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1. Introduction 

Weather radar provides a potentially valuable data source for assimilation into 
numerical weather prediction (NWP) models due to its high temporal and spatial 
resolution; however, it is only available for limited portions of the earth. This value 
has led to its use in operational US National Weather Service hourly updating 
models including the 13-km Rapid Refresh (Benjamin et al. 2016) and the 3-km 
High-Resolution Rapid Refresh (HRRR; Alexander et al. 2017). In previous work 
(Reen et al. 2019), we used the Advanced Research version of the Weather 
Research and Forecasting model V3 (WRF-ARW; Skamarock et al. 2008) to adapt 
the assimilation method used by HRRR over the continental United States 
(CONUS) to a non-CONUS location with an isolated weather radar and 
demonstrated that assimilation of the radar data could still provide notable 
improvement in short-term forecasts of moist convection. The application 
described in Reen et al. (2019) differed from HRRR in that it relied on a single 
weather radar rather than a network of radars, used a much smaller domain, and did 
not have output from previous cycles of a radar-assimilating model to provide 
radar-enhanced initial conditions. 

Although weather radar data are valuable for improving short-term forecasts of 
moist convection, it is only available over portions of the earth, and thus alternate 
data sources are desirable to improve forecasts over the vast areas where radar data 
are not available. While data sources such as radiosondes, surface observations, and 
aircraft observations are valuable for improving NWP forecasts, none of these 
provide spatial or temporal resolution anywhere near that provided by radar data. 
Satellite data sources are promising given the spatial coverage available from 
satellites. However, to provide near-global coverage, one would need to rely on a 
variety of satellites, each with its own data characteristics, and determine how to 
convert that to a field that can be assimilated to improve short-term forecasts of 
moist convection.  

The Air Force is in the process of operationalizing a data product that uses machine 
learning to create a model that converts satellite data into radar-like fields. This 
product is called Global Synthetic Weather Radar (GSWR; Veillette et al. 2020) 
and a preliminary test of its assimilation is described in this study. The GSWR 
provides much broader coverage than radar data and since the fields that it provides 
are fields normally produced by radar, radar assimilation methods can be modified 
to ingest GSWR data. 
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Section 2 briefly describes GSWR data, Section 3 overviews the NWP model and 
its configuration, Section 4 gives a case description, and Section 5 discusses the 
assimilation methodology. Section 6 provides an overview of the experiment 
design, Section 7 describes the results, and a summary and a discussion of future 
work are provided in Section 8. 

2. Global Synthetic Weather Radar 

GSWR is being developed by Massachusetts Institute of Technology – Lincoln 
Laboratory as a near-global extension of the Offshore Precipitation Capability 
(Veillette et al. 2018) they developed for the Federal Aviation Administration for 
areas near CONUS (Veillette et al. 2020). GSWR uses machine learning to allow 
radar fields to be estimated where radar data are not available. One input for the 
convolutional neural network is satellite data, which includes the US Geostationary 
Operational Environment Satellite (GOES) satellites GOES-16 and GOES-17, the 
European satellites Meteosat-8 and Meteosat-11, and the Japanese satellite 
Himawari-8. Other input data are lightning data via the Vaisala Global Lightning 
Dataset 360, and numerical weather prediction output from the Air Force Global 
Air-Land Weather Exploitation Model. The truth used in creation of their model is 
space-based radar (National Aeronautics and Space Administration’s Global 
Precipitation Measurement satellite’s Dual-frequency Precipitation Radar). GSWR 
produces estimates of vertically integrated liquid, echo tops, and column maximum 
reflectivity (CMR). CMR is the GSWR output field used in this study. 

GSWR data are to be available every 15 min, although in the test data, they were 
provided four times per hour, the time between output varied within the hour (being 
available at 13, 23, 43, and 53 after each hour). GSWR data cover at least 67 S to 
67 N at all longitudes but the latitude it extends to varies between 67 and 70 
depending on longitude. GSWR is available at 5-km horizontal grid spacing. 

3. Model Description and Configuration 

WRF-ARW (often simply called WRF) v4.1.2 (Skamarock et al. 2019) is used in 
this study. Preparation of initial conditions and boundary conditions was facilitated 
via the Weather Running Estimate–Nowcast Realtime system (WREN_RT; Reen 
and Dawson 2018). While WREN_RT can also run WRF, it cannot currently 
process GSWR data, so WREN_RT could not provide an end-to-end solution for 
this case. Plans are in place to extend WREN_RT to process GSWR data. 
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WRF was configured with 9-, 3-, and 1-km nested domains over two locations. The 
domains have 151 × 151, 151 × 151, and 199 × 199 horizontal grid points for the 
three domains and 56 vertical levels. One case has its WRF domains centered over 
the Black Sea (43.25 N, 29.83 E; Fig. 1) and the other over far western Russia, 
southwest of Moscow (54.00 N, 34.33 E; Fig. 2). The first guess for initial 
conditions is supplied by 0.25° resolution (Black Sea case) or 0.50° resolution (far 
western Russia case) Global Forecast System (GFS) data.  

 

Fig. 1 Location of domains for Black Sea case 
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Fig. 2 Location of WRF domains for far western Russia case 

WRF requires the user to choose parameterizations to represent various processes. 
The planetary boundary layer scheme used here was the level 2.5 Mellor‒Yamada 
Nakanishi Niino scheme (MYNN; Nakanishi and Niino 2006; Nakanisho and Niino 
2009; Olsen et al. 2019). For microphysics the aerosol-aware Thompson 
microphysics scheme (Thompson and Eidhammer 2014) was used. The Noah land 
surface model (Tewari et al. 2004) was used, and for radiation, the RRTMG (rapid 
radiative transfer model for general circulation models) shortwave and longwave 
radiation schemes (Iacono et al. 2008) were used. The Grell–Freitas cumulus 
parameterization scheme (Grell and Freitas 2014) is used on all domains. Although 
cumulus parameterization schemes are generally meant only for application on 
coarser domains where processes are not sufficiently represented, the Grell–Freitas 
scheme is intended to be scale-aware and adjust its impact based on the grid spacing 
of the model domain. Thus, in theory it should be able to be used for domains with 
any horizontal grid spacing. The parameterizations used in this study differ from 
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Reen et al. (2019) because the area simulated in that study was over the tropics, 
whereas this study is not. 

4. Case Description 

Two cases were examined in this study, one centered over the Black Sea (Fig. 1) 
and the other centered over far western Russia (Fig. 2). Both cases occurred on 
15 July 2019; the Black Sea case covered 0300–1500 coordinated universal time 
(UTC), while the far western Russia case covered 0700–1900 UTC.  

While the GSWR CMR (GSWRCMR) is available four times an hour, for brevity the 
hourly values for the Black Sea case over the WRF 1-km domain are shown in 
Fig. 3. A large area of convection is seen in the eastern half of the domain from 
about 0300 to 0600 UTC. However starting around 0700 UTC, a single area of 
stronger reflectivity is the dominant feature; this continues until the end of the 
period at 1400 UTC. 
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Fig. 3 Hourly GSWRCMR over the 1-km Black Sea domain for the entire length of the model 
integration. Note that 0900 UTC is the 0-h forecast time. 

The hourly plots of GSWRCMR for the 1-km domain in the far western Russia case 
are shown in Fig. 4. An area of reflectivity is seen in the first hour, but then 
GSWRCMR shows little activity until an area of reflectivity begins moving into the 
southwest corner around 1200 UTC. This area appears to continue advecting 
through the domain for the next couple hours, while at the same time an area of 
reflectivity develops in the northern portion of the domain. An area of reflectivity 
starts moving into the northwestern part of the domain around 1400 UTC. The 
convection continues to evolve, and by 1800 UTC, there is almost no reflectivity in 
the domain. 
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Fig. 4 Hourly GSWRCMR over the 1-km far western Russia domain for the entire length of 
the model integration. Note that 1300 UTC is the 0-h forecast time. 

5. Assimilation Methodology 

This section first discusses the methodology used to convert the 1-D GSWRCMR 
into 3-D GSWRref. Then the methodology used to convert GSWRref to a latent 
heating term is described. Finally, the methods used to apply the latent heating term 
to the NWP model are described. 
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5.1 Determine 3-D Reflectivity 

The goal in this work is to adapt the assimilation methodology used to assimilate 
radar reflectivity in Reen et al. (2019) to the GSWR data. The radar assimilation 
methodology of Reen et al. (2019) cannot be directly used for GSWR data because 
the radar assimilation involved 3-D radar reflectivity, whereas the GSWR data do 
not provide 3-D radar reflectivity but rather the maximum reflectivity in each 
column (i.e., CMR). 

Thus, to assimilate GSWR data one must somehow create a profile of reflectivity 
based on the CMR. Reen et al. (2019) used the data assimilation package Gridpoint 
Statistical Interpolation (GSI; Shao et al. 2016) to convert radar reflectivity into 
latent heating terms for application in WRF. The GSI code uses a set of reference 
reflectivity profiles to vertically extend the reflectivity profiles beyond what is 
observed by the radar. We leverage these profiles from GSI V3.6 to provide a first 
guess of a vertical reflectivity profile based on the GSWRCMR. The profiles 
provided in GSI reach from 0.2 to 16.0 km above ground level and are specified as 
values from 0 to 1 that are multiplied by CMR to provide a reflectivity profile. 
Different profiles are provided for each 5-dBZ range from 20 to 50 dBZ. While the 
GSI source code includes different profiles for summer and winter, GSI V3.6 is 
hardcoded to only use the summer profiles and those are the profiles we use in this 
study. For GSWRCMR less than 20 dBZ, we used the profiles GSI used for 20 dBZ, 
and for GSWRCMR greater than 50 dBZ, we used the profiles GSI used for 50 dBZ. 
Since GSI specifies the profiles as values between 0 and 1 that are multiplied by 
GSWRCMR, using profiles outside of their ranges will still result in the generated 
profile having the desired CMR. Examples of the reflectivity profiles that result 
from a GSWRCMR of 35 and 44 dBZ are shown in Fig. 5. 
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Fig. 5 Reference profiles generated based on GSI profiles for a CMR of a) 35 dBZ and 
b) 44 dBZ 
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While the GSI profiles provide a first guess of a reflectivity profile appropriate for 
a given GSWRCMR, it would be better to utilize more case-specific information. 
One method to do this is to leverage the WRF reflectivity profile to convert the 
GSWRCMR into a reflectivity profile. This is accomplished by scaling the WRF 
reflectivity (WRFref) by a factor so that its adjusted CMR is equal to the GSWRCMR. 
Thus, we calculate a GSWR-derived reflectivity profile (GSWRref) as follows: 
GSWRref = WRFref * (GSWRCMR/WRFCMR). This method allows the case-specific 
WRF reflectivity profile to be leveraged in assimilating GSWR. This obviously 
cannot be used for columns where WRF does not forecast moist convection and so 
the GSI profiles are retained for cases where the WRFCMR is too weak.  
Specifically, we require the WRFCMR to be at least half the GSWRCMR (i.e.,  
WRFCMR ≥ 0.5 * GSWRCMR). Thus, even when WRFCMR greater than 0, we do not 
necessarily use WRFref in creating GSWRref; this is because it is anticipated that 
scaling too-weak profiles will result in an unrealistic profile. This threshold ratio 
(0.5) for using WRF reflectivity profiles should be considered preliminary and may 
need to be adjusted based on future research. 

Figures 6 and 7 illustrate this technique. In Fig. 6a, at a hypothetical WRF grid 
point GSWRCMR is 34 dBZ and WRFref is as shown with WRFCMR equal to 15 dBZ. 
Since [WRFCMR = 15 dBZ] < [0.5 * (GSWRCMR = 34 dBZ) = 17 dBZ], WRFref is 
considered too weak to scale to create GSWRref. Thus, the GSWRref calculated for 
this point and shown in Fig. 6b is defined using the reference GSI profiles. In 
contrast to this, at the hypothetical WRF grid point in Fig. 7a, GSWRCMR is also 
34 dBZ, but the WRFref has WRFCMR equal to 20 dBZ. Since  
[WRFCMR = 20 dBZ] > [0.5 * (GSWRCMR = 34 dBZ) = 17 dBZ], WRFref is 
considered strong enough to scale to create GSWRref. Therefore, the GSWRref 
calculated for this point and shown in Fig. 7b is defined by scaling WRFref.   
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Fig. 6 Hypothetical GSWRCMR plotted with a) coincident WRFref and b) the resulting 
GSWRref calculated from GSI reference profiles  
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Fig. 7 Hypothetical GSWRCMR plotted with a) coincident WRFref and b) the resulting 
GSWRref calculated by scaling WRFref by GSWRCMR/WRFCMR 
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5.2 Determine Latent Heating 

Once GSWRref is calculated, the reflectivity is used to calculate the reflectivity-
derived latent heating (RDLH) using the same equations applied to 3-D radar 
reflectivity in Reen et al. (2019) via use of GSI. However, note that Reen et al. 
(2019) incorrectly reported RDLH was a temperature tendency when in reality it is 
a potential temperature tendency. To determine RDLH, first use the reflectivity 
factor to approximate the rain/snow condensate (f[Ze]) it represents using the 
equation from GSI: 

 𝑓𝑓[𝑍𝑍𝑒𝑒] = 1.5
264083

∗ 10(𝑍𝑍 17.8⁄ ), (1) 

where 

Z  =  radar reflectivity 

Then the RDLH is calculated using the following equation: 

 RDLH=  �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝐿𝐿𝐿𝐿

=  �1000
𝑝𝑝
�
𝑅𝑅𝑑𝑑 𝑐𝑐𝑝𝑝�

∗ �𝐿𝐿𝑣𝑣+𝐿𝐿𝑓𝑓�
(𝑓𝑓[𝑍𝑍𝑒𝑒])

𝑑𝑑𝑐𝑐𝑐𝑐𝑝𝑝
, (2) 

where 

p = pressure (hPa) 

Rd = dry gas constant (≈287.059) 

cp = specific heat of dry air at constant p (≈1004.705 J kg–1 K–1) — Rd/cp is 1/3.5 

Lv = latent heat of vaporization at 0° C (2.501E6 J kg–1) 

Lf = latent heat of fusion at 0° C (0.3335E6 J kg–1) 

tc = time period of condensate formation (in seconds, here set to 15*60) 

θ = potential temperature 

t = time 

LH = latent heating 

f[Ze] = reflectivity factor converted to rain/snow condensate 

RDLH is set to zero if echoes are weak. Namely, if GSWRref does not equal or 
exceed 5 dBZ, then RDLH is set to zero. This is more restrictive than the 0.001-dBZ 
criteria used for radar in Reen et al. (2019) as experimentation indicated that GSWR 
sometimes showed widespread weak dBZ values that it was suspected were not 
consistent with reality. Also, RDLH is set to zero throughout a column if after 
horizontal smoothing of RDLH (yielding RDLHsmooth), no vertical layer in a column 



 

14 

of RDLH exceeds 0.00002 Ks–1. Since GSWR data were processed via a  
Python script rather than via GSI a different smoothing was used here than  
with the radar data. Specifically, gaussian_filter from scipy.ndimage 
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filt
er.html#scipy.ndimage.gaussian_filter) was used with x and y sigma both set to 0.7. 

Unlike the radar data in Reen et al. (2019), RDLH is not set to zero where 
temperature is greater than 277.15 K and reflectivity is less than 28 dBZ. It is not 
known why these criteria were used in GSI to prevent relatively weaker 
reflectivities from being used to create RDLH when the temperature was at least 
4 °C above freezing. Also, unlike the radar processing, RDLH is not set to zero 
within the atmospheric boundary layer. Since we do not know the atmospheric 
boundary layer depth while processing GSWR data, we instead modify WRF to 
create an option as to whether RDLH should be excluded from the atmospheric 
boundary layer. That option was not enabled for the experiments in this study and 
so GSWR-derived RDLH were applied within the planetary boundary level. 

In the top level of the field where RDLH is stored, a flag is stored indicating 
whether convection should be suppressed in cumulus parameterizations. This flag 
is set based on RDLHsmooth to indicate a) insufficient information is available to set 
the flag (–10; i.e., missing), b) no convection in the column (0), or c) there may be 
convection in the column (1).  

5.3 Apply Latent Heating 

Once RDLH is calculated, one must determine how to apply it in WRF. The basic 
methodology is shown in Fig. 8 and generally follows that used by Reen et al. 
(2019). The goal is to induce or suppress moist convection in WRF so that WRF 
forecast coverage of moist convection will be consistent with GSWR. The primary 
method by which RDLH influences the model is through its replacement of the 
microphysics heating term (MPHT) and the cumulus parameterization heating term 
(CPHT). The WRF microphysics parameterization calculates MPHT and the WRF 
cumulus parameterization scheme calculates CPHT, and if RDLH were not being 
applied, the MPHT and CPHT would be applied to the model. Similarly, if RDLH 
is missing for a particular grid cell (e.g., if the domain reaches into the arctic and 
beyond the range of GSWR), the MPHT and CPHT is applied (case 1 in Fig. 8). If 
the RDLH is zero (case 2 in Fig. 8), instead of applying the MPHT the zero heating 
term calculated by RDLH is applied and this serves to suppress moist convection; 
however, in this case the CPHT is applied. If the RDLH is positive (case 3 in Fig. 8), 
then the method will apply the RDLH in place of the MPHT. If the magnitude of 
the RDLH is non-negligible (≥1.0 * 10‒7 Ks‒1), then CPHT will not be applied. The 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter
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setting of CPHT to zero when RDLH has a non-negligible positive value was not 
relevant to Reen et al. (2019) because radar was only assimilated on the innermost 
domain, and that domain was not using a cumulus parameterization. Unlike the 
radar assimilation in Reen et al. (2019), there are some exceptions to the use of 
RDLH in place of MPHT when RDLH is greater than 0.  

 

Fig. 8 Diagram illustrating whether MPHT or RDLH is applied based on RDLH, MPHT, 
WRFCMR, and GSWRCMR. The orange box indicates the portion of the algorithm that is new 
and used with GSWR assimilation compared to the technique used for radar observations in 
Reen et al. (2019). 

The exceptions to the replacement of MPHT by RDLH if RDLH is greater than 0 
are in place because the vertical structure of RDLH is an estimation. Unlike the 
radar assimilation where a vertical profile of reflectivity produced a vertical profile 
of RDLH, with GSWR the CMR is used with other information to estimate a 
vertical profile of reflectivity from which a vertical profile of RDLH is created. 
Therefore, with the GSWR assimilation, we have less confidence in the vertical 
structure of RDLH than we had with radar data. The exceptions allow the MPHT 
to be used if the MPHT would more strongly push the model in the direction the 
RDLH is attempting to push the model. 

One of the exceptions is that if WRFCMR is greater than GSWRCMR and MPHT is 
less than RDLH then we apply MPHT instead of applying RDLH (case 3a in 
Fig. 8). In this case WRF is showing stronger convection than GSWR indicates 
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should be present, and thus the goal is to weaken the convection by applying 
RDLH. However, if MPHT is less than RDLH, then applying MPHT will be even 
more effective in weakening convection than RDLH and so allowing MPHT to be 
applied does not hinder our goal of weakening moist convection. The other 
exception (case 3b in Fig. 8) is the mirror image of the first. Namely, if WRFCMR is 
less than GSWRCMR and MPHT is greater than RDLH, then we again apply MPHT 
instead of applying RDLH. In this case WRF is showing weaker convection than 
GSWR indicates, and thus we want to strengthen the convection by applying 
RDLH. However, when MPHT is greater than RDLH applying MPHT will more 
quickly strengthen convection than RDLH and so applying MPHT is not counter to 
our goal of strengthening moist convection. Neither of these exceptions should 
ultimately overweaken nor overstrengthen moist convection, since they are 
dependent on the current relationship between WRFCMR and GSWRCMR.  

These exceptions are important as they allow the vertical structure to more easily 
evolve in a manner consistent with the environment. Without the exceptions in 
place, in cases where the WRFCMR is large enough that WRFref is scaled to create 
GSWRref, the evolution of the vertical reflectivity profile may be overly 
constrained. When we scale WRFref to create GSWRref, we are assuming that the 
shape of the vertical WRF reflectivity profile is correct, but that its magnitude is 
incorrect; thus, we assume that to get the true reflectivity profile we just need to 
scale the WRF reflectivity profile. However, our source of “truth” is the GSWR 
data, which does not tell us the shape of the vertical profile. While the shape of the 
profile we are imposing is our best guess, due to the shape not being prescribed by 
observations we should not too strongly impose the shape. By replacing the heating 
term that the model microphysics scheme produces (MPHT) with the RDLH based 
on the current shape of the WRF reflectivity profile we reinforce the current shape 
of the WRF reflectivity profile and suppress the ability of the microphysics scheme 
to modify the vertical shape of the reflectivity profile. The previously described 
exceptions to the methodology provide an opportunity for WRF to evolve the 
vertical shape of the reflectivity profile while still mandating that the solution is 
being pushed sufficiently strongly toward stronger or weaker moist convection (as 
determined by the relationship between GSWRCMR and WRFCMR).  

The overall process of creating and applying RDLH described in this section is 
shown in Fig. 9. This flowchart indicates the parts of the process that were used 
with radar data in Reen et al. (2019) but are not used here (“Old”), parts that are 
used with GSWR data but not radar data (“New”), and parts that are used with both 
radar and GSWR data (“Same”).  
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Fig. 9 Flowchart summarizing the similarities and differences between the processing of 
radar data and GSWR data. Parts of the flowchart relevant to processing radar but not 
GSWR data are labeled “Old”), parts of the flowchart relevant to processing GSWR but not 
radar data are labeled “New”, and parts of the flowchart relevant to processing both radar 
and GSWR data are labeled “Same”. Areas surrounded by thick black lines take place in the 
software program noted in white letters against a black background within the area outlined 
by the thick black lines. 

Examining WRF output indicated that where GSWRCMR was large, the sudden 
imposition of a large RDLH could result in what appeared to be unrealistic waves 
spreading and have a negative impact on the solution. To mitigate this issue an 
equation to limit GSWRref was added using the following adjustment of GSWRref: 

 GSWRref = MIN(MAX(WRFref + 10, 40), GSWRref) (3) 

The effect of this equation might be best seen through several examples as shown 
in Table 1. The equation prevents values of GSWRref from being applied if they are 
greater than 40 dBZ and more than 10 dBZ greater than the reflectivity WRF 
currently predicts (WRFref). When there is a high GSWRref value and the model 
shows reflectivity values noticeably weaker than this, the GSWR data will still be 
applied to strengthen moist convection at this point. As the moist convection in the 
model strengthens, WRFref will come closer to GSWRref and one will be able to 
gradually increase the GSWRref being applied to be closer to the actual GSWRref 
value. 
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Table 1 Examples of the impact of the GSWRref limiter equation 

GSWRref 
(original) WRFref GSWRref 

(updated) 
45 20 40 
45 30 40 
45 40 45 
45 50 45 
55 20 40 
55 30 40 
55 40 50 
55 50 55 

Note: All values dBZ 

As noted in the previous section, horizontally smoothed RDLH is used to determine 
a flag for each column indicating whether convection is possibly present, not 
present, or alternatively that RDLH is missing. This flag is used in the Grell–Freitas 
cumulus parameterization used in this study to set a variable cap_max that  appears 
to be the maximum pressure above ground at which a cloud base is allowed to be 
established (i.e., the maximum pressure difference between the ground and the 
cloud base). If convection is possibly present, then cap_max is set to 150 hPa; if 
convection is not present, then cap_max is set to 10 hPa; and if RDLH is missing, 
then cap_max is set to 75 hPa. The relative magnitude of the influence of RDLH 
on the model results via the cumulus parameterization versus via modification of 
the microphysics heating is not known. Given the relatively fine resolution of the 
innermost domain that is the focus of this study, it is anticipated that the scale-
aware Grell–Frietas cumulus parameterization will have limited direct influence on 
the 1-km domain. In Reen et al. (2019), a different cumulus parameterization was 
used that was not scale-aware and thus it was not used on the finest domain, which 
is the only domain where RDLH was applied in that study. Additionally, the 
cumulus parameterization used in that study is not affected by RDLH.  

If GSWR, via RDLH, indicates that there should be no moist convection at a 
location, then there should also not be any precipitation hydrometeors. While 
applying the RDLH of zero in this case should help suppress the formation of 
precipitation hydrometeors, directly modifying the prevalence of these 
hydrometeors may allow the WRF solution to more closely match GSWR. 
Therefore, an option was added to WRF that if the GSWR-derived reflectivity 
profile (GSWRref) results in a latent heating term of zero (RDLH = 0) but the model 
indicates nonzero precipitation hydrometeors, then actions are taken to decrease 
such hydrometeors. Specifically, at each time step the mixing ratio of rain, snow, 
graupel, and hail present is decreased by an amount that would result in them being 
completely removed in 1 h if there were no other tendency terms for these mixing 
ratios. Additionally, the cloud water mixing ratio is decreased each time step by an 
amount that would lead to it decreasing by 50% in 1 h. The modification of the 
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cloud water mixing ratio only takes place when RDLH = 0 and WRF has nonzero 
precipitation hydrometeors. Thus, while obviously cloud can be present when there 
is no reflectivity that would be seen by GSWR, the idea here is that if the model is 
erroneously creating precipitation hydrometeors, we can remove some of these 
precipitation hydrometeors by decreasing the amount of cloud water present. 

Another option was added to directly decrease the water vapor mixing ratio in cases 
where RDLH = 0 and WRF has nonzero precipitation hydrometeors. The reasoning 
is that if the model is erroneously producing precipitation hydrometeors then it may 
be because the environment is too moist. For the water vapor mixing ratio, an 
amount is removed each time step that would result in the water vapor mixing ratio 
decreasing by 10% in 1 h (again, assuming there are no other terms affecting the 
water vapor mixing ratio). 

The RDLH based on a given GSWRCMR field is applied over the 15 min leading up 
to the valid time of the GSWRCMR field (Fig. 10). Since the test GSWRCMR data 
were not at 15-min intervals, each 15-min time was assigned the nearest GSWRCMR 
data and the data were applied over the 15 min leading up to that time. While for 
clarity Fig. 10 illustrates a 1-h pre-forecast, for this study 6-h pre-forecasts were 
used based on the findings of Reen et al. (2019).  

 

Fig. 10 Diagram illustrating the insertion of RDLH derived from 15-min GSWRCMR over 
the 15 min preceding the valid time of each GSWRCMR field over a 1-h pre-forecast in order 
to provide the best initial conditions for the forecast 

6. Experimental Design 

The experiments described in this report are shown in Table 2. Each experiment 
integrates a 6-h pre-forecast to spin up the simulation; for experiments employing 
data assimilation, the data assimilation is carried out during this period. The 6-h 
pre-forecast is followed by a 6-h forecast. The first experiment is Experiment (Exp.) 
Control and is the only experiment that does not assimilate the GSWR data. Exp. 
GSWR assimilates the GSWR data but without some of the enhancements of the 
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subsequent experiments. All experiments that assimilate GSWR data do so on all 
three domains. Exp. GSWR_H adds explicit adjustment of precipitation 
hydrometeors (including cloud water) based on RDLH. Exp. GSWR_HN adds 
observations to the initial condition analysis performed by the WRF-related 
program Obsgrid (NCAR 2019) and also performs observation nudging during the 
6-h pre-forecast. The observations utilized are from the National Centers for 
Environmental Prediction Meteorological Assimilation Data Ingest System 
(MADIS; madis.noaa.gov). The MADIS observations used here include aircraft, 
maritime (i.e., from boats), Météorologique Aviation Régulière (METAR) surface 
observations, radiosondes, and satellite-derived wind. The non-GSWR 
observations are only assimilated in Exp. GSWR_HN. Exp. GSWR_HL adds to 
Exp. GSWR_H the reflectivity limiter that prevents GSWRref values more than 
10 dBZ greater than WRFref from being used when GSWRref is greater than 40 dBZ. 
The final experiment, Exp. GSWR_HLV, enables the water vapor mixing ratio to 
be decreased based on GSWRref. 

Table 2 Experimental design 

Exp. Name GSWR Hydro-
meteors 

Obs 
in 
IC 

Obs 
Nudging Limiter Water 

Vapor 

Control N N N N N N 
GSWR Y N N N N N 
GSWR_H Y Y N N N N 
GSWR_HN Y Y Y Y N N 
GSWR_HL Y Y N N Y N 
GSWR_HLV Y Y N N Y Y 

Notes: N = No, Y = Yes, IC = Initial Conditions 

 
All of these experiments are carried out for both the domains centered over the 
Black Sea and over far western Russia. The next section describes the results of 
these experiments. 

7. Results 

Verification for these two cases was performed by comparing WRFCMR and 
GSWRCMR. Although most of the experiments assimilated GSWRCMR, the 
assimilation is carried out over the first 6 h of the simulation, whereas the 
verification is of the second and final 6 h of the simulation. Therefore, the 
verification is not against the same values that are being assimilated.  

The Fractions Skill Score (FSS; Roberts 2008; Roberts and Lean 2008) and bias 
were used to evaluate the model forecasts. FSS is a neighborhood-based method 
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that compares every square neighborhood of a given size in the model domain with 
the coincident neighborhood in the observations (here GSWR) to see whether a 
reflectivity exceeding a given threshold occurs in one or both of the neighborhoods. 
In this study, an 11- × 11-km neighborhood size was used. The FSS of reflectivity 
forecasts provides information on how well the model places moist convection and 
does not penalize the model for errors below the scale of the neighborhood. The 
best possible FSS is 1.0. The bias score indicates how the fraction of the model 
domain exceeding a given reflectivity threshold (forecast rate) compares to the 
fraction of the coincident GSWR subset exceeding that same reflectivity threshold 
(observed rate) (i.e., bias = forecast rate/observed rate). The best possible bias score 
is 1.0. If the model has at least one grid cell that exceeds the reflectivity threshold 
and the observation has no grid cells that exceed the threshold, the FSS will 
necessarily be zero and bias will be undefined (due to division by zero). Similarly, 
if the model has no grid cells exceeding the reflectivity threshold and the 
observation has at least one grid exceeding the threshold, again FSS will be zero, 
but bias will be zero. 

7.1 Black Sea Case 

Figure 11 compares WRFCMR for each of the experiments on the 1-km domain at 
the 0-h forecast time (0900 UTC) with the GSWRCMR valid at that time. The 0-h 
forecast time demonstrates the ability of the assimilation method to create a 
reflectivity consistent with GSWRCMR. GSWRCMR indicates that the main feature 
at this time is an area with reflectivity reaching 40 dBZ in the central-to-northern 
portion of the western half of the domain (Fig. 11g). The experiment that does not 
assimilate GSWR data (Exp. Control, Fig. 11a) does not show this feature but does 
indicate a fairly large area with reflectivity along the eastern edge of the domain. 
The assimilation of GSWR data results in the reflectivity feature seen in the GSWR 
data being in the model solution (Exp. GSWR, Fig. 11b). Along the eastern edge 
of the domain, the apparently erroneous reflectivity has a lower maximum than seen 
without GSWR assimilation (and is somewhat westward compared to Exp. 
Control), but the model still overforecasts reflectivity in this area as evaluated 
against GSWR. Allowing GSWR to influence both precipitation hydrometeors and 
cloud water results in the observed feature remaining in the forecast but ameliorates 
the overforecast in the eastern part of the domain (Exp. GSWR_H, Fig. 11c). 
Adding the assimilation of other observations (both via an analysis at the start of 
model integration and via observation nudging) results (Exp. GSWR_HN, Fig. 11d) 
in little change from the previous experiment in terms of CMR, although the 
reflectivities in the southeast corner are decreased somewhat, which appears 
consistent with GSWR. Adding the limiter (to prevent shocks from large latent 
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heating terms suddenly being imposed) allows the main reflectivity feature seen in 
the GSWR data to remain in the WRF solution but noticeably increases the 
overforecast in the eastern two-thirds of the domain (Exp. GSWR_HL, Fig. 11e) 
compared to not using the limiter (Exp. GSWR_H, Fig. 11c). Finally, allowing 
GSWR to directly influence water vapor removes almost all of the overforecast and 
produces a CMR very similar to observations (Exp. GSWR_HLV, Fig. 11f).   

 

Fig. 11 WRFCMR for the Black Sea case for Exps. a) Control, b) GSWR, c), GSWR_H, 
d) GSWR_HN, e) GSWR_HL, f) GSWR_HLV at the 0-h forecast time (0900 UTC), and g) the 
GSWRCMR for 0900 UTC. In the lower-left-hand corner of the black box of each WRFCMR plot 
(a–f), the text “fh = 0 h” indicates that the 0-h forecast is plotted.  
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The verification statistics for the 1-km domain of the Black Sea simulations are 
shown in Fig. 12 (10 dBZ), Fig. 13 (20 dBZ), and Fig. 14 (30 dBZ). The control 
experiment, Exp. Control, which does not use the GSWR product, shows low FSS 
at all reflectivity thresholds, with values ≤0.1 at the 10-dBZ threshold (Fig. 12a) 
but reaching lower peaks at the higher thresholds (Fig. 13a, and Fig. 14a). The 
assimilation of GSWR data improves the FSS, with Exp. GSWR having values 
around 0.5 (Fig. 12b, Fig. 13b, and Fig. 14b), and somewhat higher at the 30-dBZ 
threshold. Allowing RDLH to trigger the decreasing of precipitation hydrometeors 
(Exp. GSWR_H) increases FSS in the first hour from approximately 0.50 to 
approximately 0.65 for the 10-dBZ threshold (Fig. 12c), from approximately 0.53 
to approximately 0.58 for the 20-dBZ threshold (Fig. 13c), and seems to make little 
difference at 30 dBZ (Fig. 14c). Adding 1) observations to the initial condition 
analysis and 2) observation nudging during the pre-forecast appears to have little 
impact on FSS (Exp. GSWR_HN in Fig. 12d, Fig. 13d, and Fig. 14d). For this case, 
the implementation in Exp. GSWR_HL of the RDLH limiter (to lessen shocks from 
high RDLH being imposed where the model previously had much less 
microphysics related heating [MPHT]), resulted in a notable decrease in FSS at 
10 dBZ (Fig. 12e) and 20 dBZ (Fig. 13e) compared to Exp. GSWR_H, but little 
change at 30 dBZ (Fig. 14e). It may be that although the limiter helps to avoid 
shocks, as a side effect, it does not assimilate the GSWR data as well. Allowing 
RDLH to be used to trigger a decrease in the water vapor mixing ratio notably 
increases FSS at 10 dBZ (Fig. 12f) and 20 dBZ (Fig. 13f) to the highest level of any 
experiment during the first forecast hour but results in little change in FSS at 
30 dBZ (Fig. 14f). 
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Fig. 12 Time series comparing WRFCMR from the 1-km domain to GSWRCMR using a 
10-dBZ threshold for 11-km neighborhood FSS, bias, as well as the observed rate (O-RATE) 
and forecast rate (F-RATE) used to calculate bias. Results are shown for the Black Sea 
simulations for experiments a) Control, b) GSWR, c) GSWR_H, d) GSWR_HN, 
e) GSWR_HL, and f) GSWR_HLV.  
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Fig. 13 Time series comparing WRFCMR from the 1-km domain to GSWRCMR using a 
20-dBZ threshold for 11-km neighborhood FSS, bias, as well as the O-RATE and F-RATE 
used to calculate bias. Results are shown for the Black Sea simulations for experiments 
a) Control, b) GSWR, c) GSWR_H, d) GSWR_HN, e) GSWR_HL, and f) GSWR_HLV. 
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Fig. 14 Time series comparing WRFCMR from the 1-km domain to GSWRCMR using a 
30-dBZ threshold for 11-km neighborhood FSS, bias, as well as the O-RATE and F-RATE 
used to calculate bias. Results are shown for the Black Sea simulations for experiments 
a) Control, b) GSWR, c) GSWR_H, d) GSWR_HN, e) GSWR_HL, and f) GSWR_HLV. 
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In terms of bias for the Black Sea experiments, at 10 dBZ (Fig. 12) all experiments 
have an overforecast bias at the beginning of the forecast that turns into an 
underforecast bias during the forecast period, and then at the end of the forecast 
period the bias starts increasing (whether it becomes an overforecast bias or not 
depends on the experiment). All of the experiments that assimilate GSWR data 
worsen the underforecast at 10 dBZ in the 4.0- to 5.5-h forecast period. At 20 dBZ 
the control experiment (Fig. 13a) has a slight underforecast bias in the 0- to 2-h 
period, followed by a more substantial underforecast bias in the 3- to 5-h period, 
and then an overforecast bias at the very end of the period. The experiments 
assimilating GSWR (Fig. 13b–f) all worsen the underforecast bias in the 4.0- to 
5.5-h period at the 20-dBZ threshold, as is also the case at 10 dBZ. At 30 dBZ 
(Fig. 14) the experiments assimilating GSWR improved the bias in the 0- to 1-h 
period but appeared to increase the underforecast bias during the rest of the 
experiment. The experiments assimilating GSWR missed much of the convection 
in the 4.0- to 5.5-h period leading to generally near-zero biases and FSS. 

7.2 Far Western Russia Case 

Figure 15 compares WRFCMR for each of the experiments on the 1-km domain at 
the 0-h forecast time (1300 UTC) with the GSWRCMR valid at that time. The 
GSWRCMR field (Fig. 15g) indicates the main feature is an area of reflectivities 
reaching 30 dBZ in the southwest corner of the domain. The experiment without 
GSWR assimilation (Exp. Control, Fig. 15a) also shows an area of enhanced 
reflectivity in the southwest corner, but contrary to GSWRCMR shows widespread 
reflectivity throughout the domain. Adding GSWR assimilation (Exp. GSWR, 
Fig. 15b) results in the feature in the southwest corner more closely matching 
GSWRCMR, and the reflectivity across the rest of the domain is substantially 
decreased. Allowing GSWRCMR to directly modify hydrometeors (Exp. GSWR_H, 
Fig. 15c) decreases the apparently erroneous reflectivities outside the southwest 
corner. Adding assimilation of other observations (Exp. GSWR_HN, Fig. 15d) and 
the RDLH limiter (Exp. GSWR_HL, Fig. 15e) has minimal effects. However, 
allowing the GSWRCMR to affect water vapor directly (Exp. GSWR_HLV, Fig. 15f) 
results in much of the apparently erroneous reflectivity being removed. 
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Fig. 15 WRFCMR for the far western Russia case for Exps. a) Control, b) GSWR, 
c) GSWR_H, d) GSWR_HN, e) GSWR_HL, f) GSWR_HLV at the 0-h forecast time 
(1300 UTC), and g) GSWRCMR for 1300 UTC. In the lower-left-hand corner of the black box 
of each WRFCMR plot (a–f), the text “fh = 0 h” indicates that the 0-h forecast is plotted. 
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For the far western Russia experiments, verification plots for the 1-km domain at 
10-, 20-, and 30-dBZ thresholds are shown in Figs. 16, 17, and 18, respectively. At 
the 10-dBZ threshold (Fig. 16) all experiments assimilating GSWR perform better 
than the control experiment in terms of FSS during the first forecast hour, but worse 
than the control experiment around the 2-h forecast. Most of the GSWR 
experiments also outperform the control experiment in terms of FSS around the 4-h 
forecast. Among the GSWR experiments, during the first hour Exp. GSWR 
performs somewhat worse than the other GSWR experiments, while the other 
GSWR experiments perform similarly (although Exp. GSWR_HLV has a slightly 
lower FSS in the first 15 min). Consistent with the 10-dBZ threshold, at the 20-dBZ 
(Fig. 17) and 30-dBZ (Fig. 18) thresholds, all of the GSWR experiments outperform 
the control experiment in terms of FSS over the first hour, but perform more poorly 
at the 2-h forecast. Among the GSWR experiments it is difficult to see notable 
differences in FSS for these thresholds. In terms of bias, the control experiment had 
a significant overforecasting bias at the 0-h forecast for all three thresholds, which 
was notably improved in all of the GSWR experiments at all three thresholds. 
Among the GSWR experiments, at 10 dBZ for bias at 0-h Exp. GSWR performs 
the worst, GSWR_HLV is the next best, and Exps. GSWR_H, GSWR_HN, and 
GSWR_HL perform very similarly with biases very close to 1.0. At 20 and 30 dBZ 
the 0-h bias indicates that most of the GSWR experiments perform very similarly, 
with GSWR_HLV slightly worse. After the 0-h forecast time, all experiments at all 
thresholds shift to an underforecast bias and then eventually to an overforecast bias. 
Since the observations do not indicate any reflectivities (at least any >10 dBZ) in 
the 5- to 6-h forecast period but the model does forecast such reflectivities, the FSS 
is 0.0 and the bias is undefined.  
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Fig. 16 Time series comparing WRFCMR from the 1-km domain to GSWRCMR using a 
10-dBZ threshold for 11-km neighborhood FSS, bias, as well as the O-RATE and F-RATE 
used to calculate bias. Results are shown for the far western Russia simulations for Exps. 
a) Control, b) GSWR, c) GSWR_H, d) GSWR_HN, f) GSWR_HL, and e) GSWR_HLV. 
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Fig. 17 Time series comparing WRFCMR from the 1-km domain to GSWRCMR using a 
20-dBZ threshold for 11-km neighborhood FSS, bias, as well as the O-RATE and F-RATE 
used to calculate bias. Results are shown for the far western Russia simulations for Exps. 
a) Control, b) GSWR, c) GSWR_H, d) GSWR_HN, f) GSWR_HL, and e) GSWR_HLV. 
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Fig. 18 Time series comparing WRFCMR from the 1-km domain to GSWRCMR using a 
30-dBZ threshold for 11-km neighborhood FSS, bias, as well as the O-RATE and F-RATE 
used to calculate bias. Results are shown for the far western Russia simulations for Exps. 
a) Control, b) GSWR, c) GSWR_H, d) GSWR_HN, e) GSWR_HL, and f) GSWR_HLV. 
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8. Conclusion and Future Work 

The method used to assimilate 3-D radar reflectivity data in Reen et al. (2019) was 
applied to assimilate column maximum reflectivity from GSWR (GSWRCMR) for 
two domains on the same day. In order to do this a methodology was developed to 
estimate a vertical profile of reflectivity from GSWRCMR so that a 3-D RDLH could 
be calculated. The methodology leverages the WRF reflectivity profile when it is 
sufficiently strong and falls back to using reference reflectivity profiles when the 
WRF reflectivity profile is weak relative to GSWR. Experiments were carried out 
to test the impact of assimilating the GSWR data and evaluate modifications to the 
assimilation technique.  

The results of the experiments indicate that GSWR can improve the FSS in the 
short-term forecast and that modifications to the assimilation technique improve 
the forecast results further. Overall, Exp. GSWR_HLV may have performed best. 
This experiment allowed GSWR to be used to decrease precipitation hydrometeors, 
cloud water, and water vapor where GSWR indicates that WRF is incorrectly 
forecasting moist convection. This experiment also included a limiter to ameliorate 
issues seen where assimilation of high reflectivities could cause apparently 
unrealistic features in the simulation. This study examined only two cases and so 
examination of additional cases would more fully evaluate the value of GSWR and 
allow for improvement of the assimilation technique.  

In this study, the GSWR data were assumed to be “truth” as actual radar data were 
not available for verification. Work is underway to assimilate GSWR data in a 
region where radar data are available so that the accuracy of the WRF forecast can 
be evaluated against the radar data and the accuracy of the GSWR data can be 
evaluated. GSWR is produced by merging information from multiple datasets 
together based on relationships between datasets observed in the past and thus will 
likely have more error than more direct observations such as radar. The spatial 
resolution of the input data used to create GSWR is likely coarser than radar data 
and consistent with this, the GSWR output data are provided at a grid spacing 
(5 km) coarser than the radar data. Additionally, since GSWR does not provide a 
vertical profile, the process of converting a single value into a vertical profile will 
introduce error. Thus, the information provided by GSWR is expected to be inferior 
to that which would be provided by weather radar. 

The results of this study suggest that GSWR data are valuable for improving short-
term forecasts. GSWR appears to be a promising data source for assimilating in the 
vast regions of the earth where weather radar is unavailable. However, given the 
superiority expected to exist in the information provided from radar as compared 
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to that provided from GSWR, it is strongly recommended that if both radar and 
GSWR data are available that radar data should be assimilated.  
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List of Symbols, Abbreviations, and Acronyms 

3-D three-dimensional 

ARL Army Research Laboratory 

CCDC US Army Combat Capabilities Development Command 

CMR column maximum reflectivity 

CONUS continental United States 

CPHT cumulus parameterization heating term 

F-RATE forecast rate 

FSS fractions skill score 

GFS Global Forecast System 

GOES Geostationary Operational Environment Satellite 

GSI Gridpoint Statistical Interpolation 

GSWR Global Synthetic Weather Radar 

HRRR High-Resolution Rapid Refresh 

MADIS Meteorological Assimilation Data Ingest System 

MET Model Evaluation Tools 

METAR Météorologique Aviation Régulière 

MIT-LL  Massachusetts Institute of Technology – Lincoln Laboratory 

MPHT microphysics heating term 

MYNN Mellor–Yamada Nakanishi Niino scheme 

NCAR National Center for Atmospheric Research 

NWP  numerical weather prediction 

O-RATE observed rate 

RDLH reflectivity-derived latent heating 

RRTMG rapid radiative transfer model for general circulation  

UTC coordinated universal time 

WREN_RT Weather Running Estimate–Nowcast Realtime system 
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WRF Weather Research and Forecasting model 

WRF-ARW  Advanced Research version of the Weather Research and 
Forecasting model  



 

40 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 CCDC ARL 
 (PDF) FCDD RLD DCI 
   TECH LIB 
 
 3 CCDC ARL 
 (PDF) FCDD RLC EM 
   B REEN 
   H CAI 
   J RABY 
 


	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Global Synthetic Weather Radar
	3. Model Description and Configuration
	4. Case Description
	5. Assimilation Methodology
	5.1 Determine 3-D Reflectivity
	5.2 Determine Latent Heating
	5.3 Apply Latent Heating

	6. Experimental Design
	7. Results
	7.1 Black Sea Case
	7.2 Far Western Russia Case

	8. Conclusion and Future Work
	9. References
	List of Symbols, Abbreviations, and Acronyms

