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ABSTRACT

SINGLE IMAGE SUPER RESOLUTION WITH INFRARED IMAGERY AND

MULTI-STEP REINFORCEMENT LEARNING

Name: Vassilo, Kyle Taylor

University of Dayton

Advisor: Dr. Tarek M. Taha

Recent studies have shown that Deep Learning (DL) algorithms can significantly improve

Super Resolution (SR) performance. Single image SR is useful in producing High Resolution

(HR) images from their Low Resolution (LR) counterparts. The motivation for SR is

the potential to assist algorithms such as object detection, localization, and classification.

Insufficient work has been conducted using Generative Adversarial Networks (GANs) for SR

on infrared (IR) images despite its promising ability to increase object detection accuracy

by extracting more precise features from a given image. This work adopts the idea of

a relativistic GAN that utilizes Residual in Residual Dense blocks (RRDBs) for feature

extraction, a novel residual image addition, and a Pixel Transposed Convolutional Layer

(PixelTCL) for up-sampling. Recent work has validated the use of GANs for Visible Light

(VL) images, making them a strong candidate. The inclusion of these components produce

more realistic and natural features while also receiving superior metric values. Supplemental

research applies a multi-agent Reinforcement Learning (RL) algorithm to Single Image

Super-Resolution (SISR), creating an advanced ensemble approach for combining powerful

GANs. In our implementation each agent chooses a particular action from a fixed action

set comprised of results from existing GAN SISR algorithms to update its pixel values. The

pixel-wise arrangement of agents and rewards encourages the algorithm to learn a strategy

to increase the resolution of an image by choosing the best pixel values from each option.
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CHAPTER I

INTRODUCTION

Since the creation of Convolutional Neural Networks (CNNs), they have been broadly

used to develop solutions to many open ended problems. Scientists have now embraced

CNNs as a powerful tool to temporarily solve these difficult problems. CNNs are most

commonly used in image processing where they manipulate image data. Super Resolution

(SR) is a sub-field within image processing that deals with enhancing the resolution of Low

Resolution (LR) images. Before CNNs, each task required individual analysis and distinct

parameters to receive acceptable results. For instance, when applying text recognition,

multiple filters would have to be applied before sending the results to additional algorithms.

With CNNs, one network combines these tasks into a single black box. Their goal is to model

the input data with a complex function that manipulates the data and returns the desired

results. SR concerns itself with attempting to reassemble High Resolution (HR) images from

their LR counterparts. This work enables us to enhance the resolution of images with little

high frequency information. High frequency images are sought after by many industries

such as the medical, agricultural, and surveillance. These images can help experts locate

and diagnose disease, locate worrisome vegetation, and help identify criminals. Chapter

II analyzes the use of Generative Adversarial Networks (GANs) for SR on Infrared (IR)

images. Most SR work deals with RGB images, which perceive settings similar to the

human eye. However, IR images feature objects radiating thermal energy. The GAN

combines two networks together, generator and discriminator, to fabricate intermediate

points. The proposed network models the ESRGAN network to up-sample IR images [1].

A new Pixel Transposed Convolutional Layer (PixelTCL) is used for up-sampling which

has yet to be used in a GAN setting, and a novel Residual Image Addition that adds the

residual image back to the main branch of the network before up-sampling [2]. Compared

1
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to competing algorithms, these components produce results with higher metric values that

appear more accurate to the original image.

SR is such an open-ended problem, that numerous CNN architectures have been devel-

oped to solve the problem. Chapter II applies Reinforcement Learning (RL) to SR. The

network models the pixelRL network to increase the resolution of an image by selecting a

certain action for each pixel [3]. PixelRL is a multi-agent Reinforcement Learning (RL)

algorithm where each pixel is governed by an independent agent, which choose individual

actions. This network distinguishes itself from previous work by applying the multiple agent

RL to SR. An initial step is created, which up-samples the image before applying RL. There

is also a novel action set that contains multiple high quality GAN outputs. This design

creates a HR image by compiling numerous GAN options. By using multiple GAN options,

superior metric vales were obtained. The perceptual quality of the resulting images were

also preferable to the images used in the action set.

2
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CHAPTER II

INFRARED IMAGE SUPER RESOLUTION WITH GENERATIVE ADVERSARIAL

NETWORKS

Super Resolution (SR) is an expanding problem that attempts to reassemble High Reso-

lution (HR) images from their Low Resolution (LR) counterparts. In recent years, research

has highly depended on Deep Learning (DL) algorithms to learn a set of parameters that

map LR input images to HR output images. These HR output images are highly sought

after by subject areas that range from medical imaging to security. Some disciplines require

images that capture unique frequencies of electromagnetic radiation on the electromagnetic

spectrum. For instance, medical imaging sensors might receive increased energy signals

such as X-rays. However, Infrared (IR) images accept frequencies lower than the visible

light spectrum. IR sensors succeed in detecting infrared radiation by analyzing signals with

wavelengths longer than those found in the visible light spectrum. These sensors can high-

light objects radiating thermal energy and therefore allow us to perceive items hidden to

the human eye. While IR imaging excels in highlighting thermal energy it lacks in retaining

high frequency information, making the SR problem more difficult. However, the main goal

of IR SR is to increase the accuracy of additional algorithms (object detection, localization,

and classification) by supplying HR images.

In the past, researchers have made monumental strides in the field of SR. Most of this

research has been conducted using DL algorithms to provide a versatile technique, more

efficient than previous methods. Generative Adversarial Networks (GANs) are one of the

novel ideas, designed by Goodfellow in 2014 [4], that have changed the way researchers look

at DL. They have proved themselves in the realm of visible light (VL) imagery, by mimicking

distributions of image data [5]. We hope that their success with VL imagery provides a

3
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hopeful approach for IR images. Therefore, we will apply a GAN to increase the resolution

of IR images. GANs are composed of two opposing Convolutional Neural Networks (CNNs),

Generator and Discriminator, that cooperate to fabricate data [6]. The generator consists of

multiple residual blocks that extract features from the LR image, followed by 2 up-sampling

blocks that increase the dimensionality of LR images. These network elements cooperate

to fabricate additional data points by mimicking the distribution of the input image [5].

The discriminator consists of convolutional layers matched with batch normalization layers,

ending with a sigmoid function. It differentiates the real images from the fake, where the

real image is the target image and the fake image is the image generated by the generator

from the down-sampled image. GANs benefit from the adversarial competition between

networks [6], where the discriminator acts as a learnable loss function for the overall GAN.

It evaluates the generator’s performance, of counterfeiting images, and updates its weights

accordingly [6].

The novel contributions of this work are as follows:

• Proposing to inherit components of the ESRGAN network to up-sample IR images

while retaining high frequency and IR information [1].

• Proposing to use a Pixel Transposed Convolutional Layer to up-sample the generated

images [2]. This technique has yet to be used in a GAN setting.

• Proposing a Residual Image Addition, where the residual image is calculated and

added back to the main branch of the network before up-sampling, to ensure high

frequency information propagates through the network.

4
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2.1 Related Work

Xudong et al. combines Compressive Sensing (CS) techniques with CNNs to enhance IR

images [7]. CS is a signal processing technique that keeps the most significant high frequency

components from LR images while throwing away the least significant. The super-resolved

image is then sent through a CNN to learn adequate weights to effectively remove unwanted

noise and salvage lost high frequency samples [7]. This CNN uses residual blocks that are

used to add certain features back into the super-resolved images, providing more accurate

results with higher PSNR and SSIM values [7]. The up-sampled image is then combined

with the output of the CNN to give a final super-resolved image [7]. Another approach uses

a CNN to produce a more accurate image by fusing IR and VL images of a single setting.

Since the images are taken simultaneously, the generated image incorporates certain details

from the VL image while maintaining the IR heat signatures of the captured area. Liu et al.

proposes an architecture with Siamese CNNs that calculate shared weights [8]. The source

images are decomposed into a Laplacian pyramid, fused together, and reconstructed [8].

These fused images give visually appealing features but alter the target image. The fused

image seems to be of a lighter complexion and contains different characteristics than the

original IR image. Zhong et al. split each source image (LR IR image and LR VL image)

into high and low frequency sub-images [9]. The low frequency sub-images are then fused,

as are the high frequency sub-images. These fused sub-images are then merged to create a

single fused image [9]. Aside from IR SR, Kuanget et al. introduces a fully CNN able to

remove optical noise [10]. Their architecture consists of two CNNs, a denoising network and

a discriminator network, like a GAN [10]. The denoising network learns to produce more

realistic results, while the discriminator network predicts how realistic the super-resolved

5
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images are [10]. This architecture is successful at removing noise from an IR image, but

fails to up-sample the image. Therefore, GANs will be analyzed for SR on IR images.

GANs have drawn much attention since their discovery in 2014 [4]. They are highly

complex as they attempt to mimic the distribution of data [5]. Ma et al. proposes a

FusionGAN that requires multiple images of the same area. It starts by sending a con-

catenation of VL and IR images to the generator of a GAN [11]. The discriminator then

distinguishes the generated images from the original VL images, updating the generator

to capture more high frequencies from the VL images [11]. In most cases, this algorithm

is inapplicable for SR procedures because of its dual image requirement. Axel-Christian

Guei et al. presents a SRGAN devised to up-sample facial IR images, called DeepSIRF 2.0

[12]. Their network consists of a generator with eight residual blocks that contain convo-

lutional layers with batch normalization, and 2 pixel shuffling blocks used for up-sampling

[12]. The discriminator consists of seven convolutional layers matched with batch normal-

ization layers, ending with a sigmoid function [12]. Wang et al. suggest an Enhanced Super

Resolution GAN (ESRGAN), for VL images, that introduces a new Residual in Residual

Dense Block (RRDB) [1]. This block is different than the original block as it encompasses

multiple dense blocks, within a single RRDB, that are residually added back to the RRDB

branch. The dense blocks consist of multiple convolutional layers with activation func-

tions that are densely connected to each other [1]. These blocks work remarkably well by

preserving features extracted from previous layers. In this article, Wang et al. outline a

unique normalization function, known as Spectral Normalization (SN). SN was introduced

by Takeru Miyato et al. to normalize layer weights inside the discriminator network using

Lipschitz continuity to promote stability between the generator and discriminator networks

[13]. The ESRGAN also adopts the idea of a Relativistic average GAN (RaGAN) from

6
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Alexia Jolicoeur-Martineau [14]. This model’s main advantage is its ability to surpass stan-

dard SRGAN image quality in less iterations [14]. The ingenuity lies in the loss function of

the generator and discriminator, where the probability that the real image is more realistic

than the fake image is calculated [14].

The up-sampling procedure is another crucial element of SR algorithms. Multiple strate-

gies are used to up-sample images including interpolation, convolutional transpose, and

sub-pixel convolution. Interpolation is an image processing procedure that inserts interme-

diate pixels according to their neighboring values. Interpolation, paired with a subsequent

convolutional layer, generates acceptable results when used within the generator of a GAN.

Convolutional transpose is a technique that has been widely used in the field of SR, as it

up-samples by functioning in the reverse manner of a conventional convolutional layer. This

technique is notorious for leaving behind checkerboard artifacts. Sub-pixel convolution was

proposed by Shi et al. to up-sample an image using a fractional stride to create additional

data points [15]. Hongyang Gao et al. recently published a paper introducing a novel

Pixel Transposed Convolutional Layer (PixelTCL) used to increase the dimensionality of

LR images [2]. Its recognition comes from its proficiency of removing checkerboard artifacts

from the up-sampled image by increasing intermediate relationships between convolutional

layers. This technique has not been studied with respect to SR with GANs.

2.2 Proposed Method

The proposed model distinguishes itself from the original SRGAN with numerous com-

ponents [6]. Its generator incorporates RRDBs [1], PixelTCLs [2], and a new residual image

addition function. Examining the first convolutional layer of the generator, shown in Fig-

ure 2.1, we can see that the network uses a small kernel size and drops the activation

7
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Figure 2.1: Network generator architecture with corresponding kernel size (k), number of
feature output maps (n), and stride (s) for each convolutional layer. A single RRDB is
shown, but the generator contains 23 RRDBs that each include 3 dense blocks [1].

Figure 2.2: Network discriminator architecture with corresponding kernel size (k), number
of feature output maps (n), stride (s), and padding (p) for each convolutional layer [1]. The
discriminator follows a VGG orientation style.

function. This technique was copied from the ESRGAN, as it helps the network generate

more accurate images with less iterations [1]. It was thought that a larger kernel size would

help extract initial features from the image, but this turned out to be misleading. The three

main pieces of the generator; the RRDBs, the PixelTCL, and the residual addition will be

described in full detail.

The proposed model’s discriminator network adds two additional convolutional layers

to mimic a VGG style architecture [1], utilizes SN [13], and removes the sigmoid function

to introduce the relativistic average concept [14]. The discriminator’s design, illustrated by

Figure 2.2, accepts single channel images and returns a single value. The network drops

8
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Figure 2.3: The RRDB used to extract features in the generator [1].

Figure 2.4: The architecture of a dense block within the RRDB [1].

the ending sigmoid function, enabling us to calculate the relativistic loss and replaces the

batch normalization functions, of the original SRGAN, with SN for stability.

2.2.1 Residual in Residual Dense Block

SRGANs use residual blocks to ensure certain features propagate through the system.

It is vital to the success of the network to keep the extracted features in the super-resolved

image. A single RRDB can be seen in Figure 2.3, which illustrates the residual in residual

part of the RRDB. Each RRDB contains three residual dense blocks that are multiplied

by a scalar value, in our case we chose 0.2 as the scalar value β, before being added back

to the RRDB branch [1]. After the execution of each dense block, the RRDB branch is

multiplied by the same constant β value and added back to the main branch, creating

9
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stronger relationships between adjacent blocks. The components of a dense block can be

seen in Figure 2.4. Each convolutional layer within the dense block uses a kernel size of 3, a

stride of 1, and outputs 32 feature maps. The input number of feature maps grows as more

and more previously calculated layers are concatenated to the input of subsequent layers.

The functionality of the dense block can be duplicated using the following pseudocode:

Conv1 = LeakyReLU(Conv(input))

Conv2 = LeakyReLU(Conv(input⊕ Conv1))

Conv3 = LeakyReLU(Conv(input⊕ Conv1⊕ Conv2))

Conv4 = LeakyReLU(Conv(input⊕ Conv1⊕ Conv2⊕ Conv3))

Conv5 = LeakyReLU(Conv(input⊕ Conv1⊕ Conv2⊕ Conv3⊕ Conv4))

where ⊕ illustrates a concatenation operation. The dense connections characterized by this

block are inherited from a GAN model introduced by Marc Bosch et al. [16]. These dense

connections perform exceptionally well by maintaining a strong gradient flow within the

network [16]. Figure 2.4 also reveals the absence of a normalization function. According

to Yungang Zhang et al., removing the batch normalization function within residual blocks

can improve its performance by expanding the model size [17], whereas Xintao Wang et

al. explain how multiplying each block by a constant β value can avoid the instability of

removing the batch normalization layers [1].

2.2.2 Pixel Transposed Convolutional Layer

Networks that require up-sampling data have recently been using techniques such as

transposed convolution or sub-pixel convolution. Transposed convolution operates in the

reverse manner of a normal convolutional layer. It creates a one-to-many relationship be-

tween the low resolution data and the high resolution data respectively. One value in the
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Figure 2.5: The PixelTCL used to up-sample image data in the generator [2].

input tensor is mapped to many values in the output tensor by multiplying its value by all

existing values in the kernel and is laid on top of the output tensor. If the stride is small

enough that the kernels overlap, multiple values are added to obtain the final value for that

corresponding index of the output tensor.

Instead of performing convolution on the up-sampled image, sub-pixel convolution per-

forms its convolution on the LR image to decrease the amount of computational parameters.

Shi et al. performed convolution on the LR image to obtain several feature maps that were

then shuffled to create an up-sampled image [15]. This increases the image dimensionality

by populating an area on the super-resolved image with the same pixel of each feature

map [15]. Both techniques have the potential of adding artifacts to the super-resolved

image, representing a checkerboard pattern; therefore, the proposed network integrates 2

PixelTCLs that Hongyang Gao et al. guarantee will eliminate this pattern [2]. Figure 2.5

demonstrates the PixelTCL up-sampling method as it begins by performing a convolution

with a kernel size of 3. The resulting tensor is then dilated by inserting rows and columns

of zeros to construct a tensor double the size. This dilated tensor is illustrated by output3

in Figure 2.5. A second convolution is performed on output1 to produce output2. This

tensor is then dilated and shifted to provide output4. The dilated tensors are then added
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together to construct a tensor where every other value is zero. The next convolution exploits

a masked kernel where certain values are set to 0. This convolution generates the missing

values which are then added to output5 to create the desired output. This technique ensures

that each pixel in the resulting image has a strong relationship with its adjacent neighbors;

therefore, excluding the checkerboard pattern. The results will prove beneficial as this is a

novel technique with respect to SR with GANs.

2.2.3 Residual Image Addition

In image processing, a residual image preserves the high frequency components of an

image by subtracting a sampled image from the original image. In SR, the high frequency

elements are what the generated image is missing. To ensure that the high frequency

components are not dropped, the residual image is added back to the main branch of the

network before up-sampling, similar to Yuewen Sun et al. network [18]. The residual image

is created by first down-sampling the input image (plus bicubic interpolation) from a 32×32

sized image to a 24×24 sized image, and re up-sampling it using bicubic interpolation. This

image is then subtracted from the original LR input image to obtain the residual image. The

residual image is then fed through a convolutional layer to extract high frequency features,

from the residual image, before being added back to the main branch of the network. This

approach differentiates itself from Yuewen Sun et al. network by using a different sampling

ratio, a shallower skip connection, and adding the results back to the main branch of the

network before up-sampling.
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2.2.4 Spectral Normalization

The original SRGAN uses batch normalization to normalize the data into values of the

same range [6]. Batch Normalization helps a network train faster and go deeper by feeding

similar distributions of data to the activation functions that follow. This decreases the

amount of training time by creating similar distributions for each layer. SN is a technique

used to recalculate the weight of a layer (W) [13]. These normalized weights help stabilize

the discriminator of a GAN by dividing each weight value by σ(W):

σ(W ) =
√
λ (2.1)

where λ is the largest eigenvalue of WTW [13]. This eigenvalue can be found using the

following:

(W TW )x = λx (2.2)

where x is the eigenvector and λ is the corresponding eigenvalue.

2.2.5 Relativistic Average GAN

The original SRGAN employs a discriminator that distinguishes real from fake images.

It calculates the probability that the given data is real (returns a 1 if it believes it is an

original image from the dataset). The SRGAN losses are measured by:

LSGAN
D = −Exr∼P [log(sigmoid(C(xr)))]− Exf∼Q[log(1− sigmoid(C(xf )))] (2.3)
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LSGAN
G = −Exf∼Q[log(sigmoid(C(xf )))] (2.4)

where LSGAN
D is the discriminator’s loss and LSGAN

G is the generator’s loss [14]. In equation

2.3 and equation 2.4, xr and xf are the reference image and generated image, respectively.

The C(·) function represents the discriminator without its final activation function. The

relativistic GAN’s discriminator manipulates both loss functions by measuring the distance

between the real and fake data [14]. This is done by subtracting the real and the fake data

received from the discriminator. Going a step further, the RaGAN calculates the probability

that the real data is more realistic than the fake data, just like the relativistic GAN, but

the average of the opposite label is then subtracted from the relativistic output [14]. The

RaGAN is calculated by:

LRaGAN
D =− Exr∼P [log(sigmoid(C(xr)− Exf∼QC(xf ))]

− Exf∼Q[log(1− sigmoid(C(xf )− Exr∼PC(xr)))]

(2.5)

LRaGAN
G =− Exf∼Q[log(sigmoid(C(xf )− Exr∼PC(xr))]

− Exr∼P [log(1− sigmoid(C(xr)− Exf∼QC(xf )))]

(2.6)

which illustrates the distance from real to fake data [14]. The subtraction of the average is

demonstrated inside the sigmoid function of equation 2.5 and equation 2.6.

2.3 Experiments

2.3.1 Datasets

The IR training images are taken from the FLIR dataset. These images are randomly

cropped using MATLAB to produce 20,000 128×128 training images. These images are
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initially sent through a Gaussian filter with a standard deviation of σ = 1.3, down-sampled

by a factor of 4, and interpolated using bicubic interpolation [19]. The Gaussian filter is

used to represent the image being taken from a camera at a further distance. The images

are then concatenated to produce a three-channel image, where each channel contains the

same values. This is required to calculate the perceptual loss (VGG loss). Therefore, the

generator accepts a 3 channel image and outputs a single channel image.

The IR testing dataset hand picks 1,200 images from the FLIR testing dataset that are

randomly cropped twice to create two separate testing datasets. Following the cropping,

images with little to no high frequency content are thrown out, leaving us with two testing

datasets, Set 1 containing 312 images and Set 2 containing 211 images.

2.3.2 Implementation Details

The network was run on 2 NVIDIA RTX 2080ti GPUs for 50 epochs (62,500 iterations)

with a batch size of 16, using the stochastic optimization method known as Adam with

decay rates of 0.9. The learning rate for both the generator and discriminator start at

2×10-4 while being reduced by a factor of 2 every 10 epochs (12,500 iterations). The

generator is pre-trained for 2 epochs using Mean Squared Error (MSE). After the 2 initial

epochs, the generator weights are saved and loaded back into the designed model where the

Binary Cross Entropy (BCE) function is used. BCE is measured by:

BCE = − 1

N

N∑
i=1

(ylabel × log(D(yinput)) + (1− ylabel)× log(1−D(yinput))) (2.7)

where ylabel is the target value and yinput is the input image. The generator and discrim-

inator loss functions integrate the relativistic idea with BCE by computing the relativistic
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operations before sending it to the BCE function. The algorithm utilizes the BCEWith-

LogitsLoss function, from PyTorch, that combines a sigmoid function with the BCE loss

function that reconstructs more accurate images than the MSE loss function. The network’s

generator loss function consists of BCE loss, per-pixel loss, and perceptual loss [1]. The

perceptual loss is calculated using a pre-trained VGG19 network and measuring the Least

Squares Error (L2) between the real image feature space and the generated image feature

space. The per-pixel loss is calculated by measuring L2 distance between the real image

and the generated image. L2 is used because it seems to generate higher metric values than

Least Absolute Deviations (L1).

2.3.3 Results

The results will be compared to the DeepSIRF 2.0 network introduced by Axel-Christian

Guei et al. [12], bicubic interpolation, nearest neighbor interpolation, and an ablation

network. The ’Proposed Ablation Network’ removes the pre-training procedure, replaces

PixelTCL with Pixel Shuffle, and removes the residual image addition technique in the

global skip connection to show how much these techniques add to the overall performance.

The quantitative results are evaluated using PSNR, SSIM, MSE, and PIQE. PIQE is a fairly

new metric provided through MATLAB. It is a no-reference quality metric that returns high

values for images that are blurred or contain large amounts of noise and therefore a lower

score is more acceptable; under 20 being exceptionally well. MSE and PSNR have been

used extensively to measure image restoration. MSE measures the distances between each

pixel value while PSNR builds from MSE by dividing the maximum pixel value by the

reconstructed images’ MSE value. SSIM was designed to measure a perceived change to an

image. While MSE and PSNR measure the absolute difference of an image, SSIM tends to
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measure the structural degradation of an image. The average quantitative results over both

testing sets are presented in Table 2.1 and Table 2.2.

Table 2.1: Quantitative comparison between the proposed method and other competing SR
algorithms on set1 (Best results in bold, second best in italics).

Up-Sampling Technique PSNR SSIM MSE PIQE

High Resolution ∞ 1.00 0.00 36.99

Nearest Neighbor 25.32 0.605 218.93 65.21

Bicubic 26.25 0.654 179.47 92.35

DeepSIRF 2.0 26.48 0.662 170.06 78.81

Proposed Ablation Network 26.48 0.661 173.47 26.94

Proposed Network 26.94 0.687 156.71 31.54

Table 2.2: Quantitative comparison between the proposed method and other competing SR
algorithms on set2 (Best results in bold, second best in italics).

Up-Sampling Technique PSNR SSIM MSE PIQE

High Resolution ∞ 1.00 0.00 40.47

Nearest Neighbor 25.05 0.600 228.87 65.12

Bicubic 25.96 0.651 188.22 91.39

DeepSIRF 2.0 26.24 0.661 177.24 80.03

Proposed Ablation Network 26.15 0.660 184.20 28.57

Proposed Network 26.66 0.685 165.49 34.03

A benchmark testing dataset is desperately needed for IR SR. This benchmark will

allow easy comparison between methods, without having to recreate competing methods

separately. As of now there is no such IR testing benchmark, so a custom testing dataset

was created for comparison. The proposed method achieved the best quantitative scores in

Table 2.1, for PSNR, SSIM, and MSE. Subsequently, the proposed model also performed the
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best in Table 2.2, being that the two sets come from the same set of images. The ablation

network scores the best in PIQE, with the proposed network close behind. Looking at Figure

2.6, it is easy to see that these two methods create the most realistic results. Therefore,

we propose to use PIQE as the main metric for IR SR. The ablation network and proposed

network results look similar in Figure 2.6, but at a closer look we can see that the proposed

network is cleaner around edges and other high frequency areas. In Table 2.1 and Table 2.2,

the DeepSIRF 2.0 network scores better than the ablation network in PSNR, SSIM, and

MSE. However, the images created by the DeepSIRF 2.0 network look notably worse because

of its inability to mimic the data distribution of the training set. These images illustrate

a blurry characteristic that contributes to their poor PIQE scores. This is another reason

why PIQE should have a larger influence on IR SR. Bicubic interpolation also scored well

in every category except PIQE. The images generated by bicubic interpolation have lost

their high frequency components. Therefore, it receives good PSNR, SSIM, and MSE scores

because the low frequency components are very similar to that of the original image, but

yields a poor PIQE score due to the generated images blurred appearance. The nearest

neighbor interpolation performs exactly how we would expect for PSNR, SSIM, and MSE.

These results are fairly low due to the images’ discontinuity. The smooth contrast found

in the HR image is entirely ruined by this interpolation technique. Patches of a single

intensity are introduced where the smooth contrast use to be. Surprisingly, its PIQE score

is better than bicubic interpolation and the DeepSIRF 2.0 network. PIQE scores blurred

and noisy images poorly, but the blurred images receive a worse score. It is obvious to

human inspection that nearest neighbor interpolation is inadequate to up-sample images,

so it is easy to throw out. However, when it comes to high level representation methods,

PIQE becomes an impressive metric to score the results.
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Original
Image

Nearest
Neighbor

Bicubic
DeepSIRF

2.0

Proposed
Ablation
Network

Proposed
Network

HR

PSNR 27.37 28.71 28.95 30.56 30.91 ∞
SSIM 0.704 0.751 0.747 0.801 0.811 1.00
MSE 119.16 87.58 82.90 57.20 52.72 0.00
PIQE 69.70 92.98 77.02 42.80 43.17 48.04

PSNR 29.39 31.82 32.42 33.52 33.88 ∞
SSIM 0.775 0.846 0.835 0.877 0.886 1.00
MSE 74.78 42.77 37.25 28.91 26.62 0.00
PIQE 68.82 92.51 77.97 41.24 40.22 61.99

PSNR 24.26 25.19 25.08 25.97 26.20 ∞
SSIM 0.536 0.599 0.593 0.662 0.677 1.00
MSE 243.68 196.71 202.04 164.42 156.07 0.00
PIQE 48.51 90.06 79.77 24.45 23.58 34.14

PSNR 26.13 27.64 28.31 28.56 29.56 ∞
SSIM 0.681 0.769 0.791 0.789 0.816 1.00
MSE 158.47 112.04 95.95 90.67 72.02 0.00
PIQE 66.79 93.71 80.82 46.17 65.47 52.91

Figure 2.6: Qualitative and Quantitative test results (Best results in bold, second best in
italics).
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Figure 2.6 shows that the proposed method generates images of the highest quality,

backed by their metric values. The proposed model preserves most of the textural charac-

teristics, of the LR image, that have not been made entirely obsolete by down-sampling.

The details in certain images have been recreated, allowing us to distinguish objects in the

super-resolved image.

2.4 Discussion

The proposed model is based off the SRGAN algorithm consisting of two convolutional

neural networks [6]. The generator’s residual network adopts its architecture from the ESR-

GAN [1] and its up-sampling procedure from Hongyang Gao et al. [15]. These components

help the network produce images of higher quality by creating more connections between

layers that aid in learning to mimic the data’s distribution. The residual image addition

and pre-training techniques also add to the generator’s success. Comparing the proposed

network to the ablation network, we can see that these features help the network learn a

better representation. The relativistic idea increases the GAN’s efficiency by stabilizing the

adversarial competition between networks within a GAN. The proposed method produces

results that achieve higher metric values while also appearing more accurate to the origi-

nal image. Most of the high frequency components from the original image are present in

the generated image, even though IR images lack certain high frequency information. The

proposed method is very powerful and can be applied to IR image SR to generate highly

accurate images that retain IR information.
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CHAPTER III

MULTI-STEP REINFORCEMENT LEARNING FOR SINGLE IMAGE

SUPER-RESOLUTION

Single Image Super-Resolution (SISR) is a vague problem that poses challenges in many

computer vision applications. In this expanding problem we attempt to reproduce High-

Resolution (HR) images from their Low-Resolution (LR) counterparts. In past years, SISR

research revolved around Deep Learning (DL) algorithms that attempted to directly map

LR input images to HR output images with a single pass through the network. Hundreds of

unique Generative Adversarial Networks (GANs) have been applied to SISR that differ in

their architectures, loss functions, and up-sampling techniques. They all share underlying

fundamentals such as adversarial learning, Convolutional Neural Networks (CNNs), and

attempting to mimic a certain distribution.

Instead of mapping LR images to their HR counterparts or imitating a distribution, the

proposed method adopts a strategy to increase the resolution of an image by selecting a

certain action for each pixel, based on pixelRL [3]. PixelRL is a multi-agent Reinforcement

Learning (RL) algorithm where each pixel is modified by an independent agent. Agents

choose particular actions to update their own pixel values. Being a RL technique, pixelRL

permits the ability to analyze the output of the network through multiple iterations, referred

to as timesteps. At each timestep the agent can choose to change its decision or stay the

same. Furuta et al. applied this algorithm to three image processing tasks: denoising,

restoration, and local color enhancement [3]. In our research we explore the possibility of

applying and modifying pixelRL for the SISR problem.

The contributions of this work are as follows:
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• Proposing a SISR RL network, which employs multiple agents. The network is given

an up-sampled image, from a bicubic interpolation, and learns a policy for each pixel

in order to maximize the total reward.

• Proposing a novel action set consisting of a number of GAN outputs, essentially

creating an advanced ensemble approach to SISR.

Other SISR works, pixelRL, and some of its uses are described in Section 3.1. The

proposed method is described in Section 3.2 and applications and results of the method are

presented in Section 3.3. Finally, the paper is concluded in Section 3.4.

3.1 Related Work

GANs were first introduced by Ian Goodfellow et al., in 2014, and were applied to

small grayscale and color images [4]. Consequently, GANs have become an extremely hot

topic in DL research due to their impressive results and wide application range including:

image editing [20] and texture removal (such as rain [21]) , stenographic security [22],

data generation for other DL applications [23], attention prediction [24], and more. In

2016, Christian Ledig et al. proposed the SRGAN algorithm where they applied GANs to

SISR [6]. Their generator consisted of 16 fully-convolutional residual blocks, ending with

two PixelShufflers to increase the image dimension by a factor of 4. Their discriminator

network consisted of 8 fully-convolutional blocks with batch normalization (in blocks 2-

8) and LeakyReLU activations, followed by dense layers to produce the final real/fake

prediction. To create more perceptually plausible images, the standard mean squared error

(MSE) loss was replaced with a VGG loss, based on feature map activations from particular

layers of the 19-layer VGG network, and an adversarial loss. Although they did not achieve
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state-of-the-art PSNR or SSIM results, they set a new standard for photo-realistic quality

by achieving the highest mean opinion score (MOS).

In the last few years, a number of image processing problems have been tackled with deep

RL. Zhuopeng Li and Xiaoyan Zhang developed an image cropping algorithm which utilized

collaborative deep RL [25]. Optimal cropping actions were chosen based on information from

two different agents. Both agents were given a vector of all previous actions and an image.

The first agent’s image was the current crop window of the original image while the second

agent’s image was the current crop window of the emotional attention map associated with

the original image. On two different datasets (FCD and HCD), Li and Zhang achieved

state-of-the-art results. QingXing Cao et al. used deep RL for face hallucination, a specific

case of SISR that applies only to face images [26]. A single agent determined the best patch

of an image to enhance, via a custom CNN. The enhanced patch was then inserted back

into the LR image and the agent selected a new patch. The process repeated until the entire

image was enhanced. Their results showed that the order of patch enhancement affected

the quality of the final image.

Ryosuke Furuta et al. used a novel multi-agent deep RL algorithm for image denoising,

restoration, and color enhancement in which each pixel had its own agent, called pixelRL

[3]. The action set for the denoising and restoration tasks included a number of stan-

dard image processing filters, pixel value increment and decrement, and “do nothing”. For

color enhancement the action set included adjusting contrast, brightness, saturation, color

balance, and “do nothing”. All tasks used the same CNN architecture, shown in Figure

3.1. Rewards were given to agents based on the MSE difference between the current image

(state) and the target image and the previous image (state) and the target image (analogous

to the L2 loss). Their denoising results (PSNR) were state-of-the-art for salt-and-pepper
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Figure 3.1: pixelRL FCN architecture [3].

noise with noise densities of 0.5 and 0.9. Their restoration results (PSNR and SSIM) were

also state-of-the-art.

As of this writing, pixelRL has been adapted to two additional problem settings: MRI

reconstruction [27] and 3D medical image segmentation [28]. According to Wentian Li

et al., the key benefit of applying pixelRL to MRI reconstruction is its interpretability.

Typical DL methods create a complex mapping from corrupted images to reconstructed

images, making it nearly impossible for people to understand exactly how the image is

reconstructed. In contrast, pixelRL uses a well-defined action set, allowing people to see

exactly how each pixel of the image has been modified from corrupted to reconstructed.

Similar to the original pixelRL, Li et al. used standard filters in their action set, along with

“do nothing” and a pixel value decrement. They included a number of sharpening filters

(Laplace, Sobel, and unsharp mask) with learnable continuous parameters. The original

pixelRL network architecture, shown in Figure 3.1, was modified to accommodate these

parameters by adding a third branch to the network after the split. Rewards were given

based on the absolute error between the original image (state) and the target image and the

final image (state) and the target image (analogous to the L1 loss). This method achieved
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state-of-the-art results for NMSE and SSIM on the fastMRI dataset with a random 40%

mask [27].

Xuan Liao et al. adapted pixelRL to 3D medical image segmentation by using voxel-

wise agents and rewards. They also included user interaction to aid in the segmentation

process, where users provide hints (such as points or bounding boxes) to the model. The

network architecture used was nearly identical to that in pixelRL, shown in Figure 3.1, with

the main difference being that the input to the final layer in the policy and value branches

was a concatenation of all previous layers’ outputs. Inputs to the network included a 3D

image, the previous segmentation probabilities, and a user hint map. The new segmentation

probabilities were created by tweaking the previous ones. As such, the action set consisted

of various values that agents could use to modify the previous probabilities. With an

output consisting of probabilities, a cross-entropy gain-based function was used to calculate

the rewards based on the improvement from the previous output to the new output. This

method achieved state-of-the-art results across three different datasets (BRATS2015, MM-

WHS, AND NCI-ICBI2013) [28].

3.2 Proposed Method

PixelRL utilizes the asynchronous advantage actor-critic (A3C) algorithm [29]. A3C

is a deep RL algorithm that uses multiple network instances that each have their own

parameters and copy of the environment. This allows each instance to train in parallel

and contribute to the shared learning of the global network. Actor-critic methods utilize

two networks, a policy network and a value network, that simultaneously operate on the

current state, s(t). The value network, known as the critic, outputs the expected total

rewards, V (s(t)), from the current state, which exhibits the quality of the current state [3].
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The policy network, known as the actor, calculates the probabilities of the agent choosing

each action, π(a(t)|s(t)), when in the current state [3].

PixelRL employs a Fully Convolutional Network (FCN) which rearranges the agents

into a 2D space where they can share parameters [3]. This 2D representation facilitates

the reward map convolution learning method proposed by Furuta et al [3]. In this method,

the receptive field of an agent is treated as a weighted convolutional filter that influences

the policies and values of neighboring agents. Figure 3.1 illustrates the pixelRL network

architecture which applies a Gated Recurrent Unit (GRU) to the penultimate layer of the

policy network. Cho et al. introduced the GRU in 2014 to implement a layer with memory

that does not suffer from the vanishing gradient problem [30]. The last layer of the policy

network produces a feature map for each action. A softmax function is applied across each

of the feature maps to provide a probability distribution over the potential actions for each

agent [3]. During training, the distribution is stochastically sampled to extract a single

action for each pixel, while during testing the network always chooses the most probable

action.

The pixelRL policy differs from traditional RL policies in that each pixel has an agent.

Thus, the policy becomes πi(a
(t)
i |s

(t)
i ), where a

(t)
i and s

(t)
i are the action and state at timestep

t of the i-th agent [3]. The number of actions come from the action set A predefined by

the authors. In our case the action set consists of pixel value increment and decrement,

“do nothing”, and choosing pixel values from images up-sampled by numerous GAN SISR

algorithms. In the current implementation, the increment and decrement actions are applied

to all channels of a pixel. PixelRL applied the filters during execution, however they could

have used pre-filtered images, which inspired the proposed model’s actions. This idea is a

novel contribution as we change the action set to a number of pre-computed GAN outputs.
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Figure 3.2: SISR action set: 1. Subtract 1 from the value of all channels of the pixel, 2. Do
not change the pixel value, 3. Add 1 to the value of all channels of the pixel, 4. Substitute
pixel value with that of the Enhanced Deep Super-Resolution network (EDSR), 5. Substi-
tute pixel value with that of the Enhanced Super-Resolution GAN (ESRGAN), 6. Substitute
pixel value with that of the Enhanced Super-Resolution GAN, PSNR focused (ESRGAN-
PSNR), 7. Substitute pixel value with that of the Progressive Perception-Oriented Network
(PPON).

HR
PSNR/SSIM

t = 0 t = 1 t = 2 t = 3
bicubic input

22.75/0.808 24.90/0.908 26.02/0.915 26.15/0.916

Figure 3.3: Super Resolution process and action map at each timestep for Urban100 image
img 090 (RGB color space, pixel-wise agents, MSE-based rewards). The colors represent
the agent’s choice of options from Figure 3.2, essentially replacing the original image pixel
with a different option.

These actions are illustrated in Figure 3.2, where the colors will be used to create action

maps for each timestep in subsequent figures (see Figure 3.3 for an example). Selecting

the GAN algorithms began with a survey of current SISR methods. Their results were
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compared and ranked according to PSNR and SSIM values. The GANs selected for the

proposed model’s action set [31, 32, 1] had the highest values amongst all of the algorithms

with publicly available code.

Here the agent transitions from state to state by choosing an action and acquiring a

reward to assist in learning an efficient policy, π = [π1, ..., πN ], where N is the total number

of pixels/agents in an image [3]. The reward function compares the output and previous

images at each timestep with the target image, described as:

r
(t)
i = (Itargeti − y(t−1)

i )2 − (Itargeti − y(t)i )2, (3.1)

where r
(t)
i is the reward for each pixel at a given timestep, Itargeti is the original HR image,

y
(t−1)
i is the image from the previous timestep, and y

(t)
i is the image from the current

timestep [3]. Equation 3.1 reveals how the squared error between each pixel and its target

has changed after taking a certain action [3]. If the given agent chooses an action that

improves the state, the reward is positive. If the action makes the state worse, the reward is

negative. Herein, we attempt to maximize the total reward in Equation 3.1 by minimizing

the squared error between each state and the original image. This forces the output image

to resemble the original HR image.

It is important to note that the network does not alter the dimensionality of the input

image. Therefore, the image being fed through the network has to be pre-processed to

match the scale of the desired output. In our work we up-sample by a scaling factor of

4 via bicubic interpolation, which contributes to the novelty of the proposed algorithm as

we apply RL to SISR. This initial up-sampling functions as its own action that lays the

foundation of the output image. Figure 3.2 illustrates the action of “do nothing” which, for
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timestep 1, in effect is choosing to preserve the bicubic pixel value instead of replacing it

with the pixel value of another option in the action set.

3.3 Experiments and Results

The proposed network is trained on the DIV2K dataset [33], consisting of 800 high

definition HR training images. For memory retention and speed, the network is trained on

60×60 random crops of the 800 training images. These images are initially blurred using

a Gaussian filter, which approximates real-world distortions in the image capture process

by simulating a camera’s point spread function [15]. A standard deviation of σ = 1.3

is used in each of the images’ spatial dimensions, as per the advice of [19]. After being

blurred, they are down-sampled by a factor of 4, interpolated using bicubic interpolation,

and immediately up-sampled using bicubic interpolation. Note that the results in Table 3.1

for the four GAN algorithms do not match those in the original papers since the authors

did not make any reference to using a Gaussian filter in the creation of their LR images.

The up-sampled images, using bicubic interpolation, are fed to the network in the initial

timestep. This initial image acts as an action in and of itself because the network can choose

to “do nothing”, keeping the bicubic pixel value. The network requires approximately 48

hours to train for 10,000 epochs on a single NVIDIA RTX 2080Ti.

For testing and validating the network, the whole image is sent through the network.

Each pixel has its own agent and chooses which action produces the best result. The same

preprocessing approach is carried out: blurred, down-sampled, and up-sampled. The testing

images come from commonly used testing datasets: Set5, DIV2K, and Urban100. Images

0855, 0878, 0879, and 0891 from DIV2K are excluded from the dataset due to memory issues

resulting from their size. All results in Table 3.1 are calculated without these four images
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Table 3.1: Quantitative comparison between the proposed method and other competing SR
algorithms in RGB color space (Best results in bold, second best in italics).

Method Metric Set5 Urban100 DIV2K Val.

bicubic MSE 193.46 563.64 209.81
PSNR 26.69 21.70 26.66
SSIM 0.7961 0.6442 0.7581

edsr baseline MSE 105.90 426.18 163.37
PSNR 28.73 23.14 27.92
SSIM 0.8631 0.7450 0.8100

esrgan MSE 250.04 1031.3 507.44
PSNR 24.61 18.89 22.87
SSIM 0.7166 0.5569 0.6298

esrgan-psnr MSE 107.99 457.53 170.42
PSNR 28.61 22.57 27.67
SSIM 0.8625 0.7482 0.8139

ppon MSE 222.01 828.63 437.44
PSNR 25.21 19.86 23.39
SSIM 0.7335 0.6213 0.6622

Proposed MSE 99.563 411.09 159.52
PSNR 28.97 23.28 28.08
SSIM 0.8664 0.7517 0.8140

Proposed MSE 107.83 428.32 165.35
VGG PSNR 28.65 23.10 27.85

Rewards SSIM 0.8612 0.7417 0.8044

to maintain a fair comparison. These datasets make it simple to quantitatively compare

results with other SISR techniques. We compare results with the following metrics: Mean

Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity index

(SSIM).

3.3.1 VGG Rewards

Perceptual loss in the feature space has previously been explored by a number of sources.

Instead of calculating the pixel-by-pixel error between the ground truth image and the gen-

erated image, the error is calculated in the feature space. This encourages the the network

to generate images that have a similar feature representation to the ground truth images
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[34]. Sajjadi et al. extracts the feature representations by sending the HR and SR images

through a pre-trained implementation of the VGG-19 network [34]. This network consists

of a combination of convolution and max pooling layers that extract features as it decreases

the spatial dimension of the image [35]. We extract features from the “conv2 2” layer of

Chainer’s VGG-19 implementation. The MSE is calculated between the ground truth and

generated feature spaces before being up-sampled via nearest neighbor interpolation to the

original crop size of 60×60. This tensor is then added to the total reward calculated with

Equation 3.1. The VGG results, in Table 3.1, are only slightly better than the ESRGAN-

PSNR images, but present a good quantitative comparison.

3.4 Discussion

When GANs were first introduced, they aggressively exceeded existing SISR models.

Since the development of so many GANs, their breakthroughs have started to level off.

Instead of learning a complex mapping and neglecting the pixel level of an image, the

proposed method works on a pixel-by-pixel basis. Therefore, we must zoom in to the

pixel level of an image to observe the full effect of the proposed method. Figures 3.4 and

3.5 show a qualitative comparison between sections of two different images. Figure 3.4

shows image img 005 selected from the Urban100 dataset. This image demonstrates the

advantage of using the proposed method for SR. The timesteps manifest the algorithm’s

process through visual representations. Looking at these timesteps for the first section, we

can see the algorithm chooses mostly EDSR and ESRGAN-PSNR (see Figure 3.2). The

algorithm also chooses to increment and decrement the pixel values which helps to increase

the PSNR and SSIM values. We can see that EDSR most accurately recreates the section,

both qualitatively and quantitatively. All the other options either blur the image or add in
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HR bicubic edsr baseline esrgan

PSNR/SSIM 24.11/0.877 29.58/0.964 21.01/0.821
esrgan-psnr ppon Proposed

18.54/0.778 20.62/0.841 29.77/0.966
timestep 1 timestep 2 timestep 3 Pixel Source

HR bicubic edsr baseline esrgan

PSNR/SSIM 14.43/0.491 15.17/0.662 16.29/0.800
esrgan-psnr ppon Proposed

23.80/0.955 19.73/0.905 24.07/0.955
timestep 1 timestep 2 timestep 3 Pixel Source

Figure 3.4: Qualitative comparison between the proposed methods and other competing SR
algorithms on image img 005 from the Urban100 dataset (Best results in bold, second best
in italics). The resulting image chooses between multiple options (seen in Pixel Source),
where the chosen option is the best. The Pixel Source excludes pixel increment and decre-
ment to show the source image of each pixel. The timestep and Pixel Source images are
from the proposed RGB pixel-wise method.
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HR bicubic edsr baseline esrgan

PSNR/SSIM 25.52/0.850 31.01/0.939 22.86/0.725
esrgan-psnr ppon Proposed

26.25/0.880 24.12/0.735 31.45/0.939
timestep 1 timestep 2 timestep 3 Pixel Source

HR bicubic edsr baseline esrgan

PSNR/SSIM 14.96/0.537 15.717/0.684 13.15/0.549
esrgan-psnr ppon Proposed

18.71/0.847 14.39/0.698 19.05/0.855
timestep 1 timestep 2 timestep 3 Pixel Source

Figure 3.5: Qualitative comparison between the proposed methods and other competing
SR algorithms on image 0818 from the DIV2K dataset (Best results in bold, second best in
italics). The resulting image chooses between multiple options (seen in Pixel Source), where
the chosen option is the best. The Pixel Source excludes pixel increment and decrement to
show the source image of each pixel. The timestep and Pixel Source images are from the
proposed RGB pixel-wise method.
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artifacts not found in the HR image. Looking at the timesteps for the second section, we

can see the algorithm chooses exclusively ESRGAN-PSNR. The algorithm also chooses to

increment and decrement the pixel values which helps it to surpass the PSNR and SSIM

values of ESRGAN-PSNR. Here we can see that ESRGAN-PSNR most accurately recreates

the section, both qualitatively and quantitatively. This illustrates that some SR algorithms

are more adequate for different parts of an image. Similarly, Figure 3.5 shows sections of

image 0818 from the DIV2K validation dataset. Again, we show that selecting from multiple

sources can increase the qualitative and quantitative results of an image. In both figures,

the proposed method either obtains the highest metric values or scores the same as one of

the options. Consequently, the proposed method learns to quantitatively outperform the

best SR algorithms over the entire datasets (see Table 3.1).

We modified the pixelRL problem setting to handle the SISR task. The proposed method

learns a strategy to increase the resolution of an image by choosing the best pixel values

from each of the GAN options provided. The qualitative and quantitative results support

our theory: choosing between multiple GAN options at the pixel level can increase the

overall SISR performance. The proposed method’s visual results give us the advantage of

observing where each GAN option is most effective. Some options are more effective in low

frequency portions of the image, while others are more effective in high frequency portions.

This expression can be used to determine which GAN to use in certain scenarios. Other

SISR applications can benefit greatly from this visual insight.
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CHAPTER IV

CONCLUSION

The network from Chapter I uses residual blocks from the ESRGAN [1] and its up-

sampling procedure from Hongyang Gao et al. [15]. These two components paired with the

residual image addition and pre-training techniques greatly improve the SR performance

on IR images. While the residual and upsampling blocks create additional connections

between layers, the residual image addition helps with the gradient flow, and the pre-training

procedure creates a strong base for the network to start training. The results outperformed

the compared upsampling techniques with higher metric values and appearance. The RL

network from Chapter II obtained better qualitative and quantitative results than any GAN

found in the action set. Therefore, compiling multiple GAN options, at the pixel level, can

notably increase the resolution of images. In future work, more residual blocks will be

explored, and different loss functions for the proposed RL algorithm will be tested.

35

43 
Approved for public release; distribution is unlimited.



BIBLIOGRAPHY

[1] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, C. C. Loy, Y. Qiao,

and X. Tang, “ESRGAN: Enhanced Super-Resolution Generative Adversarial

Networks,” arXiv:1809.00219 [cs], Sep. 2018, arXiv: 1809.00219. [Online]. Available:

http://arxiv.org/abs/1809.00219

[2] H. Gao, H. Yuan, Z. Wang, and S. Ji, “Pixel transposed convolutional networks,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019.

[3] R. Furuta, N. Inoue, and T. Yamasaki, “Fully Convolutional Network with Multi-Step

Reinforcement Learning for Image Processing,” arXiv:1811.04323 [cs], Nov. 2018,

arXiv: 1811.04323. [Online]. Available: http://arxiv.org/abs/1811.04323

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural

Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 2672–2680.

[Online]. Available: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[5] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, M. Hasan, B. C. V. Esesn,

A. A. S. Awwal, and V. K. Asari, “The history began from alexnet: A comprehensive

survey on deep learning approaches,” CoRR, vol. abs/1803.01164, 2018. [Online].

Available: http://arxiv.org/abs/1803.01164

[6] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,

A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution

using a generative adversarial network,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 4681–4690.

[7] X. Zhang, C. Li, Q. Meng, S. Liu, Y. Zhang, and J. Wang, “Infrared image super

resolution by combining compressive sensing and deep learning,” Sensors, vol. 18, no. 8,

p. 2587, 2018.

[8] Y. Liu, X. Chen, J. Cheng, H. Peng, and Z. Wang, “Infrared and visible image fusion

with convolutional neural networks,” International Journal of Wavelets, Multiresolu-

tion and Information Processing, vol. 16, no. 03, p. 1850018, 2018.

[9] J. Zhong, B. Yang, Y. Li, F. Zhong, and Z. Chen, “Image fusion and super-resolution

with convolutional neural network,” in Chinese Conference on Pattern Recognition.

Springer, 2016, pp. 78–88.

[10] X. Kuang, X. Sui, Y. Liu, Q. Chen, and G. Guohua, “Single infrared image optical

noise removal using a deep convolutional neural network,” IEEE Photonics Journal,

vol. 10, no. 2, pp. 1–15, 2018.

36

44 
Approved for public release; distribution is unlimited.



[11] J. Ma, W. Yu, P. Liang, C. Li, and J. Jiang, “Fusiongan: A generative adversarial

network for infrared and visible image fusion,” Information Fusion, vol. 48, pp. 11–26,

08 2019.

[12] Deep generative adversarial networks for infrared image enhancement, vol. 10661,

2018. [Online]. Available: https://doi.org/10.1117/12.2304875

[13] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for

generative adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.

[14] A. Jolicoeur-Martineau, “The relativistic discriminator: a key element missing

from standard GAN,” CoRR, vol. abs/1807.00734, 2018. [Online]. Available:

http://arxiv.org/abs/1807.00734

[15] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and

Z. Wang, “Real-time single image and video super-resolution using an efficient sub-

pixel convolutional neural network,” in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2016.

[16] M. Bosch, C. M. Gifford, and P. A. Rodriguez, “Super-resolution for overhead im-

agery using densenets and adversarial learning,” in 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV). IEEE, 2018, pp. 1414–1422.

[17] Y. Zhang and Y. Xiang, “Recent advances in deep learning for single image super-

resolution,” in Advances in Brain Inspired Cognitive Systems, J. Ren, A. Hussain,

J. Zheng, C.-L. Liu, B. Luo, H. Zhao, and X. Zhao, Eds. Cham: Springer International

Publishing, 2018, pp. 85–95.

[18] Y. Sun, L. Li, P. Cong, Z. Wang, and X. Guo, “Enhancement of digital radiography

image quality using a convolutional neural network,” Journal of X-ray Science and

Technology, vol. 25, no. 6, pp. 857–868, 2017.

[19] C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution: A benchmark,”

in European Conference on Computer Vision. Springer, 2014, pp. 372–386.

[20] G. Perarnau, J. van de Weijer, B. Raducanu, and J. M. Álvarez, “Invertible
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