Leveraging DevOps and DevSecOps to Accelerate AI Development and Deployment

Hasan Yasar
Technical Director, Adjunct Faculty Member
Software Engineering Institute | Carnegie Mellon University
Outline

- Modern SW Development: DevOps
 - Fundamentals,
 - DoD Specific - ATO
- AI for DevOps
- DevOps for AI
Modern SW Development: DevOps
DevOps is a set of principles and practices emphasizing collaboration and communication between software development teams and IT operations staff along with acquirers, suppliers, and other stakeholders in the lifecycle of a software system.

DevSecOps is a model on integrating the software development and operational process considering security activities: requirements, design, coding, testing, delivery, deployment, and incident response.

Mature DevOps practices are constantly testing, deploying and validating that software meets every requirement and allows for fast recovery in the event of a problem. As a result we can easily say,

“DevSecOps is DevOps done right”
Who are Dev?

- Follow Agile methodologies
 - Using Scrum, Kanban and modern development approaches
 - Self directing, self managed, self organized
- Using any new technology
 - Each Dev has own development strategy
 - OpenSource,
- Allowed to have
 - Close relationships with the business
 - Software driven economy

Want to deliver software faster with new requirements...
Who are Ops?

- Operations
 - Runs the application
 - Manages the infrastructure
 - Support the applications
- Operations provides
 - Service Strategy
 - Service Design
 - Service Transition
 - Service Operations
 - Secure systems

Want to maintain stability, reliability and security...
DevOps aims to Increase...

...the pace of **innovation**

...**responsiveness** to business needs

...**collaboration**

...software **stability and quality**

... **continuous feedback**
DevOps has four Fundamental Principles

• **Collaboration**: between project team roles

• **Infrastructure as Code**: all assets are versioned, scripted, and shared where possible

• **Automation**: deployment, testing, provisioning, any manual or human-error-prone process

• **Monitoring**: any metric in the development or operational spaces that can inform priorities, direction, and policy
SW Development Phases

Feature Request

Requirements

Architecture

Design

Development

Test

Delivery
Leveraging DevOps and DevSecOps to Accelerate AI Development and Deployment

Collaboration: Many stakeholders

IT Operations: Scalability, Infrastructure, Deployment, Networks, Maintenance

Quality Assurance: Release Review, Technical Documentation, Quality Assurance

Business Analyst: Business Constraints, Legal Issues, User Requirements, Market Needs, Budgets / Timelines

Information Security: Security, Data Privacy, Incident response, Intrusion Detection

Many stakeholders collaborate in the development and deployment of AI systems, involving various roles and responsibilities.
Collaboration: *Silos Inhibit Collaboration and poor communication*
Infrastructure as Code (IaC)

A program that creates infrastructure,

A concretely defined description of the environment is good material for conversation between team members.
Automation: *Continuous Integration (CI)*

Continuous integration is a process that continually merges a system’s artifacts, including source code updates and configuration items from all stakeholders on a team, into a shared mainline to build and test the developed system.
Automation: Continuous Delivery / Deployment (CD)

Shift Left Operational Concerns Enforced by Continuous Delivery with parity across various environment

Continuous delivery is a software engineering practice that allows for frequent releases of new software to staging or various test environments through the use of automated testing.

Continuous deployment is the automated process of deploying changes to production by verifying intended features and validations to minimize risk.
Integrated Development Pipeline - General
Leveraging DevOps and DevSecOps to Accelerate AI Development and Deployment

DevOps Stack: Exemplary DoD tool stack
Automation with IaC, CI, CD
Key Benefits of DevOps

- Reduced errors during deployment
- Reduced time to deploy and resolve discovered errors
- **Repeatable** steps
- **Continuous availability** of pipeline and application
- Increased innovation time
- **Responsiveness** to business needs
- **Traceability** throughout the application lifecycle
- Increased stability and quality
- **Continuous feedback**
DoD Specific
DoD Does Not Control SW Development

- DoD does not produce most of the software it uses, but it must maintain that software
- Latent cyber vulnerabilities, those exposed during operations, and those due to underlying dependencies are putting the DoD at risk
- Finding and fixing problems late causes rework and drives up costs
- Software cost overruns are overwhelming program delivery and sustainment
Barriers to DevSecOps

- Complex systems (Safety critical, Realtime, Embedded Systems..)
- Sustainment of DevOps pipeline
- Lack of iterative and incremental mindset cultural issues
- Organizational Structure
- Legacy Systems
- Lack of modular architecture, old tools/language
- Aged bureaucracy and waterfall process
- Lack of Metrics and Measurements
- Inconsistent Environments
- RMF- ATO Compliances
ATO: Authority to Operate

What is an ATO?

- An ATO is **Authority to Operate**
 - Authorizes the system to be placed on a production network
 - Interface with other components within the DoD
 - Authorizes access by end users to leverage these resources to execute mission

- Key staff in the ATO process
 - AO (Authorizing Official)
 - ISSO (Information System Security Officer)
 - Security assessor

- An AO makes a risk-based decision to grant an ATO for use of the system
- The decision has to be formalized in an ATO letter
 - An ATO letter must explicitly state the AO’s acceptance of:
 - Use of the system at the Agency at the determined FIPS 199 impact level
 - All leveraged external services supporting the system
 - Any exceptions or exclusions of the Chief Security Officer (CSO) for use at the Agency
Continuous ATO (cATO) is the Goal

cATO authorizes the platform, process, and the team that produces the product under a continuous monitoring process that maintains the residual risk within the risk tolerance of the Authorizing Official (AO)
Leveraging DevOps and DevSecOps to Accelerate AI Development and Deployment

Continuous Authorization

<table>
<thead>
<tr>
<th>Security Control Assessment</th>
<th>Security Status Monitoring</th>
<th>Security Status Reporting</th>
<th>Risk Tolerance Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual risk assessment of sprint backlog</td>
<td>Review security status: Tier II & III SIEM event log monitoring, control compliance/effectiveness, Analysis of cyber metrics and risk score</td>
<td>Ongoing risk score/posture</td>
<td>Provide tolerance guidance</td>
</tr>
<tr>
<td>DevSecOps automated tool sprint assessments STIG (Compliance as Code), SAST, DAST, & pen testing</td>
<td>Review risk tolerance threshold monitoring: Review of change request impact analysis, Review of cyber findings, Review of threat landscape</td>
<td>Tolerance threshold trend data</td>
<td>Assess based on time/event trigger</td>
</tr>
<tr>
<td>Ops Incident analysis with feedback to DevSec & DevSec review of assessment findings</td>
<td>Manual review of app security designs</td>
<td>Backlog list of security stories</td>
<td>People certified for maintaining cATO</td>
</tr>
<tr>
<td></td>
<td>Impact of risk to mission</td>
<td>Cybersecurity metrics: non-compliance, vulnerabilities, incidents, Sec issues on backlog</td>
<td>Process certified & accredited</td>
</tr>
<tr>
<td></td>
<td>Development of course of actions</td>
<td>Change in threat</td>
<td>Approve entry to continuous authorization</td>
</tr>
<tr>
<td></td>
<td>Automated compliance checking and reporting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proposed DoD Enterprise DevSecOps

• Develop and implement common DevSecOps implementation (DoD CIO DevSecOps workgroup) https://repo1.dsop.io/dsawg-devsecops

• Create and Maintain DevSecOps pipelines (and not just DevOps) to avoid each DoD service building their own stack and reinventing the wheel.

• Create hardened Container images in a dedicated artifacts repository with security built-in and compliance with FedRAMP/NIST (similar to gold images concept).

• Create a Microservice Service Architecture with Service Mesh (ISTIO).

• Standardize metrics and define acceptable thresholds for test coverage, security, documentation etc. to enable complete continuous deployment with pre-ATO embedded.

• Leverage Kubernetes for Orchestration to ensure automation, rolling-update, scale, security and visibility thanks to the sidecar security container concept.
DevOps with Security for cATO

Security from inception to deployment and improvement with every delivery

Continuous Authorization on every phases
AI for DevOps
AI For DevOps

Using ML and AI to ‘inform’ a DevOps factory or pipeline of notable events, usually to help improve the process over time, or help make decisions based on real-time event.

Requirements:
• Monitoring each step
• Must develop models that allow for ‘actionable’ events.
DevOps for AI
Traditional vs ML Based Approaches?

Rule Based Approaches

1. Define goal[s]
2. Develop flow and logic
3. Iterate until goal[s] met

ML Based Approaches

1. Define goal[s]
2. Collect data => train a model
3. Iterate until goal[s] met
Leveraging DevOps and DevSecOps to Accelerate AI Development and Deployment

Code in AI System

- Data Collection
- Data Analysis and Verification
- Process Management & Tooling
- Feature Extraction and Mgmt
- Model Analysis and Verification
- Machine Resources and Scheduling
- Inference Systems

Monitoring

ML Code

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Carnegie Mellon University
Software Engineering Institute

Leveraging DevOps and DevSecOps to Accelerate AI Development and Deployment
2020 Carnegie Mellon University

32
More formally...

Data and Feature Mgmt

Data analysis and verification. Feature engineering and mgmt. ...

>= 70% of efforts...
Most critical, often overlooked

Training and Analysis

Wide range of techniques and needs such as batch vs continuous, deep vs flat, supervised vs unsupervised, ...

Rapid change and innovation!

Serving and Inference

Batch vs Online, Throughput vs Latency, ...

Feature availability and extraction complications.

Often ignored until too late!
ML Development Cycle

1. Business Needs
2. Define ML Objective
3. Collect Data
4. Train and Test Model
5. Predict and Evaluate
DevOps for AI

Using DevOps concepts and methodologies in every aspect of ML and AI enabled software systems.

- Data curation
- Training data
- Model creation, storage
- Deployment
- Monitoring
- Re-training
DataOps and MLOps exist
Important considerations

• Data must be prepared before model training
• Model release requires operationalization
• Post-deployment monitoring should record all real-world data serving as input to the deployed model
• Team members include
 • Data engineers, Data scientists
 • ML engineers, DevOps
 • Developers
• Model performance
• Deployment strategies
• Model storage and sharing
Necessary DevOps Factory additions

1. Embrace an MLOps culture to facilitate an ML-driven factory
2. Establish a cultural focus on data-driven development to facilitate ML model creation
3. Include data scientists and data engineers in software development teams
4. Automate model deployment via continuous delivery/deployment
5. Establish continuous feedback including model monitoring like *model inputs, model outputs and decisions, user action and rewards* and *model fairness*.
DevOps for data curation

Data is a common critical element of an AI system

• The general process for data processing:
 - Develop business cases
 - Ingest
 - Classify/transform/analyze
 - Insights
 - Availability of Data for DS
 - Validating Data
Data curation
Data curation - workflow
Monitoring deployed AI systems

• Include a return loop of data to the starting point of the pipeline
• Archive all ingress data to the model for future training
• Record and analyze the model’s output for functionality and integrity
• Determine if a model requires modification or re-training
• Model inputs: what data, predictions or recommendations
• Model outputs and decisions
• Model interpretability outputs
• Example: using EFK stack for monitoring and observability
 • Elasticsearch: an open source search engine.
 • FluentD: an open source data collector for unified logging layer.
 • Kibana: an open source web UI that makes it easy to explore and visualize the data indexed by Elasticsearch.
Additional guidance for an AI/ML Pipeline

- Capable of ingesting multiple data types
- Data maintained and versioned
 - Data Version Control (dvc.org)
- Real-time monitoring
- Responsive to changing conditions discovered during monitoring
- Traceability
- Language standardization
Exemplary AI+DevSecOps implementation scenarios
Exemplary AI+DevSecOps implementation scenarios
Summary

- Use DevOps to build, deploy, and monitor systems so that a pathway exists to take action on a ML/AI enabled system.
- These ‘actions’ could improve model performance, system security, and many other possibilities
For more information...

DevOps: https://www.sei.cmu.edu/go/devops
DevOps Blog: https://insights.sei.cmu.edu/devops
Webinar : https://www.sei.cmu.edu/publications/webinars/index.cfm
Podcast : https://www.sei.cmu.edu/publications/podcasts/index.cfm
Thank You

Hasan Yasar
Technical Director, Adjunct Faculty Member
Continuous Deployment of Capability
hyasar@sei.cmu.edu
@securelifecycle