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1. Introduction to Nonlinear Junction Detection 

Nonlinear junction detection (NLJD) is currently being applied for security and 
defense, for example, to perform countersurveillance.1–4 In this arena, relevant 
targets are difficult to detect because, under illumination by a traditional radar 
wave, the amount of electromagnetic (EM) energy reflected from them is much 
smaller than that reflected from nearby clutter. Thus, traditional radars generally 
cannot “see” nonlinear junctions, especially those that are buried or otherwise 
intentionally obscured. However, such junctions have the unique property of 
generating EM energy at frequencies different from those that illuminate them. 
Reception of frequencies different from the original transmit set indicates the 
presence of a nonlinear target. 

The NLJD concept is illustrated in Fig. 1. The transmit (Tx) antenna broadcasts an 
EM wave into an environment that may contain a junction. The Tx probe contains 
a set of frequencies { fTx }. Components containing nonlinear junctions (such as the 
diode illustrated) capture some of this wave and distort it, generating frequencies 
that are not part of the original transmitted set. A power-series  
model5–7 is often used to mathematically describe the conversion of the transmitted 
probe frequencies to the new frequencies that may be captured by the receive (Rx) 
antenna { fRx }. For harmonic NLJD, typically a single frequency is transmitted: 
f0.8–13 Consequently, harmonics of that frequency are received: 2f0, 3f0, and so on. 

transmit to target

Rx

Tx

rece ive from target

{ fTx }

{ fRx }

component(s) 
containing 
nonlinear 
junctions

 

Fig. 1 Illustration of the NLJD concept: the Tx antenna emits a wave toward the nonlinear 
component(s). A new wave reflects from the component(s) carrying new frequencies that are 
not part of the Tx set. The Rx antenna captures the wave that arrives back at the detector. 

A link-budget equation relating power transmitted at f0 to power received at 2f0 has 
been derived for NLJD (i.e., “nonlinear radar”).14,15 Experimental results indicate 
that a much higher Tx power is required for a nonlinear sensor to establish a signal-
to-noise ratio (SNR) comparable to that of traditional linear radar, assuming the 
same standoff distance.16,17 Although the energy received by the nonlinear sensor 
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is miniscule, the frequencies produced by nonlinear junctions are vastly different 
from the original Tx set. In contrast, most materials found in nature are linear, so 
they do not exhibit this change of frequency. Thus, the key advantage of using 
NLJD to sense nonlinear junctions (compared to using traditional radar) is high 
clutter rejection. 

For consistency with standard radar terminology, hereafter in this report, a 
nonlinear junction (or a device containing a collection of nonlinear junctions) is 
referred to as a “target”. 

2. Clutter Rejection Achieved by Passive Filtering 

To achieve an adequate SNR for NLJD, it is necessary to transmit high power to 
the target. Unfortunately, generating high peak power necessarily generates 
distortion in the Tx waveform.18 For harmonic NLJD, this distortion manifests as 
harmonics that (if they were absent from the Tx waveform) would map to the target 
reflection only. The harmonic distortion generated by the transmitter, if not 
adequately filtered or cancelled19,20 before transmission, either 1) is emitted from 
the Tx antenna and reflects from linear clutter in the environment, which generates 
false alarms, or 2) couples directly from the transmitter to the receiver, which masks 
reflections from weaker (usually distant) targets. 

Therefore, for NLJD, the Tx signal must be strongly filtered before it leaves the Tx 
antenna. Researchers usually include a lowpass filter (LPF) as part of their 
transmitter architecture.21,22 For continuous-wave (CW) transmissions where the 
operational bandwidth of the signal may be made arbitrarily narrow, bandpass 
filtering may be implemented instead.11,23 Those references that explicitly discuss 
filter specifications report rejection of self-generated harmonics (2f0 and above) by 
50 dB or more.10,24 Thus, the aforementioned high degree of clutter rejection 
possible for harmonic NLJD is achieved (in part) by passive filtering, as illustrated 
in Fig. 2. 

f0

Tx

PA

Rx

LNA
f0 , 2f0 f0 f0 , 2f02f02f0

RF signal 
generator

RF signal 
analyzerLPF HPF

 

Fig. 2 Passive filtering implemented in the transmitter after the power amplifier (PA) 
(lowpass) and in the receiver before the low-noise amplifier (LNA) (highpass) 

The probe signal for the target originates at the RF signal generator. For laboratory 
experiments, this is often an instrument such as the Keysight N9310A. The target 
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response is captured by the RF signal analyzer, which may be an instrument such 
as the Keysight N9320B. 

In the transmitter, the high power for the Tx probe-frequency f0 is produced by the 
PA. This amplification generates harmonics (e.g., 2f0). These harmonics are 
removed/reflected by the LPF so that only the undistorted probe-frequency f0 
arrives at the Tx antenna and is emitted toward the target. 

Even at a relatively short standoff distance of 3 m, a typical response received at 
2f0, for a transmit power of 1 W, is less than –80 dBm.16 For this reason, a harmonic 
receiver requires a high degree of amplification and a high sensitivity. Often, the 
amplification is split across multiple LNAs.25 References that discuss LNA 
specifications report a minimum total amplification of 45 dB in the Rx chain.1 

Because the amplification is very high and the detector is very sensitive, filtering 
before each LNA is necessary to prevent the Tx signal from coupling further into 
the receiver and causing saturation of the detector. For a signal with an appreciable 
bandwidth (pulsed, stepped, chirped), the Tx probe is removed/reflected by a 
highpass filter (HPF).24 For CW transmission and reception, bandpass filtering is 
permissible.10,11,26 Filter specifications for harmonic receivers have been reported 
with rejections at f0 equal to or greater than 76 dB.1,25 

The goals of the present work were to 1) design a bank of coupled lowpass and 
highpass filters to easily switch between different frequency bands while testing the 
harmonic NLJD responses of different targets, and 2) implement enough filters to 
probe each target with a continuous band of Tx frequencies: f0 = 300 MHz to 2 GHz 
(i.e., to receive harmonic responses from 2f0 = 600 MHz to 4 GHz). 

3. Harmonically Related Diplexers 

To simultaneously achieve adequate lowpass behavior in the transmitter and 
adequate highpass behavior in the receiver, three rules of thumb are followed27,28 
and illustrated in Fig. 3: 

• The Tx (low) and Rx (high) passbands must not overlap: fend < M⋅fstart. 

• The LPF should be selected with minimal loss in the passband  
fstart < f0 < fend and no less than 50 dB of insertion loss in the stopband  
M⋅fstart < M⋅f0 < M⋅fend. 

• The highpass filter should be selected with minimal loss in the passband 
M⋅fstart < M⋅f0 < M⋅fend and no less than 70 dB of insertion loss in the stopband 
fstart < f0 < fend. 
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0 dB

–70 dB

–50 dB

fstart fend M·fstart M·fend

|S21|  (dB)

f

lowpass highpass

 

Fig. 3 Desired S-parameters (transmission coefficient S21) for fixed filters in a harmonic 
NLJD: the Tx band starts at fstart and ends at fend, while the Rx band starts at M⋅fstart and ends 
at M⋅fend. The low and high passbands do not overlap. 

To cover the full Tx band f0 = 300 MHz to 2 GHz while minimizing the number of 
discrete lowpass/highpass pairs that must be fabricated, several frequency sub-
bands were chosen. These five bands are listed in Table 1. The desired (ideal) 
frequency bands are listed in the second and fourth columns of the table. (The 
measured frequency bands are discussed later in this section.) The upper frequency 
of each lowpass band (e.g., 450 MHz for Band 1) is chosen to be less than twice 
the lowest f0 value so that no harmonics of f0 are passed to the Tx antenna. The 
lower frequency of each highpass band (e.g., 900 MHz for Band 2) is chosen to be 
less than half the lowest 2f0 value so that minimal f0 is passed to the Rx detector. 

Table 1 Five sub-bands chosen to realize f0 = 300 MHz to 2 GHz: the second and fourth 
columns list the desired (ideal) frequency bands; the third and fifth columns list the measured 
(actual) frequency bands implemented with back-to-back diplexers. 

Band f0 Desired f0 Measured 2f0 Desired 2f0 Measured 
1 300 to 450 MHz DC to 455 MHz 600 to 900 MHz 536 to 1956 MHz 
2 450 to 700 MHz DC to 695 MHz 900 to 1400 MHz 885 to 2792 MHz 
3 700 to 1000 MHz DC to 1010 MHz 1400 to 2000 MHz 1280 to 3016 MHz 
4 1000 to 1500 MHz DC to 1545 MHz 2000 to 3000 MHz 1735 to 3600 MHz 
5 1500 to 2000 MHz DC to 2464 MHz 3000 to 4000 MHz 2830 to 3470 MHz 

 

To realize deep stopband attenuation (>50 dB) and steep cutoffs for the low and 
high passbands, diplexers were implemented.29 As the diplexers provide “forward” 
paths for both low- and high-frequency outputs, it is possible to squelch reflections 
that would otherwise cause 2f0 to ring back into and out of the PA and/or cause f0 
to ring back toward the Rx antenna and radiate into the environment;30 this feature 
is not available when using (typical, commercial) reflective filters. 
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A novel arrangement of diplexers, a back-to-back configuration, was designed to 
protect to an even greater degree the output of the PA from reflected harmonics and 
be easily swappable between Tx and Rx modes. This configuration is shown in  
Fig. 4. 

50 Ω

HPF

LPF

com

HPF

LPF

comIN OUT

Rx 
Hi

single frequency band
 

Fig. 4 Flowchart of the back-to-back diplexer configuration for one frequency band (e.g., 
Band 3) 

For a traditional diplexer, the common (“com”) port is the input while the LPF and 
HPF ports are the low- and high-frequency outputs. The present configuration is 
referred to as “back-to-back” because the low-frequency outputs of two diplexers 
are tied together; the common port of the first diplexer is the overall input and the 
common port of the second diplexer is the overall output. 

A picture of this configuration, for Band 4, is given in Fig. 5. In the lower portion 
of the picture is the common port of the first diplexer, which acts as the overall 
input, labeled “IN”. The highpass output of the first diplexer is terminated in a 
matched load (50 Ω). The lowpass port of the first diplexer is connected directly to 
the lowpass port of the second diplexer. In the upper portion of the picture is the 
common port of the second diplexer, which acts as the overall output, labeled 
“OUT”. The highpass port of the second diplexer is available as a secondary output, 
labeled “Rx Hi”. Any back-to-back diplexer pair may be configured for Tx at f0 or 
Rx at 2f0. 
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Fig. 5 Picture of the back-to-back diplexer configuration for Band 4 

In Tx mode, the diplexer pair is arranged as shown in Fig. 6. An RF signal is 
generated, amplified, and routed to the “IN” port. The heavily filtered (“linearized”) 
transmit probe leaves the “OUT” port and is sent to the Tx antenna. The “Rx Hi” 
port is terminated in a matched load. In this manner, any undesired harmonic 
produced by the PA is sent to the matched load attached to the first diplexer. Also, 
any harmonic reflected by the target that illuminates the Tx antenna is sent to the 
matched load attached to the second diplexer (at “Rx Hi”). 

f0

PA
IN OUT

Rx 
Hi 50 Ω

Tx

transmit
signal path

RF signal 
generator

 

Fig. 6 Back-to-back diplexers configured for high-power transmission (Tx) 
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In Rx mode, the diplexer pair is arranged as shown in Fig. 7. The target response 
received by the Rx antenna enters the “OUT” port and is routed to the “Rx Hi” port 
by the second diplexer. The “IN” port is terminated in a matched load. Any RF at 
f0 that has coupled directly from the transmitter into the receiver (via the antennas) 
is sent to that matched load. 

{ 2f0 , 3f0 , ... }

LNA

IN OUT

Rx 
Hi

50 Ω

Rx

rece ive
signal path

RF signal 
analyzer

 

Fig. 7 Back-to-back diplexers configured for low-power reception (Rx) 

Diplexer pairs for the bands listed in Table 1 were assembled inside of a large 
metallic rack-mount project enclosure: 4-U size (19 × 7 × 22 inches). Two boxes 
were fabricated, to enable simultaneous Tx and Rx using the same (f0:2f0) frequency 
band. A picture of the upper tier of one of the boxes is shown in Fig. 8. These 
diplexer pairs are the higher-frequency bands. The diplexers associated with  
Band 4 (from Fig. 5) appear in the lower-right-hand corner of this picture. The 
inputs and outputs for each diplexer pair are routed to the front panel of the box (in 
the background of this picture) using semi-rigid coaxial cables. 

The front connection panel for this box is shown in Fig. 9. This picture is a 180° 
rotated view of the box in Fig. 8. In Fig. 9, for each frequency band, there are ports 
labeled “IN” and “OUT”, and “Rx Hi”, as labeled in Fig. 4. 
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Fig. 8 Picture of the upper tier (higher-frequency) diplexers for the frequencies listed in 
Table 1 

 

 

Fig. 9 Front panel for the rack-mount box seen in Fig. 8. Each band has three ports: “IN”, 
“OUT”, and “Rx-Hi”. For Tx mode, the ports are connected externally as in Fig. 6. For Rx 
mode, the ports are connected externally as in Fig. 7. 
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4. S-parameter Measurements for Five Harmonic Frequency 
Bands 

Scattering (S) parameter measurements for the bands listed in Table 1, with ports 
as shown in Fig. 9, were recorded. Two-port transmission parameters (S21) were 
captured using a SignalHound BB60C analyzer (with a SignalHound TG-44A 
tracking generator signal source). One-port reflection parameters (S11) were 
captured using a Keysight N9914A network analyzer. Raw decibel-amplitude  
S-parameter data are provided for Bands 1 through 5 in Figs. 10 through 14, 
respectively. 

The S-parameters have been distilled into the “Measured” (third and fifth) columns 
in Table 1. The passbands (for both f0 and 2f0) are the frequencies for which S21 is 
equal to or greater than –3 dB, while S11 is equal to or less than –10 dB 
(simultaneously). This means that, for all frequencies said to be within the passband 
for f0 (in Tx mode), the Tx probe is sent from “IN” to “OUT” with less than 50% 
power loss, while at least 90% of the harmonic (at 2f0) is absorbed internal to the 
diplexer pair or at the “Rx Hi” matched load. Also, for all frequencies within the 
passband for 2f0 (in Rx mode), the received signal (target response) is sent from 
“OUT” to “Rx Hi” with less than 50% loss while at least 90% of the residual Tx 
probe (at f0) is absorbed at the matched load attached to “IN”. 

 

Fig. 10 Transmission and reflection parameters: Band 1 
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Fig. 11 Transmission and reflection parameters: Band 2 

 

 

Fig. 12 Transmission and reflection parameters: Band 3 
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Fig. 13 Transmission and reflection parameters: Band 4 

 

 

Fig. 14 Transmission and reflection parameters: Band 5 
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5. Conclusions 

A novel arrangement for diplexers, harmonically related and oriented back-to-back, 
has been implemented to perform NLJD (or “harmonic radar”). To achieve high-
power transmission with minimal distortion, the low-frequency probe passes 
through the lowpass port of two diplexers, while the highpass ports route system-
generated harmonics to matched loads. To achieve high sensitivity (low-power 
reception), the high-frequency target response passes through the highpass port of 
the second diplexer, while the lowpass ports of both diplexers route the residual 
low-frequency probe to a matched load. 

Figures within this report demonstrate how each diplexer pair may be configured 
for transmission or reception. Two sets of diplexer pairs have been assembled (i.e., 
into two 4U rack-mount enclosures) to accomplish simultaneous transmission and 
reception. These boxes, connected to laboratory instruments and antennas, may be 
used to probe nonlinear targets of interest for harmonic responses across the ultra-
high frequency and long-wave (L) bands.  
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List of Symbols, Abbreviations, and Acronyms 

CW continuous-wave 

EM electromagnetic 

HPF highpass filter 

L long-wave 

LNAs low-noise amplifiers 

LPF lowpass filter 

NLJD nonlinear junction detection 

PA power amplifier 

RF radio-frequency 

Rx receive 

SNR signal-to-noise ratio 

Tx transmit 

   

  



 

17 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 CCDC ARL 
 (PDF) FCDD RLD DCI 
   TECH LIB 
 
 8 CCDC ARL 
 (PDF) FCDD RLS RM 
   K GALLAGHER 
   D HARVEY 
   G KIROSE 
   G MAZZARO 
   K SALIK 
   K SHERBONDY 
   A SULLIVAN 
  FCDD RLS G 
   A HARRISON 
 


	List of Figures
	List of Tables
	1. Introduction to Nonlinear Junction Detection
	2. Clutter Rejection Achieved by Passive Filtering
	3. Harmonically Related Diplexers
	4. S-parameter Measurements for Five Harmonic Frequency Bands
	5. Conclusions
	6. References
	List of Symbols, Abbreviations, and Acronyms

