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Software Architecture Enables Our Ability to Innovate

The software architecture community has 
evolved a body of knowledge that guides 
design and analysis. 
This body of knowledge includes

• design principles
• reference architectures
• architectural design patterns
• deployment patterns
• tactics
• externally developed components
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Implications for the System

The degree to which a system meets its 
quality attribute requirements is dependent 
on architectural decisions.
However, architecture can only permit, not 
guarantee, any quality attribute.
For the implementation to exhibit the quality 
attributes engineered at the architectural 
level, it must conform to the architecture.
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Software Nonconformance Problem
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Project Objective

An automated design conformance checker 
integrated into a continuous integration 
workflow will reduce time to detect 
violations from months or years to hours.
Automation enables early detection and 
allows remediation before the violation gets 
“baked in” to the implementation.
Detection of nonconformances allows 
program managers to hold developers 
(contractor or organic) accountable.
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Create an Automated Design Conformance Checker

A design conformance checker 
automatically checks that the 
source code reflects the intended 
design and reports 
nonconformances.
Recommendations correctly identify 
nonconformance, precision >.90 
and detect at the commit that 
introduces nonconformance > 90%
Apply developer feedback to 
improve accuracy and significance 
within project contexts.
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Building on Code Analysis, Software Architecture, 
Machine Learning, and Continuous Integration
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Machine Learning for Source Code

Allamanis et al. (2018). A Survey of Machine Learning for Big Code and Naturalness. 
ACM Computing Surveys, Article No 81.

method fragment 

AST context path 

Initial applications applied off-the-shelf 
machine-learning tools with hand-extracted 
features. 
Subsequent applications use the source 
code itself within machine learning drawing 
inspiration from natural language 
processing (NLP). 
Current applications promise new machine-
learning models informed by programming-
language semantics.
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What Is a Good Feature Set for Architecture Design?

entity relation entity 

design fragment 

Interface Inherits Public class(
<latexit sha1_base64="R61RfMnIthtcpmxpxifoScUCgcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHbRRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9wvltyKuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWtWKd1mpNq5KtdssjjycwTmUwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AG5HjLA=</latexit>

)
<latexit sha1_base64="a9cGymfIoUwm+Rg2k4v242obd9g=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7AbBT0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A2/LjLE=</latexit>

,
<latexit sha1_base64="q6zCDYXs2BSzlDW6xbJ7xw9qA5E=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcJuFPQY9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe5flSv2qVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3RXjLQ=</latexit>

,
<latexit sha1_base64="q6zCDYXs2BSzlDW6xbJ7xw9qA5E=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcJuFPQY9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe5flSv2qVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3RXjLQ=</latexit>

Representing the code as a graph of 
entities provides insight into structure.
Modeling context in the form of relations 
can improve prediction performance.
Design constructs are traceable to a wider 
range or larger portion of the code base.
Common intermediate representation of 
object-oriented design.
Extensible representations allow data from 
different sources to be integrated.

Kurz (2019). The Vectors of Code: On Machine Learning for Software.
SEI Blog, Software Engineering Institute, Carnegie Mellon University.
Nord (2020). Using Machine Learning to Detect Design Patterns.
SEI Blog, Software Engineering Institute, Carnegie Mellon University.
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Code-Design Abstraction Gap

Ivers et al. (2019). Can AI Close the Design-Code Abstraction Gap? International Workshop on Software 
Engineering Intelligence, IEEE/ACM International Conference on Automated Software Engineering (ASE).
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Build Graph

Static code analysis tool extracts structural 
information from C++ object-oriented code. 
Sample graph sizes:
Blobby Warriors github.com/visusnet/Blobby-Warriors

• 48K code lines
• 8,799 nodes and 50,411 relations

Hotspot (Qt framework) github.com/KDAB/hotspot
• 8K code lines
• 2,648 nodes and 11,427 relations

Sample Industry System
• 1,587K code lines
• 274,199 nodes and 1,057,595 relations

Schema Visualization: Neo4j Browser
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Engineer Features

Alhusain (2016). Intelligent data-driven reverse engineering 
of software design patterns. PhD Thesis, De Montfort University.

<<Interface>>

Graphic

Ellipse CompositeGraphic
*

*

class CompositeGraphic : Graphic {
//Collection of child graphics.
private: ArrayList<Graphic> mChildGraphics;
… 
public: void print() {

for (i = 0; i < LENGTH; i++){
mChildGraphics[i]->print();
} }  … 

}

class Graphic {
//Prints the graphic.
public: virtual void print();

}

class Ellipse : Graphic {
public: void print() {

System.out.println("Ellipse");
} }

Implements

Leaf Class

Same Interface 
Container

Redirect in 
Family

Interface

Implements

Structural and behavioral features link 
elements though relations.
Structural

• Degree of Accessibility, Virtuality
interfaceMethods(c) =

|{m | m ∈ MDEC(c) ∧ Public(m) ∧ Abstract(m)}|

• Association
methodParam(c1,c2) =

true iff ∃p ∈PAR(MDEC(c1))∧ Type(p, c2)

Behavioral
• Invoker/invokee

toSibling(c1, c2) =
{∃c ∈ C | ( Super( c1, c) ∧ Super(c2, c) )}

composite pattern
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Check Conformance

Unpack Transform AssembleMsg
In

Msg
Out

FACE Data Transformation Pipeline

as-implemented 
design

intended 
design

“Explicit storage of intermediate 
results … is error-prone”

“Non-adjacent processing 
steps do not share information”

Design fragments represented as graphs 
enable automatic detection. 
Detect nonconformances

• Check graph of extracted design 
fragment for agreement with 
intended design fragment to locate 
inconsistencies.

• Augment with checks against 
canonical design knowledge 
relevant to design fragment.
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Continuous Integration Workflow

Triage

Developer initiates
changes to design

Developer changes
implementation

Correctness

Significance

Detecting nonconformances produces 
greatest value when issues are exposed 
close to the time of injection.
Integrate with Jenkins CI tool to enable an 
empirical evaluation of the use of 
automation. 
Use developer feedback in rating each 
nonconformance to improve results.

• Correctness—Improve design 
extraction by providing new labeled 
data.

• Significance—Improve adaptive 
filtering by capturing context-specific 
rules and exceptions.
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Looking Ahead

• Build out infrastructure: 
representation, 
features, design 
knowledge, and 
conformance.

• Assemble open source 
data and initial 
analyses.

• Broaden the palette: 
more design 
knowledge and 
conformance checks.

• Implement adaptive 
filtering.

• Fine-tune 
conformance 
checking.

• Validate with 
experienced 
developers.

• Ready to pilot 
conformance checking 
for C++ software.

FY20 FY21 FY22



17Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

RESEARCH REVIEW 2020

Next Generation Automation for Software Evolution

Advance the state of the art where automation can
• keep software aligned with needs
• bring projects back into alignment
• realize changes sketched by developers in the language of design

Ivers et al. (2020) Next Generation Automated Software Evolution: 
Refactoring at Scale.  28th  Joint European Software Engineering Conference and 
Symposium on the Foundations of Software Engineering (ESEC/FSE ‘20). ACM.
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