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1. Introduction 

The US Army Combat Capabilities Development Command (CCDC) Army 
Research Laboratory (ARL) is currently working on the development of a 
millimeter-wave (MMW) forward-looking synthetic aperture radar (FLSAR) to 
assist helicopter landing in degraded visual environments (DVE). This program 
supports the Future Vertical Lift cross functional team, which represents one of 
Army’s modernization priorities. Specifically, CCDC Army Research Laboratory 
is proposing a low cost, size, weight, and power MMW radar system that combines 
a linear antenna array and aircraft motion to obtain high-resolution 3-D imagery of 
an area of interest (e.g., the potential landing zone). This information would be 
passed to the pilot via helmet-mounted display to assist in deciding whether the 
landing zone is safe.  

An initial study of this radar system1 established the baseline performance metrics, 
including resolution, grating lobes, timing, power, and sensitivity to motion errors, 
indicating the possible levers available to the system designer and their associated 
tradeoffs. Since then, several additional papers investigating various aspects of the 
ARL DVE FLSAR have been published.2–4 In all this previous work, the image 
formation process was handled by the backprojection algorithm (BPA), in either 
time- or frequency-domain implementation (note the frequency-domain 
implementation has been called the “matched filter method” in some of our 
previous work; the two algorithms are equivalent). 

While the BPA is considered the “golden standard” in radar imaging due to its 
accuracy and flexibility, other synthetic aperture radar (SAR) algorithms with 
superior computational efficiency may be more suitable for imaging applications 
requiring real-time operation, such as the radar system for landing-zone mapping 
in DVE conditions. In this report we investigate the applicability of the polar format 
algorithm (PFA) to this radar configuration. 

The PFA is a mature image formation procedure that has been known within the 
SAR community for several decades.5,6 The core of this algorithm consists of a 
multidimensional fast Fourier transform (FFT) from the sampled radar data to the 
image domain, which is far more efficient than the computations required by the 
BPA. Nevertheless, the major shortcoming of the PFA is the fact that it relies on 
the plane wave approximation of the radar wave propagation, which is the same as 
assuming the radar and the image domain are placed in the far field region with 
respect to one another. When this assumption becomes invalid, the algorithm 
introduces errors in the image due to a propagation phenomenon known as 
wavefront curvature. A significant body of work5–8 has been dedicated to the 
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wavefront curvature error correction (WCEC) in the context of PFA to extend the 
algorithm’s applicability to more-general synthetic aperture geometries. 

In this study, we adapt the PFA to the specific FLSAR geometry, showing that this 
geometry requires a different formulation of the algorithm than the traditional  
side-looking SAR configuration. Furthermore, we perform a detailed analysis of 
the phase errors introduced by the wavefront curvature and present a new approach 
to the WCEC that is entirely different from previous studies in this area. 
Additionally, we adapt the PFA to the implementation of multistatic antenna arrays, 
which is an essential part of the FLSAR system design. All these steps in the 
algorithm development are illustrated with numerical examples representing the 
imaging system’s point spread function (PSF), with point targets placed at various 
locations throughout the image domain. 

The report is organized as follows. Section 2 describes the FLSAR system geometry 
and reviews several possible imaging algorithms for this application, including a 
detailed presentation of the PFA. In Section 3, we show numerical examples of 
images obtained by the PFA and discuss implementation details such as data 
interpolation and sampling requirements, as well as the algorithm extension for 
multistatic antenna arrays. Section 4, dedicated to the WCEC, starts with an 
analysis of the phase errors, then develops the new WCEC procedure for the 
FLSAR images. We draw this study’s conclusions in Section 5. 

2. System Description and Imaging Algorithms 

2.1 FLSAR System Description 

The principle of the helicopter-mounted FLSAR system for 3-D landing-zone 
imaging can be explained in reference to Fig. 1, which describes all the relevant 
parameters of the sensing geometry. Thus, the system is equipped with a 2-m-wide 
front-bumper-type linear antenna array that provides resolution in the azimuth 
direction (dictated by the integration angle ∆φ), while the forward motion of the 
platform at constant height creates a synthetic aperture with sufficient elevation 
look-angle diversity ∆θ to offer resolution in the vertical direction. The radar 
waveform bandwidth (0.5–1 GHz) provides resolution in the third direction 
(downrange). Further details on the proposed system, including typical operational 
parameters, waveforms, timing, antenna array configurations, and other design 
aspects can be found in our previous work.1
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(a) 

 
(b) 

Fig. 1 Schematic representation of the helicopter-borne radar system operating as FLSAR, 
showing the relevant sensing geometry from a) top view and b) side view. The small antenna 
diagrams mark the aperture sample positions. (Drawing not to scale.) 

The Cartesian coordinate system ( ), ,x y z  has the origin in the image center, with 

Dx, Dy, and Dz denoting the image extents in the three directions. The aperture 
samples used in image formation are obtained from the antenna array elements (in 
the y direction) and the forward synthetic aperture positions (in the x direction) and 
are placed in a uniform, rectangular 2-D array with overall dimensions Ly and Lx, 
respectively. We introduce the separate coordinates u and v, with the origin in the 
middle of the 2-D sample array, to characterize the sample positions within the  
2-D aperture. The middle of the 2-D aperture has the Cartesian coordinates 

( ),0,a aX Z  with respect to the image center, and 2 2
a a aR X Z= +  is the range 

between the aperture center and the image center. One difference from the geometry 

described in our previous report consists of moving the origin of the z axis to 
2

zD  

above the ground plane; this choice was made to simplify the subsequent derivation 
of the PFA. 
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Throughout this section, we consider a monostatic SAR system, meaning the radar 
transmitter (Tx) and receiver (Rx) are collocated for each aperture sample. The 
changes to the imaging algorithms required by a more realistic multistatic antenna 
array geometry were partially discussed in previous work.1 As a follow-up, we 
examine the impact of considering a multistatic system on the PFA formulation in 
Section 3.5 of this report. 

We assume the radar data are available in the frequency domain, at L frequency 
samples fl, as if the radar system operated with stepped-frequency waveforms. 
Upon down-conversion, the expression of the frequency domain point target 
response (PTR) of a target placed at coordinates ( )0 0 0, ,x y z , with the radar antenna 

at ( ), ,r r rx y z , and at frequency fl is 

 
( ) ( ) ( )( )2 2 2

, 0 0 0PTR exp R l r r rjk x x y y z z= − − + − + −
, (1) 

where ,
4 l

R l
fk

c
π

= (the subscript R stands for “radial”). In this expression, we 

ignored any magnitude variation of the radar signal with the target and radar 
aperture sample positions. 

Note that stepped-frequency waveforms are not necessarily a commonly used 
solution for practical MMW radar systems; however, they are entirely appropriate 
for our FLSAR model and have the advantage of simplifying some derivations. A 
much more common implementation of SAR systems employs linear frequency 
modulated (LFM), or chirp waveforms; the vast majority of textbooks and 
publications related to SAR theory start the analysis with these types of 
waveforms.5–8 Moreover, the preferred method for compressing LFM waveforms 
consists of stretch processing,9 where the received signal is mixed (or “de-ramped”) 
with a replica of the transmitted signal, rescaled from time to frequency samples, 
and finally Fourier-transformed to obtain the range profile characterizing a given 
radar location along the synthetic aperture. Our frequency domain SAR signal 
model is equivalent to considering the LFM waveforms after the de-ramping and 
rescaling steps but before the final Fourier transform performed in stretch 
processing. Specific issues related to this processing technique, such as the residual 
video phase5 (RVP), are discussed in most textbooks and are simply ignored in this 
work. 

When we consider the radar received signals, we initially set their phase origin at 
the radar antenna location. Again, this is not always a faithful representation of the 
way radar signals are processed in a practical system but serves the purpose of our 
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model. In fact, different SAR imaging algorithms have their own requirements in 
choosing the phase origin of the radar signals, and the phase adjustments required 
by each specific algorithm are indicated as part of the algorithm descriptions. 

2.2 Backprojection Algorithm 

The BPA and its variants has been employed in the vast majority of the SAR 
imaging work performed at ARL for over two decades. BPA represents a brute 
force, direct implementation of the exact matched filter for the SAR system 
geometry, in either frequency-aperture dimensions (the “frequency domain BPA”) 
or fast time-aperture dimensions (the “time domain BPA”) of the radar data.9,10 

To formulate the BPA, it is easiest to start with its frequency domain 
implementation—this has been called the “matched filter method” in some of our 
previous SAR imaging work.1 We assume the radar collects data from M different 
monostatic locations (or aperture samples) placed in an arbitrary geometrical 
pattern in the 3-D space. Let ( )m lS f  be the signal received at aperture sample index 
m and frequency index l, and ( ), ,x y z  the current image voxel coordinates. Then 

the complex amplitude of the current voxel is computed as 

 
( ) ( ) ( ),

1 1

1, , exp
L M

m l R l m
l m

I x y z S f jk R
LM = =

= ∑∑ , (2)
 

where ( ) ( ) ( )2 2 2
, , ,m r m r m r mR x x y y z z= − + − + − . 

In Eq. 2, fl is the frequency of the passband signal, all coordinates are referenced to 
the Cartesian system origin (placed in the center of the image), and the  

( )m lS f signal phase is referenced to the radar antenna location. 

Although the matched filter in the frequency domain version of the BPA achieves 
exact compensation of the radar signal phase when the current voxel coincides with 
the target location, this algorithm is very inefficient from a computational 
standpoint. Thus, the operations in Eq. 2, consisting of a double sum over all 
frequency and aperture samples, must be repeated for all voxels in the image. 
Moreover, the algorithm does not take advantage of any FFT type of computations, 
which constitute the foundation of the vast majority of efficient algorithms in radar 
signal processing. 

An improvement in the execution speed of the BPA can be obtained if the radar 
data are first converted from frequency to time domain via inverse FFTs. One 
important detail in this operation is that to achieve an alias-free conversion via FFT 
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with a reasonable number of frequency samples, the phase origin of the radar signal 
must be shifted from the radar antenna location to the Cartesian system origin in 
the image center. This phase adjustment can be written as 

 
( ) ( ) ( ) ( ) ( )0 2 2 2

, , , , , ,exp expm l m l R l r m r m r m m l R l r mS f S f jk x y z S f jk r= + + = . (3)
 

After this operation, which performs a passband-to-baseband conversion in the 
range dimension, the radar signal’s Nyquist sampling rate in frequency is dictated 
solely by the image depth (or downrange swath), which is typically much smaller 
than the radar–voxel range. Let ( )0

ms t  be the time domain version of ( )0
mS f

obtained via FFT. Since the frequency-to-time domain FFT acts only on the 
baseband part of the signal spectrum, the complex ( )0

ms t  signal contains a residual 

phase factor corresponding to the carrier frequency. With these provisions, the time 
domain version of the BPA is described by the following equation: 

 ( ) ( )
0

0 0
0

1

2, , exp
M

m
m R m

m

RI x y z s jk R
c=

 
=  

 
∑ , (4) 

where 0
0

4
R

fk
c

π
=  corresponds to the carrier frequency f0, and 

( ) ( ) ( )2 2 20 2 2 2
, , , , , , ,m m r m r m r m r m r m r m r mR R r x x y y z z x y z= − = − + − + − − + + . (5)

 

Note the factor ( )0
0exp R mjk R  that compensates for the residual carrier frequency 

phase factor previously mentioned. Since the waveforms ( )0
ms t  are sampled at 

discrete times, the delay 
02 m

m
R
c

τ =  computed for a particular aperture-position-

voxel pair usually does not coincide with one of those time samples. To avoid 
computationally costly on-the-fly interpolations, a common procedure is to 
oversample the original waveforms by a large factor (at least 32) with respect to the 
time domain Nyquist rate and select the sample corresponding to τm from the new 
waveform based on the nearest neighbor rule. Tapered windows are typically 
applied to the frequency domain data ( )m lS f  in both frequency and aperture 

dimensions for image sidelobe reduction. 

As noted in Eq. 4, the time domain BPA involves a single sum (over aperture 
samples) for each image voxel computation, which represents an improvement over 
the frequency domain version. A detailed analysis of the computational complexity 
of these algorithms is beyond the scope of this report. Nevertheless, neither BPA 
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version takes advantage of FFT-type processing; this shortcoming has prompted 
the SAR community to develop more computationally efficient image formation 
algorithms, such as the range migration algorithm (RMA) and PFA. 

2.3 Range Migration Algorithm 

The RMA represents the current state of the art in Fourier-based SAR image 
formation algorithms, combining an accuracy comparable to BPA with the 
computational advantages provided by employing multidimensional FFT 
operations.5,10 A complete derivation of the RMA is clearly beyond the scope of 
this study. In the following, we simply list the steps involved in the RMA 
implementation for the FLSAR system:  

• Start with the frequency domain samples ( )m lS f , with the phase referenced 

to the radar antenna position, as discussed in Section 2.1. 

• Oversample the data in the frequency dimension and zero-pad the data in 
the y (azimuth) direction. The reasons for these operations are discussed 
further in this section. Apply tapered windows in the frequency and aperture 
dimensions for sidelobe control. 

• Convert the data to baseband in the ku dimension (the Fourier counterpart 
of the forward aperture coordinate u). This consists of multiplying the data 
by the factor ( )0exp cosR ajk uθ , where θa is the grazing angle from the 

middle of the 2-D aperture to the Cartesian system origin. Note this 
operation is specific to squinted aperture geometries. 

• Take a 2-D inverse FFT of the new data along the two aperture dimensions 
(u and v). At this point, the radar data lie in a 3-D space of coordinates kR, 
ku, and kv. Note that these coordinates represent passband versions of the 
corresponding k-domain variables. 

• Multiply the data in this domain by the factor 

( )2 2 2exp R u v a u aj k k k Z jk X− − + . This operation implements a “coarse 

matched filter” and has the role of performing passband to baseband 
conversions in the z dimension (the first phase term) and the u dimension 
(the second phase term), respectively. Note the second phase term in the 
exponential factor is again specific to squinted aperture geometries. 

• Perform the Stolt interpolation. This is a 1-D interpolation from the kR 

variable samples to uniformly spaced samples in 2 2 2
z R u vk k k k= − − . At the 

same time, relabel ku as kx and kv as ky (a coordinate order permutation is 
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associated with the coordinate relabeling in the FLSAR configuration). At 
this point, the data lie in a 3-D space of coordinates kx, ky, kz, which are the 
Fourier counterparts of the image domain coordinates x, y, z. 

• Take a 3-D FFT of the interpolated data set to obtain the image in the spatial 
domain. 

Implementing RMA for the FLSAR system presents some major challenges due to 
the severely squinted forward aperture geometry (the squint angle is typically 80° 
for this system). For this reason, we were not able to find many publications 
discussing the application of RMA to FLSAR imaging systems in the literature. A 
lone paper by Soumekh11 proposed a forward-looking radar imaging system based 
on RMA (interestingly, the application was also related to guided aircraft landing), 
although its principle was somewhat different from the ARL-proposed FLSAR 
system. The main challenges encountered in this RMA implementation can be 
summarized as follows: 

• The RMA involves back and forth FFTs between the y and ky variables (the 
initial transformation is in fact between v and kv, which are equivalent to y 
and ky). When we perform these FFTs, we must make sure the data are 
sampled at or above the Nyquist rates in both y and ky variables to avoid 
aliasing. For the FLSAR geometry, the image cross-range is much larger 
than the aperture length in azimuth ( y yD L>> ). The aperture sampling rate 

in y must satisfy 0

2
a

y

Ry
D

λ
∆ ≤ , as discussed in our previous work. However, 

to satisfy the Nyquist sampling rate in ky , we require 2
y

y

k
D
π

∆ ≤ . Since we 

have 2
y ds

y

k
L
π

∆ = , where ds
yL  is the aperture data support for the initial 

yy k→  FFT, we infer that ds
y yL D≥ . In other words, the azimuth aperture 

data support must be at least as large as the cross-range image dimension. 
Since the actual aperture size Ly is much shorter than Dy (typically by a 
factor of 10), the former needs to be extended by zero-padding the original 
azimuth aperture data to match the image size in cross-range. This 
requirement increases the total number of radar data samples in the azimuth 
dimension by a large multiple. 

• During the Stolt interpolation from kR to kz variables, the grid representing 
the radar sample locations in the k-domain incurs a rotation by the squint 
angle o90 aθ− in the kx-kz plane (as previously mentioned, this angle is large, 
around 80°). If the sample spacing in kR is ∆kR, the sample spacing in kz is 
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4
sin sin

R
z

a a

k fk
c

π
θ θ

∆ ∆
∆ = = . At the same time, the required Nyquist rate for kz 

sampling is 2
z

z

k
D
π

∆ = ; from here we derive 
sin
2

a

z

cf
D

θ
∆ = . (Note: to be 

exact, θa should be replaced by θmin, the smallest possible radar–voxel angle 
in the entire FLSAR configuration). This result matches the one derived by 
Soumekh.10 The presence of the sinθa factor in the numerator means that 
the sampling rate in frequency required by the RMA is significantly larger 
than that required by the BPA (typically by a factor of 6). Additionally, note 
that the frequency sampling rate for RMA depends on the vertical image 
dimension Dz, whereas the same sampling rate for BPA depends on Dx. 

The FLSAR-specific requirements of zero-padding the aperture in azimuth and 
oversampling the signals in frequency bring the total number of radar samples to 
process by RMA to an unacceptably large figure and eventually negate this 
algorithm’s computational advantages. Indeed, a comparison of the computational 
complexity between RMA and the time domain BPA applied to the FLSAR system, 
for the same radar data set and image size, shows that the two methods involve 
similar numbers of floating-point operations. Although we successfully 
implemented the RMA for the FLSAR system, the algorithm’s rather 
underwhelming computational performance in this application made us abandon it 
and continue the search for faster imaging methods. 

2.4 Polar Format Algorithm 

The PFA was a relatively early development within the SAR community12 and has 
been subsequently replaced by the more advanced RMA in most applications. The 
latter algorithm achieves a similar computational efficiency for conventional SAR 
geometries, without relying on the approximations specific to PFA. However, there 
are still specific sensing scenarios, such as the FLSAR system investigated by ARL, 
where the PFA is not affected by the same challenges as the RMA (described in 
Section 2.3). The main goal of this report is to show that when coupled with the 
WCEC procedure, PFA can produce accurate imaging results for this radar system 
with far better computational efficiency than both RMA and BPA. 

The main tenet of the PFA is that the SAR received signal obtained at one frequency 
and one aperture location represents a sample in the k-domain characterizing the 
reflectivity of the entire scene under investigation. Since the k-domain represents 
the Fourier counterpart of the spatial image domain, the image (more exactly, the 
spatial reflectivity map) can be obtained by a 2-D or 3-D Fourier transform of the 
radar data. Note this methodology is different from the more precise RMA 
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approach, where the radar signal obtained from the entire scattering scene, at one 
frequency and aperture location, covers an extended area (or volume) in the  
k-domain. RMA requires additional processing in this domain to reduce these scene 
responses to single k-domain samples, which are subsequently converted to the 
image domain by Fourier transform. 

The validity of the PFA approach relies on the plane wave approximation of the 
radar wave propagation, which assumes the radar and target scene are placed in the 
far-field region with respect to one another. As previously discussed, the far-field 
assumption is not satisfied for our FLSAR geometry, meaning that the PFA-formed 
images will exhibit errors caused by the wavefront curvature phenomenon.5 In this 
section we formulate the basic PFA for the FLSAR configuration. In Section 3 we 
present numerical examples of images obtained by the basic PFA, demonstrating 
the errors introduced by this procedure. In Section 4 we perform a detailed analysis 
of these phase errors and develop a method to correct them. 

To establish the 3-D PFA formulation for the FLSAR system, we start from Eq. 2 
(describing the exact matched filter for the SAR image) and use the following 
approximation of the radar–voxel range: 

 

( ) ( ) ( )

( )

2 2 2 2 2 2

2 2 2

cos cos sin cos sin

r r r
r r r r r r

r r r

r r r
r r r r r r r

r

xx yy zzR x x y y z z x y z
x y z

xx yy zzr r x y z
r

φ θ φ θ θ

+ +
= − + − + − ≅ + + −

+ +

+ +
= − = − + +

.  (6)

 

Note the subscript r stands for the radar location coordinates (including the angular 
coordinates φ and θ), and, as compared with the formulas in Section 2.2, we 
dropped the index m representing the aperture sample. The approximation in Eq. 6 
assumes that the image dimensions are much smaller than the radar range rr. When 
plugged into the PTR formula, we obtain 

 
( ) ( )( )PTR exp exp cos cos sin cos sinR R r r r r r rjk R jk r x y zφ θ φ θ θ = − ≅ − − + +  . (7)

 

Aside from the factor ( )exp R rjk r− , which depends on the radar location only, the 

remaining phase factor ( )exp cos cos sin cos sinR r r r r rjk x y zφ θ φ θ θ+ +  
represents a plane wave propagating at angles φr and θr with wavenumber 

4
R

fk
c
π

= . According to the principle of stationary phase (PSP),5,9 the angles 

characterizing a radar signal sample in the k-domain are the same as the line-of-
sight propagation angles in the physical space. Consequently, these three 
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coordinates ( ), ,R r rk φ θ  are sufficient to completely characterize the wave vector k, 

or the radar sample’s location in the k-domain. In the following, we drop the 
subscript r from the angles φ and θ, since these angles are always referenced in 
relation to the radar sample location. 

In PFA, the radar signal at frequency index l and aperture location index m,  
( )m lS f , undergoes the same phase adjustment as indicated by Eq. 3, which consists 

of multiplication by the factor ( ), ,exp R l r mjk r . Note that since we assume that the 

radar coordinates with respect to the Cartesian system origin (or the image center) 
are known at each aperture sample location, this phase adjustment can be performed 
as a computational step within the algorithm. However, more often this operation 
is implemented directly in the radar receiver hardware, by introducing the 
appropriate time delay in the mixing signal used in de-ramping or down-
conversion.5 The resulting phase-adjusted PTR can be written as 

 ( )0PTR exp cos cos sin cos sinRjk x y zφ θ φ θ θ= + +   . (8) 

We denote the phase-adjusted radar signal received from a general target scene by 
( )0 , ,RS k φ θ : This shows that the signal depends on frequency (via kR) and aperture 

position (via φ and θ). The image reconstruction procedure consists of applying a 
matched filter with transfer function given by the conjugate of the expression in  
Eq. 8 to the signal ( )0 , ,RS k φ θ : 

( ) ( ) ( )

( ) ( )

0

0

, , , , exp cos cos sin cos sin

, , exp
R

x y z

R R
k

x y z x y z
k k k

I x y z S k jk x y z

S k k k j k x k y k z

φ θ

φ θ φ θ φ θ θ= − + +  

 = − + + 

∑∑∑

∑∑∑ , (9)
 

where cos cosx Rk k φ θ= , sin cosy Rk k φ θ=  and sinz Rk k θ= . The sums are 

computed over the available samples in the corresponding variables. Now it 
becomes clear that the image reconstruction procedure described by Eq. 9 
resembles a discrete version of a 3-D Fourier transform from the k-domain variables 
( ), ,x y zk k k  to the image domain variables ( ), ,x y z . 

To enable the implementation of this Fourier transform by a 3-D FFT, we need to 
ensure the data samples in the k-domain are arranged in a rectangular and uniformly 
spaced grid in the ( ), ,x y zk k k  variables. Since the original radar data samples are 

not typically collected in a pattern that satisfies this condition, the data must be 
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interpolated from the original ( ), ,Rk φ θ  sample grid to the FFT-ready grid in the 

( ), ,x y zk k k  coordinates. 

Traditionally, the PFA has been developed for 2-D side-looking SAR geometries, 
where the radar data samples form a polar pattern in the k-domain; the interpolation 
is then performed from a polar to a rectangular grid in this domain, hence the “polar 
format” name of the algorithm. However, the radar samples in the forward-looking 
geometry of the ARL-proposed system do not conform to this polar pattern, as seen 
in the plots in Fig. 2. Additionally, the forward aperture samples do not form a 
uniformly spaced grid in the θ angle. Consequently, we found it more useful to 
work with the radar sample coordinates ( ), ,Rk v u  instead of ( ), ,Rk φ θ . This 

approach has the advantage that the original radar samples are uniformly spaced 
when expressed as a function of the ( ), ,Rk v u  coordinates; this sample uniformity 
would not hold when working with the ( ), ,Rk φ θ  coordinates. 

 
 (a) (b) 
Fig. 2 Positions of the radar data samples (blue dots) and image samples (red dots) in the 
k-domain as a function of a) kR and ku variables and b) kx and kz variables. The image samples 
exhibit a wider k-domain coverage than the radar data samples because the image pixels are 
oversampled by a factor of 2 with respect to the resolution cell size. Note in this graphic 
representation, the k-domain samples are down-sampled by a factor of 16 in all dimensions. 

Note we have r ax X u= − , ry v= , and r az Z= , and we can establish the following 
transformations between the ( ), ,Rk v u  and ( ), ,x y zk k k  sets of coordinates: 
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As an alternative to the aperture coordinates u and v, we can use the variables 
0R

u
a

kk u
R

=  and 0R
v

a

kk v
R

= , which have the same physical dimension as kx, ky, kz, 

and kR. (Note: ku and kv are not the Fourier counterparts of u and v, but simply 
scaled-up version of these variables.) In fact, the radar and image sample positions 
in Fig. 2a are represented as a function of the ku and kR coordinates. 

When using the ( ), ,Rk v u  set of coordinates, the reconstruction procedure becomes 

 

( ) ( ) ( )
( )

0

2 2 2
, , , , exp

R

a a
R R

k u v
a a

x X u yv zZ
I x y z S k v u jk

X u v Z

 − + + = −
 − + + 

∑∑∑ .  (11)
 

The application of the PFA to the FLSAR geometry involves a 3-D interpolation 
from the ( ), ,R v uk k k  coordinates, characterizing the radar data, to the ( ), ,x y zk k k  

coordinates, characterizing the k-domain image data. Details related to the data 
sampling and interpolation in the k-domain are discussed in Sections 3.3 and 3.4. 

To summarize, the PFA implementation for the FLSAR system involves the 
following processing steps: 

• Start with the frequency domain samples ( ), ,S f v u , with the phase 

referenced to the radar antenna positions, as discussed in Section 2.1. 

• Apply tapered windows in the frequency and aperture dimensions for 
sidelobe control. 

• Perform the phase adjustment of these samples by the factor ( )exp R rjk r  to 

obtain the new data samples ( )0 , ,R v uS k k k . 

• Interpolate these samples from the original data grid of ( ), ,R v uk k k  

coordinates to a rectangular, uniformly spaced grid of ( ), ,x y zk k k  

coordinates. 
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• Take a 3-D FFT of the interpolated data set to obtain the image in the spatial 
domain. 

All three algorithms presented in this section (BPA, RMA, and PFA) result in 
images with the same nominal resolution in the three Cartesian directions1: 

 
2 cos a

cx
B

δ
θ

= , (12a) 

 0

2
a

y

Ry
L

λδ = , (12b) 

 0

2 tan
a

x a

Rz
L
λδ

θ
= . (12c) 

In Eq. 12a, B is the radar signal bandwidth. Note these resolution formulas assume 
no tapered windows are applied in the frequency and aperture dimensions. When 
we introduce those windows, the resolution cell size increases by a typical factor 
between 1.5 and 1.8. 

In the case of PFA, because of the wavefront curvature errors issue, only the voxel 
at the image center (placed in the Cartesian system origin) is perfectly focused with 
the resolution given by Eq. 12. Voxels placed away from the image center exhibit 
some varying degree of defocusing, meaning these resolution formulas do not apply 
in those cases. However, after performing the WCEC procedure presented in 
Section 4, the voxel resolution is restored to its nominal values in Eq. 12. 

3. PFA Imaging Examples and Implementation Details 

3.1 2-D Images Obtained by PFA 

In this section, we demonstrate numerical examples of 2-D images obtained by 
PFA, illustrating the two aperture configurations that together make up the 3-D 
FLSAR geometry: the side-looking aperture (in the x-y plane) and the forward-
looking aperture (in the x-z plane). In the side-looking aperture configuration we 
only consider monostatic radar samples along the physical aperture direction  
(y axis) placed at fixed x and z coordinates. In the forward-looking aperture 
configuration, we use radar samples along the forward synthetic aperture direction 
(x axis) while keeping the y and z coordinates fixed. The SAR system parameters 
used in these examples are exaggerated (as compared with the practical ARL-
proposed FLSAR system) with the purpose of creating very large sized images, 
which offer a clear illustration of the wavefront curvature errors issue. Investigating 
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the 2-D imaging geometries separately has the advantages of reasonable execution 
times (for large images) and simplicity of graphic representation. The full 3-D 
FLSAR configuration, applied to an image size better aligned with this project’s 
objectives, is demonstrated in Section 3.2.  

For both aperture configurations, we chose a horizontal radar range of 1000 m and 
size-up the other parameters to achieve the FLSAR system’s nominal spatial 
resolution of 0.25–0.3 m. For this purpose, we need to ensure the aperture sizes 
provide integration angles in azimuth and elevation of 0.8°–1° independent of the 
radar range. At 1000-m range, this results in aperture sizes (in both x and y 
directions) much larger than the practical FLSAR system proposed by ARL, which 
is designed to achieve the nominal resolution at 150–200-m range. The resulting 
SAR images shown in this section contain 1024 pixels in all three Cartesian 
directions. The following is a complete list of the system parameters used for 2-D 
imaging by PFA: 

• Carrier frequency fc = 35 GHz  

• Bandwidth B = 500 MHz, from 34.7–35.2 GHz 

• Fixed aperture width Ly = 14 m 

• Synthetic aperture length Lx = 100 m 

• Radar platform height Za = 175 m 

• Average horizontal range Xa = 1000 m; horizontal range varies from 1050 
to 950 m 

• Number of samples in frequency = 1024, spaced 0.49 MHz apart 

• Number of samples along fixed azimuth aperture (y direction) = 1024, 
spaced 1.37 cm apart 

• Number of samples along forward-looking aperture (x direction) = 1024, 
spaced 0.1 m apart 

The resulting angular parameters are 

• Azimuth integration angle: ∆φ = 0.8°, varying in 0.0008° steps 

• Elevation integration angle: ∆θ = 1°, varying in 0.001° steps 

• Average slant angle: θa = 10°, varying from 9.4° to 10.4° across the aperture 

The image sizes are 156 × 156 m (for the side-looking aperture) and 156 × 128 m 
(for the forward-looking aperture), respectively; in both cases, we use 1024 pixels 
in all directions. This results in a pixel size of 15.2 cm in x and y directions and  
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12.5 cm in the z direction. Note the pixel size is chosen approximately half of the 
resolution cell size to avoid the so-called “straddling losses”, which are typical to 
FFT-based radar imaging systems and may induce unpredictable magnitude 
fluctuations of the image pixels. Additionally, we use Hamming windows in all 
three radar data dimensions (frequency, y- and x-directed apertures) to suppress the 
image sidelobes. Due to the presence of these windows, the half-width of the PSF 
mainlobe (or effective image resolution) spans approximately three image pixels. 
Further details on the data and image sampling requirements for this algorithm are 
discussed in Section 3.3. 

The scattering scenes to be mapped in both configurations are made of eight point 
targets placed at various location throughout the image. Figure 3 plots the image 
obtained for side-looking configuration (x-y plane), while Fig. 4 shows the image 
obtained for forward-looking configuration (x-z plane). The true target coordinates 
are listed in Table 1. Note we used different sets of target coordinates between the 
side-looking and forward-looking cases. 

In all SAR images throughout this report, the radar is placed on the right side of the 
page, which is opposite from the diagram in Fig. 1. The pixel/voxel magnitudes are 
represented in decibels, with a dynamic range of 40 dB.  

As previously discussed, the PFA images are afflicted by the wavefront curvature 
phase errors. One effect of these errors is to induce shifts in the image coordinates 
with respect to the true target coordinates. The dependence of these spatial shifts 
on the imaging system parameters and target locations is fairly complex and is 
analyzed separately in Section 4.1. Generally, the shifts are larger as the targets are 
placed further away from the image center. Table 1 indicates the location of target 
images obtained by the uncorrected PFA as compared with the true target locations 
for the 2-D imaging examples. 
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(a) 

 
(b) 

Fig. 3 2-D SAR image obtained for the side-looking geometry in the x-y plane, showing a) 
true locations of the point targets (red squares on blue background) and b) SAR image of these 
targets obtained by PFA. The target numbers are indicated in Fig. 3a. 



 

18 

 
(a) 

 
(b) 

Fig. 4 2-D SAR image obtained for the forward-looking geometry in the x-z plane, showing 
a) true locations of the point targets (red squares on blue background) and b) SAR image of 
these targets obtained by PFA. The target numbers are indicated in Fig. 4a. 
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Table 1 Target coordinates in the 2-D side-looking and forward-looking SAR 
configurations, showing the true locations as well as their images obtained by direct 
application of the PFA 

Target 
number 

Side-looking Forward-looking 
True PFA True PFA 

x (m) y (m) x (m) y (m) x (m) z (m) x (m) z (m) 
1 –50.0  60.0 –51.8 57.1 60.0 –30.0 60.4 –37.3 
2 52.0 66.5 49.6 69.9 68.2 24.8 68.1 25.2 
3 15.6 –6.5 15.5 –6.6 15.6 –19.3 15.7 –20.9 
4 10.0 –47.8 8.9 –48.2 10.0 –45.8 10.0 –52.1 
5 –29.1 3.6 –9.1 3.5 –29.1 3.6 –29.1 3.2 
6 –30.2 –41.4 –31.1 –40.2 –30.2 –1.4 –30.4 –43.5 
7 53.3 –50.0 52.0 –52.7 –5.7 38.9 –5.8 34.5 
8 –5.7 38.9 –6.6 38.7 0.7 2.3 0.7 2.3 

 

One possible simplification of the PFA for SAR systems operating with 
narrowband waveforms and narrow-angle aperture integration—with aperture at 
broadside—relies on the fact that in that scenario the radar measurement samples 
form a pattern very close to a rectangular, uniform grid in the k-domain. In that 
case, a direct 2-D FFT of the radar data (with the appropriate scaling of the axes) 
can yield the image in the spatial domain without the need for any sample 
interpolation from the radar measurement to Cartesian coordinates in the k-domain. 
This procedure should apparently work for the side-looking aperture considered in 
this section, which satisfies all the conditions enumerated. Nevertheless, we found 
by numerical experiments that skipping the interpolation step in PFA, even for this 
well-behaved imaging scenario, leads to serious image distortions, especially when 
the targets are located far from the image center. The image distortions in the 
absence of k-domain sample interpolation are even more severe in the case of the 
forward-looking aperture, which presents a very large squint angle as compared 
with the side-looking counterpart. The main reason for this effect is the strong 
nonlinear relationship between the kz and u variables (see Eq. 10), which precludes 
the application of a simple linear mapping from the radar measurement to Cartesian 
coordinates in the k-domain. Consequently, every time we have applied the PFA to 
2-D or 3-D imaging throughout this report, we performed the k-domain sample 
interpolation across all available radar signal dimensions. 

3.2 3-D Images Obtained by PFA 

The extension from the 2-D imaging geometries in Section 3.1 to the full 3-D 
geometry of the FLSAR system is straightforward. The 3-D imaging by PFA was 
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described in Section 2.4. As part of this procedure, a 3-D data interpolation is 
performed from the radar measurement sample coordinates ( ), ,R v uk k k  to the image 

k-domain Cartesian coordinates ( ), ,x y zk k k . 

In the 3-D case, the radar system and image parameters are chosen to match the 
desired performance metrics of the proposed FLSAR system for helicopter landing 
assistance. Note that as compared with the parameters in Section 3.1, the radar 
range is only 200 m, the physical aperture (antenna array) has a length of 2 m, and 
the image size is limited to 20 × 20 × 16 m. The resulting sensing geometry achieves 
the following nominal image resolution: 0.3 m in the x direction, 0.4 m in the y 
direction, and 0.33 m in the z direction, respectively. The complete list of radar 
system parameters follows: 

• Carrier frequency fc = 35 GHz  

• Bandwidth B = 500 MHz, from 34.7 to 35.2 GHz 

• Fixed aperture width Ly = 2 m 

• Synthetic aperture length Lx = 15 m 

• Radar platform height Za = 34 m 

• Average horizontal range Xa = 200 m; horizontal range varies from 192.5 to 
207.5 m 

• Number of samples in frequency = 128, spaced 3.9 MHz apart 

• Number of samples along fixed azimuth aperture (y direction) = 128, spaced 
1.56 cm apart 

• Number of samples along forward-looking aperture (x direction) = 128, 
spaced 0.117 m apart 

• Azimuth integration angle: ∆φ = 0.6°, varying in 0.0047° steps 

• Elevation integration angle: ∆θ = 0.75°, varying in 0.006° steps 

• Average slant angle: θa = 10°, varying from 9.6° to 10.4° across the aperture 

We use four point targets placed at coordinate sets listed in Table 2 together with 
the coordinates of their image peaks. These targets are not connected in any way 
with those considered in the 2-D cases from Section 3.1. In the 3-D case, the number 
of voxels in the three Cartesian directions are 128 × 128 × 128, respectively, with 
a voxel size of 15.6 cm in the x and y dimensions and 12.5 cm in the z dimension. 
We again apply Hamming windows to the radar data in all dimensions. This results 
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in an effective image resolution cell size extending over approximately three voxels 
in each direction. Since the graphic representation of the 3-D images is somewhat 
difficult, Fig. 5 only displays four vertical planar cuts in the y-z plane corresponding 
to the x coordinate of each target image peak. Note that these peaks can only be 
determined with an accuracy comparable to the voxel size. As in the 2-D cases, the 
largest target coordinate shifts occur in the z direction. 

 
 (a) (b) 

 
 (c) (d) 

Fig. 5 Vertical y-z planar cuts through the 3-D PFA image obtained for the full FLSAR 
configuration at x coordinates corresponding to the four target image peaks: a) x = –8.125 m 
(Target 3), b) x = –5.937 m (Target 4), c) x = 5.937 m (Target 1), and d) x = 6.719 m (Target 2) 
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Table 2 Target coordinates in the 3-D FLSAR configurations, showing the true locations 
as well as their images obtained by direct application of the PFA 

Target 
number 

True PFA 
x (m) y (m) z (m) x (m) y (m) z (m) 

1 5.9  8.2 4.4 5.9 8.5 3.3 
2 6.7 –3.7 –5.6 6.7 –3.8 –6.7 
3 –8.1 6.2 –6.5 –8.1 5.9 –7.1 
4 –5.9 –6.8 2.5 –5.9 –6.6 1.6 

 

3.3 Sampling Requirements for Radar Data and Image Domains 

In this section, we discuss criteria for setting the sampling rates of the radar data 
and image voxels in all relevant dimensions. In terms of radar data sampling, the 
major consideration is avoiding target aliasing in images with the desired spatial 
extent. The image voxel size is typically chosen in relation to the resolution cell 
size, such that all possible image details are captured by its graphic representation. 

Before we establish precise criteria for sampling rate setting, we need to mention 
the fact that FFT-based algorithms do not allow independent selection of the sample 
spacing between the two corresponding Fourier variables. For example, if we 
consider the frequency and range as the Fourier variable pair, the choice of a 
frequency step ∆f and a total number of samples N uniquely determines the range 

sample spacing resulting from FFT processing, 
2

cR
N f

∆ =
∆

. Apparently, this 

mathematical identity prohibits the simultaneous arbitrary choice of both ∆f and 
∆R. Note this issue is not relevant to imaging algorithms that do not make use of 
FFT processing, such as those belonging to the BPA family. 

Nevertheless, independent selection of sampling rates in both radar data and image 
voxels is still possible in PFA due to the presence of the intermediary interpolation 
step between the two data sets. Thus, the sampling rates in frequency and aperture 
dimensions (u and v) are dictated by the Nyquist criterion based on the image 
overall extent, as explained shortly. On the other hand, the image voxel size dictates 
the data coverage in the k-domain (or ( ), ,x y zk k k  variables) before the final 3-D 

FFT step of the PFA. The 3-D interpolation from the ( ), ,Rk v u  to the ( ), ,x y zk k k  

variables has the role to reconcile the mismatch between the two coordinate grids, 
whose sample locations do not coincide regardless of how we pick the image voxels 
and radar data sampling intervals. 

The Nyquist rate requirements for radar data sampling established in our previous 
work1 for the BPA are equally valid for the PFA. These are the following: 
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These sampling rates ensure that any point target placed throughout the image does 
not introduce grating lobes within the image extent. However, satisfying these 
conditions does not guarantee that targets located outside the image frame do not 
create grating lobes within that domain. There are two main methods to suppress 
the grating lobes induced by out-of-image-frame targets:  

1) Use radar antennas with beam patterns that approximately match the image 
extent in azimuth and elevation dimensions (note that this method cannot 
be applied to the downrange dimension). This way, returns from targets 
outside the image domain are “filtered out” by the antenna pattern. Because 
these patterns do not have an abrupt angular cutoff, some grating lobe 
leakage resulting from out-of-image strong targets is always a possibility. 
Therefore, the system designers cannot solely rely on this method for 
grating lobe suppression. 

2) Use a digital spatial filter in the radar data domain that rejects returns from 
targets outside the image domain. This procedure is called “spotlighting” 
by Soumekh.10 In the context of PFA, this filtering operation can be easily 
implemented based on the approximate 3-D Fourier relationship between 
the radar data and image. For this processing to work, the original radar data 
must be oversampled with respect to the rates indicated by Eq. 13. We 
propose an oversampling factor of 2, meaning the procedure can handle 
grating lobes from targets placed anywhere within twice the actual image 
extent. Any targets placed outside these dimensions should be handled by 
the antenna pattern filter. 

The grating lobe suppression digital spatial filter is implemented as a preprocessing 
operation via the following steps: 

• Start with the radar data sampled at half the intervals given by Eq. 13 (that 
means an oversampling factor of 2). For instance, in the 2-D side-looking 
example in Section 3.1, the frequency Nyquist rate computed by Eq. 13a is 
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0.98 MHz. However, in the actual simulation, we doubled up the sampling 
rate by setting the sampling interval to 0.49 MHz. 

• Take a 3-D FFT of those data to obtain an approximate version of the radar 
image. Note that since this image formation procedure skips the 3-D  
k-domain data interpolation step, this approximate radar image may contain 
some severe distortions. However, we expect that target positions in this 
image do not deviate too far from their true locations. 

• Apply a 3-D filter in the image domain with the transfer function: 
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In this equation, ( ), ,f v uf f f  are the Fourier counterparts of ( ), ,f v u  and 

correspond loosely to scaled versions of the image coordinates ( ), ,x y z . 

This procedure filters out the targets placed outside the desired image extent 
while keeping the inside targets untouched. 

• Take a 3-D inverse FFT from the image domain back to the radar data 
domain and restart the PFA procedure with the new data set. 

Note the spotlighting procedure described by Soumekh10 is more complex because 
it takes into account the quadratic terms describing the phase variation as a function 
of the aperture coordinates. However, for the narrowband and narrow-angle 
aperture characterizing the MMW FLSAR system, these quadratic terms can be 
neglected during the filtering procedure. In practice, we found the digital filtering 
procedure indicated in this section to offer satisfactory results in our application, 
with very little additional computational burden to the image formation process. If 
needed, certain margins can be added to the image extent to account for the shifts 
incurred by the target images due to the wavefront curvature error issue. 

This grating lobe suppression method can be applied to FLSAR imaging as a 
preprocessing step regardless of the actual algorithm employed in image formation 
(including BPA). The only price we must pay to achieve this suppression is the 
oversampling of the radar data. While this is typically not a significant issue in the 



 

25 

frequency and synthetic aperture dimensions, it may impose a rather difficult design 
requirement on the antenna array, where the addition of extra elements can be major 
factors in raising the system’s cost and complexity. Techniques for reducing the 
number of antenna elements using multistatic array configurations are discussed in 
Section 3.5. After the application of the grating lobe suppression digital filter, the 
radar data can be down-sampled back to the Nyquist rates given by Eq. 13 to reduce 
the computational burden on the imaging algorithm. However, as we show in 
Section 3.4, the 3-D interpolation procedure specific to the PFA directly benefits 
from using the oversampled radar data; consequently, the data are left unchanged 
after the spatial filtering operation. 

Regarding the choice of the sampling interval in the image domain (or the voxel 
size), an obvious choice is to make it no larger than the image resolution cell size, 
such that one captures all the features available in the radar map obtained at that 
resolution level. However, setting the voxel size exactly equal to the resolution cell 
size is not a good practical solution, particularly in FFT-based radar signal 
processing schemes, due to the straddling loss issue.13 In a nutshell, the straddling 
loss occurs when the radar signal’s peak does not align with the middle of a 
resolution cell obtained at the output of the FFT operation. As a result, the image 
magnitude can exhibit unpredictable fluctuations (of up to 6 dB) that are not directly 
related to the target’s scattering strength. A good rule of thumb that mitigates this 
issue is to pick the pixel or voxel size of the radar image as half the nominal 
resolution cell size.  

Additionally, using tapered windows across the radar data dimensions (with the 
primary purpose of suppressing the image sidelobes) has a positive effect on 
reducing the straddling losses. In all our imaging examples throughout this report, 
the pixel or voxel size is set to about half of the nominal resolution cell size given 
by Eq. 12 and to about one-third of the effective resolution cell size obtained after 
data windowing. Note these image sampling issues and mitigation solutions are not 
only specific to PFA, but apply to all other SAR imaging algorithms. 

3.4 Data Interpolation and Computational Complexity 

The radar data interpolation from the ( ), ,R v uk k k  coordinates to the ( ), ,x y zk k k  

coordinates is a crucial step in PFA. As discussed in Section 3.1, for the FLSAR 
system, the interpolation must be performed in all three data dimensions to obtain 
good imaging results. The interpolation can be performed in the ( ), ,R v uk k k  space 

or in the ( ), ,x y zk k k  space. In the first case, one computes the positions of the image 

samples in terms of the ( ), ,R v uk k k  variables; the resulting interpolation process 
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takes place from a uniform grid (radar data samples) to a nonuniform grid (image 
samples). In the second case, one computes the positions of the radar data samples 
in terms of the ( ), ,x y zk k k  variables; the resulting interpolation process is 

performed from a nonuniform grid (radar data samples) to a uniform grid (image 
samples). 

Traditionally, the data interpolation in PFA has been recast as a resampling 
procedure and implemented via the so-called polyphase filters.5,6 The resampling 

procedure that changes the data sampling rate by a factor ML
N

=  (with M and N 

integers) is discussed in numerous texts14,15 and is not repeated here. In one 
dimension, this filtering operation can be described by the following equation:  

 ( ) ( ) ( )
P

out in
n P

s m s n h mM nN
=−

= −∑ , (15) 

where ( ) sinc kh k
N

 =  
 

 is the filter’s impulse response and 2P+1 is the filter’s 

order. 

Note for a 3-D imaging configuration, the 1-D filter must be applied three times 
across the entire data set, one dimension at a time, to obtain the effect of a full 3-D 
data interpolation. The typical resampling filters have finite impulse response (FIR) 
and must satisfy the following conditions14: 1) have a zero-phase transfer function, 
2) behave as low-pass filters with the digital cutoff frequency 

( )
1

2max ,cf M N
= , 

and 3) ( )0 1h =  and ( ) 0h n =  for n kN= ± , with k integer. 

Since either the input or output data samples in the interpolation process are 
unevenly spaced, the polyphase filters are typically designed by setting N as large 
as needed such that the nonuniform sample grid can be closely fitted to points of 

coordinates m
N

, with m integer. By this procedure, only one filter is required for 

the entire 1-D data sequence. 

We attempted to implement this interpolation procedure using the MATLAB16 
function resample, which performs a 1-D resampling procedure that takes a 
nonuniform sample grid as input and produces a uniform sample grid as output 
(which means it must operate in one of the ( ), ,x y zk k k  variables). Unfortunately, 

the resulting code was slow and generated a significant amount of artifacts in the 
output image. The main reason why this procedure is computationally inefficient is 
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the very large filter length (reaching up to 2000 coefficients in some cases) resulting 
from the need to accommodate the highly nonuniform data samples characterizing 
the FLSAR system geometry. The cause of the image artifacts is not entirely clear 
at this point, but one explanation could be the fact that the interpolation is 
performed one dimension at a time instead of globally on the 3-D radar data. 

Instead of continuing the implementation efforts via the polyphase filters, we tried 
an entirely different approach to the data interpolation step, based on cubic spline 
functions. Although this was an ad hoc solution motivated primarily by the efficient 
MATLAB implementation of the interp3 function (performing 3-D interpolation), 
this procedure turned out both accurate and fast from a computational standpoint. 

Computational details of the cubic spline interpolation are described in textbooks17 
and are not included in this report. Note the cubic spline interpolation represents a 
completely different data processing methodology than the resampling by 
polyphase filters. If regarded as an FIR filter, the cubic spline interpolation 
coefficients satisfy the three conditions previously enumerated. However, these 
FIR filters have very low order (compared with the high-order polyphase filters) 
and their coefficients are data-dependent (unlike the polyphase counterpart). 
Despite the empirical evidence showing that cubic splines can be successfully 
employed in the PFA, we do not claim any optimality of this choice for the 
interpolation method. Further investigation efforts may reveal more-efficient and 
more-accurate techniques to replace this approach in the PFA implementation. 

In general, the low-pass FIR filters equivalent to any interpolation method cannot 
exhibit the ideal transfer function with a perfectly abrupt cutoff. In this respect, 
there is a classic tradeoff between the filter length (which relates to the 
computational efficiency) and the filter’s roll-off characteristic in the transition 
region (which relates to the interpolation accuracy).15 The FIR interpolation filter 
departure from an ideal low-pass transfer function means that some amount of 
signal aliasing can occur in the process. This issue is particularly relevant to the 
case of the low-order spline interpolation filters. A simple method to ensure a 
margin against this aliasing is to oversample the original signal beyond the Nyquist 
rate. Note this scheme meshes perfectly with the radar data oversampling 
requirement for the spatial anti-aliasing filter implementation discussed in Section 
3.3. In practice, we found that using data oversampled by a factor of 2 as an input 
to the cubic-spline interpolation procedure is sufficient to avoid any visible aliasing 
in the final SAR image created by PFA. 

So far we have not commented on the overall computational complexity of the PFA. 
The algorithm stage that should apparently dominate the execution time is the 3-D 
FFT from the k-domain to the image domain. If Nx, Ny, and Nz are the numbers of 
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voxels in the three Cartesian directions, the number of operations required by this 
3-D FFT is on the order of ( )2logx y z x y zN N N N N N . Note this number can be orders 

of magnitude smaller than the number of operations required by the core of the 
time-domain BPA, on the order of 2 2

x y zN N N  (here, we assumed that the x direction 

corresponds to downrange, as in Fig. 1). 

Nevertheless, this simplistic comparison of the two algorithms does not take into 
account some significant amount of overhead involved in both algorithms. In the 
case of the PFA, it turns out that the data interpolation step typically dominates the 
execution time. In the 3-D imaging example in Section 3.2 (which represents a 
realistic size for the landing-zone mapping application), performed on a desktop 
workstation running Windows, the 3-D FFT operation takes less than 1 s, whereas 
the 3-D interpolation takes several seconds, for a total runtime of about 5 s. One 
major implementation issue is that the 3-D interpolation cannot be parallelized very 
efficiently, unlike the 3-D FFT, which is a perfect candidate for vectorization and 
parallelization. To obtain an efficient parallel implementation on multicore 
platforms, the interpolation must be broken down into sequences of lower 
dimensionality. 

Optimizing the PFA implementation for execution speed has been outside the scope 
of this study and we avoid going into further details related to the runtime required 
by the imaging procedure. Ultimately, the execution time of the imaging formation 
code depends not only on the hardware architecture and speed, but also on how 
efficiently some of the key signal processing functions (FFT, interpolation, etc.) are 
implemented, and whether data vectorization, and implicit or explicit 
parallelization are used. Future efforts are required to realize the full potential of 
the PFA for real-time imaging in the challenging 3-D configuration entailed by the 
FLSAR system. 

3.5 Extension to Multistatic Antenna Arrays 

An important aspect of the PFA is the assumption that the SAR system operates in 
a monostatic configuration: that implies we use a pair of collocated Tx and Rx at 
each sample of the 2-D aperture both in the antenna array and in the forward 
aperture direction. This represents a useful baseline configuration for the FLSAR 
system analysis via computer models. However, a practical implementation of the 
antenna array as a monostatic, uniformly spaced collection of Tx–Rx pairs is very 
unlikely for obvious reasons related to cost and feasibility.1 Nevertheless, similar 
performance with that afforded by a monostatic array can be achieved by multistatic 
arrays with a lower number of antenna elements.  
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A typical example of multistatic array for forward-looking radar applications is that 
employed by the Spectrally Agile Frequency-Incrementing Reconfigurable 
system,18 where two Tx elements are placed at the array ends and a number N of 
Rx elements are uniformly distributed along the array. The Tx elements are 
activated sequentially in time, whereas all Rx elements receive simultaneously 
during one pulse transmission. This type of multistatic configuration achieves the 
same resolution as a monostatic array of the same length (given by Eq. 12b); 
additionally, the grating lobe spacing is the same as that of a monostatic array made 
of 2N uniformly spaced Tx–Rx pairs.1 Moreover, as shown by Dogaru et al,4 the 

total number of elements can be reduced further by using four Tx and 
2
N Rx 

elements, without penalty in the imaging performance metrics. 

An analysis of various multistatic antenna array configurations for the FLSAR 
system is outside the scope of this investigation. Instead, the goal of this section is 
to establish a general procedure that adapts the PFA to any type of multistatic array 
geometry. This procedure is based on the theory of multistatic arrays that states the 
equivalence (as a k-domain data sample) between a bistatic Tx–Rx configuration 
and a monostatic Tx–Rx configuration, with the equivalent monostatic antenna 
placed halfway between the bistatic Tx and Rx. (To be rigorous, the equivalent 
monostatic Tx–Rx pair should be along the bisector of the bistatic Tx–target–Rx 
angle, but in the MMW radar case the two geometries are practically identical.) 
Based on this theory, a multistatic array with two Tx elements at the array ends and 
64 uniformly spaced Rx elements is equivalent to a monostatic array of 128 
uniformly spaced elements and should yield identical images when used in the 
FLSAR system. Then the radar data obtained by the multistatic array can be recast 
as the data set obtained by an equivalent monostatic SAR system and subsequently 
processed by PFA. 

Note the length of the propagation path Tx–target–Rx in the bistatic case is slightly 
different from that of the equivalent monostatic path, as illustrated in Fig. 6. 
Consequently, the radar signal obtained by the bistatic pair must undergo a phase 
adjustment to match the phase of the equivalent monostatic pair (note we ignore 
any magnitude mismatch, which is negligible in practice). The main difficulty with 
this procedure is that, rigorously speaking, this phase adjustment should depend on 
the image voxel location; therefore, the phase adjustment cannot be uniformly 
applied to the radar data as a preprocessing step outside the image formation 
algorithm. Nevertheless, as we demonstrate in the following paragraphs, the MMW 
FLSAR system parameters allow us to make certain approximations that render the 
phase adjustment factor independent of the voxel location. We also present 
numerical examples to support the accuracy of this procedure. 
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Fig. 6 Geometry involved in the bistatic-to-monostatic transformation via phase 
adjustment of the radar data 

The phase adjustment factor in the bistatic-to-monostatic transformation can be 
written as ( )exp Rjk r− ∆ , where 2 m b b

T Rr r r r∆ = − −  is the difference between the 

monostatic and bistatic path lengths (see Fig. 6 for reference). In this notation, the 
superscripts m and b stand for monostatic and bistatic, respectively, while the 
subscripts T and R stand for Tx and Rx, respectively. Let the bistatic Tx and Rx 
position vectors [ ]Tb

T r T rx y z=r  and [ ]Tb
R r R rx y z=r , while the equivalent 

monostatic Tx and Rx are both placed at 
2

T
m T R

r r
y yx z+ =   

r . Note only the 

y coordinates of these vectors differ; the subscripts r for the x and z coordinates are 
generic for “radar”. Also let ( ), ,x y z  the current image voxel coordinates. Given 

the geometry of the FLSAR system, we can make the following approximations: 

 ( ) ( ) ( ) ( )2
2 2 2

2
Tb

T r T r A
A

y y
r x x y y z z R

R
−

= − + − + − ≅ + , (16a) 

 ( ) ( ) ( ) ( )2
2 2 2

2
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R r R r A
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y y
r x x y y z z R

R
−

= − + − + − ≅ + ,  (16b) 

 
( ) ( )

2

2
2 2

2 2
2

2
2 2

1
2 4 4 2

T R

m T R
r r A

A

T R T R
A T R

A

y yy
y yr x x y z z R

R

y y y yR y yy yy
R

+ − +   = − + − + − ≅ + 
 

 
= + + + + − − 

 

, (16c) 



 

31 

where 2 2
A r rR x z= + . These approximations rely on the fact that the coordinate 

offset in the y direction ,T Ry y− , as well as the voxel coordinates x and z, are 

always much smaller than the radar range RA. By plugging these expressions into 
the ∆r formula and canceling some terms, we obtain 

 
( )2

2
4

T Rm b b
T R

A

y y
r r r r

R
−

∆ = − − ≅ − . (17) 

Note this approximate expression for the path length difference is independent of 
the voxel coordinates. The final phase adjustment factor required by the bistatic-to-

monostatic transformation is ( )2

2 2
exp

4
T R

R

r r

y y
jk

x z

 −
 
 + 

. Since this factor depends on the 

radar measurement parameters only, it can be applied to the radar data as a 
preprocessing step outside the main image formation procedure. 

The fact that this phase adjustment process is performed outside the image 
formation algorithm means that it works with any SAR imaging algorithm, not only 
PFA. For instance, RMA is also based on the monostatic radar assumption (just as 
PFA), so the bistatic-to-monostatic transformation is required to accommodate 
multistatic arrays in the system configuration. On the other hand, BPA does not 
require such transformation since the algorithm can readily handle arbitrary bistatic 
or multistatic geometries. Nevertheless, we think that BPA can also benefit from 
applying the bistatic-to-monostatic transformation to the radar data by simplifying 
some of the radar–voxel range calculations specific to this algorithm. 

We successfully tested this procedure on 2-D and 3-D imaging examples involving 
the FLSAR system. In this section, we only present the 2-D results for the side-
looking aperture geometry, which is the one relevant to the multistatic antenna array 
in the y direction. We use the same system parameters as in Section 3.1, with the 
exception of the antenna array configuration. This consists of two Tx’s at the ends 
of the 14-m-long array, and 512 Rx’s distributed uniformly along the array. The 
radar data is collected by firing one Tx at a time and receiving on all Rx elements 
simultaneously. The equivalent monostatic array includes 1024 collocated Tx–Rx 
pairs, identical to the configuration in Section 3.1. 

The result of applying the bistatic-to-monostatic transformation as a preprocessing 
step to the PFA is shown in Fig. 7. Note the targets are focused at the same 
coordinates as those in Fig. 3, despite the fact that the phase adjustment factor 
contains certain approximations. Nevertheless, the reader may raise the issue that 
the images obtained by PFA contain errors due to the wavefront curvature 
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phenomenon; therefore, this example cannot be taken as definitive proof that the 
bistatic-to-monostatic transformation proposed here is accurate enough for our 
purpose. To address this concern, we applied the WCEC procedure described in 
Section 4.3. The outcome is shown in Fig. 8: this image demonstrates that all point 
targets are focused at the correct locations. This result validates the approach to 
multistatic array imaging developed in this section. 

 
Fig. 7 2-D SAR image obtained by PFA for the side-looking geometry in the x-y plane using 
a multistatic antenna array and the bistatic-to-monostatic transformation described in this 
section 
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Fig. 8 2-D SAR image obtained by PFA with the WCEC procedure for the side-looking 
geometry in the x-y plane using a multistatic antenna array and the bistatic-to-monostatic 
transformation described in this section 

4. Wavefront Curvature Error Correction 

4.1 Analysis of Wavefront Curvature Phase Errors 

Understanding the errors characterizing the SAR system operation and the 
associated image formation algorithm is essential in designing a robust imaging 
system that achieves the desired resolution. Since the main part of the radar signal 
used in SAR imaging is its phase, we are primarily interested in phase errors. There 
are several ways to categorize the phase errors in SAR systems. For our purpose, 
we distinguish phase errors induced by platform and target motion as well as phase 
errors produced by approximations in the radar signal processing algorithms.5 
Examples of the latter include the RVP, specific to compression of LFM waveforms 
via stretch processing, and the waveform curvature error, which is specific to the 
PFA and represents the subject of investigation in this section. 

Intuitively, the wavefront curvature error arises from the mismatch between the 
plane wave propagation assumption made by the PFA and the true spherical nature 
of the radar waves. There are at least two reasons to perform an analytic study of 
the wavefront curvature errors in PFA: 1) it allows us to derive limits to the image 
size beyond which the effect of these errors on the image quality becomes 
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unacceptable, and 2) by quantifying some of these effects, it suggests ways to 
correct them. For the FLSAR system, we break this analysis into two separate 2-D 
problems, one dealing with the errors characterizing a side-looking aperture 
geometry (in the x-y plane of the FLSAR) and the other dealing with the errors 
characterizing a forward-looking aperture geometry (in the x-z plane of the 
FLSAR). While the wavefront curvature errors in PFA for side-looking apertures 
constitute a classic topic in SAR analysis that has been investigated by multiple 
authors,5–9 extending this analysis to forward-looking apertures is an original 
contribution of this report. 

The algorithmic phase error is typically introduced as a multiplicative factor 
( )exp ejψ−  that quantifies the difference between the true radar signal phase and 

the phase assumed by the plane wave approximation specific to the PFA. The phase 
error term ψe can be expressed as a function of the k-domain variables. Then the 
effect of multiplying the radar data by the ( )exp ejψ−  factor, which takes place in 

the k-domain, is equivalent to a convolution of the ideal (error-free) radar image 
with the Fourier transform of this phase error factor9 (note here we are dealing with 
2-D or 3-D convolutions and Fourier transforms, depending on the radar signal 
dimensionality). By expanding ψe in a power series of the k-domain variables, we 
distinguish various types of errors corresponding to the terms in the series (linear, 
quadratic, cubic, etc.). 

Various texts use different ways to express this phase error as a power series. The 
traditional wavefront curvature error analysis in PFA uses the angular variables (φ 
and θ) to describe the phase error variation along the synthetic aperture.9 This 
approach is clearly inadequate for the FLSAR system geometry. A more accurate 
treatment writes the phase error as a power series of the aperture variables7 (u and 
v in the FLSAR scenario); nevertheless, this methodology is still approximate, since 
u and v are not the Fourier counterparts of the image coordinates. The correct 
approach to analyzing the phase error for a challenging sensing geometry such as 
that involved by the FLSAR is to express it as a power series of the Cartesian 
coordinates in the k-domain, kx, ky, and kz.5 The reason why using angular or 
aperture coordinates does not lead to an accurate phase error analysis is the fact 
that, for the FLSAR geometry, none of these coordinates is in a linear relationship 
with the k-domain Cartesian coordinates, as already discussed in Section 2.4. 

We start by evaluating the difference between the true radar–voxel range, 
R = −rr r  and the approximation to this range made by the PFA (see Eq. 6), 

a
r

r

R r
r
⋅

= − rr r . In these formulas, the position vector 
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[ ] [ ]T T
r r r a ax y z X u v Z= = −rr  describes the radar coordinates and has 

length rr, while the position vector [ ]Tx y z=r describes the image voxel 

coordinates and has length r. For this purpose, we use the following binomial series 
expansion of R: 
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.  (18) 

The range error that characterizes the PFA is then 

 
( )22

32 2
e a

r r

rR R R
r r

⋅
= − ≅ − rr r

. (19) 

The last equation is approximate since we only retained the first two leading terms 
of the expansion in Eq. 18. These two terms are sufficient in the subsequent phase 
error analysis of the FLSAR system. The phase error in the ( )exp ejψ−  factor 

previously described in this section is 
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At this point, we break the analysis into the 2-D configurations mentioned earlier. 
First we consider the side-looking geometry in the x-y plane, with fixed u: 

 
( )( ) ( )2 2 2 2 2 2 2 2

3

2 2 2
2

3 3

2
2

2 2

e R
a a a

r

a
R

r r r

k x y X v x X y v xyX v
r

xyXy x yk v v
r r r

ψ  = + + − + + 

 −
= − + 

 

.  (21) 

In this equation, we have ( )2 2 2
r a ar X u v Z= − + + . At this point, the phase error 

is expressed in terms of the coordinates kR and v of the radar measurement. Note  
Eq. 21 ignores terms in v to a power higher than two. 
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The next step is to write the phase error in terms of powers of the k-domain 
variables, kx and ky. Since the transformation between ( ),Rk v  and ( ),x yk k  is 

nonlinear (see Eq. 10), we use a limited Taylor series expansion of ( ),e
x yk kψ  as 

follows: 
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The expansion is performed about the point ( )0 0,x yk k , which represents the radar 

data support area center in the k-domain. This point corresponds to kR = kR0, u = 0, 

and v = 0, and has the Cartesian coordinates 0 0 0 cosa
x R R a

a

Xk k k
R

θ= =  and 0 0yk = . 

The variables 0xB x xk k k= − and 0yB y yk k k= −  are the “baseband” versions of kx 

and ky and represent the Fourier- (more exactly, the FFT-) coordinate counterparts 
of the image Cartesian coordinates x and y, respectively. Before proceeding with 
the calculations, it is useful to examine the interpretation of the terms in Eq. 22. 

The zeroth-order term ( )0 0,e
x yk kψ  is independent of the radar measurement 

variables ( ),x yk k , so it can be factored outside the 2-D FFT from the k-domain to 

image domain without any impact on the image magnitude. 

The first-order terms generate exponential factors of the form ( )exp x xBja k−  and 

( )exp y yBja k− . When transformed to the image domain, they become ( )xx aδ +  

and ( )yy aδ + , respectively. When these functions are convolved with the error-

free image, the effect of the linear phase error terms is to shift the location of the 
image peak by ( ),x ya a− − , with respect to the true target location. 

The second-order terms (also known as the quadratic terms of the phase errors) 
have the effect of defocusing the target image by widening the main lobe of the 
PSF. Their effect is similar to the spectrum broadening of a signal that has an LFM 
(or chirp) component as compared with a purely sinusoidal signal.9 Note we 
truncated the Taylor series expansion in Eq. 22 to the second-order terms.  
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Higher-order terms are typically ignored in the phase error analysis since they are 
assumed to be small relative to the existing terms.5 In general, their effect on the 
SAR image is difficult to separate from the defocusing effect of the quadratic terms. 

By applying the chain rule to the partial derivatives, we have 
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The computation of the partial derivatives in Eq. 23, at the point ( )0 0,x yk k , relies 

heavily on the PSP. Thus, we have 
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Finally, the image shifts induced by the linear phase error terms are 
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Computing the second-order derivatives of the phase error is, so we only show the 

computation of 
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, so only the quadratic error term in ky has any impact 

on the image. 
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In this equation we used 
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. In the case of 

the quadratic phase error (QPE), we are interested in evaluating the entire 
corresponding term in Eq. 22: 
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The expressions in Eqs. 25 and 27 match those obtained by Carrara5 and other 
authors6,7 for side-looking SAR geometries. One application of these formulas is in 
establishing limits on the image domain extent beyond which the phase errors 
induced by the wavefront curvature phenomenon have a visible impact on the 
image quality. The first thing to notice about the phase errors described by Eqs. 25 
and 27 is that they are space-variant,5 meaning they depend on the target 
coordinates ( ),x y . This fact has important consequences on developing algorithms 

to compensate for these errors: The phase correction function in these algorithms 
cannot be applied to the radar data uniformly across the entire image, but must be 
designed separately for each image pixel/voxel. Further aspects of the WCEC are 
discussed in Sections 4.2 and 4.3. 



 

39 

In general, Eqs. 25 and 27 indicate that the wavefront curvature phase errors 
increase with the distance of the target from the Cartesian system origin (or the 
image center). In the following, we establish the maximum image size for which 
the impact of these errors on the image is still acceptable. For this purpose, we 
calculate the maximum “image radius” rmax, designated as ( )max max maxmax ,r x y= , 

where xmax and ymax are the maximum acceptable pixel coordinates in the x and y 
directions, respectively (note the image coordinates run from –xmax to xmax and from 
–ymax to ymax). 

The criterion for the linear phase error-induced shifts in Eq. 25 is to keep them 
smaller than the resolution cell size. Thus, we require 
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In the following, we neglect the factor cosθa, which is very close to 1 for the FLSAR 
geometry. We obtain the following image size limits based on the linear phase error 
criterion: 
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Regarding the QPE, we follow other authors in requiring it not to exceed 
2
π . This 

leads to the following condition (obtained when 
2

yL
v = and either x = 0 or y = 0): 
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The final image size limit is twice the smallest of the rmax values given by Eq. 29a, 
29b, and 31. In the case of the MMW FLSAR proposed by ARL, we have x yδ δ≅  
and 0yδ λ>> ; this indicates Eq. 29b sets the most restrictive criterion for the 
maximum image size in the x-y plane. We defer further comments on the overall 
image size limits until after we complete the forward-looking aperture phase error 
analysis in the x-z plane. 

The wavefront curvature error analysis in the x-z plane (forward-looking aperture) 
largely follows the same steps performed for the side-looking aperture. However, 
one approximation used so far in those derivations, namely neglecting the radar 
range rr dependence on the aperture coordinate v, cannot be extended to the 
dependence of rr in terms of u (note u may take on significantly larger values than 
v across the radar aperture). This fact makes the phase error calculations for the 
forward-looking case even more tedious than those for the side-looking case. 

A second-order Taylor series expansion similar to that in Eq. 22 holds for the x-z 
plane as well: 
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The expansion is performed about the ( )0 0,x zk k  point of coordinates 
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the x-z plane derived from Eq. 20 is 
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Note ( )2 2 2
r a ar X u v Z= − + +  is a function of u, so the dependence of ψe on the 

aperture coordinate u is much more complicated than the quadratic form suggested 
by Eq. 33. However, to keep the analysis tractable, we rework this formula via a 
Maclaurin series expansion about the point u = 0 to express ψe strictly as a quadratic 
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function of u, as in ( )2
0 1 2

e
Rk b b u b uψ ≅ + + . In this expression, similar to that in 

Eq. 21, we have 
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The explicit calculations of b0, b1, and b2 (not shown here) are tedious but 

straightforward. Along the way, we used 0r au
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Now we compute the expansion in Eq. 32 in a manner similar to that in Eq. 22. The 
image shifts induced by the linear phase error terms are 
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To calculate the second-order partial derivatives in the QPE terms, we apply the 
chain rule as in Eq. 26 and obtain 
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Upon a closer examination, the terms containing b2 in the Eq. 37 formulas are 
dominant; therefore, we neglect the terms containing b1. The full QPE terms in the 
phase error expansion can be approximated as follows: 

 ( )2

0

2
2 2

0 0 22

1QPE
2

x x

e

x x Rx
x k k

k k k b u
k
ψ

=

∂
= − ≅

∂
,  (38a) 

 ( )2

0

42
2 2

0 0 22 4

1QPE
2

z z

e
a

z z Rz
z ak k

Xk k k b u
k R
ψ

=

∂
= − ≅

∂
, (38b) 

 ( )( )
0
0

22
2

0 0 0 22QPE 2
x x
z z

e
a

xz x x z z R
k kx z a
k k

Xk k k k k b u
k k R

ψ
=
=

∂
= − − ≅

∂ ∂
. (38c) 

In establishing these formulas, we used the approximations 0 0x x R
a

uk k k
R

− ≅ −  and 

0 0 3
a a

z z R
a

Z X uk k k
R

− ≅ . Since we have 1a

a

X
R

≅ , the expressions in Eqs. 38a and 38b 

are approximately equal, and half of the expression in Eq. 38c. One could notice 
that we made a significant number of approximations throughout the QPE 
derivation for the forward-looking aperture, which may call into question the 
accuracy of these calculations. Nevertheless, this procedure is adequate for our final 
purpose in this section, which is to estimate limits of the image extent for which the 
impact of the phase errors is still acceptable. To establish these limits, we use 
similar criteria as in the side-looking aperture analysis. 

Since now the expressions of the image coordinate shifts ax and az, as well as those 
of the QPE have a more complex dependence on the target coordinates x and z, we 
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need to be more diligent in finding the maximum acceptable image dimensions than 
in the side-looking case. In general, we expect the maximum phase errors to occur 
along the image edges or at the image corners. To simplify the calculations, we 
consider the following three cases: 1) take x = 0 and find zmax, 2) take z = 0 and find 
xmax, and 3) take x z= ±  and find xmax and zmax. Then, by comparing the three criteria 
(on the maximum acceptable values for ax, az and QPE, respectively), we pick the 
most restrictive ones on both xmax and zmax. 
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zmax are smaller (more restrictive) than the former, so we keep them as the image 
extent limits derived from xa xδ≤ . 
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So far, comparing the image extent limits obtained from the linear phase error 
terms, and taking into account that x zδ δ≅  and a aR Z>> , we notice that the 

smallest values for xmax and zmax are given by ( )2 aZ zδ . If in turn we compare 

this formula with those in Eq. 29 (i.e., ( )max 2 ax R xδ=  and ( )max ay R yδ= ), we 

infer that when it comes to keeping the wavefront curvature errors within 
acceptable bounds, the forward-looking configuration introduces more-restrictive 
limits to the image size than the side-looking configuration. For the full 3-D 
geometry of the FLSAR, the linear phase error terms set the following limits on the 
image size: 

 ( )max
max2 2 2x aD x Z zδ= = ,  (39a) 

 ( )max
max2 2y aD y R yδ= = , (39b) 
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The QPE in the forward-looking case is approximately the same in the x and z 

directions, so it suffices to analyze one of them by requiring QPE
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parameters, the most-restrictive limits obtained from the QPE criterion are 
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= = . These limits are smaller than the ones set by the QPE 

criterion in Eq. 31 for the side-looking geometry but larger than those obtained from 
the linear phase error terms in Eq. 39. 

As a numerical example, we take the following typical FLSAR parameters: δy = δz 
= 0.3 m, Ra = 150 m, Za = 26 m, and f0 = 35 GHz. Then, the linear phase error terms 
yield (Eq. 39) max max

x zD D= =  7.9 m and max
yD =  13.4 m, while the QPE terms yield 

max max
x zD D= =  25.4 m and max

yD =  147 m. It is clear that keeping the linear phase 

errors under acceptable limits sets more-restrictive conditions for the image size 
than the QPE criterion. Moreover, if the desired radar image extent is no larger than 
25 m in each dimension, a phase error correction algorithm can largely ignore the 
QPE and simply focus on compensating the linear phase error terms. 

Note other authors5 mostly ignore the restrictions on image size introduced by the 
linear phase errors based on the fact that (at least theoretically) these errors can be 
corrected by a relatively straightforward procedure. Consequently, they only 
consider the QPE produced by the wavefront curvature when setting the size limits 
of a SAR image created with the PFA. Nevertheless, as we show in the following 
sections, implementing an accurate correction procedure for the linear phase errors 
of a high-resolution FLSAR system is far from trivial and in fact requires strict 
observance of the limits set by Eq. 39. 

Note also the image size limits obtained by keeping the wavefront curvature errors 
of PFA under certain bounds are very different from the limits set by the traditional 

far field criterion, 0

2
aRD λ

= . When evaluated for typical FLSAR parameters, this 
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formula yields a maximum image size of 0.8 m, which is clearly much smaller than 
all the figures obtained by wavefront curvature error analysis. Therefore, the 
traditional far-field condition provides a flawed criterion in deciding the 
applicability of the PFA to an SAR imaging configuration; instead, the 
methodology presented in this section proposes a much more accurate approach to 
making this decision. 

To conclude this section, we verify the accuracy of the image coordinate shifts 
predicted by Eqs. 25 and 36. The reason for this check will become apparent in 
Section 4.4, where we discuss a possible WCEC procedure based on these 
computations. We perform this verification separately for the side-looking and 
forward-looking geometries, using the 2-D numerical imaging examples from 
Section 3.1. Table 3 lists the target coordinate shifts obtained in the SAR images 
created by the uncorrected PFA in Section 3.1 as well as the numerical values 
estimated by Eqs. 25 and 36 (the image coordinate shifts are actually the negative 
of ax, ay, and az, respectively). Note the target coordinates in the SAR images in 
Figs. 3 and 4 can only be determined with a precision of about half a resolution cell 
(0.15 m). Consequently, we expect a match between the shifts in Table 3 of this 
order of magnitude. For the same reason, we round off all the coordinate values to 
one decimal point. For most of the point targets considered in these examples, the 
match between the image shifts and the predictions based on Eqs. 25 and 36 is very 
good (within 0.2 m). However, there are two targets for which the predictions differ 
from the PFA images by a larger margin: Target 6 in the side-looking case and 
Target 1 in the forward-looking case. We attribute these discrepancies to the 
truncation of the power series expansion of the radar–voxel range in Eq. 18. For 
large absolute values of the target coordinates ( ), ,x y z , higher-order terms in that 

expansion become significant and may need to be included in the subsequent 
calculations. However, this approach is not pursued any further in this study. 
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Table 3 Target image shifts induced by the wavefront curvature phase error in the PFA, 
for the 2-D side-looking and forward-looking SAR configurations, listing the true shifts in the 
images in Figs. 3 and 4 and their values estimated by Eqs. 25 and 36 

Target 
number 

Side-looking Forward-looking 
True shifts Estimated shifts True shifts Estimated shifts 

x (m) y (m) x (m) y (m) x (m) z (m) x (m) z (m) 
1 –1.8  –2.9 –1.8 –2.9 0.4 –7.3 0.4 –6.6 
2 –2.4 3.4 –2.2 3.4 –0.1 0.4 –0.2 0.4 
3 –0.1 –0.1 0 –0.1 0.1 –1.7 0 –1.6 
4 –1.1 –0.4 –1.1 –0.5 0 –6.3 0 –6.4 
5 0 –0.1 0 –0.1 0 –0.4 0 –0.4 
6 –0.9 0.8 –0.8 1.2 –0.2 –2.1 –0.2 –2.3 
7 –1.3 –2.7 –1.2 –2.6 –0.1 –4.4 0 –4.4 
8 –0.9 –0.2 –0.7 –0.2 0 0 0 0 

4.2 Wavefront Curvature Error Correction Procedure 

In this report, we develop the WCEC as a postprocessing technique that starts with 
the uncorrected image created by PFA, as described in Section 2.4. This procedure 
is equivalent with a multiplication of the radar data by the factor ( )exp ejψ , which 

compensates for the wavefront curvature phase error analyzed in Section 4.1. Other 
possible approaches to WCEC are presented in Section 4.4. 

In the previous section, we expressed the phase error ψe as a function of the  
k-domain variables ( ), ,x y zk k k . That means we can start with the k-domain image 

data, obtained after the interpolation step in PFA, and apply the factor ( )exp ejψ  

to compensate for the phase error before the Fourier transform to the image domain. 
This k-domain multiplication represents an image filtering operation, where 

( )exp ejψ  is the filter’s transfer function. The main issue with this procedure is the 

fact that ψe depends on the voxel coordinates ( ), ,x y z —this is the space-variant 

aspect of the wavefront curvature phase error mentioned earlier—therefore 
applying the ( )exp ejψ  factor computed for a specific voxel only corrects the error 

at that voxel location. Moving to a different voxel involves recalculating ψe and 
reapplying the correction filter to the entire k-domain image.  

Obviously, this way of approaching the WCEC is extremely inefficient and cannot 
be turned into a practical implementation procedure. To obtain a reasonably fast 
WCEC algorithm, we break the entire image into subimages of limited size, and 
apply a single correction filter to an entire subimage at one time. The key to this 
implementation is to make sure that each subimage size does not exceed the limits 
established in Section 4.1 for which the phase errors are still acceptable. The details 
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of the subimage-oriented WCEC procedure are discussed in the following section. 
In the current section, we establish the correction filter’s transfer function for a 
specific voxel at coordinates ( ), ,x y z . 

A somewhat similar WCEC procedure is described by Doerry,7 who uses the power 
series expansion of the phase error ψe in the correction filter’s transfer function. 
Note Doerry expresses ψe in terms of the aperture coordinates, which is not as 
rigorous as using powers of the k-domain Cartesian variables and does not lead to 
an accurate analysis in the case of the FLSAR geometry, as discussed in Section 
4.1. Moreover, even if we used the formulas established in that section as power 
series of the k-domain variables, those formulas are still approximate and ignore 
higher-order power terms in those variables, which may have a significant 
contribution to the phase error in certain scenarios. To avoid these issues, we 
develop a novel, rigorous k-domain WCEC filter based on an idea by Soumekh,10 
adapted to the FLSAR configuration. 

The WCEC filter’s transfer function can be written as 
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x y z R x y zH k k k j jk R j k k k Rψ= = = + + . (40)
 

To determine the range error Re we avoid making any of the approximations in 
Section 4.1 by using the exact formula 
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where ( )0 0 0, ,x y z  are the coordinates of the voxel for which the filter is designed. 
At this stage in our derivation, the range error depends on the radar coordinates 
( ), ,r r rx y z ; however, we would like to express this error as a function of 

( ), ,x y zk k k  instead. Fortunately, the two sets of coordinates are related to one 

another by a set of equations that allow us to uniquely determine ( ), ,r r rx y z  from 

( ), ,x y zk k k . First, based on PSP, we can write 

 r r r

x y z

x y z
k k k

= = .  (42) 
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The third equation constrains the radar antenna position to move across a surface 
of equation ( ), , 0r r rf x y z = , which we call the aperture surface. These three 

equations allow us to find the coordinates ( ), ,r r rx y z  for a given sample in the 

( ), ,x y zk k k  space, and replace those in Eq. 41. Note a closed-form solution to these 
equations may not exist for an arbitrary shape of the aperture surface (or function 

( ), ,r r rf x y z ). However, in the FLSAR case, this surface is simply described by 
the equation r az Z= , where Za is the constant aperture height. Now we can find xr 
and yr as follows: 

 x
r a

z

kx Z
k

=  , y
r a

z

k
y Z

k
= . (43) 

The full expression of the range error as a function of ( ), ,x y zk k k  
becomes 
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− + + +
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.  (44) 

This formula can be plugged into Eq. 40 to obtain an expression for the WCEC 
filter’s transfer function that now contains only the k-domain coordinates and fixed 
spatial coordinates: ( )0 0 0, ,x y z and Za. 

For completeness, we now list the range error expressions as a function of k-domain 
variables for the 2-D imaging cases considered in Section 3.1: the side-looking 
aperture geometry in the x-y plane and the forward-looking aperture geometry in 
the x-z plane. Thus, for the 2-D side-looking aperture case, we have 
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.  (45) 

For the 2-D forward-looking aperture in the x-z plane, we have 
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  +
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  +
. (46)

 

We implemented these k-domain WCEC filters for all the imaging examples 
presented in Sections 3.1 and 3.2, involving 2-D images in side-looking and 
forward-looking aperture configurations, respectively, and 3-D images obtained by 
the FLSAR system. In all cases, the k-domain WCEC was implemented for one 
target location at a time. All numerical simulations demonstrated perfect match 
between the true target coordinates and its location in the image after the correction. 
Nevertheless, as previously discussed, this procedure of designing a separate filter 
for each image voxel is not a practical implementation solution. A more feasible 
approach to the WCEC implementation is presented in the next section. 

4.3 Implementation of the Subimage-Oriented WCEC Procedure 

The principle of the subimage-oriented WCEC procedure was briefly described in 
the previous section. Thus, the entire uncorrected image is broken into subimages 
of smaller size, and a correction filter is applied to all voxels within a subimage 
with separate filters designed for each subimage. In the end, the subimages are 
reassembled together to form the final, corrected image. Each correction filter is 
designed to exactly compensate the phase error for the voxel located at the 
corresponding subimage center. Additionally, the subimage size is chosen such that 
the phase errors characterizing voxels at its edges do not exceed the limits 
established in Section 4.1. 

Two types of implementation are possible for the phase correction filters: in the  
k-domain (which corresponds to the frequency domain in filter theory) or in the 
image domain (which corresponds to the time domain in filter theory). After 
investigating both types of implementations, we concluded that the k-domain 
version is computationally inefficient despite the benefits of using 
multidimensional FFTs to switch back and forth between the image- and  
k-domains. The reason is that, when transformed from the image to the k-domain, 
the image data characterizing a limited-size subimage still occupies the entire radar 
data k-domain support area/volume. Consequently, the operations involved by this 
procedure (multidimensional FFTs and multiplication by the correction filter’s 
transfer function) must be performed on the entire k-domain image size for each 
separate subimage. If we have to deal with a large number of subimages, this 
procedure becomes computationally cumbersome and therefore is not a good 
practical method to implement the WCEC. 
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A more efficient WCEC procedure can be obtained in the image domain by 
employing FIR filters.15 The impulse response of these filters is obtained as the 
inverse Fourier transform of the transfer function given by one of Eqs. 44–46. The 
filtering operation now consists of a multidimensional (2-D or 3-D) convolution19 
of the subimage data with the filter’s impulse response. As long as the latter can be 
represented by a small number of coefficients, this WCEC scheme involves reduced 
computational complexity because the processing is applied to data blocks of the 
subimage size at one time. 

For the full 3-D FLSAR geometry, the FIR filter design starts with the transfer 
function in Eq. 44, where ( )0 0 0, ,x y z  are the coordinates of the voxel in the current 

subimage center. We apply the windowing FIR design method,15 which consists of 
taking an inverse 3-D FFT of the transfer function and applying a finite-length, 
tapered window to the image domain impulse response. Numerical experiments 
have shown that a filter length of 12 coefficients in each Cartesian direction is 
sufficient to obtain satisfactory results by this WCEC procedure. Graphic 
representations of a typical FIR filter nontruncated impulse response are shown in 
Fig. 9. These diagrams show the variation of the filter’s coefficients corresponding 
to Target 1 in the 2-D side-looking (x-y plane) and forward-looking (x-z plane) 
configurations, respectively (see Tables 1 and 2 for a list of the target coordinates). 

 
 (a) (b) 

Fig. 9 Representation of the WCEC FIR filter impulse response magnitude for the 2-D 
imaging examples in Section 3.1: a) side-looking configuration (x-y plane), and b) forward-
looking configuration (x-z plane). Both filters are designed for Target 1 in each of those 
numerical examples. 

Note if the phase error ψe only contained linear terms in the k-domain variables, the 
correction FIR filter’s impulse response would consist of a 3-D delta function 
centered at the ( ), ,x y za a a  coordinates, which represent the negative of the voxel 
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shifts induced by the wavefront curvature phase error. In that case, the filtering 
operation in the image domain would simply perform a shift of each voxel by these 
distances to the corrected location. This seems to be largely the case for the x-y 
plane filter obtained in the side-looking configuration, shown in Fig. 9a. 
Nevertheless, quadratic and higher-order terms are also present in ψe and must be 
compensated for by the WCEC procedure. Consequently, the true impulse response 
may depart from a delta function as demonstrated by the forward-looking example 
in Fig. 9b. In that case, the filter performs an image refocusing task besides the 
voxel coordinate shift (note the impulse response phase, which was not represented 
in Fig. 9, plays an important role in this procedure). Since the quadratic and higher-
order terms have small magnitudes relative to the linear terms, the FIR filter 
coefficients decrease very fast away from the center location, which justifies the 
truncation of the impulse response to a small number of coefficients. 

The filter design procedure does not depend on the radar data or image, so it can be 
performed offline (outside the main radar image processing data stream) and the 
filter coefficients stored for subsequent usage in the convolutions with the subimage 
data. To make sure we do not miss any important region of the k-domain image 
data support, the inverse FFT of the transfer function is performed over the entire 
k-domain support volume for each subimage filter. Although this filter design 
procedure is somewhat slow, the fact that it is executed offline means it does not 
have any impact on the overall efficiency of the WCEC algorithm. 

The multidimensional convolutions of the subimage data with the filter impulse 
response are implemented in MATLAB16 using the function convn, which performs 
the N-dimensional convolution of two N-dimensional data arrays (in our cases, N 
equals 2 or 3). One should note that the MATLAB convolution implementation is 
very efficient and capable of simultaneously using multiple computational cores 
via data vectorization. The author’s own attempts to implement multidimensional 
convolutions from scratch resulted in relatively inefficient code, which is difficult 
to parallelize due to the inseparability of coordinates characterizing the 
multidimensional convolution operations.19 

A number of details related to choosing the subimage extent and position must be 
observed in the WCEC procedure to ensure the algorithm’s accuracy and 
efficiency: 

• The FIR filter impulse response coefficients for one specific subimage are 
not centered in the Cartesian coordinate origin but at coordinates 
( ), ,x y za a a . One way to simplify the filter coefficient storage and 

subsequent convolutions is to simultaneously shift the filter’s impulse 
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response and the original subimage coordinates by ( ), ,x y za a a− − − , such that 

the impulse response is now centered in the origin. The subimage coordinate 
shifting is illustrated in Fig. 10, which schematically shows the location of 
the current subimage within the entire image before and after the WCEC 
procedure. Note that the subimage partition process starts with the output 
image; the location of each input subimage is computed by shifting the 
corresponding output subimage coordinates by appropriate quantities. 

 
Fig. 10 Illustration of the subimage coordinate shifting within the WCEC procedure, 
showing the subimage position in the corrected image (left) and the corresponding subimage 
in the original (uncorrected) image (right) 

• Because of this subimage coordinate shifting, the original (uncorrected) 
SAR image (regarded as a multidimensional data array) must be extended 
by appropriate margins in all dimensions to accommodate the coordinate 
shifts. These shifts can be approximately predicted by Eqs. 25 and 36. 
However, a more accurate method of finding the coordinate shifts is to 
record the locations of the impulse response peaks obtained in the filter 
design procedure described in this section. Our numerical experiments 
showed that the additional image margins required by the 2-D forward-
looking configuration can sometimes reach a large number of voxels (close 
to 100), particularly in the z direction. 

• The convolution of the subimage data array with a filter impulse response 
of length (or filter order) M extends the array by M –1 voxels in each 
dimension. This fact needs to be accounted for in sizing the original 
subimage patches, while the corrected subimages at the output of the 
convolution operation need to be trimmed back to the nominal patch size. 

• Ideally, the uncorrected, shifted subimages used as an input to the WCEC 
algorithm should form a perfect set of tiles covering the original SAR 
image, meaning there should be no overlaps or gaps between those 
subimages. If there are overlaps between two subimages, a target placed 
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within the overlap region in the uncorrected image would be processed 
twice by two different FIR filters introducing slightly different coordinate 
shifts. That would result in the target appearing twice at different locations 
in the final, composite SAR image. Gaps in coverage could mean that 
targets placed in those gaps in the uncorrected image would be missed in 
the final image. Ensuring perfect subimage tiling consists of a very tedious 
coding task, but is essential in avoiding the introduction of image artifacts 
by the WCEC procedure. 

The most serious difficulty we encountered in implementing the subimage-oriented 
WCEC algorithm described in this section occurs when a target straddles the 
boundary between two subimages. If the voxel size were chosen equal to the 
resolution cell size, a point target image would always be strictly contained in one 
subimage (assuming perfect subimage tiling as previously discussed). In that case, 
there would be a one-to-one correspondence between the target images in the 
uncorrected and corrected SAR images. However, as indicated in Section 3.3, this 
method of choosing the voxel size is not recommended; instead, the voxel size 
should be made a fraction of the resolution cell size, meaning that a point target 
image would extend over several voxels. When these voxels cross the boundary 
between two subimages, the target splits into two separate parts in the final, 
corrected image. 

At the current stage of this investigation we have not been able to find a satisfactory 
solution to the split target image issue within the subimage-oriented processing 
framework. This phenomenon introduces artifacts in the corrected SAR image 
manifested as discontinuities around the subimage boundaries. One possible way 
to decrease the phase errors (and the resulting coordinate shifts) for voxels at the 
edges of each subimage is to reduce the subimage size. This would result in smaller 
coordinate shifts for voxels at the subimage edges which in turn would bring the 
two parts of the target closer together in the final image. Nevertheless, decreasing 
the subimage size produces an increased number of subimages and boundaries 
between these subimages. The consequence is a rise in discontinuity regions in the 
final image, which end up degrading the image quality instead of improving it. 
Several alternative approaches to the WCEC problem are presented in Section 4.4. 

We conclude this section with numerical examples illustrating the WCEC 
procedure as applied to the images created by PFA in Sections 3.1 and 3.2. Figure 
11 shows the corrected version of the image in Fig. 3 obtained for a 2-D  
side-looking aperture configuration in the x-y plane. In this case, we break the 
original image into 16 × 16 subimages in the x and y directions, respectively, with 
each subimage of size 9.75 × 9.75 m. Figure 12 shows the corrected counterpart of 
the image in Fig. 4 representing a 2-D forward-looking aperture configuration in 
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the x-z plane. In this case, we break the original image into 16 × 24 subimages in 
the x and z directions, respectively, with each subimage of size 9.75 × 5.33 m. Table 
4 lists the target image coordinates after applying the WCEC procedure for the  
2-D configurations. In general, the target locations in the new images match their 
true coordinates very well with better than 0.2 m accuracy. However, two targets 
still exhibit coordinate shifts of 0.3 m (which is comparable to one resolution cell): 
Target 1 in the side-looking case and Target 4 in the forward-looking case. 

 
(a) 

 

 
(b) 

Fig. 11 2-D SAR image obtained by PFA and the WCEC procedure for the side-looking 
geometry in the x-y plane, for the same point target set as in Fig. 3, showing a) the full image 
and b) details around two targets exhibiting the split image issue. None of the other target 
images displays this issue. 
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(a) 

 

 
(b) 

Fig. 12 2-D SAR image obtained by PFA and the WCEC procedure for the forward-looking 
geometry in the x-z plane for the same point target set as in Fig. 4, showing a) the full image 
and b) details around two targets exhibiting the split image issue. None of the other target 
images displays this issue. 
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Table 4 Target coordinates in the 2-D side-looking and forward-looking SAR 
configurations, showing the true locations as well as their images obtained by the PFA coupled 
with the WCEC procedure 

Target 
number 

Side-looking Forward-looking 

True PFA with 
WCEC True PFA with 

WCEC 
x (m) y (m) x (m) y (m) x (m) z (m) x (m) z (m) 

1 –50.0  60.0 –49.8 60.3 60.0 –30.0 60.4 –29.9 
2 52.0 66.5 51.8 66.5 68.2 24.8 68.1 24.8 
3 15.6 –6.5 15.6 –6.5 15.6 –19.3 15.7 –19.4 
4 10.0 –47.8 9.8 –47.7 10.0 –45.8 10.0 –45.5 
5 –29.1 3.6 –29.1 3.6 –29.1 3.6 –29.1 3.4 
6 –30.2 –41.4 –30.2 –41.6 –30.2 –41.4 –30.4 –41.4 
7 53.3 –50.0 53.4 –49.9 –5.7 38.9 –5.8 38.7 
8 –5.7 38.9 –5.8 38.8 0.7 2.3 0.7 2.3 

 

Figure 13 is the corrected image for the full 3-D FLSAR configuration with the 
uncorrected originally shown in Fig. 5. In this case, the image is broken into 8 × 8 
× 4 subimages in the x, y, and z directions, respectively, with each subimage 
extending over 2.5 × 2.5 × 4 m. In the new, corrected 3-D image, the targets are 
perfectly focused at the correct locations in the x and y directions, while in the z 
direction the residual shifts are less than 0.2 m. Note the actual subimage sizes are 
smaller than the estimates in Eq. 39. From a computational standpoint, a larger 
number of subimages involves a longer runtime in calculating the WCEC FIR filter 
coefficients; however, as already discussed, these calculations can be performed 
offline, outside the main image formation data processing stream. The filtering 
operation itself is actually faster when we work with a larger number of smaller 
size subimages. For reference, the filtering part of the WCEC in this numerical 
example took about 10 s to complete. The only disadvantage of using a large 
number of subimages is the corresponding large number of discontinuity 
lines/planes at the subimage boundaries. 

4.4 Other Possible Approaches 

Besides the WCEC technique described in the previous section, other methods have 
been developed to mitigate the wavefront curvature errors in PFA. Some of these 
methods start with the uncorrected PFA image, as does the subimage-oriented 
WCEC algorithm previously discussed. Other WCEC procedures are embedded 
directly in the image formation algorithm. In this section, we present a short review 
of these alternative techniques. We start by describing the former methods, which 
are related to the procedure in Section 4.3. 
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 (a) (b) 

 
 (c) (d) 

Fig. 13 Vertical y-z planar cuts through the 3-D PFA image obtained for the full FLSAR 
configuration after the WCEC procedure, at x coordinates corresponding to the four target 
image peaks: a) x = –8.125 m (Target 3), b) x = –5.937 m (Target 4), c) x = 5.937 m (Target 1), 
and d) x = 6.719 m (Target 2). The point target true coordinates are listed in Table 2. 

One WCEC approach suggested by Carrara5 only addresses the shifts induced by 
linear phase errors by computing ( ), ,x y za a a  with the formulas in Eqs. 25 and 36, 

for each pixel/voxel in the image. These shifts are simply used to move the 
pixels/voxels in the uncorrected image to the new coordinates in the corrected 
image. Note this approach is applied uniformly across the entire image; no partition 
into smaller subimages is required, which means this method is not affected by 
discontinuities at the subimage boundaries. Nevertheless, the problem with this 
technique is that the formulas in Eqs. 25 and 36 are only approximate, and as 
discussed in Section 4.1 they can be inaccurate in certain cases. Additionally, the 
method does not address the quadratic and higher-order phase errors introduced by 
the wavefront curvature phenomenon.  
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Better accuracy can be achieved if the shifts ( ), ,x y za a a  are instead taken as the 

coordinates of the peaks characterizing the WCEC filter impulse responses. Since 
the filter design starts with Eqs. 40 and 41, which are exact, there are no 
approximations in the shift calculations in this case. However, to eliminate the 
subimage partition and the related discontinuity issue at boundaries, the filter 
impulse response (and its peaks) must be computed separately for each image 
voxel. This seems a formidable computational task, which would likely require an 
execution time of orders of magnitude longer than any other operations involved in 
the image formation process. The only way this method could be applied in practice 
would involve computing the shift coordinates offline and storing them before 
being applied to the radar data processing stream (note the required amount of 
storage is insignificant). 

An entirely different approach called “subpatch processing”5 involves breaking the 
original image domain into smaller pieces (or subimages) and applying the PFA 
separately for each of these subimages. The subimage size must be limited such 
that the phase errors characterizing voxels at its edges do not exceed the limits 
established in Section 4.1. Subsequently, the subimages are assembled (or 
mosaicked) together into a larger size image. When applying the PFA to a given 
subimage, we first multiply the radar data by the factor ( )exp R rjk r , where the radar 

range rr is measured with respect to the center of that subimage. It is clear that this 
range and the corresponding phase factor ( )exp R rjk r  are different for each 

subimage; otherwise, the PFA proceeds similarly for all subimages.  

One important additional step in the subpatch processing approach consists of 
filtering the radar data to avoid aliasing of targets present in one subimage into all 
the other adjacent subimages. This anti-alias spatial filtering is similar to the 
spotlighting procedure described in Section 3.3 and is not detailed here. In the end, 
the subpatch processing approach to PFA involves a computational complexity 
similar to the WCEC procedure outlined in Section 4.3. Additionally, the two 
methods are affected by similar image discontinuity artifacts at the boundaries 
between subimages. 

Finally, another approach to PFA imaging uses subaperture processing8 to keep the 
wavefront curvature errors under control. This technique starts with the observation 
that the wavefront curvature-induced QPE increases with both the image size and 
the aperture length (see, for instance, Eq. 30). While the subpatch processing 
approach seeks to minimize the QPE by breaking down the image into subpatches 
of size below a certain limit, the subaperture processing attempts to achieve the 
same effect by dividing the total synthetic aperture into segments of smaller lengths. 
A set of coarse resolution images are created by employing the range-Doppler 
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approach to SAR imaging,9 which consists of performing a 2-D FFT of the radar 
data collected along each subaperture. While these images exhibit low resolution, 
they are little affected by the wavefront curvature phase errors (see Eqs. 28 and 30, 
which show that the acceptable error limits increase with the resolution cell size). 
The set of images obtained for all subapertures are combined together via an FFT 
in the azimuth (along-track) direction. This process can be broken into several 
stages (“tiered-subapertures”’ in the original reference8), each of them involving a 
number of aperture segments of increasing lengths, until a final image of resolution 
dictated by the entire aperture length is obtained. 

5. Conclusions 

This report presents a comprehensive account of the PFA application to the FLSAR 
system proposed by ARL to assist helicopter landing in DVE conditions. The major 
motivation for this work has been the development of a fast and accurate image 
formation algorithm that can handle the challenging 3-D geometry involved in this 
sensing scenario. In the process, we discovered that many traditional analyses and 
assumptions associated with PFA for conventional side-looking SAR 
configurations cannot be directly extended to the forward-looking aperture 
geometry. Consequently, the original contribution of this report was to reformulate 
the PFA and the related analysis to make them applicable to the FLSAR imaging 
system. 

After a review of other possible image formation algorithms for this application 
(such as BPA and RMA), we proposed the PFA due to its speed of execution, 
relatively simple implementation, and its straightforward data sampling 
requirements. Numerical examples of PFA for 2-D and 3-D configurations relevant 
to the FLSAR system were presented in Section 3. Other implementation aspects 
related to data sampling and interpolation as well as computational complexity were 
also discussed in the same section. Additionally, we adapted the algorithm to handle 
the presence of multistatic antenna arrays, which constitute an essential component 
of the system’s hardware. 

Although the PFA offers excellent computational efficiency, its major drawback 
stems from the wavefront curvature phase errors, which produce various image 
distortions. A detailed analysis of these errors was developed in Section 4, followed 
by a novel error correction algorithm based on partitioning the SAR image into 
smaller subimages and applying separate correction filters to each subimage. We 
described this algorithm implementation in detail, identifying one outstanding issue 
that is the subject of continuing investigation. Several alternative wavefront 
curvature error mitigation techniques were briefly reviewed as well. 
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It was not the purpose of this investigation to develop the fastest possible 
implementation of this imaging algorithm, whose code was written in MATLAB 
and run on a regular desktop computer, without the explicit use of parallel 
processing features. Nevertheless, based on computational complexity analysis, the 
PFA (including the WCEC procedure) should offer vastly superior execution time 
as compared with the BPA, which has been the standard image formation algorithm 
proposed for the FLSAR system so far. At this time it is not clear whether PFA 
could replace BPA as the image formation algorithm of choice for this project due 
to the issue of image artifacts introduced by the subimage boundary discontinuities 
in the WCEC procedure. However, future investigations of this issue may be able 
to produce an artifact-free imaging procedure. 

Even if PFA may eventually prove not to be a practical solution for FLSAR 
imaging, this report contains some valuable contributions going beyond a particular 
imaging algorithm: 

• An evaluation of the pros and cons of several standard SAR imaging 
algorithms as applied to the FLSAR system configuration (Sections 2.2, 2.3, 
and 2.4). 

• Sampling criteria for radar and image data generally applicable to all SAR 
imaging algorithms (Section 3.3). These criteria address both the spatial 
filtering required to mitigate grating lobes produced by targets outside the 
image frame and the mitigation of the straddling loss via image pixel 
oversampling. 

• A phase correction procedure that transforms the radar data obtained from 
a multistatic antenna array into those generated by an equivalent monostatic 
array (Section 3.5). While this procedure is mandatory in the case of PFA, 
which is specifically designed to work with monostatic configurations, it 
can also be applied to other image formation algorithms (BPA or RMA), 
with benefits in terms of execution speed-up. 

• The wavefront curvature phase error analysis in Section 4.1 illustrates a 
more general approach that can be extended to any type of phase errors 
characterizing the FLSAR system, including those produced by platform 
motion. In turn, the motion-induced phase error analysis is a prerequisite to 
developing motion compensation algorithms, which are regarded as a 
critical element in this program’s success.  
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List of Symbols, Abbreviations, and Acronyms 

1-D one-dimensional 

2-D two-dimensional 

3-D three-dimensional 

ARL Army Research Laboratory 

BPA backprojection algorithm 

CCDC US Army Combat Capabilities Development Command 

DVE degraded visual environment 

FFT fast Fourier transform 

FIR finite impulse response 

FLSAR forward-looking synthetic aperture radar 

LFM linear frequency modulation 

MMW millimeter wave 

PFA polar format algorithm 

PSF point spread function 

PSP principle of stationary phase 

PTR point target response 

QPE quadratic phase error 

RMA range migration algorithm 

RVP residual video phase 

Rx receiver 

SAR synthetic aperture radar 

Tx transmitter 

WCEC  wavefront curvature error correction 
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