅2

(𝑁𝑁−2𝑘𝑘−2)𝑅𝑅2+𝑘𝑘
  (4) 
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where R is the multiple R obtained on the current sample, N is the sample size, and k is the 
number of predictor variables.  

A key determinant of shrinkage is the number of predictors (k). It is common for researchers to 
start with a larger number of predictor variables and then remove some based on the results of 
the analysis. The proper k to use in adjustment formulas is not the number in the final model, but 
rather the total number of predictors considered in the analysis (Schmitt & Ployhart, 1999). This 
is true regardless of whether predictors are selected using a formal procedure (e.g., stepwise) or 
based on the researcher’s judgment after inspecting the correlation matrix. Consequently, it is 
generally best to compute shrinkage-adjusted R2 statistics by hand, where the correct number of 
predictors can be specified. 

 
Incremental Validity  
In addition to the overall validity of the set of predictors, it is useful to examine the unique 
contribution of each predictor. Multiple assessments are included in a battery because they are 
expected to account for unique aspects of performance. Therefore each predictor in a battery 
should add value to the overall score. 

In practice, many predictors are at least somewhat correlated with each other. When predictors 
are correlated, part of their relationships with the criterion overlaps and this shared prediction 
decreases the unique contribution of the predictor. Consequently, if tests in a battery are highly 
correlated, a test that is highly predictive when considered alone might add little to the overall 
validity of the battery. 

The unique contribution of a predictor can be indexed through regression coefficients or 
incremental validity statistics. Regression coefficients are the weights assigned to predictors in 
the regression equation. Raw regression coefficients indicate the slope of the prediction line for 
one predictor when all other predictors are held constant. Raw coefficients can be difficult to 
interpret because they are influenced by the scaling of the variables. Consequently, researchers 
often interpret standardized coefficients, which are simply the regression weights that would be 
obtained if all variables were standardized before running the analysis. The relationship between 
raw and standardized coefficients is a function of the standard deviation of the predictor (SDX) 
and criterion variables (SDY). This relationship can be used to convert from one metric to the 
other, 

𝐴𝐴𝐵𝐵𝐴𝐴. 𝑏𝑏 = 𝐵𝐵𝑟𝑟𝐵𝐵 𝑏𝑏 �𝑆𝑆𝑆𝑆𝑋𝑋
𝑆𝑆𝑆𝑆𝑌𝑌

�  (5) 

𝐵𝐵𝑟𝑟𝐵𝐵 𝑏𝑏 = 𝐴𝐴𝐵𝐵𝐴𝐴. 𝑏𝑏 �𝑆𝑆𝑆𝑆𝑌𝑌
𝑆𝑆𝑆𝑆𝑋𝑋

�  (6) 

Given their similarity to validity coefficients, many researchers prefer to interpret standardized 
coefficients. However, the relative usefulness of raw versus standardized coefficients has long 
been an issue of contention among statisticians (e.g., Pedhazur & Schmelkin, 1991). For 
example, if analyses were conducted in two separate samples, one with a larger range of 
predictor scores (larger SDX), then the same relationship in terms of the raw regression equation 
could produce very different standardized coefficients. This sensitivity to differences in 
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variability creates challenges when attempting to compare standardized coefficients across 
samples. 

Statistical significance tests can be conducted on the unique contribution of each predictor, 
testing the null hypothesis that the population regression coefficient is zero. A t-test, standard 
error, and confidence interval on each raw regression coefficient are generally available in the 
output of statistical software. Confidence intervals on standardized coefficients can be 
approximated by applying the standardization formula, to the endpoint of the confidence interval 
for the raw coefficient (see Jones & Waller, 2013, for an alternative procedure). 

A second way to assess the contribution of a variable is to calculate the change in overall validity 
when that variable is added to the model. This is achieved through a hierarchical regression 
analysis, which involves estimating a series of models, where one or more additional variables is 
added at each step. Say we have two predictors, Arithmetic Reasoning (AR) and Reading 
Comprehension (RC) and we want to determine the incremental validity of RC. We estimate two 
regression models: a reduced model with only the non-focal predictor (AR) and then a full model 
with both predictors.  

Reduced Model: Y’ = b0 + b1 AR, Multiple R = .2  
Full Model: Y’ = b0 + b1 AR + b2 RC, Multiple R = .3 

The incremental validity for RC is the difference in the Multiple R for the two models, ΔR = .3 - 
.2 = .1. We can also index incremental validity using R2, ΔR2 = .09 - .04 = .05, which indicates 
that RC is able to predict an additional 5% of the variance in the criterion variable. 

Incremental validity also can be assessed for sets of predictors. For example, say the current 
selection process is based on a set of cognitive assessments and you are considering the addition 
of a personality measure. In this case, it would be useful to compare the validity of the cognitive 
battery (Reduced Model) to a battery with both cognitive and personality scores (Full Model). As 
above, incremental validity would be computed from the difference in multiple R between these 
two models. 

It should be noted that the order of entering predictors can impact the ΔR associated with a 
predictor and therefore the order of entry should be given careful consideration. In some 
situations, the goal of the research will suggest a logical ordering. If the purpose of the study is to 
evaluate the addition of new measures, these new measures would be added in Model 2. In most 
cases, however, there is not pre-specific ordering. In such cases, a separate set of analyses can be 
conducted for each predictor, entering all other predictors in Model 1 and adding the focal 
variable in Model 2. This would then be repeated with each predictor as the focal variable.  

Reporting Regression Results  
In technical reports, the text should describe all analyses leading to the final regression model:  
 

• Describe preliminary analyses evaluating regression assumptions (e.g., normality, 
linearity, homoscedasticity or error variance).  

• Specify how predictors were selected for entry into the final model and identify variables 
that were examined and later dropped from the analysis based on the results. If a data-
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driven model building strategy (e.g., stepwise predictor selection) was used, describe the 
procedure and the full set of predictors considered. 

Tables reporting regression results should include the following elements: 

• Specify the criterion variable in the table title or in column headers if results for multiple 
outcomes are reported in the same table. 

• Report the sample size in a table footnote. 
• Provide easily interpreted descriptive labels for each predictor variable. Where space 

limitations require abbreviations, include definitions in the table footnote. 
• Include all regression coefficients, including the intercept, control variables, and focal 

predictors. Regression coefficients are denoted by b, and the standard error by SEb. 
• For each predictor, report the raw regression coefficients, standard error, and 95% 

confidence interval. 
• Report the results of the significance test on each predictor. Where space permits, report 

the t-statistic, df and p-value. Where space is limited, report only the p-value and note the 
df in a table footnote. 

• Report either the standardized regression coefficient or incremental validity for each 
predictor. The standardized coefficient is frequently denoted by Beta or β. Incremental 
validity is denoted by ΔR. 

• Include a summary of overall model statistics, including the Multiple R, standard error of 
estimate (se), and F-statistic, df and p-value for the overall model significance test.  

• Include an estimate of cross-validated Multiple R, either the results of a cross-validation 
study or numerical approximation (adjusted R). If reporting adjusted R, specify which 
formula was used in the text or a table footnote. 

Briefing reports and presentations will necessarily require reducing the amount of information 
presented. The report should indicate the full set of predictors examined and the process used to 
select the final model. A table should be included with the following information: 

• Incremental validity or standardized regression coefficients, with confidence intervals.  
• Use asterisks to indicate the results of the significance test on each predictor (e.g., *p <. 

.05, **p <. .05, ***p <. .001). 
• Report the overall Multiple R and significance level on the overall model test, along with 

the cross-validated Multiple R. 
 
Example 
The following hypothetical dataset and analysis is provided to illustrate reporting practice related 
to multiple regression analysis. R code for generating all tables in this section is provided in 
Appendix B. The example involves a system for selecting individuals into a technical training 
program. Previously, the only requirement for admission was possession of a degree in a 
technical field. The validation study evaluated whether a battery of cognitive ability tests could 
identify individuals likely to succeed in training. Additionally, there was interest in determining 
whether adding a personality measure would further improve the screening process. 
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An initial set of predictors included 10 cognitive ability subtests of the Air Force Officer 
Qualifying Test (AFOQT) and 30 personality facets of the SDI. The tests were validated on a 
sample of 200 trainees. Based on an initial examination of correlations (not reported here), five 
predictors were selected for further analysis. The predictors included three cognitive tests: AR, 
RC and Block Counting (BC); and two personality scales: Self-Discipline (SDis) and SUP, 
reverse coded so that higher scores indicate better stress tolerance). The criterion variable is the 
grade in a training course, represented as a percentage of total possible points achieved.  
Descriptive statistics are presented in Table 4. 

The validity of the set of predictors was examined using a multiple regression analysis predicting 
training performance from all five scores. The full regression results are reported in Table 5. For 
a briefing report, a condensed format in presented in Table 6 

 

Table 4. Descriptive Statistics and Correlations Among Study Variables 

  M SD AR RC BC SDis SUP Perf 
AR 13.71 3.96 1.00      
RC 17.22 3.96 0.65*** 1.00     
BC 14.38 5.97 0.41*** 0.29*** 1.00    
SDis 59.41 6.22 0.10 0.12 0.24*** 1.00   
SUP 48.97 8.22 0.22*** 0.16*  0.29*** 0.40*** 1.00  
Perf 69.58 9.82 0.53*** 0.43*** 0.48*** 0.34*** 0.37*** 1.00 

N = 200, *p<.05, **p<.01, ***p<.001 
 

Table 5. Prediction of training grade from arithmetic reasoning (AR), reading 
comprehension (RC), block counting (BC), self-discipline (SDis) and stress under pressure 

(SUP, reverse coded) 

Predictor Coeff SE Beta T p 
(Intercept) 23.60 5.48  4.30 < .001 
AR 0.74 0.19 0.30 3.98 < .001 
RC 0.31 0.18 0.12 1.74 0.083 
BC 0.39 0.10 0.24 3.89 < .001 
SDis 0.28 0.09 0.18 2.94 0.004 
SUP 0.17 0.07 0.15 2.40 0.017 
R2 0.44 0.05    
Multiple R 0.66     
Adj. R 0.45     
Residual SD 7.45     
F 30.36     
Df 5, 194     
P < .001         

N=200. Adj R is the estimated population cross-validity (Burket, 1964).  
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Table 6. Concise summary of regression results 

Predictor Coeff 95% CI 
Arithmetic Reasoning 0.3*** [0.15, 0.45] 
Reading Comprehension 0.12 [-0.02, 0.26] 
Block Counting 0.24*** [0.12, 0.36] 
Self-Discipline 0.18*** [0.06, 0.29] 
Stress Under Pressure (R) 0.15*  [0.03, 0.27] 
Multiple R 0.66 [0.58, 0.73] 
Adjusted R 0.45   

Note: Adjusted R is the estimated cross validity (Burket, 1964). 

 

In addition to the overall validity, we are interested in the incremental validity due to different 
components of the selection system. First, we want to assess the validity of the cognitive tests 
relative to simply requiring a prior technology degree (Degree). Second, we want to evaluate the 
additional contribution of the personality facets. To address these questions, we estimate a 
sequence of three models, adding a distinct type of predictor at each step (Degree, cognitive, 
personality). The results are summarized in Table 7. 

 
Table 7. Hierarchical regression analysis 

 Coeff (SE) 
  Model 1 Model 2 Model 3 
Intercept 65.65 47.86 26.35 
Degree 7.86 (1.27)*** 2.85 (1.33)*  1.50 (1.34) 
AR  0.67 (0.20)*** 0.69 (0.19)*** 
RC  0.22 (0.19) 0.24 (0.19) 
BC  0.51 (0.10)*** 0.39 (0.10)*** 
SDis   0.25 (0.10)*  
SUP   0.17 (0.07)*  
Residual SD 9.01 7.75 7.44 
R2 0.16 0.39 0.44 
Multiple R 0.40 0.62 0.66 
F 38.02 30.98 25.54 
Df 1, 198 4, 195 6, 193 
P < .001 < .001 < .001 
ΔR2  0.23 0.05 
ΔF  26.25 9.36 
P   < .001 < .001 

Coeff = unstandardized regression coefficients. 
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Advanced Regression Models 
If models include higher-order effects, such as interactional or polynomial terms to represent 
curvilinear trends, additional care is needed to avoid misinterpretation of findings. When higher-
order terms are included in a model, the coefficients on their components are easily 
misinterpreted. For example, if a model includes predictors X1, X2, and their product X1*X2, 
the coefficient on X1 is the conditional slope of X1 when X2 = 0. Because a score of zero may 
not exist in the data, and may not even be a possible score for many tests, this conditional slope 
is often uninterpretable. Additionally, the presence of a significant interaction indicates that the 
slope of X1 is not the same for all examinees. Therefore, it is beneficial to compute and report 
simple slopes at several levels of the moderating variable (e.g., at higher and lower levels of X2). 
Procedures for computing simple slopes are described in Cohen et al. (2003), and Preacher, 
Currran, and Bauer (2006). 

A plot of simple slopes often facilitates interpretation of interaction effects. Simple slopes should 
be plotted at two or more meaningful levels of the moderator variable. Provide an explanation in 
the text of how levels of the moderator were determined, and apply labels that accurately reflect 
the interpretation of these levels. A common practice is to use 1 SD above and below the mean 
on the moderator variable, in which case the label should reflect the relative nature of these value 
(e.g., “lower” and “higher”). Absolute labels such as “low” and “high” should only be used if 
they can be linked to an established interpretation of those scores. 

For polynomial or curvilinear models, plot the predicted outcome at multiple levels of the 
predictor representing the full range of the achievable predictor scale. Using five or more levels 
of the predictor is often needed to accurately convey the curvilinear trend. 

Although statistical packages will compute standardized regression coefficients on interactions 
and polynomial terms, these values are not meaningful and should be excluded from tables. 

Advanced statistical techniques, such as structural equation modeling, come with additional 
reporting requirements which are beyond the scope of the current report. A useful guide for 
reporting results from structural equation modeling can be found at 
https://apastyle.apa.org/jars/quant-table-7.pdf 

1.4.3. Logistic Regression Analysis 

Logistic regression is used to develop and evaluate prediction models when the criterion variable 
is dichotomous. One or more predictor variables are used to predict the likelihood that an event 
occurs, such as successful completion of a training program or receiving a commendation, or 
negative outcomes such as disciplinary actions or turnover.  

In order to properly model a dichotomous outcome, logistic regression uses a non-linear 
transformation of the dependent variable. Specifically, the regression model predicts the logit, or 
the natural log of the odds of the event (see Hosmer, Lemeshow, & Sturdivant, 2013). The 
results of a logistic regression look much like that of linear regression. However, due to the 
transformation the relation between the predictors and the actual outcome is not directly obvious 

https://apastyle.apa.org/jars/quant-table-7.pdf
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from the regression coefficients. Therefore, greater care is needed in interpreting logistic 
regression coefficients.  

Overall Prediction 
As in linear regression, we are interested in evaluating both the model as a whole as well as the 
contribution of individual predictors. The overall model can be evaluated for statistical 
significance using the likelihood ratio (LR) χ2 test. When reporting the results of a logistic 
regression, it is customary to also report a statistic called the deviance (sometimes denoted -
2LL), which is a measure of the degree of prediction error. While it is not interpreted directly, 
the deviance is used in the calculation of the LR test, and many other statistical indices.  

Several different R2-like statistics have been developed to serve as an analog to the coefficient of 
determination (Cohen et al., 2003). However, in logistic regression there is no simple index 
representing the proportion of variance accounted for by the model and there is no consensus on 
which measure is preferred. Two common measures are the Cox and Snell and the Negelkerke 
pseudo-R2 statistics. It is important to note that the choice of statistic can make a substantial 
difference in the results. The Cox and Snell R2 tends to be conservative, in the sense that its 
maximum value is often less than 1.0. The Negelkerke R2 includes an adjustment for this 
conservatism, and therefore tends to produce larger values than the Cox and Snell R2.  

Information criteria such as the Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) are also commonly reported with logistic regression results. These statistics are 
not directly interpretable by themselves, and are only useful when choosing among alternative 
models. In such cases, the model with the lower AIC or BIC value is considered the better 
model. AIC and BIC are based on the deviance (which measures the degree of prediction error) 
and also includes a penalty for the complexity of the model. As such, these statistics tend to 
prefer more parsimonious models. If we add predictors (increasing complexity) without 
substantially decreasing the prediction error, the AIC and BIC will increase, suggesting that the 
smaller, more parsimonious model be selected.  

Although less commonly reported in research using logistic regression, another useful measure 
of the model’s predictive power is the classification accuracy. For example, if we build a model 
to predict successful completion of a training program, we can calculate the percent of 
individuals for which the model prediction was correct (i.e., those predicted to succeed who were 
actually successful and those predicted to fail who actually failed). This approach is similar to 
the methods for constructing expectancy tables, which will be described in more detail later in 
this report.  

Predictor Contribution 
The contribution of each assessment to the overall prediction can be determined from the 
regression coefficients. As in linear regression, the sign of the coefficient indicates the direction 
of relationship. Positive coefficients indicate that higher predictor scores correspond to higher 
probability of the event, while negative coefficients indicate decreasing probability with 
increasing predictor scores.  
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Regression coefficients can be evaluated for statistical significance using the Wald test, which 
can either be presented as a Z-test or a χ2 test. Similarly, confidence intervals can be constructed 
using a normal distribution (i.e., the 95% CI is computed using b ± 1.96 SEb).  

Interpreting the strength of the relationship is more challenging in logistic than in linear 
regression. Due to the non-linear nature of the logistic regression model, regression coefficients 
do not have a simple, intuitive interpretation. Standardized coefficients are generally not reported 
in logistic regression. 

Research using logistic regression sometimes converts regression coefficients into odds ratios in 
order to aid interpretation, although this will only be helpful for audiences that are familiar with 
odds ratios. The conversion uses the antilog (EXP) function, 

𝑂𝑂𝑅𝑅 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝑏𝑏) = 𝐵𝐵𝑏𝑏   (?) 

The EXP function is available in Excel and most statistical packages. The result is an odds ratio 
corresponding to a one-point increase in the predictor. Say the AR test has a regression 
coefficient of 0.24. Using Excel we calculate EXP(.24) = 1.27, indicating that for every 1 point 
increase in AR score, the odds of passing are 1.27 times higher. It is important to emphasize that 
this ratio refers to odds and does not represent the expected change in probability or proportion 
who pass. Because non-technical audience and many selection practitioners are unfamiliar with 
odds ratios, and may misinterpret odds as relative probability, we do not recommend reporting 
EXP(b). 

A more easily interpretable way of presenting the strength of a variable’s contribution is to plot 
the predicted probability of success for a range of levels of the predictor, while holding all other 
predictors constant at their means. A line graph showing the predicted probability as a function 
of the predictor can be a useful way to demonstrate the strength of relationship. We illustrate 
how to accomplish this in R; a similar process can be adapted for Excel or other software.  

1. Select a focal predictor and the number of levels (k) of this predictor you wish to 
examine. In order to capture the non-linear trend, at least five levels should be selected, 
evenly spaced across the full range of the predictor variable. More levels will tend to 
produce a smoother looking graph. 

2. Create a table with k rows and columns equal to the number of predictor variables. Fill in 
the selected level of the focal predictor. For all other predictors, fill in the mean of the 
predictor for all rows. 

3. Using the coefficients from the logistic regression output, compute the predicted logit for 
each row.  

4. Transform the logit into a predicted probability, using the formula, 

𝐸𝐸(𝐸𝐸) =
1

1 + 𝐸𝐸𝐸𝐸𝐸𝐸�−𝐿𝐿𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿(𝐸𝐸)�
 

If using R, steps 3 and 4 can are simplified and combined by using the predict() function. 
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Example 
Using the example described above, logistic regression could be used to predict whether 
individuals successfully complete the training program, using the same set of three cognitive and 
two personality scores. A complete summary of results is presented in Table 8. The results show 
that the set of predictors accounts for a substantial portion of the variance in training completion 
and three of the predictors: Arithmetic Reasoning, Block Counting, and Stress Under Pressure 
(reverse coded); were significantly and positively related to rate of completion.  

A graph of the relationship for AR is provided in Figure-2. Alternatively, the relationships can be 
depicted via a bar chart showing the predicted probability of success for specific levels of the 
predictor.  

Table 8. Results of logistic regression predicting completion of training. 

  Estimate SE Z-test P 
(Intercept) -7.58 2.5 -3.04 0.002 
AR 0.24 0.09 2.84 0.005 
RC 0.00 0.07 0.02 0.988 
BC 0.14 0.04 3.12 0.002 
SDis -0.06 0.04 -1.53 0.125 
SUP (R) 0.08 0.03 2.56 0.011 
Negelkerke R2 0.38    
AIC 148.37    
LR χ2 52.18    
df 5    
p < .001       

N=200 
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Figure 2. Relationships between Arithmetic Reasoning score and probability of completing 
training program 

1.5 Group Differences 

In addition to validity, it is also important to understand the impact of assessments on different 
demographic groups, particularly for historically underrepresented groups (Ployhart & Holtz, 
2008). Data on group differences often plays a key role in discrimination claims and can be an 
important outcome for evaluating the effectiveness of diversity efforts. Therefore, validation 
reports should provide findings regarding group differences, where feasible.  

It is useful to distinguish between two ways of operationalizing group differences on 
assessments: mean differences and passing rates. Mean differences between groups on an 
assessment reflect potential disparities. That is, if Group A tends to score higher on a test than 
Group B, then selection decisions made using that test will tend to favor Group A over Group B. 
However, the size of the disparity in test scores does not translate directly into the size of the 
disparity in selection decisions (i.e., the achieved disparity). Selection decisions tend to reflect a 
complex process involving many factors, including decisions about how to combine multiple 
tests, where to set cutoffs, the use of bands or score adjustments, etc., that are partly informed by 
the observed mean differences (Arthur, Doverspike, Barret ,& Miguel, 2013). When developing 
a new assessment procedure, the focus will be on potential disparities (mean differences), 
whereas when evaluating an operational assessment process, the achieved disparity will be more 
relevant. 

Analysis of employment disparities involves a number of decisions regarding what individuals 
and demographic subgroups to include in analyses (Cohen, Fortney, & Tison, 2017). Data on 
demographic group memberships is often incomplete and inconsistent. Individuals are excluded 
from the analysis for a variety of reasons (incomplete data, not meeting minimum qualifications, 
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etc.). These factors make it particularly important to maintain transparency regarding data 
cleaning and handling of missing data. 

The list of relevant subgroups to examine is constantly evolving in step with societal norms and 
priorities. At minimum, subgroup analysis should be conducted by sex and for the racial/ethnic 
groups currently identified in federal equal employment opportunity reporting requirements. 
Race categories include: White or Caucasian, Black or African American, American Indian or 
Alaska Native, Asian, Native Hawaiian or Other Pacific Islander. Ethnicity is a separate 
classification for whether or not the individual is Hispanic/ Latino, regardless of racial category. 
It is generally best to report results for race and ethnicity comparisons separately, however, it is 
not uncommon to see race/ethnicity combined into a single variable, where all Hispanic/Latino 
are combined regardless of race and other racial categories only include the non-Hispanic/Latino 
individuals. An increasing number of individuals indicate they identify with multiple racial 
categories. 

Comparisons typically are conducted among specific gender, race, or ethnic groups (Cohen et al., 
2017). Aggregating multiple subgroups into an overall ‘minority’ group is not ideal, because the 
factors that lead to differential outcomes may not impact all subgroups in the same way. 
Typically, one group is identified as the reference group to which all other groups are compared. 
It is useful for the reference groups to be the majority group or the group that has historically 
been favored. Most often, men and Whites are used as the reference group; however, the 
Uniform Guidelines recommend using the groups with the highest selection rate. 

1.5.1. Mean Differences 

Mean difference can be presented in either raw score or standardized form. Because the range of 
scores varies across test and the scores often do not have an intuitive or familiar metric, 
differences in the raw score metric are often difficult to interpret. Therefore, the use of 
standardized mean differences is common. It should be noted that the concerns raised above 
regarding the use of standardized regression coefficients apply to standardized mean differences 
as well. 

Cohen’s d is a common standardized measure of the mean difference between two groups, 

 𝐴𝐴 = 𝑀𝑀𝐹𝐹−𝑀𝑀𝑅𝑅
𝑆𝑆𝑆𝑆𝑝𝑝

 ,   (?) 

where MF and MR are the mean scores for the focal and reference groups respectively, and SDp is 
the pooled within-group standard deviation, 

𝑆𝑆𝑆𝑆𝑝𝑝 = �(𝑁𝑁𝐹𝐹−1)𝑆𝑆𝑆𝑆𝐹𝐹
2+(𝑁𝑁𝑅𝑅−1)𝑆𝑆𝑆𝑆𝑅𝑅

2

𝑁𝑁𝐹𝐹+𝑁𝑁𝑅𝑅−2
 .  (?) 

When comparing multiple focal groups to a common reference group (e.g., race comparisons), a 
single pooled SDp should be computed using all subgroups. For k groups, 

𝑆𝑆𝑆𝑆𝑝𝑝 = �∑ �(𝑁𝑁𝑘𝑘−1)𝑆𝑆𝑆𝑆𝑘𝑘
2�𝑘𝑘

(∑ 𝑁𝑁𝑘𝑘𝑘𝑘 )−𝑘𝑘
 .   (?) 
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Cohen (1988) provided widely used benchmarks for small (.2), medium (.5), and large (.8) group 
differences. In the context of employment testing, large differences between demographic groups 
are not uncommon. It will be most useful to interpret the magnitude of d in the context of what is 
known about group differences for different types of selection procedures (Ployhart & Holtz, 
2008). 

Standardizing using the pooled SD rests on the assumption that the variability of scores is the 
same in both groups. In such cases, pooling data from both groups provides a more precise 
estimate. However, if there are known to be substantial differences in SD between groups, this 
can create inconstant standardization across comparisons. In such cases, it is better to use the SD 
from the reference group rather than pooling. Alternatively, standardization could also be 
performed using the SD obtained from test norms or other large representative samples.  

Adjustment of standardized mean differences for statistical artifacts is possible, but less common 
than for validity coefficients. Because we are interested in the observed differences resulting 
from operational use of tests, correction for measurement error in the tests is usually not 
appropriate when examining group differences in test scores. If the sample used to estimate d 
differs from the candidate pool on which the test will be used (e.g., if d is estimated using 
incumbents rather than applicants), then correction for range restriction would be appropriate. 
However, in situations where the correction is needed, the information required for range 
restriction correction formulas is often unavailable. Additional information on correcting the 
standardized mean difference for statistical artifacts can be found in Hunter and Schmidt (2004) 
or Bobko, Roth, and Bobko (2001). 

When reporting results, mean differences should be accompanied with some indication of 
statistical precision: either a standard error, a confidence interval, or the results of a statistical 
significance test. Significance testing can be conducted using the t-test for independent groups. 
While software used for the t-test will typically report the standard error and confidence interval 
for raw means, these cannot be used when reporting the standardized mean difference. The 
standard error for Cohen’s d is easily computed by hand, 

𝑆𝑆𝐸𝐸(𝐴𝐴) = �𝑁𝑁𝐹𝐹+𝑁𝑁𝑅𝑅
𝑁𝑁𝐹𝐹𝑁𝑁𝑅𝑅

+ 𝑑𝑑2

2(𝑁𝑁𝐹𝐹+𝑁𝑁𝑅𝑅)    (?) 

The standard error can be used to construct a confidence interval using d ± tcrit * SE, where tcrit is 
the critical value of a t-distribution with df = NF + NR – 2, at the desired confidence level (e.g., α 
= .05 for a 95% CI). 

1.5.2. Passing Rate Differences 

When analyzing the achieved disparities resulting from the operational use of a selection system, 
the analysis will focus on group differences in the passing or selection rate. A variety of statistics 
can be used to evaluate group differences in passing rates (Oswald, Dunleavy, & Shaw, 2017), 
the most common of which is the adverse impact ratio. Let Ni represent the number of applicants 
in group i, and NPi the number of those individuals who receive passing scores on the 
assessment. The adverse impact ratio (AIR) is the ratio of the passing rates for the focal and 
reference groups, 
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𝐴𝐴𝐿𝐿𝑅𝑅 =
𝑁𝑁𝑁𝑁𝐹𝐹

𝑁𝑁𝐹𝐹�
𝑁𝑁𝑁𝑁𝑅𝑅

𝑁𝑁𝑅𝑅�
    (?) 

The adverse impact ratio is often associated with the four-fifths rule, but they are not the same 
thing. The four-fifths rule was suggested in the Uniform Guidelines as a guide to determine when 
a disparity was sufficiently large to merit scrutiny. Specifically, a violation of the four-fifths rule 
occurs when AIR < 0.8. The AIR is an effect size statistic that quantifies the degree of disparity 
on a continuum, whereas the four-fifths rule is a dichotomous decision rule applied to the AIR. 
Research reports should include the actual AIR, not just whether system violated the four-fifths 
rule. 

There has been considerable criticism of the four-fifths rule in the personnel selection literature 
(Roth, Bobko, & Switzer, 2006), and contemporary adverse impact analysis tends to focus more 
on statistical significance than the four-fifths rule (Tonowski, 2017). The AIR is nevertheless a 
useful measure of the size in selection disparities. 

The difference in passing rates can be tested for statistical significance using a Z-test for two 
independent proportions, or equivalently the chi-square test for independence between groups’ 
membership and the pass/fail decision. When sample size is small, the Fisher Exact Test is often 
used. For more information on significance testing of group differences in passing rates, see 
Morris (2017). 

Alternatively, we can construct a confidence interval around the AIR (Morris & Lobsenz, 2000). 
This will often be more useful than significance tests. Because many predictors are known to 
show group differences, testing whether a disparity is different from zero is of limited utility. We 
are often more interested in the magnitude of the disparity relative to other selection procedures 
or prior selection systems. Confidence intervals are beneficial in this context because they 
provide an index of the degree of uncertainty in the estimate due to limited sample size, without 
losing sight of the actual value of the AIR. 

Other than the four-fifths rule, there are no established benchmarks for interpreting whether a 
disparity is small, medium, or large. Additionally, the values obtained, being ratios of ratios, are 
rather abstract and non-intuitive. One way to translate passing rate disparities into more concrete 
numbers is through shortfall analysis. The shortfall represents the number of minority candidates 
who were negatively impacted by use of the selection procedure, relative to a system that had no 
disparity. The shortfall is computed as follows: 

1. Compute the passing rate for the majority group. The selection ratio (SR) for the majority 
grouo equals the number passing (NP) for the majority group divided by the number in 
the majority group )N) or SRmaj = NPmaj/Nmaj 

2. Multiply the majority passing rate (SRmaj) by the number of minority candidates (Nmin). 
This is the expected number of minority candidates selected (EPmim) under a neutral 
system (i.e., a system where the passing rate is the same for both groups), EPmin = SRmaj * 
Nmin 

3. The shortfall is the difference between the expected and actual number of minority 
candidates selected, Shortfall = EPmin - NPmin 
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Another statistic that can be used to index employment disparities is proportion of the selected 
candidates who are from the minority group (i.e., NPmin/NP). Unlike the AIR, which takes into 
account the number of minority candidates, the minority representation among the selected 
reflects both the passing rates on the selection procedure and the composition of the applicant 
pool. As such, it is of limited usefulness for evaluating the selection procedure. At the same time, 
it provides a direct measure of whether the recruitment and selection system as a whole is likely 
to achieve minority hiring goals. 

1.6 Communicating Validation Results 

Effectively communicating technical information like test validity to a broad audience can be 
challenging. The presenter must balance multiple goals, including educating the audience on 
professional standards, presenting results in a fashion that is easily understood, and minimizing 
the risk that the audience will misinterpret findings. Whereas scientific norms tend to favor 
providing more information in the service of transparency and reproducibility, these practices 
often result in reporting formats that can be overwhelming to non-technical audiences. 
Additionally, standardized reporting standards of scientific publications generally do not include 
contextual information that is of greatest interest to decision-makers in applied settings (Aguinis 
et al., 2010). 

It is well known that large amounts of information can lead to cognitive overload (Mayer & 
Moreno, 2003). Comprehension can be improved by limiting content to essential information, 
keeping slides simple, and providing signals to help the audience process information. Some 
general recommendations for preparing slide decks include: 

1. Limit text on slides. Bullet points help to organize ideas, whereas complete sentences 
increase processing demands. 

2. Minimize graphics and text on the same slide. Oral narration works better than 
explanatory text on slides.  

3. Avoid repetition between oral narration and text on slides. 
4. Avoid extraneous information on slides (e.g., clip art, animated transitions, etc.) 
5. Provide visual signals to guide processing of information on slides (e.g., text color, bold 

or italicized font, boxes around key content). Position text near corresponding parts of 
graphics.  

A similar call for simplicity in graphics is made by Kuncel and Rigdon (2013): 

1. Keep graphs simple. Avoid decorative elements of graphs that do not convey additional 
information (e.g., 3D effects)  

2. If possible, values should be labeled directly rather than through a legend. 
3. Avoid multiple y-axes. In order to compare and contrast results for distinct outcomes, 

researchers sometimes plot distinct variables on the same graph (one scaled using the left 
y-axis, one scaled on the right y-axis. This practice should be avoided, because such 
graphs are cognitively demanding and prone to misinterpretation. 
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1.6.1. Presenting Tables 

Tables provide a concise format to summarize large amounts of information and are quite useful 
in written research reports. However, in the context of a presentation, tabled information can 
easily become overwhelming. When including a table as part of a presentation, the presenter 
should carefully consider the intended message and include only information relevant to that 
message. This is a situation where the benefits of simple presentation need to be balanced against 
the professional responsibility to provide a full accounting of findings. This might be addressed 
by preparing supplemental slides or handouts that provide more detailed and complete 
information, while the presentation focuses only on key findings. 

Presentation of tabled information can be facilitated by the addition of highlighting (e.g., bold, 
italics, color) that assists the audience in identifying patterns in the data. Color-coding validities 
based on the Department of Labor (DOL) levels of validity evidence can help quickly convey the 
degree of evidence. See Table 6-9 for an example. 
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Table 9. Table of validities color coded by level of validity evidence 

 

Similarly, graphical elements can be used to reinforce the numerical information. The bullet 
graph is one useful example. The bullet graph consists of a bar graph (representing the validity 
coefficient) plotted against a background with multiple colored regions representing distinct 
regions (DOL validity categories). An example is provided in Table 10. 

 

Table 10. Table of predictive validities with bullet charts 

 

DoD guidelines for interpreting validity: Red = “unlikely to be useful” ( <.11); yellow = 
“depends on circumstances” (r = .11-.20), green = “likely to be useful” (r = .21-.35) or “very 
beneficial” (r > .35). 
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1.6.2. Expectancy Charts 

A well-established method to communicate validity information is through the use of expectancy 
charts (Cucina, Berger, & Busciglio, 2017). An expectancy chart is a form of bar chart that 
depicts the level of a criterion variable for one or more ranges of scores on the predictor. For 
example, a chart might plot the percentage of high performers among candidates above vs. below 
the passing score on the test. 

The expectancy chart seeks to simplify validity information in several ways. First, rather than 
referring to predictor level in terms of test scores (which will typically have little meaning to the 
audience), the expectancy chart presents categories representing meaningful score ranges with 
easily understood labels. For example, if a passing score has been established, it is common to 
present results for those who pass vs. fail the assessment. Alternatively, one might separate 
predictor scores into quartiles: bottom 25%, lower middle 25%, upper middle 25%, and top 25%. 

Similarly, an effort is made to present the criterion in a metric that is meaningful to the audience. 
Because performance outcomes are often measured on a non-intuitive scale, it is useful to 
transform the criterion level into a percent of candidates expected to succeed, where success is 
defined as falling above a pre-defined cutoff on the criterion measure. For example, successful 
performance might be defined as achieving a rating that corresponds to meet expectations. 
Alternatively, we might compute the percentage who are high performance, defined as being 
among the top 20% on the criterion measure. The specific cutoff defining success will need to be 
determined in each selection context based on the goals of the assessment and the nature of the 
criterion variable. 

By moving from continuous scores to classification decisions, we greatly simplify the 
interpretation of validity information. The concept of percentage successful is straightforward 
and directly relevant to decision-makers (Kuncel & Rigdon, 2013). Rather than reporting a 
validity using an abstract statistic like the validity coefficient (e.g., r = .35), we can report that 
among those who pass the test, 70% are successful performers, whereas among those who fail 
the test only 40% are successful.  

Taylor-Russell Expectancy 
Taylor and Russell (1939) provided a useful framework for understanding the relationship 
between the validity coefficient and probability of success. The model has three components: the 
validity coefficient, the passing rate on the test, and the base rate of success. Figure 3 depicts 
data with a validity coefficient of ( = 0.5. The ellipse shows the 95% confidence region. The 
horizontal line represents the cutoff for successful performance; in this case, about 40% of all 
candidates are successful. The passing rate is reflected in the region of the ellipse to the right of 
the vertical line (regions B and D). The black vertical line represents a highly selective setting 
where the passing rate is about 15%. The red vertical line reflects a different scenario where the 
passing rate is around 50%. 

The expectancy refers to the proportion of those who pass the test who also have successful 
performance (i.e., B/(B+D)). In other words, among those to the right of the vertical line, what 
proportion are in the upper right quadrant. With a strict cutoff (the vertical black line), only 15% 
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will pass the test and about 70% of those who pass are successful. A less stringent cutoff (the red 
vertical line) will pass 50% of candidates and only about 50% will be successful. 

 

Figure 3. Quadrants of the test-performance relationship 

 

Taylor and Russell (1939) showed how the expectancy can be calculated given the validity, base 
rate of success, and passing rate, and the density function of a bivariate normal distribution. They 
provided extensive tables that yield the probability of success for variance levels of the three 
parameters. More recently, Cucina et al. (2017) provided code for performing this calculation in 
R. A slightly modified version of this code is provided in Appendix C. 

To run the Cucina et al. (2017) code, first copy the code in Appendix C to an R script file named 
“Cucina Expectancy Function.R”, and save this file to the working directory. The code in this 
file creates a function Expectancyfunc(), which can be used to calculate the expected probability 
of success. Next, copy the following commands to a second R script file, changing the input 
parameters to reflect the situation, then run the code. 

The code returns the proportion of examinees from a predictor range who are expected to fall 
within a criterion range. Both predictor and criterion ranges are defined by an upper and lower 
limit that must be specified. If no upper limit is desired, this value can be set to Inf. Similarly,  
-Inf can be used if no lower limit is desired. 
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# Setup  
# The following line indicates the location of a code for the expectancyfunc() function. 
source("Cucina Expectancy Function.R")   
  
# Input parameters  
validity <- .5 # validity coefficient 
passRate <- .15 # proportion of examinees who pass the test 
successRate <- .30 # proportion of examinees with successful performance 
  
# Intermediate calculations  
predictorLowerCut <- qnorm(1-passRate)  # standardized test cut score 
priterionLowerCut <- qnorm(1-successRate) # standardized criterion cut score 
predictorUpperCut <- Inf # upper limit of test score range (use Inf if no upper limit) 
criterionUpperCut <- Inf # upper limit of criterion range (use Inf in not upper limit) 
  
# Calculate expectancy and print result  
expOut <- Expectancyfunc(r,predictorLowerCut,predictorUpperCut, 
CriterionLowerCut,CriterionUpperCut)  
cat(“Expectancy = “, expOut$expectancy)  # print result 

The function returns a list of results which is assigned to the object “expOut”. The list contains 3 
results. To reference a specific element, specify the list name, following by ‘$’ and the element 
name. The three elements of are: 

expOut$jtprob: joint probability of an individual being selected and successful 

expOut$xprob: probability of an individual being selected (should be equal to passRate) 

expOut$expectancy: conditional probability of being successful if selected 

Using the values listed above, the expectancy is 0.61. That is, among those selected (the top 15% 
of scores), 61% are expected to be successful (in the top 30% of performers).  

The expectancy is typically presented in the form of a bar chart. Several examples are provided 
below. R code for creating an expectancy chart is provided in Appendix B. Additionally, an 
online utility for creating expectancy charts from data is described in Zhang (2018). 

Confidence Intervals 
Because the expectancy is based, in part, on the sample estimate of the validity coefficient, there 
will be uncertainty in the results due to sampling error in the validity coefficient. It is useful to 
convey this information in graphs via error bars (Kuncel & Rigdon, 2013). Cucina et al. (2017) 
recommend building a confidence interval around the expectancy by (1) finding the confidence 
limits of the validity coefficient and (2) calculating the expectancy separately for each 
confidence limit. Say the 95% confidence interval on the validity in the previous example is 
[.23,.67]. We add the following lines to the code above to calculate the confidence interval on the 
expectancy. 
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# Input confidence interval on validity coefficient 
validityCI <- c(.23,.67) 
  
# Expectancy using upper and lower bounds of confidence interval on validity 
expL <- Expectancyfunc(validityCI[1],predictorLowerCut,predictorUpperCut, 
 criterionLowerCut,criterionUpperCut) 
expU <- Expectancyfunc(validityCI[2],predictorLowerCut,predictorUpperCut, 
 criterionLowerCut,criterionUpperCut) 
  
# print result 
cat(paste(sprintf("Validity = %.2f, Pass Rate = %.2f, Success Rate = %.2f",  
 validity, passRate, successRate), 
sprintf("Expectancy [95%% CI]  = %.2f [%.2f, %.2f]", 
 expOut$expectancy, expL$expectancy, expU$expectancy),  
sep = "\n")) 

 
 
Empirical vs. Distribution-Based Expectancies 
When the validation data are available, an option would be to compute the probability of success 
directly from the data, rather than from the normal density function. That is, the researcher could 
simply calculate the number of examines in the data who pass the test and the proportion of those 
who are classified as successful based on their job performance. 

Using the data in Figure 3, seven examinees passed the test using the cutoff score of 60 and five 
of these had performance in the successful range. This yields an expected success rate of 5/7 = 
0.71, which is fairly close to the .61 obtained from the distribution-based analysis.  

This empirical approach has the advantage of fewer assumptions. For the distribution-based 
approach, one must assume that the relationship between test scores and performance is linear 
and that the data follow a bivariate normal distribution. The empirical approach is particularly 
appealing when the outcome is categorical, given that the distribution-based method treats both 
variables as if they were continuous. For a dichotomous criterion (e.g., succeed/fail), imputing 
success rates from a bivariate normal distribution would be both unnecessary and less accurate. 

However, Cucina et al. (2017) demonstrated that this empirical approach is more susceptible to 
sampling error, especially when sample sizes are small or the passing rate is low. Consider the 
stringent selection rule depicted in Figure 3. The empirical calculation of the expected 
probability of success would be based on only seven cases that were above the test cutoff. The 
resulting value would be very unstable and unlikely to replicate in a different sample. 

Balancing these concerns, the distribution-based approach will be more useful in most situations. 
However, the empirical approach is likely to be useful when sample sizes are very large, when 
the outcome variable is categorical or when there is good reason to question the assumptions of 
linearity or bivariate normality. 
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Expectancy Comparison 
A single expectancy result, considered in isolation, offers little help in understanding the 
usefulness of a selection procedure. Some form of comparison is needed. In the previous 
example, it was found that among those selected, 61% are expected to be successful. Whether 
this is considered a good or a bad result depends on the success rate that might be obtained 
through other means. Several variants of the expectancy chart are possible, differing in the 
specific comparison represented. Several possibilities are illustrated below and several additional 
options are described by Allred (1991).  

One approach would be to compare the target test score range to other ranges. The simplest 
version compares the expectancy for those who pass the test to the expectancy for those who fail. 
Here we define two test score ranges, the first from negative infinity to the test score cutoff and a 
second from the test score cutoff to positive infinity. We can then use a bar chart to plot the 
expectancy for both ranges. To illustrate, Figure 4 presents expectancy charts for each of the 
validities reported in Table 4, using 60% as the success rate and a 30% pass rate on each test. 

 

Figure 4. Expectancy Chart Showing Multiple Predictors 

 

In addition to the pass/fail distinction, the expectancy chart might also show results for multiple 
ranges of scores for a single predictor. Because a primary goal of the expectancy chart is to 
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simplify the presentation of validity information, the number of predictor ranges should be kept 
to the minimum needed in a particular context. For example, when setting a cutoff score, it can 
be useful to plot expected success for many test score ranges, because the goal is to pinpoint the 
optimal location of the cutoff score. However, in most contexts, such fine distinctions are 
unnecessary and multiple predictor score categories will only add to the cognitive demands of 
interpreting the graph. Figure 5 illustrates the expectancy charts with four predictor categories. 

 

 

Figure 5. Expectancy charter for Arithmetic Reasoning four predictor levels 
Note: Confidence intervals represent the expectancy associated with the 95% confidence limits 

on the validity coefficient, which produce similar expectancies near the predictor mean. 

 

Another way to illustrate the benefit of a test is to compare its expectancy to that of other 
possible predictors. According to Zhang, Highhouse, Brooks, and Zhang (2018), graphic displays 
of validity information will be most informative when they show improvement in the level of 
validity. Improvement might be characterized relative to random selection, an existing selection 
system, or typical values for alternative predictors.  

Typical values for alternative predictors can provide benchmarks by which to judge the 
performance of the test under consideration. Relevant values for other predictors might be 
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obtained from prior validation research on similar jobs or from the general personnel selection 
literature (e.g., Schmidt & Hunter, 1998).  

When using validities from the selection literature as a point of comparison, it is important the 
statistics are comparable in terms of statistical corrections. It would not be appropriate to 
compare a current uncorrected validity estimate to one adjusted for measurement error and range 
restriction. Care should be taken to identify reference estimates that involve the same statistical 
corrections that are used in the current study. 

One useful point of comparison is the unstructured interview, which approximates what might be 
achieved through an informal selection process with no systematic testing. McDaniel et al. 
(1994) reported a mean uncorrected validity of .18 for unstructured interviews and validity of .33 
after correction for criterion unreliability and range restriction. In the example described above, 
we obtained an uncorrected validity of .34 for Self-Discipline predicting training performance. 
Figure 6 displays the expectancy for random selection, unstructured interviews, and the Self-
Discipline scale, with the top 25% of test scores selected and high performance defined as the 
top 25% of grades in the training program. 

 

 
Note: Expectancy for the unstructured interview was based on a validity of .18 (McDaniel et al., 1994). 

Figure 6. Expectancy of high performance when selecting candidates using SDI Self-
Discipline Scale relative to no selection procedure (random selection) and an unstructured 

interview. 
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The comparison of alternate predictors also lends itself to questions of incremental validity in the 
context of assessing the unique contribution of predictors to a test battery. As described above in 
the section on regression analysis, a series of regression models is estimated, with one or more 
predictors added at each step. In the example above we examined the prediction of training 
performing of using prior degree (step 1), three cognitive ability tests (step 2), and two 
personality scales (step 3). Expectancies are computed for a 25% selection rate, with high 
performance defined as the top 25% of training grades. 

 
Note: AR = Arithmetic Reasoning, RC = Reading Comprehension, BC = Block Counting, SDis = Self-Discipline, 
SUP = Stress Under Pressure (reverse coded). 

Figure 7. Expectancy of high performance for alternate predictor combinations 

 

1.7 Definitions of Technical Terms and Concepts 

Bias. Systematic measurement error that differentially affects the scores of different groups of 
individuals. 

Composite score. A total score that combines scores from several component tests according to a 
specified formula. 
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Confidence interval. A measure of uncertainty in an estimated value. Specifically, a range of 
scores within which the population value is expected to fall, with a specified level of certainty 
(e.g., 95%). 

Concurrent validation design. A validity study where predictor and criterion scores are both 
obtained from incumbents at approximately the same time. 

Contamination. System variance in scores that is irrelevant to the intended meaning of a 
measure. 

Construct. A theoretical characteristics of an individual that is inferred from observed behavior 
or test scores. 

Construct validity evidence. Evidence that test scores measure the intended theoretical 
characteristic. 

Content validity evidence. Evidence based on expert judgement that the content of a test is 
representative of important work activities or work-related personal characteristics. 

Convergent evidence. Evidence supporting the meaning of test scores based on the correlation 
with other measures of the same characteristic. 

Correlation. A statistic reflecting the strength of linear relationship between two variables. 

Criterion. An outcome variable valued by the organization that an assessment is attempting to 
predict, such as work performance, productivity, accident rate, or training performance. 

Criterion-related validity evidence. Empirical relationship between scores on a predictor and 
scores on a criterion measure. 

Cross-validation. When a scoring system or predictor weights are empirically derived in one 
sample, application of the system/weights to a different sample from the same population to 
investigate the stability of prediction. 

Cutoff score. A score above which applicants are selected for further consideration in the 
selection process. 

Deficiency. Failure of a measure to fully represent the intended theoretical domain. 

Discriminant evidence. Evidence indicating whether two tests intended to measure different 
constructs are sufficiently uncorrelated to be considered two distinct constructs. Used together 
the convergent evidence to support construct validity. 

Effect size. A statistical index of the strength of a relationships or group difference. 

Imputation. A process for inferring plausible values for missing data. 

Meta-analysis (a.k.a., validity generalization) A statistical procedure where results from several 
independent studies combined to estimate the relationship between variables.  
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Moderator variable. A variable that affects the strength, form, or direction of a predictor–
criterion relationship. 

Outlier. A value of a variable that is substantially different from the overall distribution of 
scores. Extreme outliers can have undue influence on statistical results, and should be carefully 
scrutinized. 

Power. The probability that a statistical test will yield a significant result, if an effect of the 
specified magnitude indeed exists in the population. 

Predictive validation design. A validity study where predictors scores are obtained from 
applicants and their criterion scores are obtained at a later point it time. 

Reliability. The degree to which scores on a measure are consistent across potential sources of 
measurement error (e.g. time, raters, items). The reliability coefficient is a value between 0 and 1 
indicating the degree to which scores are free from random measurement errors. 

Restriction of range. Reduction in the variance of a sample relative to the full range of scores in 
the population of interest, resulting from incomplete sampling of participants for inclusion in the 
study. This is common in validation research because low-scoring individuals are not hired and 
therefore cannot be included in a validation study. 

Shrinkage-adjusted R. An adjustment to the multiple correlation coefficient, accounting for the 
tendency of a regression model to fit a new sample less well than in the original sample on which 
the model was estimated. 

Standard error (SE). A measure of uncertainty in an estimated value. Specifically, the magnitude 
of estimation errors to be expected due to sampling error.  

Statistical significance. A result is inconsistent with the null hypothesis at a specified probability 
level, justifying rejection of the null hypothesis and conclusion that a relationship exists in the 
population.  

Validity. The degree to which the accumulated evidence supports specific interpretations of 
scores and the proposed uses of a selection procedure. 
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LIST OF SYMBOLS, ABBREVIATIONS AND ACROYMS 

AF-WIN  Air Force Work Interest Navigator 

AFOCD  Air Force Officer Classification Directories 

AFECD  Air Force Enlisted Classification Directories 

AFOQT  Air Force Officer Qualifying Test 

AFPC  Air Force Personnel Center 

AFS  Air Force SpecialtyAFSC  Air Force Specialty Code 

AFHRL Air Force Human Resources Laboratory 

AIC   Akaike Information Criterion 

AR   Arithmetic Reasoning 

ASVAB  Armed Services Vocational Aptitude Battery 

EDPT   Electronic Data Processing Test 

EP  Expected number passing 

LR   Likelihood ratio 

MDPP   Multidimensional pairwise preference 

MEPS   Military Entrance Processing Stations 

METS   Military Entrance Test Sites 

N  Number (sample size) 

NP  Number passing 

PCSM   Pilot Candidate Selection Method 

RC   Reading Comprehension 

SDI   Self-Description Inventory 

SDis   Self-Discipline 

SR  Selection ratio 

SUP   Stress Under Pressure 
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r  Correlation 

r2  Coefficient of determination  

R  Multiple Correlation 

TAPAS  Tailored Adaptive Personality Assessment System 

TBAS   Test of Basic Aviation Skills 
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Appendix A 

The following table provides a summary of scientific and professional standards related to reporting findings from a criterion-related 
validation study. Standards related to other types of research contexts, other types validity evidence (content, construct), and other 
aspects of selection systems (e.g., test fairness) are not included. The wording is largely copied directly from the source material, with 
minor editing for readability. Where internal references to other parts of the standards were found, those are preserved, and the reader 
is directed to the original source for more information. 

Summary of Professional Standards for Reporting Validation Research 

Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

Intended Uses of 
Selection System 

Standard 11.1. Prior to 
development and implementation 
of an employment or credentialing 
test, a clear statement of the 
intended interpretations of test 
scores for specified uses should be 
made. The subsequent validation 
effort should be designed to 
determine how well this has been 
achieved for all relevant 
subgroups. 

In designing a validation effort, 
whether based on existing 
evidence, new evidence, or both, 
primary consideration should be 
given to the design features 
necessary to support the proposed 
uses. Examples of such features 
include the work to be targeted 
(e.g., one job title or job family), 
the relevant candidate pool (e.g., 
experienced or inexperienced 
candidates), the uniqueness of the 
operational setting (e.g., one 
homogeneous organization or 
many different organizations), and 
relevant criterion measures (e.g., 
performance or turnover). (p. 7) 

 

(2) Problem and setting. An 
explicit definition of the 
purpose(s) of the study and the 
circumstances in which the study 
was conducted should be 
provided. A description of existing 
selection procedures and cutoff 
scores, if any, should be provided. 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

 

Standard 11.10. If tests are to be 
used to make job classification 
decisions (e.g., if the pattern of 
predictor scores will be used to 
make differential job 
assignments), evidence that scores 
are linked to different levels or 
likelihoods of success among jobs, 
job groups, or job levels is needed. 

   

Variables - General 

 

The estimates of predictor score 
reliability that are most 
appropriate in a given study will 
depend on the measurement 
design underlying one’s predictor 
measures, the conditions of 
measurement one wishes to 
generalize scores across (e.g., 
raters, items, or occasions), and 
the ways in which the predictor 
measure will be used (e.g., for 
rank ordering applicants, or for 
making pass-fail or hire-no hire 
decisions; Haertel, 2006; Hunter & 
Schmidt, 1996; Putka & Sackett, 
2010). When reporting estimates 
of predictor reliability, one should 
clearly describe the measurement 
design underlying underlying the 
collection of data on which indices 
of reliability are being estimated 
and clarify the sources of error 

(7) Description of selection 
procedures. Any measure, 
combination of measures, or 
procedure studied should be 
completely and explicitly 
described or attached (essential). If 
commercially available selection 
procedures are studied, they 
should be described by title, form, 
and publisher (essential). Reports 
of reliability estimates and how 
they were established are 
desirable. 

Define all primary and secondary 
measures and covariates, including 
measures collected but not 
included in the report.  
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

that are reflected in the reported 
indices of reliability. (p. 13). 

 

   

(8) Where revisions have been 
made in a selection procedure to 
assure compatibility between 
successful job performance and 
the probability of being selected, 
the studies underlying such 
revisions should be included 
(essential). 

Describe methods used to enhance 
the quality of measurements, 
including training and reliability 
of data collectors and use of 
multiple observations  

    

Estimate and report values of 
reliability coefficients for the 
scores analyzed (i.e., the 
researcher’s sample), if possible. 
Provide estimates of convergent 
and discriminant validity where 
relevant. 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

    

Report estimates related to the 
reliability of measures, including: 
interrater reliability for 
subjectively scored measures and 
ratings, test–retest coefficients in 
longitudinal studies in which the 
retest interval corresponds to the 
measurement schedule used in the 
study, internal consistency 
coefficients for composite scales 
in which these indices are 
appropriate for understanding the 
nature of the instruments being 
used in the study 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

Variables - Criteria Standard 1.17. When validation 
relies on evidence that test scores 
are related to one or more criterion 
variables, information about the 
suitability and technical quality of 
the criteria should be reported. 

Criterion validation studies, when 
conducted, should report the 
following in detail: a description 
of the criterion measures; the 
rationale for their use; the data 
collection procedures; and a 
discussion of the measures’ 
relevance, reliability, possible 
deficiencies, possible sources of 
contamination, and freedom from 
or control of biasing sources of 
variance. If the testing 
professional developed the 
criterion measure, then the report 
should include the rationale and 
steps taken to develop it, so it can 
be well understood and, if needed, 
replicated in future validation 
studies. (p. 34) 

(5) Criterion measures. The bases 
for the selection of the criterion 
measures should be provided, 
together with references to the 
evidence considered in making the 
selection of criterion measures 
(essential). A full description of all 
criteria on which data were 
collected and means by which they 
were observed, recorded, 
evaluated, and quantified, should 
be provided (essential). If rating 
techniques are used as criterion 
measures, the appraisal form(s) 
and instructions to the rater(s) 
should be included as part of the 
validation evidence, or should be 
explicitly described and available 
(essential). All steps taken to 
insure that criterion measures are 
free from factors which would 
unfairly alter the scores of 
members of any group should be 
described (essential). 

(see Variables - General) 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

 

Standard 11.7. When empirical 
evidence of predictor-criterion 
relationships in part of the pattern 
of evidence used to support test 
use, the criterion measure(s) used 
should reflect the criterion 
construct domain of interest to the 
organization. All criterion used 
should represent important work 
behaviors or work outputs, either 
on the job in the job-relevant 
training, as indicated by an 
appropriate review of information 
about the job. 

The most appropriate estimate(s) 
of criterion reliability in a given 
study will depend on the 
measurement design underlying 
one’s criterion measures, the 
conditions of measurement one 
wishes to generalize scores across, 
and the way in which the criterion 
measure will be used (Hunter & 
Schmidt, 1996; Putka & Hoffman, 
2014; Putka & Sackett, 2010). 
When reporting estimates of 
criterion reliability, one should 
clearly describe the measurement 
design used and clarify what 
sources of error are reflected in the 
reported indices of reliability (e.g., 
rater-specific, item-specific, or 
occasion-specific errors). (p. 12) 

 

(3) Job analysis or review of job 
information. A description of the 
procedure used to analyze the job 
or group of jobs, or to review the 
job information should be 
provided (Essential). Where a 
review of job information results 
in criteria which may be used 
without a full job analysis (see 
section 14B(3)), the basis for the 
selection of these criteria should 
be reported (Essential). Where a 
job analysis is required a complete 
description of the work 
behavior(s) or work outcome(s), 
and measures of their criticality or 
importance should be provided 
(Essential). The report should 
describe the basis on which the 
behavior(s) or outcome(s) were 
determined to be critical or 
important, such as the proportion 
of time spent on the respective 
behaviors, their level of difficulty, 
their frequency of performance, 
the consequences of error, or other 
appropriate factors (Essential). 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

 

Standard 1.18. When it is asserted 
that a certain level of test 
performance predicts adequate or 
inadequate criterion performance, 
information about the levels of 
criterion performance associated 
with given levels of test scores 
should be provided. 

   

Predictor Scoring 
and Combination 

Standard 1.19. If test scores are 
used in conjunction with other 
variables to predict some outcome 
or criterion, analyses based on 
statistical models of the 
prediction-criterion relationship 
should include those additional 
relevant variables along with the 
test scores.  

Methods and algorithms used to 
score content should be fully 
described. For example, when 
weighted scores, derived scales, or 
composite or categorical scores 
are used, rationale should be 
provided in detail. When 
performance tasks, work samples, 
or other methods requiring some 
element of judgment are used, a 
description of the type of rater 
training conducted and scoring 
criteria should be provided. (p. 34) 

(10) Uses and applications. The 
methods considered for use of the 
selection procedure (e.g., as a 
screening device with a cutoff 
score, for grouping or ranking, or 
combined with other procedures in 
a battery) and available evidence 
of their impact should be 
described (essential). This 
description should include the 
rationale for choosing the method 
for operational use, and the 
evidence of the validity and utility 
of the procedure as it is to be used 
(essential). The purpose for which 
the procedure is to be used (e.g., 
hiring, transfer, promotion) should 
be described (essential). 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

  

The recommendations for 
implementation of selection 
procedures and the rationale 
supporting the recommendations 
(e.g., the use of rank ordering, 
score bands, or cutoff scores, and 
the means of combining 
information in making personnel 
decisions) should be provided. (p. 
35) 

(10) If weights are assigned to 
different parts of the selection 
procedure, these weights and the 
validity of the weighted composite 
should be reported (essential). 

 

   

(10) If the selection procedure is 
used with a cutoff score, the user 
should describe the way in which 
normal expectations of proficiency 
within the work force were 
determined and the way in which 
the cutoff score was determined 
(essential).  

 



55 
Distribution A: Approved for public release.    88ABW-2020-3036, Cleared on 30 September 2020 

Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

Description of 
sample 

Standard 1.8. The composition of 
any sample of test takers from 
which validity evidence is 
obtained should be described in as 
much detail as is practical and 
permissible, including major 
relevant socio-demographic and 
developmental characteristics. 

The sampling procedure and the 
characteristics of the research 
sample relative to the appropriate 
interpretation of the results should 
be described. The description 
should include a definition of the 
population that the sample is 
designed to represent, sampling 
biases that may detract from the 
representativeness of the sample, 
the significance of any deviations 
from representativeness for the 
interpretation of the results, and 
any statistical power analysis 
results. Data informing the 
potential restriction in the range of 
scores on predictors or criterion 
measures are especially important. 
(p. 34) 

(6) Sample description. A 
description of how the research 
sample was identified and selected 
should be included (essential). The 
race, sex, and ethnic composition 
of the sample, including those 
groups set forth in section 4A 
above, should be described 
(essential). This description should 
include the size of each subgroup 
(essential). A description of how 
the research sample compares with 
the relevant labor market or work 
force, the method by which the 
relevant labor market or work 
force was defined, and a 
discussion of the likely effects on 
validity of differences between the 
sample and the relevant labor 
market or work force, are also 
desirable. Descriptions of 
educational levels, length of 
service, and age are also desirable. 

Report major demographic 
characteristics (e.g., age, sex, 
ethnicity, socioeconomic status) 
and important topic-specific 
characteristics (e.g., achievement 
level in studies of educational 
interventions).  

  

Test developers should make clear 
whether psychometrics in the 
technical report refer to candidates 
or incumbents, and results for 
concurrent validation studies 
should not be represented as the 
results for predictive validation 
studies. (p. 34) 

(3) Where two or more jobs are 
grouped for a validity study, job 
analysis information should be 
provided for each of the jobs, and 
the justification for the grouping 
(see section 14B(1)) should be 
provided (Essential). 

Report inclusion and exclusion 
criteria, including any restrictions 
based on demographic 
characteristics. 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

    

Describe procedures for selecting 
participants, including sampling 
method if a systematic sampling 
plan was implemented, and 
percentage of sample approached 
that actually participated. Describe 
settings and locations where data 
were collected as well as dates of 
data collection. Describe 
agreements and payments made to 
participants. Describe institutional 
review board agreements, ethical 
standards met, and safety 
monitoring. 

    

Describe the sample size, power, 
and precision, including: intended 
sample size, achieved sample size, 
if different from the intended 
sample size, and determination of 
sample size (e.g., power analysis) 

    

Report the flow of participants, 
including total number of 
participants at each stage of the 
study  
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

Study Design Standard 1.10. When validity 
evidence includes statistical 
analyses of test results, either 
along or together with data on 
other variables, the conditions 
under which the data were 
collected should be described in 
enough detail that users can judge 
the relevance of the statistical 
findings to local conditions. 
Attention should be drawn to any 
features of a validation data 
collection that are likely to differ 
from typical operational testing 
conditions and that could plausibly 
influence test performance 

Reports of validation efforts 
should include enough detail to 
enable a testing professional 
competent in personnel selection 
to know what was done, draw 
independent conclusions in 
evaluating the research, replicate 
the study, and make 
recommendations regarding the 
use of the selection procedure. (p. 
33) 

(1) User(s), location(s), and 
date(s) of study. Dates and 
location(s) of the job analysis or 
review of job information, the 
date(s) and location(s) of the 
administration of the selection 
procedures and collection of 
criterion data, and the time 
between collection of data on 
selection procedures and criterion 
measures should be provided 
(Essential). If the study was 
conducted at several locations, the 
address of each location, including 
city and State, should be shown. 

Describe methods used to collect 
data. 

 

Standard 11.8. Individuals 
conducting and interpreting 
empirical studies of predictor-
criterion relationships should 
identify artifacts that may have 
influenced study findings, such as 
errors of measurement, range 
restriction, criterion deficiency, 
criterion contamination, and 
missing data. Evidence of the 
presence or absence of such 
features, and of actions taken to 
remove or control their influence, 
should be documented and made 
available as needed. 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

Data Cleaning 

 

Testing professionals should also 
check their data for both univariate 
and multivariate outliers (Aguinis, 
Gottfredson, & Joo, 2013). 
Documentation should include 
how outliers were defined and 
identified. If clear outliers are 
found, sensitivity analyses should 
be performed to evaluate the 
effects of including and excluding 
outliers on the validation study 
results, or robust 
estimation/analysis techniques 
should be used that account for the 
presence of outliers. (p. 31) 

 

Describe planned data diagnostics, 
including: criteria for post-data-
collection exclusion of 
participants, if any, criteria for 
deciding when to infer missing 
data and methods used for 
imputation of missing data, 
definition and processing of 
statistical outliers, analyses of data 
distributions, data transformations 
to be used, if any 

  

Orr, Sackett, and DuBois (1991) 
report that most testing 
professionals oppose dropping 
outliers unless there is evidence 
that the data point is erroneous. 
Dropping outliers to obtain more 
favorable results is not 
appropriate. (p. 31) 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

Descriptive 
Statistics 

 

Most data analyses will begin with 
descriptive statistics for predictor 
and criterion variables that present 
analyses of frequencies, central 
tendencies, and variances. Such 
descriptions should be provided 
for the total group and for relevant 
subgroups if they are large enough 
to yield reasonably reliable 
estimates. (p. 31) 

(8) Measures of central tendency 
(e.g., means) and measures of 
dispersion (e.g., standard 
deviations and ranges) for all 
selection procedures and all 
criteria should be reported for each 
race, sex, and ethnic group which 
constitutes a significant factor in 
the relevant labor market 
(essential). 

 

Data Analysis - 
General 

  

(8) Methods used in analyzing 
data should be described 
(essential). 

Provide information detailing the 
statistical and data-analytic 
methods used. 

    

Report other data analyses 
performed, including adjusted 
analyses, if performed, indicating 
those that were planned and those 
that were not planned (though not 
necessarily in the level of detail of 
primary analyses). 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

Data Analysis - 
Missing Data 

 

When there are missing data, the 
testing professional should provide 
(a) a summary of missing data 
patterns and the nature of the 
missingness (e.g., missing at 
random, missing completely at 
random, missing not at random) 
and (b) justification for the 
missing data technique adopted for 
analyses. (p. 31) 

 

Provide information on missing 
data, including the frequency or 
percentages of missing data, 
empirical evidence and/or 
theoretical arguments for the 
causes of data that are missing (for 
example, missing completely at 
random (MCAR), missing at 
random (MAR), or missing not at 
random (MNAR)), and methods 
actually used for addressing 
missing data, if any. 

  

Most data analyses will begin with 
descriptive statistics for predictor 
and criterion variables that present 
analyses of frequencies, central 
tendencies, and variances. Such 
descriptions should be provided 
for the total group and for relevant 
subgroups if they are large enough 
to yield reasonably reliable 
estimates. (p. 31) 

 

Provide descriptions of each 
primary and secondary outcome, 
including the total sample and 
each subgroup that includes the 
number of cases, cell means, 
standard deviations, and other 
measures that characterize the data 
used. 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

Data Analysis - 
Statistical 
Significance, Effect 
Size and 
Confidence 
Intervals 

Standard 1.20. When effect size 
measures (e.g., correlation 
between test scores and criterion 
measures, standardized mean test 
score differences between 
subgroups) are used to draw 
inference that go beyond 
describing the sample or samples 
on which data have been collected, 
indices of the degree of 
uncertainty associate with these 
measures (e.g., standard errors, 
confidence intervals, or 
significance tests) should be 
reported. 

 

(8) Statements regarding the 
statistical significance of results 
should be made (essential). 

Report results of all inferential 
tests conducted, including exact p 
values if null hypothesis 
significance testing (NHST) 
methods were used, and reporting 
the minimally sufficient set of 
statistics (e.g., dfs, mean square 
[MS] effect, MS error) needed to 
construct the tests 

    

Report effect-size estimates and 
confidence intervals on estimates 
that correspond to each inferential 
test conducted, when possible 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

Data Analysis – 
Statistical Methods 
& Assumptions 

 

   For complex data analyses (for 
example, structural equation 
modeling analyses, hierarchical 
linear models, factor analysis, 
multivariate analyses, and so 
forth), provide the details of the 
models estimated, associated 
variance–covariance (or 
correlation) matrix or matrices, 
and identification of the statistical 
software used to run the analyses 
(e.g., SAS PROC GLM or the 
particular R package) 

    

Report estimation problems (e.g., 
failure to converge, bad solution 
spaces), regression diagnostics, or 
analytic anomalies that were 
detected and solutions to those 
problems. 

    

Report any problems with 
statistical assumptions and/or data 
distributions that could affect the 
validity of findings. 
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Topic Standards SIOP Principles Uniform Guidelines Journal Article Reporting 
Standards 

Presenting Results - 
General 

 

The reports must accurately 
portray the findings, as well as the 
interpretations of and decisions 
based on the results. Research 
findings that qualify the 
conclusions or support the 
generalizability of results should 
be reported. (P. 33) 

 

Provide a clear differentiation 
between primary hypotheses and 
their tests–estimates, secondary 
hypotheses and their tests–
estimates, and exploratory 
hypotheses and their test–
estimates 

  

Research reports or administration 
manuals should help readers make 
appropriate interpretations of data 
and should warn them against 
common misuses of information. 
(p. 35) 

  

Presenting Results - 
Comprehensiveness 

 

All summary statistics that relate 
to the conclusions drawn by the 
testing professional and the 
recommendations for use should 
be included. Complete statistical 
results related to the development 
and validation, not just statistically 
significant or supportive results, 
should be presented and clearly 
labeled. (p. 34) 

(8) The magnitude and direction of 
all relationships between selection 
procedures and criterion measures 
investigated should be reported for 
each relevant race, sex, and ethnic 
group and for the total group 
(essential). Where groups are too 
small to obtain reliable evidence 
of the magnitude of the 
relationship, need not be reported 
separately. 
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Presenting Results - 
Statistical 
Adjustments 

Standard 1.21. When statistical 
adjustments, such as those for 
restriction of range or attenuation, 
are made, both adjusted and 
unadjusted coefficients, as well as 
the specific procedure used, and 
all statistics used in the 
adjustment, should be reported. 
Estimates of the construct-
criterion relationship that remove 
the effects of measurement error 
on the test should be clearly 
reported as adjusted estimates. 

Both uncorrected and corrected 
values should be presented when 
corrections are made for statistical 
artifacts such as restriction of 
range or unreliability of the 
criterion. (p. 34) 

(8) Any statistical adjustments, 
such as for less than perfect 
reliability or for restriction of 
score range in the selection 
procedure or criterion should be 
described and explained; and 
uncorrected correlation 
coefficients should also be shown 
(essential). 

 

   

(8) Where the statistical technique 
categorizes continuous data, such 
as biserial correlation and the phi 
coefficient, the categories and the 
bases on which they were 
determined should be described 
and explained (essential). 
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Appendix B 

R code for examples presented in Best Practices for Briefing Validation Results 

All code assumes the data are located in a dataframe named dat. The examples are based on a 
hypothetical validation study with 200 cases the following variables: 

Degree  Prior degree in related field 
AR  Arithmetic Reasoning Test 
RC  Reading Comprehension Test 
BC  Block Counting Test 
SDis   Self-Discipline  
SUP   Stress Under Pressure (Reverse Scored) 
Performance  Training course grade (% of total) 
Pass  Passing grade in training course (0=fail, 1=pass) 
Minority Examinee minority status (0=non-minority, 1=minority) 

Click the paper clip on the panel to the left to open the simulated dataset “sample data.csv.” To 
load the data, copy the csv file to the working directory, then run the following commands 

dat <- read.csv("sample data.csv") 
N <- nrow(dat) 
View(dat) 

# Example 1 --------------------------------------------------------------- 

# Table of Validities  
predictorList <- list("AR","RC","BC","SDis","SUP") 
corStats <- lapply(predictorList,function(x) cor.test(dat[,x],dat[,"Performance"])) 
validity <- sapply(1:length(predictorList),function(x) corStats[[x]]$estimate) 
pvalue <- sapply(1:length(predictorList),function(x)corStats[[x]]$p.value) 
validityTable <- data.frame(Predictor=unlist(predictorList),validity,pvalue) 
 
# create a string variable with correlation rounded to 2 digits with significance stars 
mystars <- ifelse(validityTable$pvalue < .001, "***",ifelse(validityTable$pvalue < .01, "**", 
ifelse(validityTable$pvalue < .05, "* ", "  "))) 
validityTable$r <- sprintf("%.2f%s",validityTable$validity,mystars)   
validityTable$Predictor <- c("Arithmetic Reasoning", "Reading Comprehension","Block 
Counting", 
"Self-Discipline","Stress Under Pressure") 
 
# Create a table with confidence intervals 
validityCI <- sapply(1:length(predictorList),function(x) round(corStats[[x]]$conf.in,2)) 
validityCI <- sapply(1:length(predictorList), function(x) paste0("[",validityCI[1,x],", 
",validityCI[2,x],"]")) 
validityTableCI <- 
data.frame(Predictor=validityTable$Predictor,Validity=validityTable$r,CI=validityCI) 
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write.table(validityTableCI, "clipboard", sep="\t", row.names=TRUE,col.names = NA) 
# after writing to clipboard, paste into excel 
 
# Create a table with standard errors 
# Note: the cor.table() procedure does not output the SE, but it can be derived from the t-test. 
# Since t = r/SE, SE = r/t 
validitySE <- sapply(1:length(predictorList),function(x) 
corStats[[x]]$estimate/corStats[[x]]$statistic) 
validitySE <- paste0("(",round(validitySE,2),")") 
validityTableSE <- 
data.frame(Predictor=validityTable$Predictor,Validity=validityTable$r,SE=validitySE) 
write.table(validityTableSE, "clipboard", sep="\t", row.names=TRUE,col.names = NA) 
# after writing to clipboard, paste into excel 

# Example 2 --------------------------------------------------------------- 

# Formatted correlation matrix 
# ------------------------------------------------------ 
# Function to produce correlation table with significance stars 
# Adapted from http://myowelt.blogspot.com/2008/04/beautiful-correlation-tables-in-r.html 
corstars <- function(x){ 
   require(Hmisc) 
   x <- as.matrix(x) 
   R <- rcorr(x)$r 
   p <- rcorr(x)$P 
   
   # define significance flags 
   mystars <- ifelse(p < .001, "***",ifelse(p < .01, "**", ifelse(p < .05, "* ", "  "))) 
 
   # Round and truncate correlations to 2 decimal places 
   R <- format(round(cbind(rep(-1.11, ncol(x)), R), 2))[,-1] 
   
   # Combined correlations with stars 
   Rnew <- matrix(paste(R, mystars, sep=""), ncol=ncol(x)) 
   diag(Rnew) <- paste(diag(R), "  ", sep="") 
   rownames(Rnew) <- colnames(x) 
   colnames(Rnew) <- paste(colnames(x), "", sep="") 
 
   # Remove upper triangle 
   Rnew[upper.tri(Rnew)] <- "" 
 
   # Output formatted correlation matrix 
   Rnew <- as.data.frame(Rnew) 
   return(Rnew) 
   } 
 
# Create correlation matrix for the current data 
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dataMain <- subset(dat, select = c(AR,RC,BC,SDis,SUP,Performance)) 
M <- round(sapply(dataMain, mean),2) 
SD <- round(sapply(dataMain, sd),2) 
rMatrixTable <- corstars(as.matrix(dataMain)) 
rMatrixTable <- data.frame(M,SD,rMatrixTable) 
 
# Copy table to clipboard, then paste into Excel 
write.table(rMatrixTable, "clipboard", sep="\t", row.names=TRUE,col.names = NA) 

# Example 3 --------------------------------------------------------------- 

# Comprehensive regression table 
library(psychometric) # provides function to compute confidence interval on R2 
library(QuantPsyc) # provides lm.beta function to compute standardized coefficients 
library(data.table) # provides rbindlist function 
 
regF <- lm(data = dat, Performance ~ AR + RC + BC + SDis + SUP) 
regF.out <- summary(regF)  # standard output from lm() 
regF.b <- regF.out$coefficients  # regression coefficients and t-test 
regF.b[,1:3] <- round(regF.b[,1:3],2) 
regf.Beta <- round(lm.beta(regF),2)  # standardized coefficients 
regF.CI <- round(confint(regF),2)    # confidence interval for raw coefficients 
regF.Rsq <- CI.Rsqlm(regF)[1:2]  # Rsq and its confidence interval 
regF.R <- (sqrt(regF.Rsq[1])) # Multiple R 
regF.sigma <- round(regF.out$sigma,2) 
regF.F <- summary(regF)$fstatistic 
regF.Fdf <- paste(regF.F[2],regF.F[3], sep = ", ") 
regF.F <- round(regF.F[1],2) 
regF.pF <- anova(lm(data = dat, Performance ~ 1),regF)[6][2,1] 
 
# Round significance level and truncate below .001 for readability 
pOut <- function(x) ifelse(x < .001, "< .001",as.character(round(x,3))) 
regF.p <- pOut(regF.b[,4]) 
regF.pF <- pOut(regF.pF) 
 
# Estimated cross validity (adjusted R) 
# See Raju, N.S., Bilgic, R., Edwards, J.E., & Fleer, P.F. (1997). Methodology review: 
Estimation of 
# population validity and cross-validity, and the use of equal weights in prediction. Applied 
Psychological 
# Measurement, 21(4), 291-305.  
# Because the Browne formula estimates Rsq, and we take the square root to obtain the Multiple 
R. 
# Functions to apply Burket and Browne formulas.  
BurketR <- function (n, k, R) (n * R^2 - k)/(R*(n-k)) 
BrowneR <- function (n, k, R) sqrt(((n - k - 3)*R^4 + R^2)/((n - 2*k - 2)*R^2 + k)) 
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# Calculate adjusted R for current data 
nPredictors <- 40  # specified total number of predictors considered 
adjusted.R.Burket <- unname(round(BurketR(N, nPredictors, regF.R[1]),2)) 
adjusted.R.Browne <- unname(round(BrowneR(N, nPredictors, regF.R[1]),2)) 
 
# Round Rsq stats for output 
regF.Rsq <- round(regF.Rsq, 2) 
regF.R <- round(regF.R, 2) 
 
# Combine results into single table 
colnames(regF.Rsq) <- c("Coeff","SE") 
colnames(regF.R) <- colnames(adjusted.R.Burket) <- "Coeff" 
#colnames(regF.CI) <- c("LCL","UCL") 
 
regTable <- data.frame(Coeff = regF.b[,1],SE=regF.b[,2], Beta = c("",regf.Beta), t = regF.b[,3], 
p = regF.p) 
regTable <- 
list(regTable,regF.Rsq,regF.R,adjusted.R.Burket,list(regF.sigma),list(regF.F),list(regF.Fdf), 

list(regF.pF)) 
regTable <- rbindlist(regTable, fill = TRUE) 
 
predictorLabels <- variable.names(regF) 
rownames(regTable) <- c(predictorLabels,"Rsq","Multiple R", "adj. R","Residual 
SD","F","df","p") 
 
write.table(regTable, "clipboard", sep = "\t", na = "",col.names = NA) 
# after copying to clipboard, past into excel 

# Example 4 --------------------------------------------------------------- 

# Concise regression table with standardized coefficients  
library(psychometric) # provides function to compute confidence interval on R2 
library(QuantPsyc) # provides lm.beta function to compute standardized coefficients 
library(data.table) # provides rbindlist function 
 
regF <- lm(data = dat, Performance ~ AR + RC + BC + SDis + SUP) 
regF.coeff <- coef(regF)    # raw regression coefficients 
regF.CI <- confint(regF)    # confidence interval for raw coefficients 
regF.Beta <- lm.beta(regF)  # standardized coefficients 
regF.p <- summary(regF)$coefficients[,4]   
regF.pStars <-ifelse(regF.p < .01, "***",ifelse(regF.p < .01, "**", ifelse(regF.p < .05, "* ", "  
")))   
regF.Rsq <- CI.Rsqlm(regF)  # Rsq and its confidence interval 
regF.R <- round(sqrt(regF.Rsq)[-2],2) # Multiple R 
regF.Rsq <- round(regF.Rsq,2) 
regF.F <- summary(regF)$fstatistic 
regF.pF <- anova(lm(data = dat, Performance ~ 1),regF)[6][2,1] 
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# Compute confidence interval for standardized coefficients 
# by standardizing endpoints of CI for raw coefficiencts 
sx <- sapply(regF$model[-1],sd)  # sd for predictors 
sy <- sd(regF$model[[1]])        # sd for criterion 
regF.Beta.CI <- regF.CI[-1,]*sx/sy 
regF.Beta <- round(data.frame(regF.Beta,regF.Beta.CI),2) 
names(regF.Beta) <- c("Coeff","CI.lower","CI.upper") 
 
# Estimated cross validity (adjusted R) 
# See Raju, N.S., Bilgic, R., Edwards, J.E., & Fleer, P.F. (1997). Methodology review: 
Estimation of 
# population validity and cross-validity, and the use of equal weights in prediction. Applied 
Psychological 
# Measurement, 21(4), 291-305.  
# Note that Browne formula estimates Rsq; we take the square root to obtain the Multiple R. 
# Functions to apply Burket and Browne formulas.  
BurketR <- function (n, k, R) (n * R^2 - k)/(R*(n-k)) 
BrowneR <- function (n, k, R) sqrt(((n - k - 3)*R^4 + R^2)/((n - 2*k - 2)*R^2 + k)) 
 
# Calculate adjusted R for current data 
nPredictors <- 40 
adjusted.R.Burket <- round(BurketR(N, nPredictors, regF.R[1]),2) 
adjusted.R.Browne <- round(BrowneR(N, nPredictors, regF.R[1]),2) 
 
# Table regression results with standardized coefficients 
predictorLabels <- variable.names(regF) 
CIout <- sprintf("[%.2f, %.2f]", regF.Beta$CI.lower, regF.Beta$CI.upper) 
BetaOut <- data.frame(Coeff=paste0(regF.Beta[,1],regF.pStars[-1]),CI=CIout) 
Rout <- data.frame(Coeff = unname(regF.R[1]), CI = sprintf("[%.2f, 
%.2f]",regF.R[2],regF.R[3])) 
Rout <- rbind(Rout,data.frame(Coeff=unname(adjusted.R.Burket),CI="")) 
regTableBeta <- rbindlist(list(BetaOut,Rout)) 
rownames(regTableBeta) <- c(predictorLabels[-1],"Multiple R","Adjusted R (Burket)") 
#regTableBeta 
 
# Copy table to clipboard  
write.table(regTableBeta,"clipboard", sep = "\t",col.names = NA) 

# Example 5 --------------------------------------------------------------- 

# Table for Hierarchical Regression 
# This code assumes predictors are in the same order in all models and the liast model contains 
all predictors 
# Adapted from https://thomasleeper.com/Rcourse/Tutorials/wordoutput.html 
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# Conduct a sequence of hierarchically nested models, assigning each output to a different 
object. 
# Then combine into a list 
regM1 <- lm(data = dat, Performance ~ Degree) 
regM2 <- lm(data = dat, Performance ~ Degree + AR + RC + BC ) 
regM3 <- lm(data = dat, Performance ~ Degree + AR + RC + BC + SDis + SUP) 
regOut <- list(regM1,regM2,regM3) # create list with all results 
nModels <- length(regOut) 
 
# regression coefficients 
predictorLabels <- variable.names(regOut[[length(regOut)]]) 
s <- lapply(regOut,summary) 
b <- lapply(s,function(x) round(coef(x),2)) 
nCoeff <- lapply(b,nrow) 
regF.p <- lapply(s, function(x) x$coefficients[,4])  
regF.pStars <- lapply(regF.p, function(x) ifelse(x < .01, "***",ifelse(x < .01, "**", ifelse(x < 
.05, "* ", "  "))))  # significance flags 
 
# formatted coefficients 
bOut <- sapply(b, function(x) sprintf("%.2f (%.2f)",x[,1],x[,2])) 
bOut <- mapply(function(x,y) paste0(x,y),bOut,regF.pStars) 
 
# model summary statistics 
sigma <- sapply(s, function(x) round(x$sigma, 2)) 
Rsq <- sapply(s, function(x) round(c( x$r.squared), 2)) 
R <- round(sqrt(Rsq),2) 
Ftest <- sapply(s, function(x) round(x$fstatistic,2)) 
Fsig <- pf(Ftest[1,],Ftest[2,],Ftest[3,],lower.tail = FALSE) 
pOut <- function(x) ifelse(x < .001, "< .001",as.character(round(x,3))) 
Fsig <- pOut(Fsig) 
Fdf <- paste(Ftest[2,],Ftest[3,], sep=", ") 
Ftest <- round(Ftest[1,],2) 
 
# model comparison stats 
deltaRsq <- deltaF <- array(NA,dim = nModels) 
for(i in 2:nModels) deltaRsq[i] <- Rsq[i]-Rsq[(i-1)] 
anovaOut <- do.call(anova,regOut) 
deltaF <- round(anovaOut$F,2) 
deltaFp <- anovaOut$"Pr(>F)" 
deltaFp <- pOut(deltaFp) 
 
# combine all result in table 
maxCoeff <- max(unlist(nCoeff)) 
nBlanks <- sapply(nCoeff, function(x) maxCoeff - x) 
bOut <- mapply(function(x,y) c(x,rep("",y)),bOut,nBlanks) 
HRegTable <- rbind(bOut, sigma, Rsq, R, Ftest, Fdf, Fsig, deltaRsq, deltaF, deltaFp) 
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colnames(HRegTable) <- sapply(seq(1,nModels), function(x) paste("Model",x)) # create 
column label 
rownames(HRegTable) <- c(predictorLabels, "Residual SD", "R-Squared", "Multiple R", "F", 
"df","p","Delta Rsq", "Delta F", "p") 
HRegTable 
 
write.table(HRegTable, "clipboard", sep = '\t',col.names = NA, na = "")  # copy to clipboard  
# After writing to clipboard, paste into Excel 

# Example 6 --------------------------------------------------------------- 

# Logistic Regression  
library(rsq) 
library(data.table) 
 
lrMod <- glm(Pass ~ AR + RC + BC + SDis + SUP, data = dat, family = "binomial")  
lrOut <- summary(lrMod) 
lr.coeff <- lrOut$coefficients 
lr.AIC <- round(lrOut$aic,2) 
lr.CI <- confint(lrMod) 
lr.b <- cbind(Coeff = coef(lrMod),confint(lrMod)) 
lr.OR <- exp(lr.b) 
lr.LRtest <- round(anova(glm(Pass ~ 1, data = dat, family = "binomial"),lrMod),2) 
lr.LRdf <- lr.LRtest$Df[2] 
lr.LRtest <- lr.LRtest$Deviance[2] 
lr.LRp <-  pchisq(lr.LRtest, lr.LRdf, lower.tail = FALSE) 
lr.Rsq <- round(rsq(lrMod, type = "n"),2) # Negelkerke Rsq 
 
# Summary table 
pOut <- function(x) ifelse(x < .001, "< .001",as.character(round(x,3))) 
lr.coeff[,1:3] <- round(lr.coeff[,1:3],2) 
lr.coeff[,4] <- pOut(lr.coeff[,4]) 
lr.LRp <- pOut(lr.LRp) 
stats <- list(rbind(lr.Rsq,lr.AIC,lr.LRtest,lr.LRdf,lr.LRp)) 
names(stats) <-  "Estimate" 
lrTable <- rbindlist(list(as.data.frame(lr.coeff),stats), fill = TRUE) 
rownames(lrTable) <- c(rownames(lr.coeff),"Negelkerke Rsq","AIC","LR Chi-sq","df","p") 
 
write.table(lrTable, "clipboard", sep = '\t',col.names = NA, na = "")  # copy to clipboard  
# after writing to clipboard, copy into Excel 
 
# Predicted probability 
predictorLabels <- rownames(lr.coeff)[-1] 
focalPredictor <- "SUP" 
predictorMeans <- sapply(dat[predictorLabels], mean) 
focalRange <- sd(dat[,focalPredictor])*3 
focalPredictorLevels <- seq(from=(predictorMeans[focalPredictor]-focalRange), 
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to=predictorMeans[focalPredictor]+focalRange,length.out = 20) 
otherPredictors <- predictorMeans[!names(predictorMeans) %in% focalPredictor] 
predictorLevels <- data.frame(focalPredictorLevels,array(otherPredictors, dim = 
c(1,length(otherPredictors)))) 
colnames(predictorLevels) <- c(focalPredictor,names(otherPredictors)) 
 
predProb <- predict(lrMod, newdata = predictorLevels, type = "response") 
predictorLevels <- data.frame(predictorLevels,predProb) 
 
# Plot results 
library(ggplot2) 
ggplot(data = predictorLevels, aes(x=predictorLevels[,focalPredictor], y=predProb)) + 

geom_line() +  
ylim(0,1) + 
xlab(focalPredictor) + 
ylab("Probability") + 
theme_bw() 

# Example 7 --------------------------------------------------------------- 

# Table of validities with color coding 
library(formattable) 
predictorList <- list("AR","RC","BC","SDis","SUP") 
corStats <- lapply(predictorList,function(x) cor.test(dat[,x],dat[,"Performance"])) 
validity <- sapply(1:length(predictorList),function(x) corStats[[x]]$estimate) 
pvalue <- sapply(1:length(predictorList),function(x)corStats[[x]]$p.value) 
validityTable <- data.frame(Predictor=unlist(predictorList),validity,pvalue) 
 
# create a string variable with correlation and significance stars 
mystars <- ifelse(validityTable$pvalue < .001, "***",ifelse(validityTable$pvalue < .01, "**", 

ifelse(validityTable$pvalue < .05, "* ", "  "))) 
validityTable$r <- sprintf("%.2f%s",validityTable$validity,mystars)  # round and add 
significance stars 
validityTable$Predictor <- c("Arithmetic Reasoning", "Reading Comprehension","Block 
Counting", 

"Self-Discipline","Stress Under Pressure") 
 
formattable(validityTable, align=c("l","c"), list( 
  'validity' = FALSE, 'pvalue' = FALSE, 
  'r' = formatter("span", style = x ~ ifelse(validity < .11, "background-color:NA", 
        ifelse(validity<.21,"background-color:#FFFF99", 
        ifelse(validity<.35,"background-color:#CCFFCC", 
        "background-color:#80FF00")))) 
)) 
# This code creates a graphic object. Save as image file and then insert as image into word or 
powerpoint. 
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# Example 8 --------------------------------------------------------------- 

# Table of validity with bullet chart 
# Bar indicates correlation coefficient 
# Colored regions represent DOC categories: 
# Red r<.11 "Unlikely to be useful", Yellow .11-.20 "Depends on Circumstances", Green .21 + 
"Likely to be Useful" or "Very Beneficial" 
library(sparkline) 
library(formattable) 
 
predictorList <- list("AR","RC","BC","SDis","SUP") 
corStats <- lapply(predictorList,function(x) cor.test(dat[,x],dat[,"Performance"])) 
validity <- sapply(1:length(predictorList),function(x) corStats[[x]]$estimate) 
pvalue <- sapply(1:length(predictorList),function(x)corStats[[x]]$p.value) 
validityTable <- data.frame(Predictor=unlist(predictorList),validity,pvalue) 
 
# create a string variable with correlation and significance stars 
mystars <- ifelse(validityTable$pvalue < .001, "***",ifelse(validityTable$pvalue < .01, "**", 
ifelse(validityTable$pvalue < .05, "* ", "  "))) 
validityTable$r <- sprintf("%.2f%s",validityTable$validity,mystars)  # round and add 
significance stars 
validityTable$Predictor <- c("Arithmetic Reasoning", "Reading Comprehension","Block 
Counting"," 

Self-Discipline","Stress Under Pressure") 
 
customRed <- "#FF9999" 
customYellow <- "#FFFF99" 
customGreen1 <- "#CCFFCC" 
customGreen2 <- "#80FF00" 
validityTable$" " <- sapply(validityTable$validity, FUN=function(x) 
as.character(htmltools::as.tags( 
  sparkline(c(NA,as.numeric(x),max(x,.5),.21,.11), type = "bullet", performanceColor = "black", 
            rangeColors = c(customGreen2,customYellow,customRed))))) 
out <- as.htmlwidget(formattable(validityTable, align = c("l","c","c"), list("validity" = FALSE, 
"pvalue" = FALSE))) 
out$dependencies <- c(out$dependencies, htmlwidgets:::widget_dependencies("sparkline", 
"sparkline")) 
out 
# This code creates a graphic object. Save as image file and then insert as image into word or 
powerpoint. 

# Example 9 --------------------------------------------------------------- 

# Compute expectancy chart for multiple predictors  
# Note: The script for the Expectancyfunc() function must be located in the working directory. 
library(Hmisc)  # provides cor.test function 
library(ggplot2)  # graphics package 
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source("Cucina Expectancy Function.R") # R script for Expectancyfunc () 
 
# specify which predictors and criterion variable 
predictorList <- list("AR","RC","BC","SDis","SUP") 
criterionVariable <- "Performance" 
corStats <- lapply(predictorList,function(x) cor.test(dat[,x],dat[,criterionVariable])) 
validity <- sapply(1:5,function(x) corStats[[x]]$estimate) 
names(validity) <- predictorList 
validityCI <- t(sapply(1:5,function(x) corStats[[x]]$conf.int)) 
 
#Specify passing rate and success rate.  
#These are convered into standardized cut scores. 
PassRate <- .30 
SuccessRate <- .60 
PredictorCutoff <- qnorm(1-PassRate) 
CriterionCutoff <- qnorm(1-SuccessRate) 
 
# Expectancy for those who pass. 
# Confidence interval computed using upper and lower bounds of confidence interval on valdity 
expectancyPass <- sapply(validity, function (x) 
Expectancyfunc(x,PredictorCutoff,Inf,CriterionCutoff,Inf)$expectancy*100) 
expPassLCL <- sapply(validityCI[,1], function (x) 
Expectancyfunc(x,PredictorCutoff,Inf,CriterionCutoff,Inf)$expectancy*100) 
expPassUCL <- sapply(validityCI[,2], function (x) 
Expectancyfunc(x,PredictorCutoff,Inf,CriterionCutoff,Inf)$expectancy*100) 
 
#Expectancy for those who fail 
expectancyFail <- sapply(validity, function (x) Expectancyfunc(x,-
Inf,PredictorCutoff,CriterionCutoff,Inf)$expectancy*100) 
expFailLCL <- sapply(validityCI[,1], function (x) Expectancyfunc(x,-
Inf,PredictorCutoff,CriterionCutoff,Inf)$expectancy*100) 
expFailUCL <- sapply(validityCI[,2], function (x) Expectancyfunc(x,-
Inf,PredictorCutoff,CriterionCutoff,Inf)$expectancy*100) 
 
# Combine results into dataframe 
out <- 
data.frame(Test=unlist(predictorList),Range="Fail",Expectancy=expectancyFail,ExpLCL=expF
ailLCL,ExpUCL=expFailUCL) 
out <- 
rbind(out,data.frame(Test=unlist(predictorList),Range="Pass",Expectancy=expectancyPass,Exp
LCL=expPassLCL,ExpUCL=expPassUCL)) 
out$Test <- factor(out$Test, levels = c("AR","RC","BC","SDis","SUP"), labels = c("Arithmetic 
\nReasoning","Reading Comp","Block Counting","Self Discipline","Stress Under \nPressure")) 
View(out) 
 
# Crate graph 
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ggplot(data = out, aes(x=Test, y=Expectancy, fill=Range)) + 
  geom_bar(position = position_dodge(),stat = "identity")+ 
  geom_errorbar(aes(ymin=ExpLCL, ymax=ExpUCL), width=.3,position = position_dodge(.9)) 
+ 
  xlab(NULL) + 
  ylab("Percent Successful") + 
  labs(fill="Test Range") + 
  coord_flip()  
# Save plot as an image file or copy to clipboard, then insert into word or powerpoint. 

# Example 10 -------------------------------------------------------------- 

# Plot expectancy for multiple score ranges 
# Produces both vertical and horizontal bar charts 
library(Hmisc)  # provides cor.test function 
library(ggplot2)  # graphics package 
source("Cucina Expectancy Function.R") # R script for Expectancyfunc () 
 
# Compute validity and confidence interval for selected predictor 
predictorVariable <- "AR"  # name of variable in dataframe 
criterionVariable <- "Performance" 
predictorLabel <- "Arithmetic Reasoning"  # Lable for plot title 
rStats <- cor.test(dat[,predictorVariable],dat[,criterionVariable]) 
Validity <- rStats$estimate 
ValidityCI <- rStats$conf.int 
 
# Specify success rate, which is converted into a standardized cutoff 
SuccessRate <- .25 
CriterionCutoff <- qnorm(1-SuccessRate) 
 
# Specify desired number of score ranges for predictor 
nRanges <- 4 
probCut <- seq(0,1,(1/nRanges)) 
xCut <- qnorm(probCut) 
 
# Compute expectancy and confidence interval for each predictor range 
expectancy <- expL <- expU <- array(0, dim = nRanges) 
catLabel <- catLabelShort <- array("", dim = nRanges) 
for (i in 1:nRanges) { 
  expectancy[i] <- Expectancyfunc(Validity,xCut[i],xCut[i+1],CriterionCutoff,Inf)$expectancy 
  expL[i] <- Expectancyfunc(ValidityCI[1],xCut[i],xCut[i+1],CriterionCutoff,Inf)$expectancy 
  expU[i] <- Expectancyfunc(ValidityCI[2],xCut[i],xCut[i+1],CriterionCutoff,Inf)$expectancy 
  catLabel[i] <- paste0(round(probCut[i]*100,0),"% - ",round(probCut[i+1]*100,0),"%") 
  catLabelShort[i] <- paste0(round(probCut[i]*100,0),"%") 
} 
 
xAxisLabel <- "Predictor Score Range (Lower Bound)" 
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yAxisLabel <- "Percent High Performers" 
x <- data.frame(expectancy,catLabel) 
 
# Vertical bars 
ggplot(x, aes(x=catLabelShort, y=expectancy, label=sprintf("%0.0f%%",expectancy*100))) + 
  geom_bar(stat="identity", width = .7, fill = "seagreen2") + 
  ggtitle(predictorLabel) + 
  xlab(xAxisLabel) + 
  ylab(yAxisLabel) + 
  scale_y_continuous(labels = function(x) paste0(x*100, "%")) + 
  geom_text(nudge_y = (.1), size = 4) + 
  geom_errorbar(aes(ymin=expL, ymax=expU), width=.1) + 
  theme_classic(base_size = 14) 
 
# Horiszontal bars 
xAxisLabel <- "Predictor Score Range" 
ggplot(x, aes(x=catLabel, y=expectancy, label=sprintf("%0.0f%%",expectancy*100))) + 
  geom_bar(stat="identity", width = .7, fill = "seagreen2") +  
  ggtitle(predictorLabel) + 
  xlab(xAxisLabel) + 
  ylab(yAxisLabel) + 
  scale_y_continuous(labels = function(x) paste0(x*100, "%")) + 
  geom_text(nudge_y = (-.021 - .5 * abs(expU-expL)), size = 3) + 
  geom_errorbar(aes(ymin=expL, ymax=expU), width=.2) + 
  theme_classic(base_size = 14) +  
  coord_flip() 
# Save plot as an image file or copy to clipboard, then insert into word or powerpoint. 

# Example 11 -------------------------------------------------------------- 

# Plot expectancy relative to other selection methods 
# Validity for the unstructured interview set at .18, the uncorrected estimate McDaniel et al. 
(1994) 
library(Hmisc)  # provides cor.test function 
library(ggplot2)  # graphics package 
source("Cucina Expectancy Function.R") # R script for Expectancyfunc () 
 
# Compute validity 
predictorVariable <- "SDis"  # name of variable in dataframe 
predictorLabel <- "Self-Discipline" # label for focal predictor 
criterionVariable <- "Performance" 
rStats <- cor.test(dat[,predictorVariable],dat[,criterionVariable]) 
validity <- rStats$estimate 
 
validity <- c(0,.18,validity) # vector of validies for  
testLabel <- c("Random","Unstructured Inteview",predictorLabel) 
testLabel <- factor(testLabel, levels = testLabel) 
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PredictorCutoff <- qnorm(.75) 
CriterionCutoff <- qnorm(.75) 
expectancy <- sapply(validity,FUN = Expectancyfunc, 
                     PredLowerCut = PredictorCutoff, PredUpperCut = Inf, 
                     CritLowerCut = CriterionCutoff, CritUpperCut = Inf) 
expectancy <- unlist(expectancy["expectancy",]) 
result <- data.frame(testLabel,validity,expectancy) 
 
xAxisLabel <- "Predictor" 
yAxisLabel <- "Percent High Performers" 
ggplot(result, aes(x=testLabel, y=expectancy, label=sprintf("%0.0f%%",expectancy*100))) + 

geom_bar(stat="identity", width = .5, fill = 'seagreen3') +  
xlab(xAxisLabel) + 
ylab(yAxisLabel) + 
scale_y_continuous(labels = function(x) paste0(x*100, "%")) + 
geom_text(nudge_y = -.1) + 
theme_classic(base_size = 14) 

# Save plot as an image file or copy to clipboard, then insert into word or powerpoint. 

# Example 12 -------------------------------------------------------------- 

# Plot expectancy for hierarchical regression 
library(Hmisc)  # provides cor.test function 
library(ggplot2)  # graphics package 
source("Cucina Expectancy Function.R") # R script for Expectancyfunc () 
 
# Specify multipel R from series of regression models 
validity <- c(0.40, 0.62, 0.66) 
 
# Enter a label of reach model 
testLabel <- c("Degree","Degree\n+AR+RC+BC","Degree\n+AR+RC+BC\n+SDis+SUP") 
testLabel <- factor(testLabel, levels = testLabel) 
 
# Specify passing rate and success rate 
PassRate <- .25 
SuccessRate <- .25 
PredictorCutoff <- qnorm(1-PassRate) 
CriterionCutoff <- qnorm(1-SuccessRate) 
expectancy <- sapply(validity,FUN = Expectancyfunc, 
                     PredLowerCut = PredictorCutoff, PredUpperCut = Inf, 
                     CritLowerCut = CriterionCutoff, CritUpperCut = Inf) 
expectancy <- unlist(expectancy["expectancy",]) 
result <- data.frame(testLabel,validity,expectancy) 
 
xAxisLabel <- "Predictor Composite" 
yAxisLabel <- "Proportion High Performers" 
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ggplot(result, aes(x=testLabel, y=expectancy, label=sprintf("%0.0f%%",expectancy*100))) + 
geom_bar(stat="identity", width = .5, fill = 'seagreen3') +  
xlab(xAxisLabel) + 
ylab(yAxisLabel) + 
scale_y_continuous(labels = function(x) paste0(x*100, "%")) + 
geom_text(nudge_y = -.1) + 
theme_classic(base_size = 14) 

# Save plot as an image file or copy to clipboard, then insert into word or powerpoint. 
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Appendix C 

R function for computing expectancy tables. Adapted from Cucina, Berger & Busciglio (2017). 
Run the script below in order to initialize the Expectancyfunc() function. Additional instructions 
for using the function are provided in the chapter. 

# load library for computing normal integrals 
library(mvtnorm) 
 
 
# Expectancy function ----------------------------------------------------- 
 
 
Expectancyfunc <- function (Validity, 
                            PredLowerCut, PredUpperCut, 
                            CritLowerCut, CritUpperCut) 
{ 
# This creates a new function in R called Expectancyfunc. The function takes the criterion-
related 
# validity coefficient, the lower and upper cutoffs for the predictor score, and the lower and 
upper 
# cutoffs for the criterion score as inputs. To represent positive or negative ???, "Inf" or "-Inf" 
can 
# be used, respectively. 
# library(mvtnorm) Before proceeding, the mvtnorm library must be downloaded and installed. 
This command line 
# tells R that the mvtnorm library is being used. 
 
#  n <- 1000 
#  A dataset must be created before R can be run to conduct the analyses. This command tells R 
to 
#  create a dataset with 1,000 cases. The value n represents the number of cases and the symbol 
<- 
#    indicates that n should be set equal to 1,000. 
  mean <- c(0, 0) 
#  In this line, the means for the two variables (which equal 0 when a standardized solution is 
#  used) are provided. Note that the values are presented parenthetically, separated by a comma, 
#  and preceded by the letter c. This syntax stores the means as a vector in R. 
  lower <- c(PredLowerCut, CritLowerCut) 
#  This line assigns the lower z-score cutoffs for the predictor and the criterion to a vector. 
  upper <- c(PredUpperCut, CritUpperCut) 
#  This line assigns the upper z-score cutoffs for the predictor and the criterion to a vector. 
  corr <- diag(2)  
#  This line creates a 2-by-2 matrix with diagonal values of 1 and stores the matrix in the 
variable 
#  corr. 
  corr[lower.tri(corr)] <- Validity 
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  corr[upper.tri(corr)] <- Validity 
#  In these two steps, the correlation between the two variables provided by the user is stored 
into 
#  the upper and lower triangles of the 2-by-2 correlation matrix. 
  jtprob <- pmvnorm(lower, upper, mean, corr,  
                    algorithm = Miwa(steps = 128)) 
  # Here the pmvnorm command in the mvtnorm package is run; this is the command that is 
used 
  # for computing the volume under multivariate-normal distributions. As inputs, pmvnorm 
takes 
  # the upper and lower z-score cutoffs (which are vectors), the vector of means (which is set to 
0), 
  # the correlation matrix, and the algorithm that is to be used. The algorithm statement specifies 
  # that the Miwa et al. (2003) algorithm should be used. The term "(steps = 128)" informs R 
that 
  # 128 grid points should be used. The output for this procedure is the joint probability between 
  # the predictor and the criterion - the volume under the bivariate-normal distribution between 
the 
  # lower and upper cutoffs. This probability is saved in the variable jtprob. 
  #jtprobOutput <- paste("Joint Probability: ", jtprob, sep="") 
  # This line creates a new string variable containing the value of jtprob along with a label. The 
  # term "sep=""" indicates that there are no text separating the expectancy value and the % 
symbol. 
  #print(jtprobOutput)  
  #The previous steps saved the volume of the bivariate-normal distribution and added a label; 
this 
  #  step prints that value, with the label, to the screen. 
 
  #  Computing the expectancy 
  xprob <- pnorm(PredUpperCut, 
                 mean=0, sd=1)-pnorm(PredLowerCut, mean=0, sd=1) 
  # To compute the expectancy, we must obtain the proportion of cases that have a predictor 
value 
  # within the lower and upper cutoffs for the predictor. This is accomplished by computing the 
  # area under the univariate-normal distribution, which is the proportion of cases having 
predictor 
  # values within the upper and lower cutoffs. The pnorm command in R is used to compute this 
  # area and it takes the upper or lower predictor cutoff, mean (which is set to 0), and standard 
deviation 
  # (which is set to 1) as inputs. The proportion of cases that fall within the upper and lower 
  # cutoffs is obtained by subtracting the proportion of cases falling between the lower cutoff 
and 
  # -??? from the proportion of cases falling between the upper cutoff and -???. This value is 
stored to 
  # a new variable, xprob. 
  #xprobOutput <- paste("Predictor Probability: ", xprob, sep="") 
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#  This line creates a new string variable containing the value of xprob along with a label. 
  #print(xprobOutput)  
  # This command prints the value xprob to the screen along with a label. 
   
  expectancy <- jtprob[1]/xprob[1] 
  #expectancy <- paste(round(100*jtprob/xprob,1), "%", sep="") 
  # The expectancy is computed by dividing the joint probability by the predictor probability. 
The 
  # expectancy is converted to a percentage using the syntax "100*." In addition, this value is 
  # rounded to one decimal place, using the syntax "round(.., 1)." Next, a percentage symbol is 
  # added using the "paste" command, which pastes the expectancy value and the % symbol 
(shown 
  # in the syntax using "%") together into a string variable named "expectancy." 
  #print(expectancy) 
   
  tmp <- list(jtprob = jtprob[[1]],xprob = xprob[[1]],expectancy = expectancy[[1]]) 
  #print(tmp) 
  return(tmp) 
} 
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