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Lead Time Estimation Using Artificial Intelligence 
June 2020 

Executive Summary 

The Defense Logistics Agency (DLA) relies on accurate estimates of lead time—and its 
components of administrative lead time (ALT) and production lead time (PLT)—to decide 
what to buy, how much to buy, and when to buy. Those estimates influence operational 
efficiency and effectiveness; when they are wrong, warfighter readiness suffers. 

The accuracy of ALT and PLT estimates affects inventory costs, backorder rates, and 
the efficient use of DLA obligation authority. If DLA overestimates lead times, it places 
orders too early and overstocks occur. Underestimated lead times create backorders 
and diminish mission readiness. Often, estimates rely on historical data for items with 
infrequent orders, not accounting for additional data sources that may improve accuracy. 

DLA asked LMI to identify artificial intelligence (AI) methods that improve accuracy of 
total lead time (TLT) estimation and its component parts. AI methods can improve the 
accuracy of lead time estimates for ALT, PLT, and TLT by 19 to 40 percent. On average, 
random forest (RF) models improve the accuracy of lead time predictions by 38 days. 

Summary of Technical Results 
DLA uses mean absolute error (MAE), the average absolute error across observations, 
to compare AI models to baseline methods. The administrative lead time of record 
(ALTR), production lead time of record (PLTR), and the one-third rule are baseline 
methods to forecast ALT and PLT. RF AI models are the most accurate for predicting 
ALT and PLT. When compared to the baseline one-third rule method, the RF models 
reduce the MAE by 32 percent (17 days) for ALT and 19 percent (16 days) for PLT (see 
Table ES-1).  

Table ES-1. Overall ALT and PLT Model Scores 

ALT model scores  PLT model scores 

Model MAE (days)  Model MAE (days) 

RF 37 RF 67 
ALT one-third rule 53 PLT one-third rule 83 
ALTR 56 PLTR 94 
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AI methods incorporate a range of data and improve predictions for items with little or no 
lead time history. ALT and PLT RF models offer the largest improvements for 
infrequently procured items (see Figure ES-1 and Figure ES-2). 

Figure ES-1. ALT MAE by Procurement Frequency 

 

Figure ES-2. PLT MAE by Procurement Frequency 
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For estimating TLT, we tested two approaches: building a third AI model to predict TLT 
and adding the outputs from the separate ALT and PLT AI models. Adding the 
predictions from the ALT and PLT RF models offers the greatest accuracy, reducing 
MAE by 40 percent (38 days) compared to the sum of the one-third rule baselines (see 
Table ES-2). 

Table ES-2. TLT Model Scores 

Model MAE (days) 

ALT RF + PLT RF 56 
ALT one-third + PLT one-third  94 
ALTR + PLTR 111 

 
The average of errors for TLT predictions is even across procurement frequency. This 
reduces the risks associated with inaccurate lead time estimates for infrequently 
procured items (see Figure ES-3). 

Figure ES-3. TLT MAE by Procurement Frequency 

 
Note: TLTR is the baseline total lead time of record. 

Demonstrated Process Improvements 
The results of this research and development project show that by using the RF models 
DLA can improve total lead time MAE 40 percent. This provides the following 
improvements to DLA planning: 

• Obligation Authority: RF models reduces requirements by $11 million annually for 
the subset of items analyzed. If this sample is representative, the results scale to 
a $102 million annual reduction in requirements for the entire item population. 
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• Inventory Storage: RF models save approximately $26 million in holding cost by 
reducing overestimated lead times. This does not include safety stock. 

• Sudden Changes in Lead Times: RF models decrease the number of lead times 
flagged for manual review, reducing workload by 46 percent over the current 
method, which is in line with the total number of lead times that current forecast 
methods would flag without overrides or freezes. 

• Backorders: Units backordered due to underestimated lead times decreases for 
Next Gen items and increases for Acquisition Advice Code (AAC) D and Non-
Peak Policy and Next Generation™ AAC Z items. If the analysis sample is 
representative of the full item population, the results scale to a 7 percent 
increase. This increase can be offset by transferring inventory reductions to 
safety stock. 

Although the RF models improve accuracy and supply better support for all procurement 
frequency buckets, the largest improvements are for the infrequently procured, hardest 
to predict items. From this research, we conclude that RF AI models should be used to 
estimate lead times with the initial focus on infrequently procured items. 

Transition Recommendations 
Separate near-term and long-term transition plans are required. Additional funding of 
$412,000 is required to implement the near-term plan, where LMI will manage the AI 
models and update forecasts. This follow-on transition project should include additional 
analysis and model refinements to ensure a smooth transition. In the long term, LMI will 
work with J6 to approve the use of Python in DLA systems and integrate the AI models 
into the DLA systems. 
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Introduction 

The Defense Logistics Agency (DLA) relies on accurate estimates of lead time—and its 
components of administrative lead time (ALT) and production lead time (PLT)—to decide 
what to buy, how much to buy, and when to buy. Those estimates influence operational 
efficiency and effectiveness; when they are wrong, warfighter readiness suffers. 

Background 
DLA’s ALT and PLT estimates rely on historical data for items with infrequent orders, not 
accounting for additional data sources that may improve accuracy. Estimation methods 
do not differentiate between types of items, types of contracts, or demand volume. The 
accuracy of ALT and PLT estimates affects inventory costs, backorder rates, and the 
efficient use of DLA obligation authority. If DLA overestimates lead times, it places 
orders too early and overstocks occur. Underestimated lead times create backorders 
and diminish mission readiness. 

Current estimation methods work well for items that are procured frequently; however, a 
large portion of DLA’s catalog is procured infrequently, limiting available observations 
and consistent accuracy in predictions. These methods also fail to account for several 
significant data elements, process factors, and environmental influences on lead time. 
For example, a solicitation with an order quantity of 2 may have a significantly longer 
lead time than a procurement of 200 since few vendors maintain production lines for low-
demand parts, necessitating a long set-up time to manufacture the part. Accuracy of 
lead time estimates is challenging when not accounting for these external data fields. 

By expanding the dataset (to include DLA data not used for lead time predictions as well 
as other external sources) to produce predictions for an item from trends across all items 
and in groups of sufficiently similar items, artificial intelligence (AI) methods hold promise 
for overcoming the challenges of estimation methods. AI methods detect and uncover 
similarities and patterns between items, assessing common characteristics and 
procurement histories. AI models dynamically group items for estimation purposes. In 
prior LMI research for DLA,0F

1 we applied machine learning (ML) for better estimating 
PLT. The results translated to projected annual savings of approximately $23 million. 

 
1 Michael D. Bosack et al., Production Lead Time Estimation, DL304T4 (Tysons, VA: LMI, July 2016). 
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Objectives 
The objectives for this research project are the following: 

• Find, develop, and validate AI methods that improve accuracy of total lead time 
(TLT) estimation and its component parts: ALT and PLT. 

• Derive a risk metric that describes variability in lead time estimates. 

• Recommend ways to implement research, technical documentation, all 
developed code, and documented insights of challenges. 
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Technical Approach 

Our technical approach consists of three parallel lines of analysis for ALT, PLT, and TLT 
estimation tasks. For each line of analysis, we built an ML model to replace DLA’s 
method of predicting the specific lead time component (ALT, PLT, or TLT). Each model 
offers a lead time prediction for each National Item Identification Number (NIIN) using 
only the data available at the time the prediction is made (i.e., time of inference). Since 
historical data trains and tests the ML models, special care is needed to ensure that only 
the data available at the time of inference is used. 

The models apply purchase request (PR) and purchase order (PO) data. In ALT 
modeling, each PR record has an opened date (i.e., procurement date) and an award 
date (i.e., document date). The model predicts ALT on the PR opened date. The true 
value of ALT is observed on the day of PR award (see Figure 2-1). Each PR is 
transformed into a modeling record with features known only on the PR opened date. 
Data known at the time of inference include item attributes (e.g., supply chain and profit 
center) and information from past PRs awarded before this date. At the time of ALT 
prediction, information from the PR (e.g., document type and order quantity) are not yet 
known and cannot be included in this record. The same follows for PLT modeling, where 
the prediction is made on the PO award date and the true value is observed on the PO 
delivery date, and TLT modeling, where the prediction occurs on the PR opened date 
and the true value is observed on the PO delivery date. 

Figure 2-1. Timeline of PR and Prediction 

 

ALT and PLT are each predicted by building one distinct model, applying relevant 
features for each estimation task. In contrast, TLT is predicted using two modeling 
methods: the unified method, building and training a distinct TLT model over relevant 
features, and the composite method, summing lead time predictions from separate ALT 
models and PLT models to predict TLT. The target variable for both approaches is TLT 
(the sum of observed ALT and observed PLT). Table 2-1 describes the pros and cons. 

Table 2-1. TLT Estimation Methods 

Method Pros Cons 

Unified  Trained on TLT data, exactly matching the 
phenomenon predicted. 

Less data is available to train models because 
PR and PO data is required. 

Composite  More data is available to train the individual 
ALT and PLT models. 

Errors from individual ALT and PLT models 
may compound. 

Time

Observed ALT

PR award datePR opened date
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Each line of analysis followed the five-step process detailed in this chapter. The 
corresponding Jupyter notebook file structure for this process is outlined in Figure 2-2. 
See Appendix A for a complete technical data roadmap. 

Figure 2-2. Technical Approach 

 

Data Collection 
We built the lead time estimation models with data from multiple sources. DLA supplied 
data on past procurements and item characteristics. External data sources tested 
whether incorporating various market indicators could improve lead time estimates. 

DLA Data 
DLA furnished much of the data in eight tables from the Enterprise Data Warehouse 
(EDW) and DLA Operations Research and Resource Analysis (DORRA) systems. DLA 
applied several filters and data cleansing steps before sending the final dataset to LMI 
(see Table 2-2). 

Table 2-2. DLA Data Sources 

Table description Source table Source system 

Purchase Order Item Data CV_PR_BPURHO02 EDW 
Purchase Requisition/Solicitation Line 
Item Data 

CV_PR_BPURHO05 EDW 

Alternate Purchase Requisition 
(ZDOR_APR Interface Data)  
(Active Purchase Requisitions) 

CV_PR_BPRWHO02 EDW 

Item Detail CV_CS_ITEM_DETAIL EDW 
Material Master DORRADW_MATL_MASTER_DIMENSION DORRA 
Material Master (Historical) DORRADW_MTRL_MSTR_HIST_DIM DORRA 
Tech Quality CV_TQ_MATERIAL_CLASS_ALL EDW 

 
The data from DLA include transactions with obligation or procurement dates from 
February 2008 to March 2019, excluding NIINs that do not have any POs or PRs during 
this time. This data includes hardware NIINs only. Due to the sensitivity of the data, 
certain fields, such as profit center and supply chain, are masked with random values 
while other fields are removed completely. For a masked field, the values are replaced 
with dummy values (see Figure 2-3). This masking enables the field’s use in modeling 
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without losing any information about relationships between records. However, masking 
does limit interpretation of model results. 

Figure 2-3. Masking Example 

 

Several fields are masked in the data from DLA: 

• Profit Center 

• Major Subordinate Command (2-byte subset of profit center that identifies 
physical location) 

• Supply Chain 

• Supply Chain Code (2-byte subset of profit center that identifies supply chain) 

• Product Specialist 

• Resolution Specialist 

• Supply Planner 

• Demand Planner 

• Buyer ID 

• Contracting Officer ID 

• Commercial and Government Entity (CAGE) 

• Strategic Management System Driver Category 

• Government Testing Location 

• Contractor Test Location. 

External Data 
External data is sourced from the Federal Reserve Economic Data service with seven 
market indicators relevant to lead time estimation. This data spans the period from 
July 1, 2005, to April 1, 2019. Table 2-3 supplies further information on the indicators. 
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Table 2-3. External Data Table 

Name Indicator type Time scale Source Adjustment 

Manufacturing Producer price 
index 

Monthly U.S. Bureau Labor Statistics None 

Aircraft Engine and Parts 
Manufacturing: Aircraft Engine Parts 

Producer price 
index 

Monthly U.S. Bureau Labor Statistics None 

Aircraft Engine and Parts 
Manufacturing: Aircraft Other Parts 

Producer price 
index 

Monthly U.S. Bureau Labor Statistics None 

Industrial Production: Defense and 
Space Equipment 

Industrial 
production index 

Monthly Board of Governors of the 
Federal Reserve System (U.S.) 

Seasonal 

National Defense Consumption 
Expenditures and Gross Investment 

Consumption 
expenditure 

Quarterly U.S. Bureau Labor Statistics Seasonal 

Hardware Manufacturing Producer price 
index 

Monthly U.S. Bureau Labor Statistics None 

Metals and Metal Products: Iron and 
Steel 

Producer price 
index 

Monthly U.S. Bureau Labor Statistics None 

 
Data Processing and Cleansing 

All eight tables were loaded to local SQLite databases for easier querying and 
processing. Fields were chosen for inclusion in the model based on previous lead time 
estimation efforts, discussions with the technical working group, and general exploration 
of the different data sources. Due to technical limitations, a subset of the eight tables 
was used; Appendix B lists the full features for modeling. The process shown in  
Figure 2-4 shows how the data from the various DLA data tables is merged. 

Figure 2-4. Data Processing and Cleansing 

 

Once merged, initial data processing and filters were applied as discussed with the 
technical working group. Initial processing converted fields to their appropriate data type 
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(e.g., obligation date is converted to a datetime field) for easier data manipulation. The 
initial filters removed records that satisfied at least one of three criteria: 

• Alphanumeric Material Numbers—The working group decided to omit predictions 
of lead times for these broad and/or non-DLA managed Material Numbers 
(leaving only NIINs): As a result, Material Numbers with six prefixes are removed: 
GM (non-National Stock Number items), LL (Navy Managed Supply Items), LN 
(local buys), N (DLA Disposition Services Items), S (Service Material), F (Local 
Controlled Inventory Number). 

• Long-term contracts (LTCs)—Identified by the ninth digit of the Procurement 
Instrument Identification Number (PIIN). LTC lead times are expected to behave 
differently and should, therefore, be modeled separately. 

• Records with missing values for procurement date or document date (for ALT) or 
obligation date or delivery date (for PLT)—without these date values, the 
observed ALT or PLT cannot be calculated. 

Because our models predict at the NIIN level—not the PO or PR level—the data is 
grouped by PR number and NIIN (for ALT modeling data); PO number and NIIN (for PLT 
modeling data); or PR number, PO number, and NIIN (for TLT modeling data) with the 
other fields aggregated in a logical fashion to create a single row for each unique 
combination. For each combination, aggregation methods include taking the sum or 
mean of numeric fields (e.g., summing the delivered quantity for a PO and NIIN to 
calculate the total delivered quantity) or taking the first or last of categorical fields (e.g., 
using the first chronological document type for a PO and NIIN to get the first item 
category). Appendix C lists the full rules for procurement-level aggregation. 

Although an actual delivery date exists in the PO table, the delivery date used to mark 
the end of PLT is a calculated date field based on discussions with the technical working 
group. The delivery date for a unique combination of PO number and NIIN is when more 
than 50 percent of the total delivered quantity of that PO number and NIIN has been 
delivered. The observed (actual) PLT is calculated by subtracting the obligation date 
from the delivery date. 

A hypothetical example (see Figure 2-5) demonstrates some of the calculations that 
create the final (PLT) modeling data with the new procurement-level aggregation fields in 
italics (the original fields are then dropped as well as any resulting duplicate rows). 
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Figure 2-5. Example of Procurement-Level Data Aggregations 

 

Final filtering and processing were applied to data following discussions with the 
technical working group. The final processing step replaced null values in categorical 
fields with a default “empty_value” for use by the model. The final filtering step removed 
records that satisfied at least one of two criteria: 

• Observed ALT or PLT of 0 days—These are likely errors or the result of 
automated purchases not intended for inclusion in this modeling effort. 

• Numeric fields with null values—Unlike the categorical fields, no natural default 
value can be used. 

Feature Engineering 
Feature engineering creates new or derivative features from processed and cleaned 
DLA data. Appendix B describes the engineering process and the full list of engineered 
features. New features can be categorized as historical aggregations of raw features, 
date component features, and novel features. Many new features were re-engineered 
based on previous work on lead time estimation.1F

1 

Historical Aggregations of Features 
At the time of inference, when a lead time prediction is made for an NIIN, the goal is to 
predict the time it will take for the next PR to be awarded, or the next PO to be delivered. 
For the NIIN, the feature values from the PO and PR table are not available, because 
the PR has not been generated and the PO has not been awarded. This constraint 
poses significant issues for models trained on historical data where raw feature values 
from PO and PR tables are available for model training, but unavailable at inference 
time. To get around this problem, historical aggregation features substitute for raw 
features from PO and PR tables. These features are the mean, median, mode, or sum of 
the previous n delivery months’ raw feature values (award months, if modeling for ALT or 
TLT). The value of n can range from 1 to 10. Setback features, another variant of 
historical aggregates, are combined over the second, third, or fourth previous delivery or 

 
1 Michael D. Bosack et al., Production Lead Time Estimation, DL304T4 (Tysons, VA: LMI, July 2016). 

Purchase 
order # NIIN Delivered 

quantity
Item 

category
Obligation 

date
Actual 

delivery 
date 

1525354555 012345678 20 A 10/1/2007 10/1/2009

1525354555 012345678 10 B 10/1/2007 11/1/2009

1525354555 987654321 30 A 10/1/2006 1/1/2010

Purchase 
order # NIIN

Total 
delivered 
quantity

First item 
category

Obligation 
date

Delivery 
date

Observed 
PLT

1525354555 012345678 30 A 10/1/2007 10/1/2009 731

1525354555 987654321 10 A 10/1/2007 1/1/2010 823
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award month. Historical aggregate features supply valuable information on the historical 
trends of raw features and replace raw PO and PR features unavailable at inference 
time. 

Figure 2-6 depicts an example calculation of a historical aggregate feature. The original 
feature value (delivery quantity) is shown in the left table, while the historical aggregation 
of the original feature value over the past award month is shown in the right table. Color 
bands indicate which original delivery quantity records from previous award months 
create corresponding records in the aggregated delivery quantity field. 

Figure 2-6. Example of Historical Aggregation Engineered Feature 

 

Date-Derived Features 
Date-derived features are derivatives of raw date features. For example, procurement 
date month-year is the month-year component of the full procurement date feature, 
supplying the exact date an item is procured. Integer document date converts document 
dates into an ordinal integer format. Date-derived features help capture the seasonality 
in raw date values. 

Novel Features 
Novel features are new features created in response to working group discussions with 
DLA. Examples include days-since-last-procurement (a measure of the number of days 
elapsed since an NIIN was last procured) and profit center workload (a measure of the 
number of open procurements being worked by an NIIN’s profit center). 

Figure 2-7 depicts the profit center workload calculation. For any item, the collection of 
item records that share that item’s profit center are compiled into small dataset. Profit 
center workload is calculated on this dataset as the number of item records that have 
procurement windows which overlap with the item’s procurement date. 

Proc. 
date

Award 
date

Delivery 
qty

1/18 1/18 10

2/18 3/18 20

2/18 3/18 30

4/18 5/18 10

4/18 5/18 50

6/18 7/18 10

Proc. date Aggregated 
delivery qty

1/18 0

2/18 10

2/18 10

4/18 25

4/18 25

6/18 30

Original feature table Historically aggregated 
feature table

0 default value 
when no previous 
award month found

(20 + 30) ÷ 2 = 25

(10 + 50) ÷ 2 = 30
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Figure 2-7. Profit Center Workload 

 

Feature Engineering by Estimation Task 
Though most engineered features are used in both ALT and PLT estimation, slight 
variations in engineering functions tailor features for each lead time estimation task. In 
addition, certain features are exclusively for ALT estimation or PLT estimation. Feature 
engineering for TLT estimation takes a selection from ALT and PLT engineered features. 

In ALT estimation, historical aggregate features are derived by calculating aggregations 
over PRs awarded (document date) before the PR is opened (procurement date). An 
example of this type of calculation can be found in the Historical Aggregations of 
Features section. The ALT of record (ALTR) and observed ALT are used for features 
requiring previously observed and lead time of record values. PR-specific information, 
such as PR doctypes and PR price, furnish data for several custom ALT features. 

In PLT estimation, historical aggregate features are derived by calculating aggregations 
over POs delivered (delivery date) before the PO is awarded (obligation date). The PLT 
of record (PLTR) and observed PLT are used for features requiring previously observed 
and lead time of record values. PO-specific information, such as PO doctypes and 
delivery quantity, supply data for several custom PLT features. 

In TLT estimation, historical aggregate features are derived by calculating aggregations 
over procurements delivered (delivery date) before the procurement is opened 
(procurement date). The sum of ALTR and PLTR is used for features requiring total lead 
time of record (TLTR). The sum of observed ALT and PLT is used for features requiring 
previously observed lead time. 

Appendix B lists all engineered features by estimation task. 

Encoding and Scaling 
Encoding transforms categorical variables into numerical variables that can be 
interpreted by ML algorithms. One-hot encoding transforms all categorical variables. 
When a categorical variable is one-hot encoded, a new binary variable is created for 
each of the unique values. Figure 2-8 is an example of one-hot encoding the categorical 
variable first article test (FAT) indicator that has two unique values: Y and N. After one-
hot encoding, the original categorical variable is replaced with two binary variables: 
FAT_Y and FAT_N. Each record has a 1 in the column for the binary variable 
corresponding to its original value and a 0 in the other. 
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Figure 2-8. One-Hot Encoding Example 

 

Each categorical feature is replaced by multiple one-hot encoded features, one for each 
unique feature value. As a result, one-hot encoding is prone to feature explosion, 
especially for features with high cardinalities. To avoid feature explosion, a binning 
process discards rare values of features. For all lead time estimation datasets, a rarity 
threshold of 2,500 is set for binning. Before the encoding step, each feature is examined 
and values that appear in less than 2,500 records are binned into the generic category 
“RARE_VALUE.” Binning reduces the unique values per feature, decreasing one-hot 
encoded features and keeping the dataset in reasonable memory limits. While binning 
decreases the diversity of values for certain features, the effects of binning feature 
values comprising 2,500 records or less (<1 percent of records for any lead time dataset) 
are negligible when assessing model accuracy. 

After encoding, standard scaling—meant to improve convergence time for gradient 
descent algorithm—centers the distribution of numeric feature values near 0 with a 
standard deviation of 1. 

Encoding and scaling are conducted prior to splitting the data for train and test, with 
negligible risk of data snooping since train-test splits have similar distributions of feature 
values. 

Model Training 
Once data cleansing, feature engineering, and encoding and scaling are complete, the 
data is ready to train ML models. Figure 2-9 depicts the training process, with an ML 
model learning from the data, and the corresponding observed lead times. Each row in 
the training data corresponds to a unique lead time observation. For ALT, each row is a 
unique PR-NIIN pair; for PLT, each row is a unique PR-NIIN pair; and for TLT, each row 
is a unique PR-PO-NIIN triple. 

Figure 2-9. Model Training (ALT Example) 

 

The trained AI model can predict lead times, as shown in Figure 2-10. The AI model is 
then evaluated by generating predictions for the test data and comparing those 
predictions to the observed lead time values. 
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Figure 2-10. Using an AI Model to Predict (ALT Example) 

 

Train Test Split—ALT and PLT 
For ML models to learn from input data and furnish output predictions, input data is split 
into a training set (the data a model learns from) and a testing set (the data a model 
predicts on). Since the input data for lead time estimation is a time series, input data is 
first sorted by document date (for ALT data) or delivery date (for PLT and TLT data), and 
then divided into 85:15 percent train-test splits for ALT and PLT data. For ALT, 
document dates for the train set range from February 5, 2008, to March 13, 2018, and 
span March 14, 2018, to June 5, 2019, for the test set; for PLT, delivery dates for the 
train set range from February 13, 2008, to April 5, 2018, and span April 6, 2018, to 
March 31, 2019, for the test set. Sorting on dates before splitting the data ensures the 
training set contains records from dates strictly prior to dates in the test set. 

Train Test Split—TLT 
As with the ALT and PLT training sets, the TLT training set takes an 85 percent split of 
the encoded TLT dataset. However, a unique TLT holdout set replaces the standard TLT 
testing set. The TLT holdout set is the overlap between the ALT, PLT, and TLT test sets 
(all 15 percent splits of their respective datasets). Though smaller than the standard test 
sets, the holdout set furnishes a universal testing set for a fair comparison between the 
TLT model of the unified method and the standard ALT and PLT models of the 
composite method. 

Figure 2-11 shows the derivation of the holdout sets. The holdout set is created by 
merging the ALT, PLT, and TLT test sets on features PR_NUM and NIIN. The complete 
holdout set is then subdivided by relevant features into holdout TLT (for unified models) 
or holdout ALT and holdout PLT (for composite models). 

Model data
(1 row per NIIN)

Lead time prediction
(1 row per NIIN)

ALT
AI model
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Figure 2-11. TLT Holdout Set 

 

Training 
Before beginning the training process, values for model hyperparameters—variables 
whose values are set before training and are external to the model—are defined in 
matrix-like grid objects. For each model, a hyperparameter grid is defined with value 
ranges for certain hyperparameters associated with the model (see Appendix D for the 
full grid of hyperparameter values). 

Next, all models are trained on their respective training sets. Validation, the process of 
holding out a small sample of training data to select the best model hyperparameter 
values from predefined grids, is part of the training process. Time series cross-
validation—to select train and validation sets appropriate for time series data—is applied 
with a cross-fold value of two. Figure 2-12 depicts the time series cross-validation 
method, a type of cross-validation where training folds always contain records with dates 
prior to dates in the validation records. 
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Figure 2-12. Time Series Cross-Validation 

 

Four types of ML models generated predictions: decision tree (DT), random forest (RF), 
linear regression (LR), and neural network (NN) (see Appendix E for model 
descriptions). All models are instantiated through the scikit-learn Python library (see 
Appendix A for software version details). Each model has advantages and 
disadvantages; Table 2-4 states the general tradeoffs between models. 

Table 2-4. ML Model Tradeoffs 

Model Pros Cons 

DT • Can capture certain non-linear relationships 
• Easy to derive feature importance 
• Easily interpretable through visualization 

• Causes prediction banding for regression problems 
• Prone to overfit 

RF • Can capture most non-linear relationships 
• Ensemble method provides higher accuracy 
• Easy to derive feature importance 

• Causes prediction banding for regression problems 
• Higher computational cost than DTs 
• Less interpretable than DTs  

LR • Simplest model to implement 
• Easy to derive feature importance 

• Cannot capture nonlinear relationships 
• Computationally easy 

NN • Can capture most non-linear relationships 
• High accuracy for problems with lots of data  

• Hard to explain 
• Hard to interpret 
• Computationally intensive 

 

Model Evaluation 
The test sets defined in the previous section are used to evaluate and compare various 
methods for estimating lead times. Baseline forecasting methods improved by AI models 
and evaluation metrics are described below. 

Baseline Forecasting Methods 
Each of the ML models are compared to two baseline forecasting methods: lead time of 
record and one-third rule. Comparing model results against a baseline evaluates 
whether the ML models offer additional value over DLA’s current forecasting methods. 

ALTR, PLTR, and TLTR: pulled from historical data, ALTR and PLTR are the lead time 
estimates on record at DLA at the time a PR is generated (ALTR) or a PO is awarded 
(PLTR). This baseline furnishes a comparison to the lead time forecasts of DLA planners 
and incorporates manual overrides, forecast freezes, or changes in forecasting methods 
over time. 

One-third rule: an exponential smoothing method with an alpha of one-third. At the end 
of each month, the lead time forecast is updated: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 =
1
3

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑡𝑡) + 
2
3

(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡−1). 

Test

Test

Validation

ValidationTrain

Train
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By computing the one-third rule from the procurement data, the effects of manual 
overrides, forecast freezes, or changes in the alpha value over time are removed. 

Evaluation Metrics 
Per our discussion with DLA, several metrics evaluate how well our final models 
performed, with minimizing mean absolute error (MAE) as the primary goal and 
minimizing mean absolute percentage error (MAPE) as the secondary goal. Appendix F 
includes additional discussion of metrics. 

MAE: Measures a model’s raw error by averaging the absolute errors across all 
observations. 

MAPE: Measures a model’s magnitude of error by averaging the absolute percentage of 
errors across all observations. 
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Analysis and Results 

ALT and PLT Predictive Models 
Model performance is compared by procurement frequencies and the direction of errors. 
Appendix D catalogs the complete ALT and PLT model parameters and scores. 

Overall Results 
Table 3-1 lists the overall scores for MAE and MAPE for baseline measures and ML 
models evaluated on the ALT and PLT test sets.  

Table 3-1. Overall ALT and PLT Model Scores 

ALT model scores  PLT model scores 

Model 
MAE 

(days) 
Standard 

error 
MAPE 

(%) 
Standard 

error 

 

Model 
MAE 

(days) 
Standard 

error 
MAPE 

(%) 
Standard 

error 

RF 37 0.10 86 0.29 RF 67 0.22 142 0.63 
DT 39 0.10 234 0.83 DT 68 0.22 142 0.64 
LR 38 0.11 136 0.51 LR 72 0.22 109 0.50 
NN 42 0.11 280 0.84 NN 72 0.22 153 0.67 
ALT one-third 
rule 

53 0.11 386 1.22 PLT one-third 
rule 

83 0.24 229 1.19 

ALTR 56 0.12 448 1.37 PLTR 94 0.25 286 1.52 
     
Baseline Scores 

The one-third rule is, on average, 3 days and 62 percentage points closer to predicting 
the true ALT than the ALTR baseline. The one-third rule is, on average, 11 days and 
57 percentage points closer to predicting the true PLT than the PLTR baseline. The one-
third rule performs better than the lead time of record in both cases. This indicates that 
manual overrides and freezes hurt the accuracy of lead time predictions. 

ML Model Scores 
AI models produce significantly better scores than baseline results for ALT and PLT. RF 
is the most accurate model for ALT and PLT, reducing MAE for both ALT and PLT by 
16 days compared to the one-third rule. 

The higher MAEs for PLT and the higher MAPEs for ALT reflect the differences in the 
distributions of observed ALT and PLT. The observed ALT test set has a range of  
1–2,344 with a mean of 50 and a median of 18 while the observed PLT test set has a 
range of 1–3,878 with a mean of 115 and a median of 73. The predicted values have 
similar distributions so the smaller values for ALT result in smaller absolute errors and 
larger absolute percent errors. 
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Procurement Frequency Breakdown 
The baseline DLA forecasting methods perform well on frequently procured items, since 
these items experience less lead time variability. The baseline methods perform poorly 
on infrequently procured items since those items experience more lead time variability. 
One of the primary advantages of ML models is that they can learn from other similar 
items with more recent lead time observations when making a prediction for infrequently 
procured items. 

To compare how each model performs for infrequently procured items, we compute the 
procurement frequency for each item in each of the test datasets, using seven 
procurement frequency categories: monthly, quarterly, twice a year, yearly, every 
2 years, rare, and one-time buy. The procurement data ranges from February 2007 to 
June 2019, spanning 148 months, 49 quarters, etc. An item was categorized as monthly 
if it had at least 148 procurement records, quarterly if it had between 49 and 
148 records, and so on. Figure 3-1 shows the percentage of NIINs that fall into each 
procurement frequency category. Though not displayed, the PLT test set, which uses 
obligation date instead of procurement date for frequency, follows a similar distribution, 
with the vast majority of NIINs procured, at most, every 2 years. 

Figure 3-1. ALT Test Set Procurement Frequency Distribution 

 

An item’s procurement frequency is driven by demand and, therefore, out of DLA’s 
control. However, DLA can monitor an item’s procurement frequency and use that value 
to evaluate which forecasting method to use. Figure 3-2 shows the breakdown of 
baseline and model results for ALT by procurement frequency. 
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Figure 3-2. ALT MAE by Procurement Frequency 

 

As procurement frequency increases, MAE scores for ALT decreases due to frequently 
procured items having more ALT records for model training. All ML models are better at 
predicting ALT for items procured, at most, every 2 years relative to the baselines. For 
one-time buys and rare procurement frequencies, the ML models reduce MAE by 
approximately 20 days compared to baseline measures. As procurement frequency 
increases to annual and beyond, most models tend to perform slightly better or like the 
one-third rule baseline, while still outperforming ALTR baseline values significantly. 

The RF model outperforms the one-third rule by at least 1 day for all procurement 
frequencies. If the desire is to keep ALT forecasting easy to manage with a single model, 
RF offers the best overall MAE improvement. 
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Figure 3-3. ALT MAPE by Procurement Frequency 

 

As procurement frequency increases, MAPE scores for ALT increase for all prediction 
methods, except the one-third rule. An increase in MAPE for ALTR and NN for monthly, 
quarterly, and biannual procurements is observed due to the shorter observed lead 
times for frequently procured items. With shorter lead times, small differences between 
true and predicted values result in large percentage errors as true values decrease in 
magnitude. 

Overall, RF offers the best MAPE scores for all procurement frequencies of ALT. In 
addition, RF has the most consistent MAPE values across all procurement frequency 
categories. Combined with the MAE procurement frequency from an item’s procurement 
frequency is driven by demand and, therefore, out of DLA’s control. However, DLA can 
monitor an item’s procurement frequency and use that value to evaluate which 
forecasting method to use. Figure 3-2 shows the breakdown of baseline and model 
results for ALT by procurement frequency, these results strengthen the conclusion that 
RF should be the overall ALT model. 

As procurement frequency increases, MAE scores for PLT first decrease slowly until the 
frequency increases past annual procurements, after which, most MAE scores decrease 
quickly (see Figure 3-4) due to frequently procured items having more PLT records for 
model training. All models are better at predicting PLT for rare and one-time buy items 
relative to baseline results for the same frequency categories. For one-time buys, the 
highest performing model, RF, reduces MAE by approximately 44 days compared to 
baseline measures. As procurement frequency increases to every 2 years and beyond, 
LR and DT tend to perform like the one-third rule baseline, while outperforming PLTR 
baseline values significantly. 
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Figure 3-4. PLT MAE by Procurement Frequency 

 

For PLT, the ML models reduce MAE only for rare and one-time buys. This suggests 
that DLA should set a procurement frequency threshold of every 2 years to evaluate 
whether to forecast an item’s PLT using the one-third rule or an ML model. 

Figure 3-5. PLT MAPE by Procurement Frequency 
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As procurement frequency increases, MAPE for PLT decreases until annual 
procurements, after which MAPE increases with twice a year, quarterly, and monthly 
procurements due to the shorter observed lead times for frequently procured items. With 
shorter lead times, small differences between true and predicted values result in large 
percentage errors as true values decrease in magnitude. 

LR furnishes the best MAPE scores for the most procurement frequencies of PLT, 
followed by RF. Both improve on the one-third rule for all procurement frequencies. 
Since MAE scores are used as the primary metric to compare performance between 
models, the scores from both figures suggest that RF should be the PLT forecasting 
method for infrequently procured items. 

Overall, ML models offer the biggest opportunities for improvement for infrequently 
procured items for ALT and PLT. 

Direction of Error 
Prediction errors can be underestimates or overestimates. Error direction, in the context 
of lead time estimation, has differing consequences: underestimates lead to lower 
availability and higher backorder, whereas overestimates lead to overstocking and 
higher holding costs. Depending on DLA business priorities, the direction of a model’s 
error may help evaluate which model to use for lead time estimation. In addition, the 
magnitude of the error is also important. A 1-day underestimate may be preferred to a 
30-day overestimate. Figure 3-6 and Figure 3-7 show the magnitude and direction of 
errors for ALT and PLT models. 

Figure 3-6. ALT Magnitude and Direction of Errors 
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For ALT, both baseline models tend to overpredict (blue bars) more than underpredict 
(red bars). Over 60 percent of records are overpredicted by more than 7 days, and 
40 percent of records are overpredicted by at least 1 month. This tendency to 
overpredict could lead to overinvestments in on-hand inventory. In contrast, the ML 
models reduce the number of overestimates, especially large overestimates, and 
increase the number of estimates that are within 7 days of the true lead time. However, 
this improvement corresponds with an increase in underestimates. 

Figure 3-7. PLT Magnitude and Direction of Error 

 

For PLT, both baseline models tend to overpredict more than underpredict. Close to 
60 percent of records are overpredicted by more than 7 days, and over 40 percent of 
records are overpredicted by at least 1 month. This overprediction could lead to 
overinvestments in on-hand inventory. See Appendix G for an exploration of padding the 
RF model to match the baseline direction of error distribution better. 

The ML models all reduce the number of PLT overestimates and nearly eliminate all 
overestimates larger than 6 months. As with ALT, the ML models increase 
underestimates, bringing the ratio of over- to underestimates closer to 50–50. 

Feature Insight 
Although AI models do not evaluate causal relationships between the various features 
and lead times, the models offer some feature insights. For tree-based models (DT and 
RF), feature importance finds the features that contribute the most to the accuracy of the 
model, based on the chosen loss function, to train the model. The loss function for tree-
based models is mean squared error (MSE): features that improve MSE of the model as 
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a whole are more important. Note that the loss function is an optimization metric—meant 
to maximize the accuracy of a single model—and not an evaluation metric, which 
compares across models. Appendix F details the metrics. 

Feature importance explains which features contribute the most to the accuracy of 
model predictions. Appendix E contains a more detailed description of feature 
importance. In addition, feature importance identifies the features where data accuracy 
is most important. For example, since features with high importance contribute so much 
to model accuracy, it is crucial that any bias or quality issues of those features be 
resolved. 

Linear models furnish a different type of feature insight. Instead of quantifying the 
predictive power of each feature in a model, LR generates coefficients for each 
individual feature, which measures how that feature impacts the predicted value itself. 
Feature impact is measured by the absolute value of the coefficient; features marked 
with “(−)” in the subsequent figures denote a negative coefficient value; that is, an 
increase in feature value lowers the lead time. 

NNs’ complexity makes the contribution of each feature difficult to evaluate and less 
apparent. 

ALT 
Several of the features that contribute the most to the DT model’s accuracy relate to time 
(see Figure 3-8). Months since last award is the number of months since the last 
document date of an NIIN. Days since last procurement is the days since the last 
procurement date of an NIIN. Procurement date as integer is a numeric translation of the 
date on which the prediction is made. This finding aligns with the working group’s 
intuition since it may be harder to find a supplier if it has been a long time since the NIIN 
was procured. Though feature importance does not indicate how months since last 
award may affect lead time, it does indicate that the feature greatly improves model 
accuracy, so the relationship is significant. PR count by demilitarization code is second 
in importance, showing that the number of requisitions for a single demilitarization code 
may influence lead time predictions. 
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Figure 3-8. ALT DT Top 10 Important Features 

 

The RF model shares 7 of the top 10 most important features with the DT model, though 
the order is different (see Figure 3-9). The two P9 mode features (V = purchase orders—
automated and M = purchase orders—manual) have been swapped for record count and 
mean ALT, while common award type has flipped from manual to automated. This 
similarity is not surprising; RF can be thought of as a collection of small DTs whose 
results are averaged together. The top feature in both, however, remains months since 
last award. 

Figure 3-9. ALT RF Top 10 Important Features 
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For LR, the top feature is common award type: manual, a binary feature (1 for manual, 
0 for not manual) with a coefficient of 8.1 (see Figure 3-10). On average, an NIIN that 
has a manual common award type has an ALT 8.1 days longer than an NIIN that does 
not. The second feature is median ALT by profit center—a continuous feature. All else 
equal, for every day that the feature goes up or down by a day, the ALT of that NIIN will 
go up or down by about 7.5 days. These two features are by far the most impactful and 
exist in the tree-based top-10 charts as well. Depending on DLA’s control over a specific 
feature, this model can highlight NIIN characteristics that can directly impact lead times 
by a few days. 

Figure 3-10. ALT LR Top 10 Impactful Features 

 

PLT 
The PLT DT model has a few of the same time-related features as ALT (e.g., months 
since last award), but median PO value and first article testing indicator (from material 
master) are the two most important (see Figure 3-11). This aligns with the working 
group’s intuition that differences in an NIIN’s PO value (in dollars) could affect lead time 
(e.g., suppliers are more motivated to fulfill large value POs). First article testing 
indicator was singled out as a potentially important feature early in the project because 
additional time is required to perform the testing. Again, although feature importance 
does not indicate how a feature may influence lead time, it does indicate that the feature 
improves model accuracy, so the relationship is significant. 
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Figure 3-11. PLT DT Top 10 Important Features 

 

The RF model shares 9 of the top 10 most important features with the DT model, though 
the order is different. One-third rule has been swapped for item category: 0 (which is the 
standard). Given similarities in how DT and RF models work, the similarities are 
foreseeable. The top four are the same (see Figure 3-12). 

Figure 3-12. PLT RF Top 10 Important Features 
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features are the same as in the tree-based charts (e.g., two-third rule and the two item 
categories), some are not (PO count by demilitarization code). This observation is 
expected since the tables from the two types of models (tree-based and LR) measure 
different characteristics about the features. Depending on DLA’s control over a specific 
feature, this model can highlight NIIN characteristics that lower lead times by a few days. 

Figure 3-13. PLT LR Top 10 Impactful Features 

 

TLT Predictive Models 
TLT estimation uses two approaches: the unified method and the composite method. 
Results from both methods are compared below. Appendix D contains the complete 
catalog of TLT model parameters and scores. 

Overall Results 
Table 3-2 lists the overall scores for MAE and MAPE for baseline measures and ML 
models evaluated on the ALT, PLT, and TLT holdout. LR and RF ML models are tested 
because they perform best for the individual ALT and PLT models.  

Table 3-2. Overall TLT Model Scores 

TLT unified model scores  TLT composite model scores 

Model 
MAE 

(days) 
Standard 

error 
MAPE 

(%) 
Standard 
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MAPE 
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LR 62 0.20 77 0.43 ALT RF + PLT RF 56 0.18 75 0.39 
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Baseline Scores 
The one-third rule is, on average, 14 days and 31 percentage points closer to predicting 
the true TLT than the TLTR baseline. 

ML Model Scores 
Both unified and composite TLT AI models produce significantly better scores than both 
baseline results. Composite RF is the most accurate, reducing MAE by 38 days and 
MAPE by 95 percentage points compared to the composite one-third rule. 

Since DLA uses the ALT and PLT components of lead time separately, two models are 
required. An additional TLT unified model would be useful only if it supplies additional 
improvements over the composite model; however, that benefit is not demonstrated in 
these results. 

Procurement Frequency Breakdown 
Figure 3-14 shows a breakdown of TLT baseline and model results by procurement 
frequency. 

Figure 3-14. TLT MAE by Procurement Frequency 

 

Baseline MAE scores decrease from one-time buy procurements to annual 
procurements, after which they increase for TLTR while continuing to slowly decrease 
for the one-third rule. 

All TLT AI models are better at predicting TLT for items procured, at most, every 2 years 
relative to the baselines. As procurement frequency increases to annual and beyond, 
most models produce MAE’s similar or slightly worse than the one-third rule baseline 
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(except composite RF, which performs slightly better) while still outperforming TLTR 
baseline values significantly. The composite RF model performs the best across nearly 
all procurement frequencies, with the unified RF model performing slightly better for 
quarterly and monthly items. 

Baseline MAPE scores decrease from one-time buy procurements to annual 
procurements, after which they increase for TLTR while continuing to slowly decrease 
for the one-third rule (see Figure 3-15). An increase in MAPE for TLTR for quarterly 
procurements is observed due to the shorter observed lead times for frequently procured 
items. With shorter lead times, small differences between true and predicted values 
result in large percentage errors as true values decrease in magnitude. 

Figure 3-15. TLT MAPE by Procurement Frequency 

 

Like MAE, all TLT models score significantly better MAPEs for items procured, at most, 
every 2 years relative to the baselines. As procurement frequency increases to annual 
and beyond, all models continue to produce MAPEs better than the one-third rule 
baseline to a smaller degree. The unified and composite models perform similarly for 
MAPE scores. 

Direction of Error 
Figure 3-16 shows the magnitude and direction of error for all TLT models. 
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Figure 3-16. TLT Magnitude and Direction of Error 

 

Both baseline models tend to overpredict more than underpredict. Approximately 
70 percent of records are overpredicted by more than 7 days, and 60 percent of records 
are overpredicted by at least 1 month. This overprediction could lead to overinvestments 
in inventory. 

Both the unified and composite models are skewed toward underestimates, which could 
lead to an increase in backorders. On the other hand, the AI models nearly eliminate 
overestimates longer than 6 months and greatly reduce overestimates longer than 
1 month, reducing inventory investment. 

See Appendix H for breakdowns of the magnitude and direction of error by procurement 
frequency. 

Risk Metric 
Using the model results (specifically the model errors), we created a simple metric to 
capture the variability of previous lead time estimates for each NIIN in a manner useful 
to a DLA planner. The metric calculates the mean of previous positive lead time errors 
and the mean of previous negative lead time errors for insight into the direction of error 
for each NIIN. Error is predicted lead time minus observed lead time; positive error 
corresponds to an overestimate and negative error indicates an underestimate. 

Risk is best depicted by centering on an NIIN’s current predicted lead time and then 
adding bars indicating mean errors (note that these are not statistical error bars).  
Figure 3-17 is an example using ALT RF predictions. 
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Figure 3-17. Predicted ALT (RF) with Mean Error Bars 

 

Each blue dot represents the latest ALT RF prediction; the part of the bar below the dot 
indicates the mean of previous positive errors (overestimates) and the part of the bar 
above the dot indicates the mean of previous negative errors (underestimates). For NIIN 
997834056, previous overestimates of ALT are, on average, over by 7 days and 
previous underestimates are, on average, under by 14 days. In addition, the length of 
the bar gives insight on how accurate the model has been for that NIIN; 997993094 had 
a few overestimates in the past but the model is generally accurate based on error 
magnitude. 

A limitation of the metric is that the averaging of errors provides no insight into past lead 
times or their variability, so other aggregate functions may offer better information than 
average error. In addition, NIINs with few previous predictions will not benefit from the 
metric; if an NIIN had one previous prediction, a sample size of one makes it impossible 
to validate model accuracy. 

This metric can add value for two primary applications: 

• Manual review of outliers: the metric supplies planners with context and quick 
insight into model predictions. For example, NIIN 000031967 has had large 
underestimates; increasing the prediction would reduce backorder risk. 

• Safety stock levels: the metric offers insight into variability in ALT errors. For 
example, safety stock could be increased for NIIN 000035607 to cover the risk 
due to high lead time error variability. 
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Business Benefits 

The business benefits for increased prediction accuracy are challenging to quantify since 
benefits to DLA are based on the increase in estimation accuracy and how processes 
are adjusted to reflect the improved accuracy. The results developed during the previous 
analysis assume implementation is not affected or reduced by processes. Calculating 
new lead times of records does not mean the lead times will be used during the 
procurement process automatically. The solicitation and award phases allow for flexibility 
in contractual delivery times for DLA and the vendor. We tracked the following metrics 
on the TLT test set to validate progress and success: 

• Obligation authority 

• Inventory storage 

• Sudden changes in lead time 

• Backorders. 

DLA uses several methods for setting item inventory levels, which don’t all depend on 
lead time. For items whose levels are influenced by lead time, we expect improved lead 
time accuracy to improve business outcomes. Sixty-seven percent of the NIINs in the 
procurement data of this project fall into one of the planning categories shown in  
Figure 4-1. 

Figure 4-1. Item Population 

 

• Replenishment (Acquisition Advice Code [AAC] D): Lead time is used to compute 
the safety stock and lead time demand components of inventory levels. 

• Next Gen: Lead time is a factor for computing inventory levels. 

• Peak: Lead time is not directly part of computing levels. However, lead times 
influence the simulation metrics used to generate annual tradeoff curves, which 
could lead to the selection of a different operating point and, therefore, different 
levels. 

• Non-PNG™ (Peak Policy and Next Generation™) AAC Z: Lead time is used to 
set minimum inventory levels. 
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Obligation Authority 
Increased lead time accuracy reduces opportunity cost due to mistimed procurements. 
To measure this effect, we used LMI’s Financial and Inventory Simulation Model™ 
(FINISIM™) to simulate a replay of the last year in our data set: April 2018 through 
March 2019. By measuring the change in obligations over the year, we can estimate the 
reduction in inventory requirements due to changing lead times. 

These simulation runs require historical demand data. Although historical demand data 
was not part of the data received for this project, we took advantage of data we already 
had from various PNG™ analysis. Since this data was not available for all items, we 
scaled up the results to reflect the percent of items analyzed (i.e., an item was in the test 
set and demand data was available) versus the total project item population, by planning 
method. This scaling assumes that the items analyzed are a representative sample of 
the full item population. 

The simulation results in Table 4-1 show that using the lead times from the composite 
RF model reduces requirements by $11 million annually. If this sample is representative, 
the results scale to a $102 million annual reduction in requirements for the entire item 
population. 

Table 4-1. Requirements Reduction 

 Next Gen AAC D Non-PNG™ AAC Z 

TLTR obligations ($M) 226 159 34 
One-third rule obligations ($M) 265 155 34 
ALT RF + PLT RF obligations ($M) 262 149 32 
Net requirements reduction versus one-
third rule (analysis sample) ($M) 

3 6 2 

Analysis percent of total 23% 9% 10% 
Scaled-up requirements reduction ($M) 13 68 21 

 
Inventory Storage 

Inventory storage is directly related to lead time requirements. The longer the lead time, 
the more inventory is required to cover expected sales requisitions. We can state 
average holding cost as a function of the cost to store an item (C), rate of demand for an 
item (D), safety stock kept by DLA (SS), and lead time of a given item, where lead time 
is the sum of PLT and ALT: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 = 𝐶𝐶 × �𝑆𝑆𝑆𝑆 +  𝐷𝐷×(𝐴𝐴𝐴𝐴𝐴𝐴+𝑃𝑃𝑃𝑃𝑃𝑃)
2

�. 

Safety stock is based on the historical uncertainty in lead time as well as several other 
factors, including service demand, item priority, risk assessment, complex modeling, and 
leadership priorities. Therefore, it is impossible to neatly separate out the portion of 
holding cost specifically attributable to error in lead time in DLA’s safety stock. 

We can estimate the holding cost of the excess inventory required by the order’s arriving 
early by multiplying the cost to hold an item by the number of extra days the item needs 
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to be held. (DLA assumes that 18 percent of an item’s procurement cost is the annual 
cost to hold an item, but this value is a topic of debate.) The following equation 
computes the holding cost for each procurement in which lead time was underestimated. 

. 18
365

(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑄𝑄𝑄𝑄𝑄𝑄)(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) 

Table 4-2 shows that we can expect the composite RF model to save approximately 
$26 million in holding cost as a result of reducing overestimated lead times. This does 
not include safety stock. 

Table 4-2. Holding Cost Due to Overestimated Lead Times 

 Holding cost ($M) 

TLTR (annual) 66 
One-third rule (annual) 47 
ALT RF + PLT RF (annual) 21 
Net annual savings versus one-third rule (analysis 
sample)  26 

10-year savings at 2% discount 234 

 
Sudden Changes in Lead Time 

Sudden changes in lead times can result in multiple issues, including administrative, 
expedite, and reputation costs. Managing and reducing spikes in lead times is extremely 
important. Each month, when lead time forecasts are updated, large changes in lead 
times are flagged for manual review. We used the thresholds on the percent change to 
select the number of lead times that would be flagged for manual review in the last 
month of our test set, under three conditions. 

1. Current method: DLA’s April 2019 forecast is compared to the March 2019 lead 
time of record. 

2. Current method without overrides or freezes: DLA’s April 2019 is compared to 
DLA’s March 2019 forecast, ignoring any freezes or overrides in the lead time of 
record. 

3. RF: the April 2019 RF forecast is compared to the March 2019 composite RF 
forecast. 

There are separate threshold values for ALT and PLT forecast updates. Table 4-3 shows 
the number of lead time updates flagged for manual review for ALT and PLT under each 
of the three conditions. Switching to the RF models reduces the number of lead times 
flagged for review by 46 percent over the current method and is in line with the total 
number of lead times that current forecast methods would flag with no overrides or 
freezes. 
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Table 4-3. Number of Lead Time Updates Flagged for Review 

 ALT PLT Total 

Current method 3,762 4,694 8,456 
Current method without overrides/freezes 1,940 1,990 3,928 
RF 3,805 744 4,549 
Net change vs current method without overrides 1,865 −1,246 619 

 
Backorders 

Historically, DLA has overexaggerated lead times to minimize the risk of backorders as 
seen in Figure 3-6, Figure 3-7, and Figure 3-16, showing that the baseline models skew 
heavily toward overestimating lead times for ALT, PLT, and TLT. Using the RF models 
removes this artificial lead time buffer, increasing the number of lead times that are 
underestimated. However, just because a lead time is underestimated does not 
guarantee that a backorder occurs. To create a backorder, more demand must occur 
during the period of underestimation than is covered by safety stock. 

Backorders occur for several reasons, including inaccurate demand forecasts and 
underestimated lead times. We compared the safety stock to the expected demand over 
the period of underestimation to estimate the number of units backordered due to 
underestimated lead times only. Safety stock (SS) and annual demand quantity (ADQ) 
are used to calculate the expected demand over the period of underestimation using the 
following equation. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  max �
𝐴𝐴𝐴𝐴𝐴𝐴
365

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) − 𝑆𝑆𝑆𝑆, 0� 

Safety stock data was pulled from the same PNG™ analysis data sets as in the 
obligations analysis, so the same scaling approach was applied. A limitation of this 
approach is that it assumes that safety stock is the same for each lead time method and 
does not account for how safety stock changes with lead times. 

Table 4-4 shows the results of this analysis. Backorders due to underestimated lead 
times decrease for Next Gen items and increase for AAC D and Non-PNG™ AAC Z 
items. If the analysis sample is representative of the full item population, the scaled 
results show a 7 percent increase.  

Table 4-4. Expected Units Backordered Due to Underestimated Lead Times 

 Next Gen AAC D Non-PNG™ AAC Z Total 

TLTR (thousands of units) 88 142 1.8 231.8 
One-third rule (thousands of units) 172 207 1.6 380.6 
ALT RF + PLT RF (thousands of units) 137 238 2.3 377.3 
Net change versus one-third rule (analysis 
sample) (thousands of units) 

−35 31 0.7 −3.3 

Analysis percent of total 23% 9% 10% — 
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Table 4-4. Expected Units Backordered Due to Underestimated Lead Times 

 Next Gen AAC D Non-PNG™ AAC Z Total 

Scaled-up one-third rule (thousands of 
units) 

748 2,300 16 3,064 

Scaled-up ALT RF + PLT RF (thousands 
of units) 

596 2,644 23 3,263 

Scaled-up net change versus one-third 
rule (thousands of units) 

−152 344 7 199 

  
DLA focuses on requisition backorders, or the number of demand requisitions that are 
not able to be immediately filled. This analysis is on the number of units, not requisitions, 
backordered and covers backorder due to underestimated lead times only. Therefore, 
this analysis shows that, without any changes to safety stock, switching to the RF lead 
time models is expected to produce a 7 percent increase in units on backorder due to 
underestimated lead times; NOT a 7 percent increase in backorders overall. 

This expected increase in backorders due to underestimated lead time can be offset by 
transferring inventory reductions into safety stock. 
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Conclusions and Recommendations 

Conclusions 
AI methods can improve the accuracy of lead time estimates for ALT, PLT, and TLT by 
19 to 40 percent. Using the RF models, on average, improves lead time accuracy by 
38 days. The MAE and MAPE results show that AI models can greatly improve the 
accuracy of lead time estimates for ALT and PLT as well as their sum (TLT). When 
compared to the baseline one-third rule, RF models improved the overall MAE by 
32 percent (17 days) for ALT and 19 percent (16 days) for PLT. 

Predicting ALT and PLT is important, yet TLT determines whether an order arrives 
earlier or later than expected. The TLT modeling results showed no additional value in 
creating a separate TLT AI model. Instead, summing the output of the ALT and PLT RF 
models results in a 40 percent (38 days) improvement in MAE. 

Although the baseline one-third method already performs reasonably well for frequently 
procured items (e.g., quarterly or monthly), the RF models improve accuracy for all 
procurement frequencies. However, the largest improvements are for items procured 
less frequently. For ALT, the RF model improves MAE by 37 percent (23 days) for items 
procured less than once every 2 years and more than once over the entire data time 
horizon. The PLT RF model performs just as well for items with one procurement as for 
items procured annually, resulting in a 38 percent (44 days) improvement in MAE for 
one-time buy items. These results highlight the ability of AI methods to incorporate a 
wider range of data and improve predictions for items with little or no lead time history. 

When lead time is used in the planning process to set inventory levels, increased lead 
time accuracy is expected to improve business outcomes. The business benefits for 
increased prediction accuracy are challenging to quantify since benefits to DLA are 
based on the increase in estimation accuracy and how processes are adjusted to reflect 
the improved accuracy. Despite this challenge, we estimate the following business 
impacts: 

• Obligation Authority: RF models reduce requirements by $11 million annually for 
the items analyzed. If this sample is representative, the results scale to a 
$102 million annual reduction in requirements for the entire item population. 

• Inventory Storage: RF models save approximately $26 million in holding cost by 
overestimated lead times. This does not include safety stock. 

• Sudden Changes in Lead Times: RF models reduce the number of lead times 
flagged for manual review by 46 percent over the current method, which is in line 
with the total number of lead times that current forecast methods would flag with 
no overrides or freezes. 
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• Backorders: Units backordered due to underestimated lead times decreases for 
Next Gen items and increases for AAC D and Non-PNG™ AAC Z items. If the 
analysis sample is representative of the full item population, the results scale to a 
7 percent increase. This expected increase in backorders due to underestimated 
lead time can be offset by transferring inventory reductions into safety stock. 

The results of this research and development (R&D) project demonstrate that AI models 
can improve lead time accuracy. Building on the success of this project, additional 
opportunities to use AI to improve DLA planning should be researched. For example, 
price estimates, like lead time estimates, rely on each item’s historical data, which can 
lead to inaccurate estimates for infrequently procured items. For lead time estimates, AI 
methods enabled us to incorporate a variety of data and offered the largest 
improvements for infrequently procured items; similar benefits are possible for price 
estimates. 
Outlier detection and handling is another area where AI models could enhance value by 
improving the detection of outliers as well as recommending how to handle them. 
Outliers can refer to demand requisitions, lead time observations, or changes in lead 
time predictions. For lead times, outlier detection flags large changes in lead time 
estimates that require manual review. A 1-year R&D project would continue to use 
Python for model development and explore AI models, such as clustering methods, 
isolation forest, one-class support vector machine, and elliptic envelope. 
In summary, DT, RF, LR, and NN AI models were built for ALT, PLT, and TLT. AI 
models supply improved lead time accuracy over the baseline methods, with the 
greatest improvements for infrequently procured items. Additionally, the mean over- or 
underestimate risk metric describes variability in lead time errors. This metric can aid 
planners when manual reviews of lead time estimates are required. In addition, the risk 
metric can inform safety stock levels by capturing uncertainty in lead time estimates. In 
addition to recommendations and conclusions, detailed technical documentation is 
included in the appendices. Furthermore, the developed code, final datasets, and results 
are provided on one of the DLA laptops and two sets of DVDs. 

Recommendations 
Three recommendations follow from the findings and conclusions of this research. 

Transition to RF models for ALT and PLT estimation. DLA should transition ALT and 
PLT estimation to the AI models to benefit from improved accuracy. Since the largest 
improvements in lead time accuracy are seen for infrequently procured items, at a 
minimum, the first phase of implementation should focus on infrequently procured items 
with forecast updates occurring quarterly. Before going live with the first forecast 
updates for DLA systems, the AI models should be retrained on the most recent 
procurement data. On an ongoing basis, the performance of the AI models should be 
monitored, with the models retrained on an annual basis. Retraining annually enables 
the models to continue to learn the underlying behavior as new data is observed. 

Use the mean over- or underestimate metric for manual reviews. The risk metric 
reviews the errors between past lead time predictions and observations and computes, 
on average, how often the model over- versus underestimates lead time for each item. 
This risk measurement is useful to planners when performing manual reviews of lead 
time estimates. When an updated lead time estimate is flagged for review, the risk metric 
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can offer insight to the variability associated with this NIIN quickly for the AI model and 
the model’s tendency to over- or underestimate. Two additional elements should be 
researched: 

• Best length of the lookback window to compute the metric. 

• Use of the metric to set safety stock levels to capture lead time variability and 
uncertainty better. 

Pursue near- and long-term transition plans. Separate near- and long-term transition 
plans are required. See Chapter 6 for additional details on these transition plans. 

• Near term: Update lead time forecasts offline and then enter them in the system. 

• Long term: Deploy AI models in DLA systems. 

To scale this work and deploy the AI models in DLA systems, a decision is required on 
what software to use. If the models continue in Python, that software must be approved 
for use on DLA production systems. Otherwise, the models and data processing 
procedures must be replicated in SAS. Once the software question is resolved, the 
models must be connected to DLA’s production systems so that the process of pulling 
data, running the models, and pushing the lead time predictions back to the systems can 
be automated. LMI can support DLA J6 stakeholders through this implementation in a 
number of ways: 

• Building automated scripts to perform the quarterly forecast update and annual 
model retraining procedures. 

• Defining and establishing the required data connections. 

• Working through software integration concerns. 
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Transition Planning 

In the near term, an approach like that for PNG™ levels updates can enable DLA to 
benefit from improved lead time estimates quickly. This approach would pull data each 
month, use the AI models to compute new lead time forecasts, then push those 
forecasts to the DLA system. The cost of this 18-month near-term transition plan is 
$412,000 including the following high-level tasks: 

• Setting up and testing the process of offline forecast updates. 

• Retraining the models on the most recent data. 

• Updating forecasts quarterly for 1 year. 

• Analyzing and supporting the long-term transition and implementation. 

Setting up a successful process of offline forecast updates requires ironing out the 
following details: 

• Item population: The AI models are built on data from and should only be applied 
to hardware items that are not on LTCs. Additional business rules may limit the 
initial scope or support a phased rollout. For example, the transition could start 
with AAC D or infrequently procured items. 

• Data description: A clear definition of the data pull used for forecast updates is 
required. Chapter 2 describes the data used for this project and Appendix B lists 
the final features created from that data. The full 10 years of data is not required 
for each monthly forecast update. A new, more focused data request is needed. 

• Schedule: Based on the update frequency, a schedule must specify when data 
will be sent to LMI (i.e., number of days after demand month end) and how many 
days after data receipt updated forecasts will be delivered. 

• DLA process: A process is needed to upload the lead time forecasts into the 
system and ensure that they are not overwritten by DLA’s standard lead time 
update strategy. 

• DLA policy: A policy is required to specify whether manual overrides will be 
allowed. 

• Transfer mechanism: A method for transferring the data (e.g., secure file transfer 
protocol) from DLA to LMI and the updated forecasts from LMI to DLA is 
required. 

• File formats: File formats must be defined from the incoming data transfer as well 
as the outgoing forecasts transfer. These will specify the file names, field names, 
file type, and delimiter. 

• Mitigation strategy: A clear strategy for handling data delays is needed. 

• Security protocols: The rules for safeguarding DLA data must be defined clearly. 
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In the long term, the transition approach is to fully deploy the AI models in DLA’s 
systems. This requires rebuilding the data processing pipeline so that it pulls from DLA’s 
data systems and can push updated lead times back to those systems. Once Python is 
approved for use on DLA production systems, the AI models may be deployed in their 
current form. Otherwise, the models can be rebuilt in SAS. The cost of implementing the 
AI models is not known at this time as DLA is deciding how this will be handled. 
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Appendix A  
Hardware and Software 

Hardware 
The analyses were performed using DLA air-gapped Dell Precision 7520 laptops (no 
wired or wireless network connections). All code or data transfers used DLA LG Portable 
DVD writers and DVD-RWs (~4.38 GB each). 

Software 
Data from DLA was stored locally in an SQLite (version 3.3.0) database using SQLite 
Studio (version 3.2.1), a database interface and manager. The data was then pulled into 
the Python code. 

The Anaconda distribution of Python was the analytical software for this project because 
Python is one of the industry standards for advanced AI and analytics and Anaconda 
bundles a variety of AI and ML libraries. Anaconda (version 2018.12) is approved with 
caveats for use at DLA in isolated environments. The code for this project was supplied 
to DLA as well as the full list of model parameters to support repeatability. 

Several Python libraries were used from the Anaconda distribution: conda 4.5.12, 
matplotlib 3.0.2, NumPy 1.15.4, pandas 0.23.4, pickle 4.0, scikit-learn 0.20.1, SQLite 
3.26.0. 

The code was broken into Jupyter Notebooks running Python (version 3.7.1) as part of 
the Anaconda (version 2018.12) distribution approved by DLA. Jupyter notebooks are 
organized into three separate folders for each estimation task (ALT, PLT, and TLT) with 
each notebook representing a discrete subprocess in the project workflow depicted in 
Figure A-1. Data files are organized into raw, filtered, interim, and processed folders. In 
addition, custom-made functions are grouped in the utilities object, defined in Utilities.py, 
and imported into the relevant notebooks. Documentation on functions are in the 
function headers. 
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Figure A-1. Data Roadmap 
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Appendix B  
Feature Lists 

The tables in this appendix contain the full list of features for each model. These features 
include data from DLA or external data as well as engineered features. 

Table B-1. ALT Features 

Feature variable Feature name Description 

Engineered Features 
buyer_wl_prof_ctr Profit Center Workload For the NIIN’s profit center, the number of open 

PRs at the time of PR creation 
common_awdtype Common Award Type For an NIIN, the most common award type for the 

most recent award month 
common_class_sply Common Class of Supply For an NIIN, the most common class of supply for 

the most recent award month 
common_doctype_re Common Doctype For an NIIN, the most common PO doctype of the 

most recent award month 
common_doctype_setback_re Common Doctype 

(10-month lookback) 
For an NIIN, the most common PO doctype of the 
10 most recent award months 

common_plant Common Plant For an NIIN, the most common plant for the most 
recent award month 

common_prioritycd Common Priority Code For an NIIN, the most common priority code for the 
most recent award month 

common_schain Common Supply Chain 1 For an NIIN, the most common supply chain for the 
most recent award month (from material master) 

common_splychain Common Supply Chain 2 For an NIIN, the most common supply chain for the 
most recent award month (from item detail) 

common_stockdvd Common Stock DVD For an NIIN, the most common stock Direct Vendor 
Delivery (DVD) for the most recent award month 

dslp Days Since Last Procurement For an NIIN, the number of days since the last PR 
opened 

int_prc_dt_re PR Generation Date Integer representation of the PR open date  
mean _alt_re Mean ALT For an NIIN, the mean observed ALT for orders of 

the most recent award month 
mean_alt_setback_re Mean ALT (1-month lookback) For an NIIN, the mean observed ALT for orders of 

the second most recent award month 
mean_bids_setback Mean Number of Bids 

(1-month lookback) 
For an NIIN, the mean number of bids for the 
second most recent award month 

mean_num_bids Mean Number of Bids For an NIIN, the mean number of bids for the most 
recent award month 

med_alt_profit_ctr_re Median ALT by Profit Center For an NIIN’s profit center, the median ALT for 
orders in the most recent award month 

med_altr_re Median ALTR For an NIIN, the median ALTR for orders of the 
most recent award month 
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Table B-1. ALT Features 

Feature variable Feature name Description 

med_altr_setback_re Median ALTR (10-month 
lookback) 

For an NIIN, the median ALTR for orders over the 
10 most recent award months 

med_order_quan Median PR Quantity For an NIIN, the median purchase requisition 
quantity of the most recent award month 

med_pr_price_re Median PR Price (10-month 
lookback) 

For an NIIN, the median purchase requisition price 
over the 10 most recent award months 

month_since_award_re Months Since Last Award For an NIIN, the number of months since the last 
fulfilled award  

one_third_re One-Third Rule For an NIIN, 1/3 × average observed ALT of the 
most recent award month + 2/3 × last value of the 
rule 

one_third_setback_1_re One-Third Rule (1-month 
lookback) 

For an NIIN, 1/3 × average observed ALT of the 
second most recent award month + 2/3 × last value 
of the rule 

one_third_setback_2_re One-Third Rule (2-month 
lookback) 

For an NIIN, 1/3 × average observed ALT of the 
third most recent award month + 2/3 × last value of 
the rule 

one_third_setback_3_re One-Third Rule (3-month 
lookback) 

For an NIIN, 1/3 × average observed ALT of the 
fourth most recent award month + 2/3 × last value 
of the rule 

one_twentieth_re One-Twentieth Rule For an NIIN, 1/20 × average observed ALT of the 
most recent award month + 19/20 × last value of 
the rule 

one_twentieth_setback_1_re One-Twentieth Rule 
(1-month lookback) 

For an NIIN, 1/20 × average observed ALT of the 
second most recent award month + 19/20 × last 
value of the rule 

p9_m_re P9 Mode For an NIIN, the mode of the type of procurement 
instrument (9th pin no.) of the most recent award 
month 

p9_mode_10_re P9 Mode (10-month lookback) For an NIIN, the mode of the type of procurement 
instrument (9th pin no.) of the 10 most recent award 
months 

prc_dt_month PR Generation Date Month Month of PR creation 
prc_dt_monthyear PR Generation Date Month/ 

Year 
Month-year of PR creation 

prev_cal_month_re Previous Calendar Month For an NIIN, the calendar month of the most recent 
award 

rec_count_demil_re PR Count by Demil Code For an NIIN’s demil code, the total number of 
previously awarded records 

rec_count_re PR Count For an NIIN, the total number of previously 
awarded records 

two_third_re Two-Third Rule For an NIIN, 2/3 × average observed ALT of the 
most recent award month + 1/3 × last value of the 
rule 

weight_pounds Weight For an NIIN, the weight in pounds of one unit 
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Table B-1. ALT Features 

Feature variable Feature name Description 

Raw Features 
aac AAC Acquisition advice code 
alre_criticality_cd ALRE Criticality Code Aircraft launch and recovery equipment (ALRE) 

criticality code 
amc AMC Acquisition method code (AMC) 
amsc AMSC Acquisition method suffix code (AMSC) 
cost_basis_price Cost Basis Price Cost basis price 
demil_cd Demil Code Demilitarization code 
disposition_first_art_unit Disposition First Article Unit Disposition first article unit 
dmsh_mfg_src_ind Diminishing Manufacturing 

Sources Indicator 
Diminishing manufacturing sources indicator 

frst_artcl_tst_ind First Article Testing Indicator First article testing indicator 
fsc FSC Federal supply code (FSC) 
fsg FSG Federal supply group (FSG) 
inc INC Item name category (INC) 
itm_cat Item Category Item category group 
itm_name Item Name Item name category 
itm_stdzn_cd Item Standardization Code Item standardization code 
life_support_indicator Life Support Indicator Life support indicator 
material_type Material Type Material type 
moving_avg_price Moving Average Price Moving average price 
naic NAIC North American Industrial Classification (NAIC) 
owrmr Other War Reserve Material 

Requirements Quantity 
Other war reserve material requirements quantity 

qlty_ctrl_cd Quality Control Code Quality control code 
restricted_tech_data_pkg Restricted Tech Data Package Restricted technical data package 
serialization Serialization Serialization 
sole_src_rvw_cd Sole Source Review Code Sole source review code 
spcl_itm_cd Special Item Code Special item code 
spcl_pckgng_inst_revision Special Packaging Instruction 

Revision 
Special packaging instruction revision 

spcl_procedures_cd Special Procedures Code Special procedures code 
std_u_price Standard Unit Price Standard unit price 
tech_ops_rvw_cd Tech Ops Review Code Tech ops review code 
ummips UMMIPS Uniform Materiel Movement and Issue Priority 

System (UMMIPS) classification (planning) 
unique_itm_desc Unique Item Description Unique item description 
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Table B-2. PLT Features 

Feature variable Feature name Description 

Engineered Features 
common_class_sply Common Class of Supply For an NIIN, the most common class of supply for the 

most recent delivery month 
common_doctype_re Common Doctype For an NIIN, the most common PO doctype from the 

most recent delivery month 
common_doctype_setback_re Common Doctype 

(10-month lookback) 
For an NIIN, the most common PO doctype over the 
10 most recent delivery months 

common_schain Common Supply Chain 1 For an NIIN, the most common supply chain for the 
most recent delivery month (from material master) 

common_splychain Common Supply Chain 2 For an NIIN, the most common supply chain for the 
most recent delivery month (from item detail) 

common_stockdvd Common Stock DVD For an NIIN, the most common stock DVD for the most 
recent delivery month 

dslp Days Since Last 
Procurement 

For an NIIN, the number of days since the last PO 
award date 

int_ob_dt_re Obligation Date Integer representation of the obligation date 
mean_bids Mean Number of Bids For an NIIN, the mean number of bids for the most 

recent delivery month 
mean_count_of_dodaac Mean Count of DODAACs For an NIIN, the mean count of Department of Defense 

activity address codes (DODAACs) for the most recent 
delivery month 

mean_cup Mean Contract Unit Price For an NIIN, the mean contract unit price for orders for 
the most recent delivery month 

mean_plt_re Mean PLT For an NIIN, the mean observed PLT for orders of the 
most recent delivery month 

mean_plt_setback_re Mean PLT (1-month 
lookback) 

For an NIIN, the mean observed PLT for orders of the 
second most recent delivery month 

med_order_quan Mean PO Quantity For an NIIN, the median PO quantity of the most recent 
delivery month 

med_plt_profit_ctr_re Median PLT by Profit 
Center 

For an NIIN’s profit center, the median PLT for orders in 
the most recent delivery month 

med_pltr_re Median PLTR For an NIIN, the median PLTR for orders of the most 
recent delivery month 

med_pltr_setback_re Median PLTR (10-month 
lookback) 

For an NIIN, the median PLTR for orders over the 
10 most recent delivery months 

med_po_dlvqty Median PO Delivered 
Quantity 

For an NIIN, the median PO delivered quantity over the 
most recent delivery month 

med_po_val_re Median PO Value 
(10-month lookback) 

For an NIIN, the median PO value over the 10 most 
recent delivery months 

month_since_award_re Months Since Last 
Delivery 

For an NIIN, the number of months since the last 
fulfilled delivery 

ob_dt_month Obligation Month Obligation date month 
ob_dt_monthyear Obligation Month/Year Obligation date month-year 
one_third_re One-Third Rule For an NIIN, 1/3 × average observed PLT of the most 

recent delivery month + 2/3 × last value of the rule 
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Table B-2. PLT Features 

Feature variable Feature name Description 

one_third_setback_1_re One-Third Rule (1-month 
lookback) 

For an NIIN, 1/3 × average observed PLT of the second 
most recent delivery month + 2/3 × last value of the rule 

one_third_setback_2_re One-Third Rule (2-month 
lookback) 

For an NIIN, 1/3 × average observed PLT of the third 
most recent delivery month + 2/3 × last value of the rule 

one_third_setback_3_re One-Third Rule (3-month 
lookback) 

For an NIIN, 1/3 × average observed PLT of the fourth 
most recent delivery month + 2/3 × last value of the rule 

one_twentieth_re One-Twentieth Rule For an NIIN, 1/20 × average observed PLT of the most 
recent delivery month + 19/20 × last value of the rule 

one_twentieth_setback_1_re One-Twentieth Rule 
(1-month lookback) 

For an NIIN, 1/20 × average observed PLT of the 
second most recent delivery month + 19/20 × last value of 
the rule 

p9_m_re P9 Mode For an NIIN, the mode of the type of procurement 
instrument (9th pin no.) of the most recent delivery month 

p9_mode_10_re P9 Mode (10-month 
lookback) 

For an NIIN, the mode of the type of procurement 
instrument (9th pin no.) of the 10 most recent delivery 
months 

prev_cal_month_re Previous Calendar Month For an NIIN, the calendar month of the most recent 
delivery 

rec_count_demil_re PO Count by demil code For an NIIN’s demil code, the total number of previously 
awarded records 

rec_count_re PO Count For an NIIN, the total number of previously awarded 
records 

two_third_re Two-Third Rule For an NIIN, 2/3 × average observed PLT of the most 
recent delivery month + 1/3 × last value of the rule 

weight_pounds Weight For an NIIN, the weight in pounds of one unit 
Raw Features 

aac AAC AAC 
alre_criticality_cd ALRE Criticality Code ALRE criticality code 
amc AMC AMC 
amsc AMSC AMSC 
cost_basis_price Cost Basis Price Cost basis price 
demil_cd Demilitarization Code Demilitarization code 
disposition_first_art_unit Disposition First Art Unit Disposition first art unit 
dmsh_mfg_src_ind Diminishing Manufacturing 

Sources Indicator 
Diminishing manufacturing sources indicator 

doctype Purchasing Document Type Purchasing document type 
ext_aircraft PPI Aircraft 

Manufacturing: General 
Producer price index (PPI) by industry: aircraft 
manufacturing 

ext_aircraftEngine PPI Aircraft 
Manufacturing: Engine 

PPI by industry: aircraft engine and parts 
manufacturing: aircraft engine parts 

ext_aircraftOther PPI Aircraft Manufacturing: 
Other Parts 

PPI by industry: aircraft engine and parts 
manufacturing: aircraft other parts 

ext_ds_equip Industrial Production: 
Defense and Space 
Equipment 

Industrial production: defense and space equipment 
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Table B-2. PLT Features 

Feature variable Feature name Description 

ext_FDEFX National Defense 
Consumption Expenditures 
and Gross Investment 

National defense consumption expenditures and gross 
investment 

ext_hardware Producer Price Index by 
Industry: Hardware 
Manufacturing 

Producer price index by industry: hardware 
manufacturing 

ext_ironsteel Producer Price Index by 
Industry: Metals and Metal 
Products: Iron and Steel 

Producer price index by industry: metals and metal 
products: iron and steel 

frst_artcl_tst_ind First Article Testing 
Indicator 

First article testing indicator 

fsc Federal Supply Code FSC 
fsg Federal Supply Group FSG 
inc Item Name Category INC 
itm_cat_group Item Category Group Item category group 
itm_name Item Name Category INC 
itm_stdzn_cd Item Standardization Code Item standardization code 
life_support_indicator Life Support Indicator Life support indicator 
material_type Material Type Material type 
moving_avg_price Moving Average Price Moving average price 
naic North American Industrial 

Classification 
NAIC 

owrmr Other War Reserve 
Material Requirements Qty 

Other war reserve material requirements quantity 

profit_ctr Profit Center Profit center 
qlty_ctrl_cd Quality Control Code Quality control code 
restricted_tech_data_pkg Restricted Technical Data 

Package 
Restricted technical data package 

serialization Serialization Serialization 
sole_src_rvw_cd Sole Source Review Code Sole source review code 
spcl_itm_cd Special Item Code Special item code 
spcl_pckgng_inst_revision Special Packaging 

Instruction Revision 
Special packaging instruction revision 

spcl_procedures_cd Special Procedures Code Special procedures code 
std_u_price Standard Unit Price Standard unit price 
tech_ops_rvw_cd Tech Ops Review Code Tech ops review code 
total_po_val Total PO Value Total PO value 
total_quan Total Quantity by PO 

Number and NIIN 
Total quantity by PO number and NIIN 

ummips UMMIPS Classification 
(Planning) 

UMMIPS classification (planning) 

unique_itm_desc Unique Item Description Unique item description 
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Table B-3. TLT Features 

Feature variable Feature name Description 

Engineered Features 
buyer_wl_prof_ctr Profit Center Workload For the NIIN’s profit center, the number of open PRs at 

the time of PR creation 
common_awdtype Common Award Type For an NIIN, the most common award type for the most 

recent award month 
common_class_sply Common Class of Supply For an NIIN, the most common class of supply for the 

most recent award month 
common_doctype_re Common Doctype For an NIIN, the most common PO doctype of the most 

recent award month 
common_doctype_setback_re Common Doctype 

(10-month lookback) 
For an NIIN, the most common PO doctype of the 
10 most recent award months 

common_plant Common Plant For an NIIN, the most common plant for the most recent 
award month 

common_prioritycd Common Priority Code For an NIIN, the most common priority code for the 
most recent award month 

common_schain Common Supply Chain 1 For an NIIN, the most common supply chain for the 
most recent award month (from material master) 

common_splychain Common Supply Chain 2 For an NIIN, the most common supply chain for the 
most recent award month (from item detail) 

common_stockdvd Common Stock DVD For an NIIN, the most common stock DVD for the most 
recent award month 

dslp Days Since Last 
Procurement 

For an NIIN, the number of days since the last PR 
opened 

int_prc_dt_re PR Generation Date Integer representation of the PR open date 
mean_alt_re Mean ALT For an NIIN, the mean observed ALT for orders of the 

most recent award month 
mean_alt_setback_re Mean ALT (1-month 

lookback) 
For an NIIN, the mean observed ALT for orders of the 
second most recent award month 

mean_bids_setback Mean Number of Bids 
(1-month lookback) 

For an NIIN, the mean number of bids for the second 
most recent award month 

mean_num_bids Mean Number of Bids For an NIIN, the mean number of bids for the most 
recent award month 

med_alt_profit_ctr_re Median ALT by Profit 
Center 

For an NIIN’s profit center, the median ALT for orders in 
the most recent award month 

med_altr_re Median ALTR For an NIIN, the median ALTR for orders of the most 
recent award month 

med_altr_setback_re Median ALTR (10-month 
lookback) 

For an NIIN, the median ALTR for orders over the 
10 most recent award months 

med_order_quan Median PR Quantity For an NIIN, the median purchase requisition quantity of 
the most recent award month 

med_pr_price_re Median PR Price 
(10-month lookback) 

For an NIIN, the median purchase requisition price over 
the 10 most recent award months 

month_since_award_re Months Since Last Award For an NIIN, the number of months since the last 
fulfilled award 

one_third_re One-Third Rule For an NIIN, 1/3 × average observed ALT of the most 
recent award month + 2/3 × last value of the rule 
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Table B-3. TLT Features 

Feature variable Feature name Description 

one_third_setback_1_re One-Third Rule (1-month 
lookback) 

For an NIIN, 1/3 × average observed ALT of the second 
most recent award month + 2/3 × last value of the rule 

one_third_setback_2_re One-Third Rule (2-month 
lookback) 

For an NIIN, 1/3 × average observed ALT of the third 
most recent award month + 2/3 × last value of the rule 

one_third_setback_3_re One-Third Rule (3-month 
lookback) 

For an NIIN, 1/3 × average observed ALT of the fourth 
most recent award month + 2/3 × last value of the rule 

one_twentieth_re One-Twentieth Rule For an NIIN, 1/20 × average observed ALT of the most 
recent award month + 19/20 × last value of the rule 

one_twentieth_setback_1_re One-Twentieth Rule 
(1-month lookback) 

For an NIIN, 1/20 × average observed ALT of the 
second most recent award month + 19/20 × last value 
of the rule 

p9_m_re P9 Mode For an NIIN, the mode of the type of procurement 
instrument (9th pin no.) of the most recent award month 

p9_mode_10_re P9 Mode (10-month 
lookback) 

For an NIIN, the mode of the type of procurement 
instrument (9th pin no.) of the 10 most recent award 
months 

prc_dt_month PR Generation Date Month Month of PR creation 
prc_dt_monthyear PR Generation Date 

Month/Year 
Month-year of PR creation 

prev_cal_month_re Previous Calendar Month For an NIIN, the calendar month of the most recent 
award 

rec_count_demil_re PR Count by Demil Code For an NIIN’s demil code, the total number of previously 
awarded records 

rec_count_re PR Count For an NIIN, the total number of previously awarded 
records 

two_third_re Two-Third Rule For an NIIN, 2/3 × average observed ALT of the most 
recent award month + 1/3 × last value of the rule 

weight_pounds Weight For an NIIN, the weight in pounds of one unit 
Raw Features 

aac AAC AAC 
alre_criticality_cd alre_criticality_cd ALRE criticality code 
amc AMC AMC 
amsc AMSC AMSC 
cost_basis_price cost_basis_price Cost basis price 
demil_cd Demil Code Demilitarization code 
disposition_first_art_unit disposition_first_art_unit Disposition first art unit 
dmsh_mfg_src_ind dmsh_mfg_src_ind Diminishing manufacturing sources indicator 
frst_artcl_tst_ind frst_artcl_tst_ind First article testing indicator 
fsc FSC Federal supply code 
fsg FSG Federal supply group 
inc INC INC 
itm_cat Item Category Item category group 
itm_name Item Name INC 
itm_stdzn_cd itm_stdzn_cd Item standardization code 
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Table B-3. TLT Features 

Feature variable Feature name Description 

life_support_indicator life_support_indicator Life support indicator 
material_type material_type Material type 
moving_avg_price moving_avg_price Moving average price 
naic NAIC NAIC 
owrmr owrmr Other war reserve material requirements quantity 
qlty_ctrl_cd qlty_ctrl_cd Quality control code 
restricted_tech_data_pkg restricted_tech_data_pkg Restricted technical data package 
serialization serialization Serialization 
sole_src_rvw_cd sole_src_rvw_cd Sole source review code 
spcl_itm_cd spcl_itm_cd Special item code 
spcl_pckgng_inst_revision spcl_pckgng_inst_revision Special packaging instruction revision 
spcl_procedures_cd spcl_procedures_cd Special procedures code 
std_u_price Standard Unit Price Standard unit price 
tech_ops_rvw_cd tech_ops_rvw_cd Tech ops review code 
ummips UMMIPS UMMIPS classification (planning) 
unique_itm_desc unique_itm_desc Unique item description 
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Appendix C  
Aggregation Rules 

Prior to any modelling, the data needs to be modified so PR-NIIN (ALT dataset), PO-
NIIN (PLT dataset), or PR-PO-NIIN (TLT dataset) functions as a unique ID for each 
dataset. Aggregation rules are used to consolidate records with the same unique ID. 
Unrelated aggregation methods are used to engineer new features, which are described 
in Historical Aggregations of Raw Features section of Chapter 2. 

First, numeric columns involving quantity, price, or value are summed for a single total 
quantity, price, or value column per PO-NIIN, PR-NIIN, or PR-PO-NIIN. Any other 
numeric columns are aggregated by taking the mean of the different unique values, 
while categorical columns are aggregated by taking the earliest or the latest unique 
value based on date. If the column is from the PO or PR tables, the earliest value 
represents the information known at the moment of procurement or obligation; if the 
column is from the NIIN-level tables, such as material master or item detail, the last 
value represents the most up-to-date values of that NIIN. 

Although a raw column may be in both the PLT and ALT modeling datasets, the column 
may not need aggregation in both. For example, MOVING_AVG_PRICE exists in both 
ALT and PLT modeling datasets, but is not aggregated at the PO-NIIN level as each PO-
NIIN had one MOVING_AVG_PRICE value—different from the PR-NIIN level. Table C-1 
defines the data aggregation rues applied to the ALT data. 

Table C-1. ALT Data Aggregation Rules 

Aggregated column Raw column Aggregate function 

Actual Procurement Date (act_prcrt_dt) ACTPRCRTDT First 
Award Type (awd_type) AWD_TYPE First 
Buyer ID (buyr_id) BUYR_ID First 
CAGE ID (cage_id) CAGE_ID First 
Delivery (delivery) DELIVERY Last 
Document Date (doc_date) DOC_DATE First 
Federal Supply Code (fsc) FSC Last 
Item Category (item_cat) ITM_CAT First 
Last Change Date (last_chgdt) LAST_CHGDT Last 
Mean ALTR (mean_altr) ALTR Mean 
Mean Contract Unit Price (mean_cup) CUP Mean 
Mean Cost Basis Price (mean_cost_basis_price) COST_BASIS_PRICE Mean 
Mean Moving Average Price (mean_moving_avg_price) MOVING_AVG_PRICE Mean 
Mean PLTR (mean_pltr) PLTR Mean 
Mean Standard Unit Price (mean_std_u_price_hist) STD_U_PRICE_HIST Mean 
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Table C-1. ALT Data Aggregation Rules 

Aggregated column Raw column Aggregate function 

PIIN Supplementary Procurement Instrument 
Identification Number (SPIIN) (piinspiin) 

PIINSPIIN First 

Plant (plant) PLANT First 
Power Purchase Agreement (PPA) Number (ppa_num) PPA_NUM First 
PPA Item (ppa_itm) PPA_ITM First 
PR Priority Code (priority_cd) PR_PRIORITY_CD First 
Profit Center (profit_ctr) PROF_CTR First 
Retail Indicator (retail_ind) RETAIL_IND First 
Stock Direct Vendor Delivery (DVD) (stock_dvd) STOCKDVD First 
Supply Chain (s_chain) S_CHAIN First 
Total PR Price (total_price) PR_PRICE Sum 
Total Quantity (total_quan) PR_ORDER_QUAN Sum 

 
Table C-2 defines the data aggregation rules applied to the PLT data. 

Table C-2. PLT Data Aggregation Rules  

Aggregated column Raw column Aggregate function 

Actual Procurement Date (act_prcrt_dt) ACTPRCRTDT First 
Count of DoD Activity Address Code (DODAAC) 
(count_of_DODAAC) 

SHIP_TO_DODAAC First 

Federal Supply Code (fsc) FSC Last 
Item Category (item_cat) ITM_CAT First 
Mean ALTR (mean_altr) ALTR Mean 
Mean Contract Unit Price (mean_cup) CUP Mean 
Mean PLTR (mean_pltr) PLTR Mean 
Mean Standard Unit Price (mean_std_u_price_hist) STD_U_PRICE_HIST Mean 
Obligation Date (ob_date) OBDATE First 
Priority Code (priority_cd) POPRIORITY_CD First 
Profit Center (profit_ctr) PROF_CTR First 
Stock DVD (stock_dvd) STOCKDVD First 
Supply Chain (s_chain) S_CHAIN First 
Total PO Delivery Quantity (total_podlvqty) DLVR_QTY Sum 
Total PO Value (total_po_value) OBVAL Sum 
Total Quantity (total_quan) POORDER_QUAN Sum 

 
Table C-3 defines the data aggregation rues applied to the TLT data. 
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Table C-3. TLT Data Aggregation Rules 

Aggregated column Raw column Aggregate function 

Actual Procurement Date (act_prcrt_dt) ACTPRCRTDT First 
Award Type (awd_type) AWD_TYPE First 
Buyer ID (buyr_id) BUYR_ID First 
CAGE ID (cage_id) CAGE_ID First 
Count of DODAAC (count_of_DODAAC) SHIP_TO_DODAAC First 
Delivered Cumulative Sum (delivered_cumsum) DLVR_QTY Cumulative Sum 
Delivery (delivery) DELIVERY Last 
Doc Date (doc_dt) DOCDATE First 
Federal Supply Code (fsc) FSC Last 
Item Category (item_cat) ITM_CAT First 
Last Change Date (last_chgdt) LAST_CHGDT Last 
Mean ALTR (mean_altr) ALTR Mean 
Mean Contract Unit Price (mean_cup) CUP Mean 
Mean Cost Basis Price (mean_cost_basis_price) COST_BASIS_PRICE Mean 
Mean Moving Average Price (mean_moving_avg_price) MOVING_AVG_PRICE Mean 
Mean PLTR (mean_pltr) PLTR Mean 
Mean Standard Unit Price (mean_std_u_price_hist) STD_U_PRICE_HIST Mean 
Obligation Date (ob_date) OBDATE First 
PIIN SPIIN (piinspiin) PIINSPIIN First 
Plant (plant) PLANT First 
PPA Item (ppa_itm) PPA_ITM First 
PPA Number (ppa_num) PPA_NUM First 
Priority Code (priority_cd) POPRIORITY_CD First 
Profit Center (profit_ctr) PROF_CTR First 
Retail Indicator (retail_ind) RETAIL_IND First 
Stock DVD (stock_dvd) STOCKDVD First 
Supply Chain (s_chain) S_CHAIN First 
Total PO Delivery Quantity (total_podlvqty) DLVR_QTY Sum 
Total PO Value (total_po_value) OBVAL Sum 
Total Price (total_price) PR_PRICE Sum 
Total Quantity (total_quan) POORDER_QUAN Sum 
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Appendix D  
Model Parameters, Scores, and Significance 

Multiple modeling passes are conducted during the tuning process for each model. For 
ALT and PLT models, final grid search results produce the listed test set scores for DT 
and NN. LR models are manually tuned on the L1 regularization parameter to calculate 
the effects on feature explainability and accuracy tradeoffs. RF models are also further 
manually tuned due to high MAPE scores inconsistent with previous RF results. For 
reproducibility purposes, a random state of 42 has been set so that, when rerun on the 
same data with the same hyperparameters, each model returns the same scores. 

For TLT models, final grid search results produce the listed test set scores for all 
models. Table D-1 to Table D-3 in this appendix list the final hyperparameter 
configurations, test scores, and tuning method for each model. 

Table D-1. ALT Model Parameters  

Model name 
Hyperparameter space with optimal 

parameters highlighted Test set scores 
Tuning 
method 

DT {criterion: [‘mse’] 
max_depth: [5, 15, 25] 
max_features: [‘None’] 
max_leaf_nodes: [‘None’] 
min_impurity_decrease: [0] 
min_impurity_split: [‘None’] 
min_samples_leaf: [8, 32, 64] 
in_samples_split: [10, 100, 1000] 
min_weight_fraction_leaf: [0] 
random_state: [42] 
splitter = [‘best’]} 

MAE: 39.17 
MAPE: 234.29 

GridSearchCV 

RF {bootstrap: [True, False] 
criterion: [‘mse’] 
max_depth: [5, 15, 25] 
max_features: [‘auto’] 
max_leaf_nodes: [‘None’] 
min_impurity_decrease: [0] 
min_impurity_split: [‘None’] 
min_samples_leaf: [8, 32, 64] 
min_samples_split: [10, 100, 1000] 
min_weight_fraction_leaf: [0] 
n_estimators: [10] 
n_jobs: [‘None’] 
random_state: [42]} 

MAE: 36.87 
MAPE: 85.63 

Manual 
Tuning 
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Table D-1. ALT Model Parameters  

Model name 
Hyperparameter space with optimal 

parameters highlighted Test set scores 
Tuning 
method 

LR {alpha: [0.0001, 0.001, 0.01] 
average: [False] 
early_stopping: [False] 
epsilon: [0.1] 
eta: [0.01] 
fit_intercept: [True] 
l1_ratio: [0.15] 
learning_rate: [‘invscaling’] 
loss: [‘huber’, ‘squared_loss’] 
max_iter: [‘None’] 
n_iter: [‘None’] 
n_iter_no_change: [5] 
penalty: [‘l1’,’l2’,’elasticNet’, ‘None’] 
power_t: [0.25] 
random_state: [42] 
shuffle: [True] 
validation_fraction: [0.1] 
warm_start: [False]} 

MAE: 37.84 
MAPE: 135.80 

Manual 
Tuning 

NN {activation: [‘tanh’, ‘relu’] 
alpha: [0.0001] 
batch_size: [auto] 
beta_1: [0.9] 
beta_2: [.99] 
early_stopping: [False] 
epsilon: [1e-08] 
hidden_layer_size: [(10,), (25, 5), (50,), (50, 25)] 
learning_rate: [‘constant’, ‘invscaling’, 
‘adaptive’] 
learning_rate_init: [0.1, 0.01, 0.001] 
max_iter: [200] 
momentum: [0.9] 
n_iter_no_change: [10] 
nesterovs_momentum: True 
power_t: [0.5] 
random_state: [42] 
shuffle: [True] 
solver: [‘adam’] 
tol: [0.0001] 
validation_fraction: [0.1] 
warm_start: [False]} 

MAE: 41.74 
MAPE: 280.45 

GridSearchCV 
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Table D-2. PLT Model Parameters  

Model name 
Hyperparameter space with optimal parameters 

highlighted Test set scores Tuning method 

DT {criterion: [‘mse’] 
max_depth: [5, 15, 25] 
max_features: [‘None’] 
max_leaf_nodes: [‘None’] 
min_impurity_decrease: [0] 
min_impurity_split: [‘None’] 
min_samples_leaf: [8, 32, 64] 
min_samples_split: [10, 100, 1000] 
min_weight_fraction_leaf: [0] 
random_state: [42] 
splitter = [‘best’]} 

MAE: 67.81 
MAPE: 142.27 

GridSearchCV 

RF {bootstrap: [True, False] 
criterion: [‘mse’] 
max_depth: [5, 15, 25] 
max_features: [‘auto’] 
max_leaf_nodes: [‘None’] 
min_impurity_decrease: [0] 
min_impurity_split: [‘None’] 
min_samples_leaf: [8, 32, 64] 
min_samples_split: [10, 100, 1000] 
min_weight_fraction_leaf: [0] 
n_estimators: [10] 
n_jobs: [‘None’] 
random_state: [42]} 

MAE: 67.21 
MAPE: 141.78 
 

Manual Tuning 

LR {alpha:[0.0001, 0.001, 0.01] 
average: [False] 
early_stopping: [False] 
epsilon: [0.1] 
eta: [0.01] 
fit_intercept: [True] 
l1_ratio: [0.15] 
learning_rate: [‘invscaling’] 
loss: [‘huber’, ‘squared_loss’] 
max_iter: [‘None’] 
n_iter: [‘None’] 
n_iter_no_change: [5] 
penalty: [‘l1’,’l2’,’elasticNet’, ‘None’] 
power_t: [0.25] 
random_state: [42] 
shuffle: [True] 
validation_fraction: [0.1] 
warm_start: [False]} 

MAE: 71.70 
MAPE: 108.75 
 

Manual Tuning 
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Table D-2. PLT Model Parameters  

Model name 
Hyperparameter space with optimal parameters 

highlighted Test set scores Tuning method 

NN {activation: [‘tanh’, ‘relu’] 
alpha: [0.0001] 
batch_size: [auto] 
beta_1: [0.9] 
beta_2: [.99] 
early_stopping: [False] 
epsilon: [1e-08] 
hidden_layer_size: [(10,), (25, 5), (50,), (50, 25)] 
learning_rate: [‘constant’, ‘invscaling’, ‘adaptive’] 
learning_rate_init: [0.1, 0.01, 0.001] 
max_iter: [200] 
momentum: [0.9] 
n_iter_no_change: [10] 
nesterovs_momentum: [True] 
power_t: [0.5] 
random_state: [42] 
shuffle: [True] 
solver: [‘adam’] 
tol: [0.0001] 
validation_fraction: [0.1] 
warm_start: [False]} 

MAE: 71.66 
MAPE: 153.57 
 

GridSearchCV 

 
Table D-3. TLT Model Parameters  

Model name 
Hypermeter space with optimal parameters 

highlighted Holdout set scores Tuning method 

Unified RF {bootstrap: [True, False] 
criterion: [‘mse’] 
max_depth: [5, 15, 25] 
max_features: [‘auto’] 
max_leaf_nodes: [‘None’] 
min_impurity_decrease: [0] 
min_impurity_split: [‘None’] 
min_samples_leaf: [8, 32, 64] 
min_samples_split: [10, 100, 1000] 
min_weight_fraction_leaf: [0] 
n_estimators: [10] 
n_jobs: [‘None’] 
random_state: [‘None’]} 

MAE: 69.98 
MAPE: 61.66 

GridSearchCV 
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Table D-3. TLT Model Parameters  

Model name 
Hypermeter space with optimal parameters 

highlighted Holdout set scores Tuning method 

Unified LR {alpha: [0.0001, 0.001, 0.01] 
average: [False] 
early_stopping: [False] 
epsilon: [0.1] 
eta: [0.01] 
fit_intercept: [True] 
l1_ratio: [0.15] 
learning_rate: [‘invscaling’] 
loss: [‘huber’, ‘squared_loss’] 
max_iter: [‘None’] 
n_iter: [‘None’] 
n_iter_no_change: [5] 
penalty: [‘l1’,’l2’,’elasticNet’, ‘None’] 
power_t: [0.25] 
random_state: [42] 
shuffle: [True] 
validation_fraction: [0.1] 
warm_start: [False]} 

MAE: 62.04 
MAPE: 77.12 

GridSearchCV 

Unified NN {activation: [‘tanh’, ‘relu’] 
alpha: [0.0001, 0.001, 0.01] 
batch_size: [auto] 
beta_1: [0.9] 
beta_2: [.99] 
early_stopping: [False] 
epsilon: [1e-08] 
hidden_layer_size: [(10,), (25, 5), (50)] 
learning_rate: [‘constant’, ‘invscaling’, ‘adaptive’] 
learning_rate_init: [0.1] 
max_iter: [150] 
momentum: [0.9] 
n_iter_no_change: [10] 
nesterovs_momentum: True 
power_t: [0.5] 
random_state: [None] 
shuffle: [True] 
solver: [‘adam’] 
tol: [0.001] 
validation_fraction: [0.1]} 

MAE: 67.05 
MAPE: 106.25 

GridSearchCV 

Composite 
RF 

See ALT and PLT RF Grids MAE: 56.39 
MAPE: 75.37 

See ALT and 
PLT RF Grids 

Composite LR See ALT and PLT LR Grids MAE: 62.02 
MAPE: 70.53  

See ALT and 
PLT LR Grids 

 
RF and LR perform best based on our evaluation metrics through the initial modeling 
passes. From there, hyperparameters are further tuned to get the best modeling results 
while considering model simplicity and effect on over- or underestimates. RF ultimately 
performs best; therefore, we conducted Welch’s t-tests (see Table D-4 and Table D-5) 
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between the RF errors and each of the baselines/LR errors to check whether differences 
in MAE and MAPE across them are statistically significant (i.e., that the lower mean 
errors for RF are not purely chance). Since all p-values are 0, we conclude that the 
mean absolute and percent error for the RF models are smaller than each of the 
compared models. 

Table D-4. ALT Random Forest T-Tests  

Model errors compared against Type of error T-statistic P-value 

ALTR Absolute Error −320 0 
ALT One-Third Rule Absolute Error −311 0 
ALT LR Absolute Error −30 0 
ALTR Percent Error −293 0 
ALT One-Third Rule Percent Error −279 0 
ALT LR Percent Error −93 0 

 
Table D-5. PLT Random Forest T-Tests  

Model errors compared against Type of error T-statistic P-value 

PLTR Absolute Error −114 0 
PLT One-Third Rule Absolute Error −74 0 
PLT LR Absolute Error −87 0 
PLTR Percent Error −90 0 
PLT One-Third Rule Percent Error −67 0 
PLT LR Percent Error 70 0 
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Appendix E  
ML Regression Model Descriptions 

Regression is a statistical measure for calculating the correlation between a selected 
dependent variable (the target) and a set of independent variables (the features). In a 
regression problem, the dependent variable is continuous, rather than discrete. Since 
observed lead time variables are measured in days, they are continuous. Various ML 
algorithms can be applied to regression problems; the four approaches for lead time 
estimation that we evaluated in this report are described below. 

Decision Tree 
DT is a ML model that predict the target by 
learning decision rules derived from features 
in data. Modeled as tree-like graphs, a DT is 
comprised of nodes (a feature condition), 
branches (a value or threshold of that 
feature), and leaves (a predicted output). The 
general algorithm for DT picks the optimal 
feature for each node (based on how 
precisely the feature can split the data on its 
target) during training, and then traverses the 
DT to classify datapoints during testing and 
inference. DTs are interpretable because they 
are visualized easily, explainable because 
they indicate feature importance, and robust 
because they capture certain nonlinear 
relationships in the data; however, they are 
liable to overfitting if not explicitly corrected, 
and prone to instability after small changes to 
the input data. 

Feature importance for tree models (like DT and RF), is calculated as the decrease in 
node impurity weighted by the node probability (the likelihood of reaching that node). A 
tree model consists of many nodes that apply filters (e.g., Is the median purchase order 
value greater than 50?) that lead to a final leaf node with a predicted value. Node 
impurity measures the decrease in MSE for that node. A feature may be part of multiple 
nodes, so a feature’s node impurity is aggregated. Node probability is the number of 
samples that reach the node divided by the total number of samples. 
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Random Forest 
RF is an ensemble method that is 
comprised of multiple uncorrelated DTs 
formed by randomly sampling the training 
set and fitting individual trees to each 
random set. RFs make predictions on data 
by applying all component decisions trees to 
an observation and calculating the average 
of predicted values. RFs are interpretable and robust for the same reason DTs are and 
are less liable to overfitting. They are ineffective for non-stationary data and have a 
higher computational cost and are less explainable than DTs due to being ensemble 
methods. 

Linear Regression 
LR is a statistical modeling method, uses a 
linear equation to model the relationship 
between a set of features (independent 
variables) and a target (dependent 
variable). LR methods find optimal 
coefficients values for each term in the 
linear equation by using the least squares 
method, minimizing the sum of the squared 
distances between each datapoint and the 
line. To account for possible overfitting, 
regularization techniques add penalties to 
the loss function, resulting in the regularized least absolute shrinkage and selection 
operator (LASSO) and ridge regression variants of LR. LASSO regression allows 
coefficient values to reach absolute zero, thus enabling feature selection. Regularized 
LR models are simple to implement, interpret, and explain; they are also less likely to 
overfit. However, they cannot capture nonlinear relationships in the data. 
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Neural Network 
NNs are biologically inspired computation 
networks comprised of simple, 
interconnected nodes that process an input 
vector of feature values into a desired output 
vector of the target. Neural networks include 
processing nodes (neurons), weighted 
edges between neurons (synapses), and 
layers (structured collections of neurons). 
NN training involves forward propagation 
algorithms (which propagate input vectors 
through the network and return an output 
vector) and back propagation algorithms 
(which adjust edge weights in the network 
using minimization and partial 
differentiation), enabling NNs to 
approximate linear and nonlinear functions. 
NNs are best for capturing data with 
nonlinearities and are often more accurate 
than other models for problems with large 
amounts of data; however, they are hard to 
interpret and explain. NNs are more computationally expensive than most other models. 
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Appendix F  
Model Metrics 

Metric Categories 
The modeling and evaluation process uses three categories of metrics. 

Model optimization with loss functions: Given a model and a set of labeled data, a loss 
function describes the difference between the model’s label predictions and the true 
label values. The loss function for a model is minimized during model training and 
optimization. Two loss functions (MSE and Huber) are implemented and defined in the 
Metrics Definitions section. 

Hyperparameter tuning with scoring metrics: Hyperparameters are model parameters 
whose values must be manually set prior to model training. During cross-validation, a 
scoring metric for a model type compares an array of validation set scores for different 
hyperparameter configurations of the model. One scoring metric (MAE) is implemented 
and defined in the Metrics Definitions section. 

Model selection and comparison with evaluation metrics: Evaluation metrics compare AI 
models with each other as well as against baseline methods. Two evaluation metrics 
(MAE and MAPE) are implemented and defined in the Metrics Definitions section. 

Metric Definitions 
Mean Absolute Error 

ℒ (𝑦𝑦,𝑦𝑦�) =  
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

The average of the sum of absolute differences between a model’s predicted values and 
the true target values, MAE measures a model’s raw error by averaging the absolute 
errors, where 𝑦𝑦𝑖𝑖  is the true observed value, 𝑦𝑦�𝑖𝑖 is the predicted value, and 𝑛𝑛 is the number 
of observations in the dataset. 

While the primary evaluation metric for all models, MAE is not available as a loss 
function for LR and NN (since MAE is a nondifferentiable loss function, it cannot be used 
for linear and neural models optimized on stochastic gradient descent). For tree models, 
MAE is an available loss function, but unused due to known computation and memory 
limitations. During the validation process, MAE is the scoring metric for all grid searches. 
After modeling, MAE is a primary evaluation metric when comparing model outputs. 
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Mean Squared Error 

ℒ (𝑦𝑦,𝑦𝑦�) =
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

The average of the sum of squared differences (squared loss) between a model’s 
predicted values and the true target values, MSE measures the standard deviation of a 
model’s errors, where 𝑦𝑦�𝑖𝑖 is the predicted value, 𝑦𝑦𝑖𝑖  is the true observed value, and 𝑛𝑛 is 
the number of observations in the dataset. 

MSE is the selected loss function for both tree models. Squared loss (MSE without 
averaging to a single value) is also used as the loss function for the NN model and an 
assessed loss function for LR. 

Huber 

ℒ (𝑦𝑦,𝑦𝑦�)  = �
 
1
2

(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2 (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖) < 𝜀𝜀 

𝜀𝜀 |(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)|–
1
2
𝜀𝜀2 (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖) >  𝜀𝜀 

 

A piecewise loss function composed of absolute loss and squared loss variants, Huber 
combines the outlier robustness found in absolute loss for larger errors with the 
differentiability of squared loss for smaller errors. 𝑦𝑦�𝑖𝑖 is the predicted value, 𝑦𝑦𝑖𝑖  is the true 
observed value, and 𝑛𝑛 is the number of observations in the dataset. 𝜀𝜀 is the error 
threshold for switching between absolute and squared loss variants. 

Huber is the selected loss function for LR. 

Mean Absolute Percentage Error 

ℒ (𝑦𝑦,𝑦𝑦�) =  

∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑦𝑦𝑖𝑖
𝑛𝑛

𝑥𝑥 100 

The average of the absolute percentage errors, MAPE measures a model’s magnitude 
of error, where 𝑦𝑦𝑖𝑖 is the true observed value, 𝑦𝑦�𝑖𝑖 is the predicted value, and 𝑛𝑛 is the 
number of observations in the dataset. 

A divide-by-zero problem can occur with MAPE if 𝑦𝑦𝑖𝑖 = 0, so the dataset is filtered to 
exclude all rows where observed ALT or observed PLT are equal to 0. After modeling, 
MAPE is a secondary evaluation metric when comparing model outputs. 

 



 

 G-1  

Appendix G  
Shifting Over- and Underestimate Distributions 

While the AI models perform better than the baseline according to our metrics (MAE and 
MAPE), the magnitude and direction of the over- and underestimates are different for 
each model (see Figure 3-4 and Figure 3-5). The PLT RF model offers the greatest 
improvement in accuracy but increases underestimates to 40 percent compared to 
36 percent for the one-third rule. Thus, despite the AI model’s accuracy, it increases 
backorder risk. 

If the top priority is to maintain the current level of backorder risk, as measured by 
percent of underestimates, the over- and underestimate distribution for the PLT RF 
model may be shifted by adding an 11-day buffer to each prediction. Figure G-1 shows 
that, by adding this buffer, the underestimate distribution closely matches the two 
baseline models. 

Figure G-1. PLT Magnitude and Direction of Error 

 

Although the RF model with this 11-day buffer still improves accuracy relative to the 
baselines, it decreases overall RF model accuracy. Specifically, it increases the RF MAE 
3 percent (2 days) and increases MAPE by 25 percentage points (see Table G-1).  
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Table G-1. PLT Model Scores 

Model MAE (days) Standard error MAPE (%) Standard error 

PLTR 94 0.25 286 1.52 
PLT one-third rule 83 0.24 229 1.19 
RF 67 0.22 142 0.63 
RF + 11 days 69 0.22 167 0.71 

 
The most accurate forecast is preferable. Safety stock can buffer backorder risk from 
demand and lead time uncertainty. However, the 11-day shift is furnished as an option to 
ease concerns about increasing backorder risk. 
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Appendix H  
Magnitude and Direction of Error 
by Procurement Frequency 

Figure H-1 shows the magnitude and direction of errors for TLTR for each of the 
procurement frequency bins. The baseline TLTR model tends to overpredict more than 
underpredict for all procurement frequencies. 

Figure H-1. TLTR Magnitude and Direction of Error by Procurement Frequency 

 

Figure H-2 shows the magnitude and direction of errors for the one-third rule for each of 
the procurement frequency bins. The baseline one-third rule model has the largest skew 
toward overprediction for infrequently procured items. 
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Figure H-2. ALT One-Third Rule + PLT One-Third Rule Magnitude  
and Direction of Error by Procurement Frequency 

 

Figure H-3 shows the magnitude and direction of errors for the composite RF model for 
each of the procurement frequency bins. The composite RF model tends to 
underestimate more than overestimate for all procurement frequency bins. 

Figure H-3. ALT RF + PLT RF Magnitude and Direction of Error 
by Procurement Frequency 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

One-time
buy

Rare Every 2
years

Annually Twice a year Quarterly Monthly

To
ta

l r
ec

or
ds

Model

> 6 months over

> 1 month over

> 7 days over

± 7 days

> 7 days under

> 1 month under

> 6 months under

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

One-time
buy

Rare Every 2
years

Annually Twice a year Quarterly Monthly

To
ta

l r
ec

or
ds

Model

> 6 months over

> 1 month over

> 7 days over

± 7 days

> 7 days under

> 1 month under

> 6 months under



 

 I-1  

Appendix I  
Abbreviations 

AAC acquisition advice code 
ADQ annual demand quantity 
AI artificial intelligence 
ALRE aircraft launch and recovery equipment 
ALT administrative lead time 
ALTR administrative lead time of record 
AMC acquisition method code 
AMSC acquisition method suffix code 
CAGE Commercial and Government Entity 
DLA Defense Logistics Agency 
DODAAC Department of Defense activity address code 
DORRA DLA Operations Research and Resource Analysis 
DT decision tree 
DVD direct vendor delivery 
EDW Enterprise Data Warehouse 
FAT first article test 
FINISIM™ Financial and Inventory Simulation Model™ 
FSC federal supply code 
FSG federal supply group 
INC item name category 
LASSO least absolute shrinkage and selection operator 
LR linear regression 
LTC long-term contract 
MAE mean absolute error 
MAPE mean absolute percentage error 
ML machine learning 
MSE mean squared error 
NAIC North American Industrial Classification  
NIIN National Item Identification Number 
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NN neural network 
PIIN Procurement Instrument Identification Number 
PLT production lead time 
PLTR production lead time of record 
PNG™ Peak Policy and Next Generation™ 
PO purchase order 
PPA power purchase agreement 
PPI producer price index 
PR purchase request 
R&D research and development 
RF random forest 
SPIIN supplementary procurement instrument identification number 
SS safety stock  
TLT total lead time 
TLTR total lead time of record 
UMMIPS Uniform Materiel Movement and Issue Priority System 
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