
1Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Automated Design Conformance
during Continuous Integration

Robert Nord, Ben Cohen, Shane Ficorilli, James Ivers,
John Klein, Lena Pons, Chris Seifried

2Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

DM20-0781

3Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Software Architecture Enables Our Ability to Innovate

The software architecture community has
evolved a body of knowledge that guides
design and analysis.
This body of knowledge includes

• design principles
• reference architectures
• architectural design patterns
• deployment patterns
• tactics
• externally developed components

4Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Implications for the System

The degree to which a system meets its
quality attribute requirements is dependent
on architectural decisions.
However, architecture can only permit, not
guarantee, any quality attribute.
For the implementation to exhibit the quality
attributes engineered at the architectural
level, it must conform to the architecture.

5Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Software Nonconformance Problem

Design

Extensible,
Composable

Baseline
Delivery

Implementation

Planned V.2
Release

Depends on
Extensibility and
Composability

≠
Months

or
Years

Actual V.2
Release

Months
or

Years

Remediate…

Discover
Nonconformance

6Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Project Objective

An automated design conformance checker
integrated into a continuous integration
workflow will reduce time to detect
violations from months or years to hours.
Automation enables early detection and
allows remediation before the violation gets
“baked in” to the implementation.
Detection of nonconformances allows
program managers to hold developers
(contractor or organic) accountable.

7Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Create an Automated Design Conformance Checker

A design conformance checker
automatically checks that the
source code reflects the intended
design and reports
nonconformances.
Recommendations correctly identify
nonconformance, precision >.90
and detect at the commit that
introduces nonconformance > 90%
Apply developer feedback to
improve accuracy and significance
within project contexts.

8Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Building on Code Analysis, Software Architecture,
Machine Learning, and Continuous Integration

9Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Machine Learning for Source Code

Allamanis et al. (2018). A Survey of Machine Learning for Big Code and Naturalness.
ACM Computing Surveys, Article No 81.

method fragment

AST context path

Initial applications applied off-the-shelf
machine-learning tools with hand-extracted
features.
Subsequent applications use the source
code itself within machine learning drawing
inspiration from natural language
processing (NLP).
Current applications promise new machine-
learning models informed by programming-
language semantics.

10Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

What Is a Good Feature Set for Architecture Design?

entity relation entity

design fragment

Interface Inherits Public class(
<latexit sha1_base64="R61RfMnIthtcpmxpxifoScUCgcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHbRRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9wvltyKuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWtWKd1mpNq5KtdssjjycwTmUwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AG5HjLA=</latexit>

)
<latexit sha1_base64="a9cGymfIoUwm+Rg2k4v242obd9g=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7AbBT0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A2/LjLE=</latexit>

,
<latexit sha1_base64="q6zCDYXs2BSzlDW6xbJ7xw9qA5E=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcJuFPQY9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe5flSv2qVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3RXjLQ=</latexit>

,
<latexit sha1_base64="q6zCDYXs2BSzlDW6xbJ7xw9qA5E=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcJuFPQY9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe5flSv2qVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3RXjLQ=</latexit>

Representing the code as a graph of
entities provides insight into structure.
Modeling context in the form of relations
can improve prediction performance.
Design constructs are traceable to a wider
range or larger portion of the code base.
Common intermediate representation of
object-oriented design.
Extensible representations allow data from
different sources to be integrated.

Kurz (2019). The Vectors of Code: On Machine Learning for Software.
SEI Blog, Software Engineering Institute, Carnegie Mellon University.
Nord (2020). Using Machine Learning to Detect Design Patterns.
SEI Blog, Software Engineering Institute, Carnegie Mellon University.

11Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Code-Design Abstraction Gap

Ivers et al. (2019). Can AI Close the Design-Code Abstraction Gap? International Workshop on Software
Engineering Intelligence, IEEE/ACM International Conference on Automated Software Engineering (ASE).

12Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Build Graph

Static code analysis tool extracts structural
information from C++ object-oriented code.
Sample graph sizes:
Blobby Warriors github.com/visusnet/Blobby-Warriors

• 48K code lines
• 8,799 nodes and 50,411 relations

Hotspot (Qt framework) github.com/KDAB/hotspot
• 8K code lines
• 2,648 nodes and 11,427 relations

Sample Industry System
• 1,587K code lines
• 274,199 nodes and 1,057,595 relations

Schema Visualization: Neo4j Browser

13Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Engineer Features

Alhusain (2016). Intelligent data-driven reverse engineering
of software design patterns. PhD Thesis, De Montfort University.

<<Interface>>

Graphic

Ellipse CompositeGraphic
*

*

class CompositeGraphic : Graphic {
//Collection of child graphics.
private: ArrayList<Graphic> mChildGraphics;
…
public: void print() {

for (i = 0; i < LENGTH; i++){
mChildGraphics[i]->print();
} } …

}

class Graphic {
//Prints the graphic.
public: virtual void print();

}

class Ellipse : Graphic {
public: void print() {

System.out.println("Ellipse");
} }

Implements

Leaf Class

Same Interface
Container

Redirect in
Family

Interface

Implements

Structural and behavioral features link
elements though relations.
Structural

• Degree of Accessibility, Virtuality
interfaceMethods(c) =

|{m | m ∈ MDEC(c) ∧ Public(m) ∧ Abstract(m)}|

• Association
methodParam(c1,c2) =

true iff ∃p ∈PAR(MDEC(c1))∧ Type(p, c2)

Behavioral
• Invoker/invokee

toSibling(c1, c2) =
{∃c ∈ C | (Super(c1, c) ∧ Super(c2, c))}

composite pattern

14Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Check Conformance

Unpack Transform AssembleMsg
In

Msg
Out

FACE Data Transformation Pipeline

as-implemented
design

intended
design

“Explicit storage of intermediate
results … is error-prone”

“Non-adjacent processing
steps do not share information”

Design fragments represented as graphs
enable automatic detection.
Detect nonconformances

• Check graph of extracted design
fragment for agreement with
intended design fragment to locate
inconsistencies.

• Augment with checks against
canonical design knowledge
relevant to design fragment.

15Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Continuous Integration Workflow

Triage

Developer initiates
changes to design

Developer changes
implementation

Correctness

Significance

Detecting nonconformances produces
greatest value when issues are exposed
close to the time of injection.
Integrate with Jenkins CI tool to enable an
empirical evaluation of the use of
automation.
Use developer feedback in rating each
nonconformance to improve results.

• Correctness—Improve design
extraction by providing new labeled
data.

• Significance—Improve adaptive
filtering by capturing context-specific
rules and exceptions.

16Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Looking Ahead

• Build out infrastructure:
representation,
features, design
knowledge, and
conformance.

• Assemble open source
data and initial
analyses.

• Broaden the palette:
more design
knowledge and
conformance checks.

• Implement adaptive
filtering.

• Fine-tune
conformance
checking.

• Validate with
experienced
developers.

• Ready to pilot
conformance checking
for C++ software.

FY20 FY21 FY22

17Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Next Generation Automation for Software Evolution

Advance the state of the art where automation can
• keep software aligned with needs
• bring projects back into alignment
• realize changes sketched by developers in the language of design

Ivers et al. (2020) Next Generation Automated Software Evolution:
Refactoring at Scale. 28th Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ‘20). ACM.

18Automated Design Conformance during Continuous Integration
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

RESEARCH REVIEW 2020

Project Team Members

Robert Nord
Ben Cohen
Shane Ficorilli
James Ivers

John Klein
Lena Pons
Chris Seifried

