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1    SUMMARY 
The recent demonstration of quantum supremacy has placed us squarely within the era of noisy, 
intermediate-scale quantum (NISQ) devices [1]. Nonetheless, it remains unclear which problems 
are most amenable to quantum speedups. In this report, we describe the Booz Allen Hamilton’s 
quantum research team’s progress towards distinguishing where a quantum computer can confer 
an advantage over classical computation. We explore where quantum algorithms can expedite 
important classical methods through three fundamental questions:  

(1) Which common subroutines of important algorithms can be made more efficient with
quantum computation?

(2) When can one avoid these common subroutines altogether?
(3) When is our knowledge of classical algorithms simply too limited and better classical

subroutines exist?
We investigate these questions by exploring the following three research topics. 

(a) First, we examine quantum walk algorithms for finding marked states within local
query models.

(b) Second, we research known obstructions to classical computers using Monte Carlo
techniques to simulate various quantum Hamiltonians.

(c) Finally, we explore near-term implementable quantum algorithms for the quantum
linear systems problem (QLSP).

Our approach to items (a) and (b) proceeds as a pure theoretical study, whereas we approach item 
(c) theoretically and computationally. For (a), we have found ways that one might advance
quantum walk algorithms to explore arbitrary, unknown spaces using purely local queries and also
have adapted very new techniques to expedite solving Boolean satisfiability (and optimization)
problems. For (b), we have introduced a new classical, quasipolynomial-time algorithm for
handling obstructions that arise due to exponential separations between 𝐿𝐿1 and 𝐿𝐿2 norms of
particular quantum states. For (c), we are currently developing code to implement QLSP in Qiskit,
as well as investigating the possibility of improving the asymptotic scaling of the recent
advancement by Lin and Tong [2].
Each of these research efforts will be introduced separately, with designated sections for their 
methods and results. Conclusions of the three efforts, and their overarching themes, will be 
presented together.  Additionally, through the performance of this contract, Booz Allen has 
provided extensive support to experimental groups at AFRL, including the LaHaye 
superconducting qubit lab and the Soderberg-Tabakov Ytterbium (Yb) ion trapping effort.  

Approved for Public Release; Distribution Unlimited. 
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2    INTRODUCTION 
Recent advances in the field of quantum computing, which seeks to leverage the unique 
resources provided by quantum mechanics to perform information processing tasks, have 
propelled this field into the limelight. It has attracted global attention with enticing prospects, 
such as advancing personalized medicine, training the next generation of artificial intelligence, 
and upending contemporary cryptosystems. While it will likely be decades before a fully fault-
tolerant quantum computer is engineered, the use of hybrid, quantum-classical protocols promise 
near-term, perhaps even immediate, applicability in particular cases. The purpose of the research 
described in this report has been to explore these quantum algorithms with potential, near-term 
impact.  
To explore various dimensions of quantum algorithms used for subroutine improvement, the 
team conducted research on four different sub-topics: quantum walks, obstructions to classical 
computers, and the quantum linear system problem (QLSP). The latter of these efforts will be 
presented in two parts: the theoretical study of scaling improvements to QLSP and the Qiskit 
implementation of QLSP.  
Each of these research efforts will be introduced separately, with designated sections for their 
methods and results. Conclusions of the four efforts, and their overarching themes, will be 
presented together.   

2.1 Introduction to Quantum Walks 
While there exist numerous quantum algorithms that provide speedups over classical methods 
[3], there are only a few key quantum processes from which these advantages derive. One such 
ubiquitous process is the quantum walk [4,5]. A quantum walk is a quantum analog of a random 
walk which explores a space, typically conceived of as a graph, faster than the corresponding 
classical walk. Though these quantum processes usually only enjoy a quadratic advantage over 
their classical counterparts, multiple classes of examples exist in which the advantage can 
become exponential. In one famous example, a continuous time quantum walk is able to explore 
a graph with properties that severely limit classical random walks [6].  
Presently, although there exists a great deal of work on quantum processes on graphs [7,8], there 
is scant understanding of “local” query models [9]. Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a graph with vertex set V 
and edge set E. The local query model assumes access to an oracle that, given input 𝑣𝑣 ∈ 𝑉𝑉 
returns the set of vertices adjacent to v (and subsequently the degree of v). This local query 
model is more natural for analogies to random walks where, although the existence of a 
particular vertex may be known, the full sets 𝑉𝑉, 𝐸𝐸 are not as readily accessible. In this setting, 
one can perform a quantum walk on the graph 𝐺𝐺 with no a priori knowledge of 𝑉𝑉, 𝐸𝐸.  

The restriction from global information to local information can drastically change both the time 
and space complexity of algorithms used to explore such spaces. One striking application is to 
Boolean satisfiability (SAT), where the standard Davis-Putnam-Logemann-Loveland (DPLL) 
algorithm builds a tree data structure on-the-fly [10,11]. In this context, and in more modern 
algorithms built on DPLL, the space searched is never larger than necessary to solve the problem 
at hand. For “easy” problems, this can exponentially reduce the space to be searched. The 
difference in power between local and global approaches for quantum walks was realized by 
Montanaro in [12], where he provided a local algorithm for solving constraint satisfaction 
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problems (a generalization of SAT). His algorithm explores a backtracking tree structure, like 
that used in DPLL, and achieves scaling (𝑇𝑇1/2𝑛𝑛3/2) where 𝑇𝑇 is the size of the full backtracking 
tree of all partial solutions, and 𝑛𝑛 is its depth. This can be quite faster than DPLL which has a 
worst-case runtime of (𝑇𝑇).  
Unfortunately, the full backtracking tree is often much larger than the tree constructed by DPLL, 
which ceases to construct the tree after a solution is discovered. Noticing that classical heuristics 
can sometimes run faster than Montanaro’s algorithm if the actual tree size 𝑇𝑇�  explored classically 
is much less than 𝑇𝑇, Ambainis and Kokainis (which we will refer to below as AK) provided an 
algorithm that estimates 𝑇𝑇�  and solves both problems in time 𝒪𝒪(𝑇𝑇�1/2𝑛𝑛3/2) [13].  
Although an improvement, this difference comes at the cost of abandoning the original intuition 
(in terms of electrical networks) and its elegant mathematical foundations [14]. Recent work by 
Jarret (now one of the contributing Booz Allen team members) and Wan in [15] showed that this 
intuition can be retained with some advantage over [12]. By providing a routine capable of using 
local operations to estimate the effective resistance 𝑅𝑅 < 𝑛𝑛 of the tree (where the root is treated as 
a source and all 𝑘𝑘 solutions are treated as sinks), an algorithm is obtained that runs in time (√𝑇𝑇𝑅𝑅) 
to decide the existence of a solution and (√𝑇𝑇𝑅𝑅log4(𝑘𝑘𝑛𝑛)) to return the assignment [5]. Not only 
can 𝑅𝑅 be significantly smaller than 𝑛𝑛, but this result appears somewhat more fundamental than 
that of [13]. Indeed, in [16], Piddock adapted the approach of Jarret and Wan to prove a similar 
quantum speedup on general graphs. 
Our ongoing work (described below) aims to further improve upon AK using the effective 
resistance estimate portion of the Jarret and Wan/Piddock (JWP) approach, which provide for 
potentially optimal backtracking algorithms. We are also investigating adapting the results of AK 
to more general graphs, much like Piddock did for the Jarret and Wan approach. This would 
provide faster graph search algorithms on graphs of unknown size and structure. 

2.2 Introduction to Quantum/Classical Separation 
While studying improved quantum walks is valuable since they provide known advantages over 
classical walks [4,5], typically they are limited to quadratic improvements, and it is likewise 
crucial to determine when a quantum algorithm or device is capable of obtaining a significant 
advantage. Recently, Ewin Tang achieved notoriety by showing that a classical computer can 
tackle the problem of recommendation systems nearly as efficiently as known quantum machine 
learning algorithms [17]. In this work, Tang pursued the question of finding some classical 
competitor for a known quantum algorithm, but often the question of what separates quantum 
from classical presents itself more concretely. 
Monte Carlo methods are widely employed to investigate quantum systems, and folklore 
theorems posit that there are particular cases in which they are genuinely efficient. Properties of 
quantum systems which can be efficiently modeled by classical techniques are referred to as 
simulatable. If a property is simulatable, then an algorithm leveraging this property cannot 
provide a substantial quantum advantage. That is, if one can efficiently simulate the quantum 
system with a classical computer, then that simulation in itself provides a classical competitor for 
the quantum algorithm it simulates. In turn, this proves a barrier to obtaining a quantum 
advantage out of both algorithms based on the quantum system, and quantum computers based 
on that system’s architecture. 

Approved for Public Release; Distribution Unlimited. 
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As an example, Bravyi and Gosset demonstrated in [18] that the partition function of certain 
ferromagnetic models is efficiently simulatable. Also, Crosson and Slezak very recently 
demonstrated that quantum Monte Carlo methods are efficient for simulating the partition 
function of high-temperature systems [19]. Both of these results provide barriers to quantum 
advantage in NISQ (or general) quantum devices. Of course, we do not expect all quantum 
systems to be simulatable, and as early as 2013 Hastings demonstrated the existence of 
“obstructions” to classically simulating adiabatic processes with particular Monte Carlo methods 
[20].  
In [21], Jarret and coauthors built on Hastings’ work, creating an obstruction based on an 
exponential separation between the 𝐿𝐿1 and 𝐿𝐿2 norms of quantum systems that have hidden, but 
otherwise strong symmetries. For a system of 𝑛𝑛 qubits, as long as a quantum state is reasonably 
well distributed, the inequality ‖𝜓𝜓‖1 ≤ √2𝑛𝑛‖𝜓𝜓‖2 is near-saturated. This separation causes 
crucial difficulties when sampling from the classical probability distribution defined by 𝜓𝜓. 
Though contrived and easily bested by alternative classical algorithms, additional work 
extending this example’s strategy demonstrated more realistic obstructions providing compelling 
evidence against classical simulations [22,23].  
A natural question thus presents itself: Does the exponential separation in norms actually provide 
a fundamental obstruction, or have we neglected to explore classical algorithms that exploit 
hidden symmetries?  
In the present work we investigate whether a symmetry existence promise is sufficient to 
construct a classical algorithm that competes with its quantum counterpart. The strength of a 
symmetry can be measured in terms of the size of an appropriate automorphism group, and large 
norm-divergences correspond to large automorphism groups. Specifically, we develop a classical 
algorithm that can sample from the ground state of a Hamiltonian with hidden symmetry and 
large automorphism group in quasipolynomial time, thereby overcoming the exponentially 
diverging norms obstruction. Whether this algorithm is necessarily quasipolynomial may reveal 
if there exists a fundamental separation provided by this obstruction, even if less problematic 
than previously expected. 

2.3 Introduction to Quantum Linear Systems 
As mentioned above, Tang’s 2019 result [17] dashed hopes that an exponential separation may 
exist between quantum and classical recommendation systems by providing an improved 
classical algorithm in relevant cases. Though classical, Tang’s algorithm was inspired by an 
earlier quantum algorithm [24], which has helped draw attention to quantum-inspired algorithms 
and made a stronger case for the utility of studying quantum machine learning algorithms 
generally. Similarly, Crosson and Harrow found a quantum-inspired classical algorithm which 
can be exponentially faster than classical simulated annealing [25]. As simulated annealing and 
its variants feature prominently as optimization subroutines in many machine learning 
applications, the approach in [25] could accelerate such applications.  
These examples suggest that studying quantum machine learning (QML) serves both as a use 
case for quantum computers in applications for artificial intelligence, and to advance classical 
methods. Understanding the quantum algorithms which cannot be simulated classically provides 
insight into when QML routines might confer an advantage over their classical counterparts. In 
particular, subroutines of existing algorithms, such as eigensolvers, are called frequently in many 
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machine learning pipelines. Improving these subroutines necessarily expedites both quantum and 
classical algorithms that call them. These themes guided our theoretical research into QLSP. 
Recently, our team member Jarret proposed an algorithm for obtaining optimal runtimes from an 
adiabatic protocol [26]. The method, although initially presented as a means of controlling 
adiabatic evolutions, relies on a classical strategy. At around the same time, Subasi et al. [27] 
proposed a quantum algorithm for solving linear systems of equations, based on adiabatic 
optimization. Notably, Subasi et al.’s algorithm is suboptimal in some complexity parameters 
(the condition number of the matrix defining the linear system and the state preparation error) 
and uses a “randomization method” to determine variation rates. Standard usage of the 
randomization method requires multiple runs, which are then averaged together to obtain a final 
result. This adds runtime and results in a mixed state, rather than a pure state, thus limiting its 
use as a subroutine in a larger quantum algorithm. 
Our initial goal was to adapt the methods of [26] to bring Subasi’s protocol closer to optimal in 
the condition number. However, [26] requires the adiabatic Hamiltonian to be “nearly” 
stoquastic, which is not easy to achieve for general linear systems. We investigated ways in 
which non-stoquastic Hamiltonians may be “stoquasticized,” but these methods introduce other 
undesirable features (e.g. ground state evolution becomes excited state evolution, and eigenvalue 
crossings may be introduced). Instead, we shifted attention to the error scaling.  
Given the usefulness of adiabatic inspiration in the original algorithm, we identified the 
“adiabatic expansion” method [28] as a promising route to better scaling due to its ability to 
exponentially suppress error. In general, this improved error scaling comes at the cost of poorer 
scaling in the minimum eigenvalue gap, which notably may be preferred in some situations. 
Though we found slightly improved gap dependence in the explicit example of adiabatic Grover 
search, asymptotic behavior remained unchanged. Nevertheless, as discussed further in 2.3 
Methods for Exploring QLSP, this instructive example provides some intuition about the nature 
of the adiabatic expansion method compared with “vanilla” adiabatic protocols. 
The original workstream again shifted in October 2019 when, building upon the work of Subasi 
et al., Lin and Tong introduced a nearly optimal algorithm for solving QLSP [2]. Their algorithm 
enjoys optimal dependence on the desired level of error 𝜖𝜖, and is only sub-optimal by log factors 
in the condition number. This condition number scaling is achieved by means of an adiabatic 
state preparation step, which is then followed by an eigenstate filtering step making use of 
quantum signal processing that improves the error scaling.  However, this algorithm introduces 
an additional parameter, the degree ℓ of the filtering polynomial used to perform eigenstate 
filtering, which grows with both condition number and desired accuracy of the solution.  The 
filtering polynomial is implemented by means of a set of phase factors. The classical subroutine 
used by Lin and Tong to calculate these phase factors requires 𝒪𝒪(ℓ log(ℓ/𝜖𝜖)) bits of precision, 
and thus is numerically unstable.   
In our current work, we adapt to this new development and aim to refine Lin and Tong’s results. 
Specifically, we are attempting to avoid the issue of numerical instability by obtaining an 
analytic expression for the phase factors or an improved, numerically stable algorithm for 
approximating them. This improvement is broadly applicable not only to the linear systems 
problem, but to any problem which involves eigenstate filtering. The approach taken requires the 
creation of a new algorithm to determine relevant spectral quantities, and it remains unclear 
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whether the effort will be successful; however, preliminary results (described further below) look 
promising. 

3 METHODS, ASSUMPTIONS, AND PROCEDURES 
This research effort theoretically explored the use of quantum walk algorithms for finding 
marked states within local query models and known obstructions to classical computers using 
Monte Carlo techniques to simulate various quantum Hamiltonians. Near-term implementable 
quantum algorithms for the quantum linear systems problem was approached both theoretically 
and computationally, with methods for implanting QLSP in QuTiP and Qiskit presented in this 
report.  
Each of these research efforts will be described separately, with a detailed implementation of the 
implementation of Lin’s and Tong’s algorithm for QLSP [2] presented in its own section. 

3.1 Methods for Quantum Walks 
Ambainis and Kokainis [13] showed how to construct a quantum algorithm which estimates the 
size of the tree 𝑇𝑇 within a factor of 1 ± 𝛿𝛿 for constant 𝛿𝛿 in 𝑂𝑂�(√𝑛𝑛𝑇𝑇) steps. In [16] Piddock 
considers the problem of finding a marked vertex in a general weighted graph from an arbitrary 
starting distribution, using a quantum walk-based algorithm in the framework of Belovs [29],  
generalizing and improving on the approach of Jarret and Wan [15]. Here, we use the machinery 
of Ambainis and Kokainis and apply it in the setting of general weighted graphs to construct an 
algorithm which estimates total weight. 

3.1.1 Setting. 
Let 𝒢𝒢 = ( 𝑉𝑉,𝐸𝐸) be a graph with edge weights {𝑤𝑤𝑒𝑒}𝑒𝑒∈𝐸𝐸, total weight 𝑊𝑊 = Σ𝑒𝑒∈𝐸𝐸𝑤𝑤𝑒𝑒, and an initial 
probability distribution on 𝑉𝑉 given by 𝜎𝜎 = {𝜎𝜎𝑥𝑥}𝑥𝑥∈𝑉𝑉 . The graph is assumed bipartite with vertices 
partitioned as 𝑉𝑉 =  𝐴𝐴 ⊔ 𝐵𝐵, and supp(𝜎𝜎) ⊂ 𝐴𝐴. When 𝒢𝒢 is not bipartite, for the purposes of walks, 
one can instead consider 𝒢𝒢′ = (𝑉𝑉′,𝐸𝐸′) where 𝑉𝑉′ = 𝑉𝑉 × {0,1} and 𝐸𝐸′ = �{(𝑥𝑥, 0), (𝑦𝑦, 1)}: (𝑥𝑥,𝑦𝑦) ∈
𝐸𝐸�, which is now bipartite. The bipartite structure supports Szegedy quantum walks [30] and 
allows the corresponding quantum circuit to be performed using operators defined on their 
respective subspaces, which are easier to specify than generic walk operators. 

The graph 𝒢𝒢 can be augmented in such a way which allows one to restrict attention to an initial 
distribution concentrated at a single vertex: 𝜎𝜎𝑥𝑥 = 𝛿𝛿𝑠𝑠′𝑥𝑥 for a vertex 𝑠𝑠′ ∈ 𝐵𝐵. As can be seen in 
Figure 1, the original bipartite graph (a) can be augmented (b) so that each v ∈ supp(σ) gets an 
extra edge (with weight σv/η, where η is a global parameter) connecting it to a single new vertex 
s′. 

Figure 1: Evolution From (a) the Original Bipartite Graph to (b) the Augmented Graph 
Approved for Public Release; Distribution Unlimited. 
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From the standard edge-based Hilbert space ℋ =  𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛({|𝑒𝑒⟩}𝑒𝑒∈𝐸𝐸) one may define orthonormal 
vertex states 

|𝑥𝑥⟩ ≔
1
�𝑑𝑑𝑥𝑥

��𝑤𝑤𝑥𝑥𝑥𝑥 |𝑥𝑥𝑦𝑦⟩
𝑥𝑥~𝑥𝑥

 (1) 

 Where 
𝑑𝑑𝑥𝑥 ≔  ∑ 𝑤𝑤𝑥𝑥𝑥𝑥𝑥𝑥~𝑥𝑥  (2)  

and diffusion operators 

𝐷𝐷𝑥𝑥 ≔  �
𝟏𝟏, 𝑥𝑥 ∈ 𝑀𝑀 ∪ {𝑠𝑠′}

𝟏𝟏 − 2|𝑥𝑥⟩⟨𝑥𝑥|, 𝑥𝑥 ∉ 𝑀𝑀 ∪ {𝑠𝑠′}
(3) 

Here 𝑀𝑀 denotes a set of marked vertices, which is not immediately relevant for the present 
application. The walk operators are then given by 𝑈𝑈𝐴𝐴 ≔ ⨁ 𝐷𝐷𝑥𝑥𝑥𝑥∈𝐴𝐴 , and 𝑈𝑈𝐵𝐵 ≔ ⨁ 𝐷𝐷𝑥𝑥𝑥𝑥∈𝐵𝐵  . 

The direct sum notation is slightly abusive, but standard: The diffusion operators in each sum are 
mutually commutative because 𝒢𝒢 is bipartite and only neighboring vertex states have overlap:  

⟨𝑥𝑥|𝑦𝑦⟩ =
1

�𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥
� � �𝑤𝑤𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑥𝑥′⟨𝑥𝑥𝑥𝑥|𝑦𝑦𝑥𝑥′⟩ =

𝑤𝑤𝑥𝑥𝑥𝑥
�𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥𝑥𝑥′~𝑥𝑥𝑥𝑥′~𝑥𝑥

(4) 

In this setting we note that 𝑈𝑈𝐴𝐴 is a reflection over the set ℋ�𝐴𝐴 ∶= 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛({|𝑥𝑥⟩: 𝑥𝑥 ∈ 𝐴𝐴\(𝑀𝑀 ∪ {𝑠𝑠})}). 
Similarly, 𝑈𝑈𝐵𝐵 is a reflection over ℋ�𝐵𝐵, which is defined analogously to ℋ�𝐴𝐴.  

Our goal is to use the spectral theorem to bound the output of a phase estimation circuit. This 
method, inspired by AK’s total tree size estimation, requires that we: 

a) Verify that the starting state |𝜓𝜓𝑠𝑠′⟩ is orthogonal to all 𝑈𝑈𝐵𝐵𝑈𝑈𝐴𝐴-invariant states.
b) Determine bounds on the eigenvalue of 𝑈𝑈𝐵𝐵𝑈𝑈𝐴𝐴 that is closest to (a). To do this, we

i. Exploit a correspondence by Szegedy [30] for which we require the principle
eigenvalue of the discriminant matrix associated with the subspaces bases {|𝑥𝑥⟩  ∶
𝑥𝑥 ∈ 𝐴𝐴}, {|𝑦𝑦⟩  ∶ 𝑦𝑦 ∈ 𝐵𝐵 \ {𝑠𝑠′}}.

ii. Construct the fundamental matrix of an absorbing random walk on a related
graph, that can be viewed as an electrical network, and as such allows us to bound
the resistance between each vertex pair and characterize the largest eigenvalue of
the altered discriminant matrix, subsequently bounding the eigenvalues of 𝑈𝑈𝐵𝐵𝑈𝑈𝐴𝐴.

c) Verify that there are no obstructions to implementing the circuit locally, as in [16].

3.2 Methods Classical Separation  
3.2.1 Related Work.  
We apply the graph-theoretic characterization of Hamiltonians from [31] to create algorithms 
that can efficiently sample from symmetric subspaces, contingent upon our ability to solve graph 
isomorphism. Also, we apply Babai’s graph isomorphism algorithm to show that this subroutine 
can be performed in quasipolynomial time [32]. Finally, we use the Davis-Kahan sin 𝜃𝜃 theorem 
[33] to generalize to nearly symmetric systems.
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3.2.2 Setting.  
Let 𝐻𝐻 be a 𝑘𝑘-local Hamiltonian that can be written as an Ising model in the form 

𝐻𝐻 =  � 𝛼𝛼𝑏𝑏 ⊗𝑖𝑖
|𝑏𝑏|≤𝑘𝑘

(𝐼𝐼 − 𝑋𝑋𝑖𝑖
𝑏𝑏𝑖𝑖) + � 𝛽𝛽𝑏𝑏 ⊗𝑖𝑖

|𝑏𝑏|≤𝑘𝑘

𝑌𝑌𝑖𝑖
𝑏𝑏𝑖𝑖 + � 𝜅𝜅𝑏𝑏 ⊗𝑖𝑖

|𝑏𝑏|≤𝑘𝑘

𝑍𝑍𝑖𝑖
𝑏𝑏𝑖𝑖 (5) 

Above, 𝑏𝑏 is a bitstring with Hamming weight |𝑏𝑏|. We let the set Κ = �⊗𝑖𝑖 𝑋𝑋𝑖𝑖
𝑏𝑏𝑖𝑖|𝛼𝛼𝑏𝑏 ≠ 0 � form the

edge-generating set of an Abelian graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸). Additionally, we impose stoquasticity, or 
that |𝛽𝛽𝑏𝑏| ≤ 𝛼𝛼𝑏𝑏 ∀𝑏𝑏. Since in our algorithms the ∑ 𝛽𝛽𝑏𝑏 ⊗𝑖𝑖|𝑏𝑏|≤𝑘𝑘 𝑌𝑌𝑖𝑖

𝑏𝑏𝑖𝑖 terms ultimately add additional
distinguishing information that eases our task, we ultimately assume that 𝛽𝛽𝑏𝑏 = 0.  

To each vertex 𝑣𝑣 ∈ 𝑉𝑉 we assign a color ∑ 𝜅𝜅𝑏𝑏⟨𝑣𝑣| ⊗𝑖𝑖|𝑏𝑏|≤𝑘𝑘 𝑍𝑍𝑖𝑖
𝑏𝑏𝑖𝑖|𝑣𝑣⟩. For the obstructions of the type

mentioned above to exist, the color-preserving automorphism group of 𝐺𝐺 must be large.  

3.3 Methods for Exploring QLSP 
Linear systems of equations (𝐴𝐴𝑥𝑥 = 𝑏𝑏 where 𝐴𝐴 is a matrix and 𝑥𝑥 and 𝑏𝑏 are vectors) are 
ubiquitous. Thus, quantum algorithms developed to solve such systems are found as subroutines 
of many other algorithms, including in machine learning routines [34], network resistance [35], 
and in the analysis of classical Markov chains [36]. Under certain assumptions, one finds an 
exponential speedup over the best known classical algorithms [27]. However, the phase 
estimation and amplitude amplification routines used therein substantially increase the number of 
ancillary qubits required.  
Recently, an adiabatic-inspired quantum linear systems algorithm was proposed by Subasi et al. 
[27]. The adiabatic schedule interpolates between a Hamiltonian 𝐻𝐻𝑜𝑜 which has |𝑏𝑏⟩ encoded as 
the lowest eigenstate, a Hamiltonian 𝐻𝐻1 whose lowest eigenstate encodes the solution to the 
problem |𝑥𝑥⟩.  
In contrast to HHL, Subasi et al.’s algorithm uses significantly fewer ancillary qubits. Moreover, 
it is easy to conceptualize, inspiring the development of schemes which can potentially be 
implemented on near-term quantum devices. Already a few works have appeared that provide 
scaling improvements over [27,37,38]. 
Our research, some ongoing, attempts to build upon this work in different ways: 

a) Implementing a version of the Subasi et al. algorithm in QuTiP, detailed in Section 3.3.1
b) Implementing a version of the Subasi et al. algorithm in Qiskit, detailed in Section 3.3.2
c) Implementing and improving the numerical stability of a version of the Lin and Tong

algorithm in QuTiP, detailed in Section 3.4

3.3.1 Implementation and Exploration of the Subasi et al. Algorithm in QuTiP. 
The Subasi et al. algorithm, while suboptimal in some complexity parameters, is a prime 
candidate for near-term implementation because (unlike HHL or the nearly-optimal Lin and 
Tong algorithm, described below in 3.4) it does not rely on large ancillary systems. 
Implementing this adiabatic-inspired algorithm on a gate-based quantum computer requires 
Hamiltonian simulation, which can increase the computational complexity and/or re-introduce 
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large ancillas. We chose to initially investigate the numerical performance using QuTiP, which is 
designed for simulating Hamiltonian dynamics using classical differential equation solvers.  
We build upon our results from this implementation in order to implement the same algorithm in 
Qiskit, using Hamiltonian simulation to transform the adiabatic evolution to gate-based evolution 
(see Section 3.3.2). The QuTiP implementation allows us to explore and streamline the structure 
of the Subasi et al. algorithm but cannot be run on a gate-based quantum computer. The Qiskit 
implementation explores the additional challenges that arise when implementing this algorithm 
on near-term devices. 
The distinctive features of the Subasi et al. algorithm are as follows: 

1. The choice of Hamiltonian family 𝐻𝐻(𝑠𝑠) ≡ 𝐴𝐴(𝑠𝑠) 𝑃𝑃𝑏𝑏⊥ 𝐴𝐴(𝑠𝑠), where 𝐴𝐴(𝑠𝑠) ≡ (1 − 𝑠𝑠)𝑍𝑍⊗ 𝐼𝐼 +
𝑠𝑠𝑋𝑋 ⊗ 𝐴𝐴 and 𝑃𝑃𝑏𝑏⊥ ≡ 𝐼𝐼 − |+,𝑏𝑏⟩⟨+, 𝑏𝑏|. By stepping through 𝑠𝑠 ∈ [0, 1] slowly enough to
ensure adiabaticity, this evolves the initial ground state |−, 𝑏𝑏⟩ at 𝑠𝑠 = 0 to the desired final
state |+, 𝑥𝑥⟩ at 𝑠𝑠 = 1. The single ancilla qubit ensures that 𝐴𝐴(𝑠𝑠) remains non-singular
throughout the evolution.

2. The choice of schedule 𝑠𝑠(𝑣𝑣) for evenly-spaced 𝑣𝑣. The chosen Hamiltonian family has a
monotonically decreasing gap between the ground state and the first excited state, so
choosing to take smaller steps in 𝑠𝑠 as 𝑠𝑠 approaches 1 minimizes the chances of adiabatic
transition occurring.

3. Usage of the randomization method (RM). At each step the system is evolved under the
Hamiltonian 𝐻𝐻𝑖𝑖 = 𝐻𝐻(𝑠𝑠(𝑣𝑣𝑖𝑖)) for a time Δ𝑡𝑡𝑖𝑖 chosen randomly from [0, 2𝜋𝜋

spectral gap
]. The 

entire evolution is run multiple times and averaged to obtain an output density matrix 
approximating the target state. 

We and others [38] suspect that the value of the Subasi et al. algorithm lies entirely in the first 
two points, and RM adds little to no benefit other than easing analysis. Indeed, one can show that 
in terms of quantum state fidelity, RM is only as good as its best individual run. 
In order to explore the value of RM, we implemented the Subasi et al. algorithm and several 
variations using QuTiP. An overview of this implementation is included here; for further details 
see delivered supplementary information. 

a) Generate a linear system 𝐴𝐴�⃗�𝑥 = 𝑏𝑏�⃗  to solve. The project code randomly generates a 2𝑛𝑛 ×
2𝑛𝑛 Hermitian matrix 𝐴𝐴 that is sparse, has norm 1, and has a user-specified condition
number.  Similarly, 𝑏𝑏�⃗  is a randomly generated sparse vector of length 2𝑛𝑛.

b) Produce a solution strategy 𝐻𝐻(𝑡𝑡) according to the chosen algorithm variation. The
resulting time-dependent Hamiltonian is a stepwise constant function of time. The total
runtime depends on the choice of algorithm variation and on random step length
selection.  The algorithm variations we considered are:

i. Unmodified RM with 𝑛𝑛𝑟𝑟𝑒𝑒𝑟𝑟 repetitions.
ii. Match the average total RM runtime: a single long run with deterministic time

steps Δ𝑡𝑡𝑖𝑖 = 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝜋𝜋
spectral gap

 . 
iii. Match the maximum single-run RM runtime: Δ𝑡𝑡𝑖𝑖 =  max

RM runs
Δ𝑡𝑡𝑖𝑖,𝑅𝑅𝑅𝑅. 

iv. A single run of RM.
c) Evolve the state under 𝐻𝐻(𝑡𝑡) using the QuTiP master equation solver.
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d) Investigate how the chosen variation impacts the distance of the output state from the
target state.

3.3.2 Implementation and Exploration of the Subasi et al. Algorithm in Qiskit.  
The quantum linear system problem is the analog of a classical linear system problem, in which 
one aims to, given a matrix A and state |𝑏𝑏⟩, prepare a state |𝑥𝑥⟩ such that 𝐴𝐴|𝑥𝑥⟩ = |𝑏𝑏⟩. Here A ∈
CNXN, |𝑏𝑏⟩  ∈ CN, and 𝑁𝑁 = 2𝑛𝑛.  
This task can be framed as setting up an appropriate adiabatic evolution, with respect to some 
time-dependent Hamiltonian:  

𝐻𝐻(𝑠𝑠) = �1 − 𝑓𝑓(𝑠𝑠)�𝐻𝐻𝑜𝑜 +  𝑓𝑓(𝑠𝑠)𝐻𝐻1 (6) 

where 𝑓𝑓(𝑠𝑠) ∈ [0,1] when 𝑠𝑠 ∈ [0,1]. A popular choice is 𝑓𝑓(𝑠𝑠) = 𝑠𝑠. We consider A to be Hermitian, 
positive definite, with ‖𝐴𝐴‖2 = 1, and |𝑏𝑏⟩ is assumed to be a unit vector.  
QLSP has 

𝐻𝐻𝑜𝑜 = 𝜎𝜎𝑥𝑥 ⊗ 𝑄𝑄𝑏𝑏 (7) 
where 

𝑄𝑄𝑏𝑏 = 𝐼𝐼𝑁𝑁 − |𝑏𝑏⟩⟨𝑏𝑏| (8) 
and 

𝐻𝐻1 = 𝜎𝜎+ ⊗ 𝐴𝐴𝑄𝑄𝑏𝑏 + 𝜎𝜎− ⊗ 𝑄𝑄𝑏𝑏𝐴𝐴 (9)  
where 

𝜎𝜎± =
1
2
�𝜎𝜎𝑥𝑥 ± 𝑖𝑖𝜎𝜎𝑥𝑥� (10) 

The time evolution of 𝐻𝐻(𝑠𝑠) is governed by Schrodinger equation 
1
𝑇𝑇
𝑖𝑖𝜕𝜕𝑠𝑠|𝜓𝜓𝑇𝑇(𝑠𝑠)⟩ = 𝐻𝐻(𝑠𝑠)|𝜓𝜓𝑇𝑇(𝑠𝑠)⟩,   |𝜓𝜓𝑇𝑇(0)⟩ = |0, 𝑏𝑏⟩ (11) 

where 0 ≤ 𝑠𝑠 ≤ 1 and 𝑇𝑇 is the evolution time. 
Here we provide a brief overview of the QLSP adaptation to the quantum approximate 
optimization algorithm (QAOA). Note that one can always divide the evolution range 𝑠𝑠 ∈ [0,1] 
into small enough bins 𝛥𝛥𝑠𝑠. For each bin, 𝐻𝐻(𝑠𝑠) can be considered a constant. Hence, the total 
time evolution can be decomposed into smaller pieces 𝑒𝑒−𝑖𝑖𝑇𝑇𝑖𝑖𝑠𝑠𝑖𝑖(𝑖𝑖𝑠𝑠) using Trotter formula. QAOA 
style algorithms use this well-known decomposition approach to carry out the evolution using 𝑠𝑠 
steps.   

|𝜓𝜓⟩ = 𝑒𝑒−𝑖𝑖𝛽𝛽𝑟𝑟𝑖𝑖𝑜𝑜𝑒𝑒−𝑖𝑖𝛾𝛾𝑟𝑟𝑖𝑖1𝑒𝑒−𝑖𝑖𝛽𝛽𝑟𝑟−1𝑖𝑖𝑜𝑜𝑒𝑒−𝑖𝑖𝛾𝛾𝑟𝑟−1𝑖𝑖1 … … 𝑒𝑒−𝑖𝑖𝛽𝛽1𝑖𝑖𝑜𝑜𝑒𝑒−𝑖𝑖𝛾𝛾1𝑖𝑖1  |0, 𝑏𝑏⟩ (12) 

Approved for Public Release; Distribution Unlimited. 



11 

where {𝛾𝛾𝑖𝑖,𝛽𝛽𝑖𝑖}𝑖𝑖=1𝑃𝑃  is the set of rotations employed at each step 𝑖𝑖. 
To implement such a scheme on the short depth circuits available to us on near-term devices, 
usually 𝑠𝑠 is set equal to 1. Under this situation, one attempts to find optimal angles 𝛽𝛽𝑜𝑜𝑟𝑟𝑜𝑜, 𝛾𝛾𝑜𝑜𝑟𝑟𝑜𝑜, 
using a classical algorithm, which minimizes a suitable objective function encoding the 
proximity of 𝜓𝜓(𝛽𝛽, 𝛾𝛾) to the solution |𝑥𝑥⟩. For the QLSP problem, different choices are available 
for the objective function [38]. Our implementation uses |⟨𝜓𝜓(𝛽𝛽, 𝛾𝛾)|𝐻𝐻1|𝜓𝜓(𝛽𝛽, 𝛾𝛾)⟩|2 as the 
objective function to minimize which is equivalent to maximizing fidelity |⟨𝜓𝜓(𝛽𝛽, 𝛾𝛾)|𝑏𝑏⟩|2 [38]. 
Implementation of such a scheme involves four basic components: 

a) A circuit for the preparation of state |𝑏𝑏⟩ 

b) Circuits for the two rotations 𝑒𝑒−𝑖𝑖𝛽𝛽𝑖𝑖𝑜𝑜 and 𝑒𝑒−𝑖𝑖𝛾𝛾𝑖𝑖1 

c) A circuit for the computation of objective function  |⟨𝜓𝜓(𝛽𝛽, 𝛾𝛾)|𝐻𝐻1|𝜓𝜓(𝛽𝛽, 𝛾𝛾)⟩|2 

d) A classical optimization routine to find optimal angles 𝛽𝛽𝑜𝑜𝑟𝑟𝑜𝑜 and 𝛾𝛾𝑜𝑜𝑟𝑟𝑜𝑜 

Steps (a), (b), and (d) can be easily implemented using the tools provided in Qiskit and are 
detailed in the project supplementary information. Circuit implementation of the objective 
function is somewhat non-trivial and is described in detail here. 
A popular algorithm, the Hadamard test [39] is used to compute expectation values of the form 
⟨𝜓𝜓|𝑈𝑈|𝜓𝜓⟩ using a quantum circuit, where 𝑈𝑈 is an arbitrary unitary, as represented by the circuit in 
Figure 2 .  

Figure 2: Circuit of Hadamard Test 

The top wire is the control wire and the first 𝐻𝐻 gate applied to the state |0⟩ prepares the state 
𝐻𝐻|0⟩ =  1

√2
(|0⟩ + |1⟩). Then, considering both wires, one has the state 1

√2
(|0⟩ + |1⟩)|𝜓𝜓⟩.  

The controlled unitary implements the transformation: 
1
√2

(|0⟩ + |1⟩)|𝜓𝜓⟩ ↦
1
√2

(|0⟩|𝜓𝜓⟩ +|1⟩(𝑈𝑈|𝜓𝜓⟩)) (13) 

The final Hadamard gate on the control wire, gives:  
1
√2

(|0⟩ +|1⟩ 𝑈𝑈|𝜓𝜓⟩) ↦  
1
2

|0⟩(𝑈𝑈 + 𝐼𝐼)|𝜓𝜓⟩ +
1
2

|1⟩(𝑈𝑈 − 𝐼𝐼)|𝜓𝜓⟩               (14) 

Approved for Public Release; Distribution Unlimited. 



12 
 

Measurements on the control wire produce |1⟩ with P(1), allowing us to calculate ℜ(⟨𝜓𝜓|𝑈𝑈|𝜓𝜓⟩) =
1 − 2𝑃𝑃(1). Similarly, if instead of the initial Hadamard gate we introduce a unitary on the 
control wire that maps |0⟩ ↦ 1

 √2
(|0⟩ − 𝑖𝑖|1⟩), the same procedure yields ℑ(⟨𝜓𝜓|𝑈𝑈|𝜓𝜓⟩). With both 

real and imaginary components in hand, one can determine ⟨𝜓𝜓|𝑈𝑈|𝜓𝜓⟩. 

Our implementation requires us to compute ⟨𝜓𝜓(𝛽𝛽, 𝛾𝛾)|𝐻𝐻1|𝜓𝜓(𝛽𝛽, 𝛾𝛾)⟩. We can do so by expressing 
𝐻𝐻1 = ∑ 𝑐𝑐𝑗𝑗 ⊗𝑖𝑖=1

𝑛𝑛𝑚𝑚
𝑗𝑗=1 𝑔𝑔𝑖𝑖𝑘𝑘 where 𝑔𝑔𝑘𝑘 ∈ {𝐼𝐼,𝜎𝜎𝑥𝑥,𝜎𝜎𝑥𝑥,𝜎𝜎𝑥𝑥} are Pauli matrices and 𝑐𝑐𝑖𝑖 ∈  ℝ. We can measure 

each unitary 𝑈𝑈𝑖𝑖 = 𝑐𝑐𝑖𝑖{⊗𝑔𝑔} separately with a Hadamard test. All the expectation values are then 
summed together  

⟨𝜓𝜓(𝛽𝛽, 𝛾𝛾)|𝐻𝐻1|𝜓𝜓(𝛽𝛽, 𝛾𝛾)⟩ = �𝑐𝑐𝑖𝑖⟨𝜓𝜓(𝛽𝛽, 𝛾𝛾)|𝑈𝑈𝑖𝑖|𝜓𝜓(𝛽𝛽, 𝛾𝛾)⟩
𝑛𝑛

𝑖𝑖=1

 (15) 

to compute  
⟨𝜓𝜓(𝛽𝛽, 𝛾𝛾)|𝐻𝐻1|𝜓𝜓(𝛽𝛽, 𝛾𝛾)⟩ (16) 

 
3.4 Detailed Implementation of the Lin and Tong Algorithm 
Lin and Tong’s algorithm (LT) [2]  combines two independent steps, adiabatic evolution and 
eigenstate filtering, in such a way as to eliminate the sources of sub-optimal scaling in each 
approach. A fully adiabatic approach, such as Subasi et al.’s, scales sub-optimally with 𝜖𝜖, a 
measure of how close the output state is to the correct “target” state. LT introduces eigenstate 
filtering to improve scaling with 𝜖𝜖. Although able to strengthen convergence, eigenstate filtering 
on a generic initial state uses amplitude amplification for the algorithm to succeed with 𝒪𝒪(1) 
probability, which scales poorly in the condition number 𝜅𝜅. LT avoids both issues by using an 
adiabatic process to prepare a state with 𝒪𝒪(1) overlap with the target state, then using eigenstate 
filtering to decrease the error below 𝜖𝜖.  
As a first step towards a full gate-based implementation, and in order to numerically explore the 
performance of LT, we implement it in QuTiP, the code for which was presented to AFRL with 
this deliverable. This allows us to leverage QuTiP’s state-of-the-art classical time evolution for 
the adiabatic step of LT.   
Generation of problem instances and the adiabatic part are quite similar to the implementation of 
Subasi et al.’s algorithm discussed in Section 3.3.1. Note in particular that the matrix 𝐴𝐴 to be 
inverted is 𝑑𝑑-sparse. We focus here on the implementation of the eigenstate filtering phase. 
The target state is a null eigenstate of the final Hamiltonian of the adiabatic step,  

𝐻𝐻1 = � 0 𝐴𝐴𝑄𝑄𝑏𝑏
𝑄𝑄𝑏𝑏𝐴𝐴 0 �  with 𝑄𝑄𝑏𝑏 = (𝐼𝐼 − |𝑏𝑏⟩⟨𝑏𝑏|). We can filter out the unwanted components of the 

prepared state with an appropriately chosen polynomial 𝑃𝑃(𝑥𝑥), concentrated near the origin, such 
that 𝑃𝑃(𝐻𝐻1) approximates a projector onto the null eigenspace. The optimal filtering polynomial 
satisfying all necessary conditions is a function of Chebyshev polynomials 𝑇𝑇ℓ(𝑥𝑥): 

𝑅𝑅ℓ(𝑥𝑥;Δ) =
(−1)ℓ

𝑇𝑇ℓ �
1 + Δ2
1 − Δ2�

𝑇𝑇ℓ �2�
𝑥𝑥2 − Δ2

1 − Δ2
� − 1�  (17) 
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This is a degree-2ℓ even polynomial such that 𝑅𝑅ℓ(𝐻𝐻1;Δ) approximates a projector onto the null 
eigenspace for large enough ℓ. That is, �𝑅𝑅ℓ �

𝑖𝑖1
𝑑𝑑

; 1
𝜅𝜅𝑑𝑑
� − 𝑃𝑃0�

2
≤ 𝑒𝑒−√2ℓ/κd.

Calculating a function of a quantum operator, like 𝑅𝑅ℓ(𝐻𝐻1;Δ), can be accomplished by means of 
singular value transformation [40]. The first step of this procedure is to block-encode the 
operator as the top-left block of a unitary matrix, which can then be used as a quantum gate. 

3.4.1 Block-encoding 𝐇𝐇𝟏𝟏. 
An (𝑚𝑚 + 𝑛𝑛)-qubit unitary matrix 𝑈𝑈 is an (𝛼𝛼,𝑚𝑚, 𝜖𝜖)-block-encoding of an 𝑛𝑛-qubit operator 𝑀𝑀 if 
the upper-left block of 𝑈𝑈 is 𝜖𝜖-close to 𝑀𝑀 𝛼𝛼⁄ . That is, at the cost of 𝑚𝑚 ancilla qubits and error 𝜖𝜖, a 
non-unitary matrix 𝑀𝑀 can be used as an (𝑚𝑚 + 𝑛𝑛)-qubit quantum gate. Using various techniques 
to block-encode and combine block-encodings of the parts of 𝐻𝐻1, we produce a (𝑑𝑑,𝑛𝑛 + 4,0)-
block-encoding 𝑈𝑈𝑖𝑖 of the final Hamiltonian. 

Note that 𝐻𝐻1 = (controlled 𝑄𝑄𝑏𝑏)(𝑋𝑋⊗ 𝐴𝐴)(controlled 𝑄𝑄𝑏𝑏), so 𝑈𝑈𝑖𝑖 can be created from block-
encodings 𝑈𝑈𝑏𝑏 of controlled 𝑄𝑄𝑏𝑏 and 𝑈𝑈𝐴𝐴 of 𝑋𝑋⊗ 𝐴𝐴 using the rule for block-encoded matrix 
products as shown in Figure 3. 

Figure 3: Creating UH from Block-encodings Ub and UA 

The operator 𝑄𝑄𝑏𝑏 can be written as a unitary matrix 𝑅𝑅𝑏𝑏 = 𝐼𝐼 − 2|𝑏𝑏⟩⟨𝑏𝑏| plus a constant times the 
identity matrix, so the following circuit gives a (1,1,0)-block-encoding of 𝑄𝑄𝑏𝑏 as shown in Figure 
4. 

Figure 4: (1,1,0)-Block-encoding of Qb 

This can be modified to block-encode controlled 𝑄𝑄𝑏𝑏 by controlling all gates in the circuit on the 
appropriate qubit as shown in Figure 5. 
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Figure 5: Block-encoding of Controlled Qb  

Since 𝐴𝐴 is a 𝑑𝑑-sparse matrix, it can be block-encoded using the method for sparse matrices, 
yielding a (𝑑𝑑,𝑛𝑛 + 2,0)-block-encoding with the use of a sparse-access oracle 𝑂𝑂𝑅𝑅 as shown in 
Figure 6. 
 

 
Figure 6: Block-encoding of A 

We can modify this circuit to get a block-encoding of 𝑋𝑋⊗ 𝐴𝐴 by simply acting an 𝑋𝑋 gate on the 
appropriate qubit, as shown in Figure 7. 
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Figure 7: Block-encoding of 𝑿𝑿⊗𝑨𝑨 

Thus, at the cost of subnormalizing 𝐻𝐻1 by a factor of the density of the matrix and introducing 
𝑛𝑛 + 2 ancilla qubits, we can calculate the desired filtering polynomial using singular value 
transformation. 

3.4.2 Singular Value Transformation. 
We can calculate a degree-𝑑𝑑 polynomial 𝑃𝑃(𝑀𝑀) of a Hermitian matrix 𝑀𝑀 using 𝑑𝑑 applications of 
the block-encoded version 𝑈𝑈𝑅𝑅. It requires finding the appropriate phase factors 𝜙𝜙1, … ,𝜙𝜙𝑑𝑑 
corresponding to the chosen polynomial with Π a projector onto the zero state of the ancillas as 
shown in Figure 8. 
 

 
Figure 8: Singular Value Transformation of a Block-encoded Matrix 

LT approximate these phase factors with a numerically unstable classical subroutine.  We seek 
an analytic expression for the phase factors resulting from the filtering polynomial 𝑅𝑅ℓ(𝑥𝑥;Δ). In 
order to find the exact phase factors, the steps are as follows: 

Step 1: Find the roots of the degree-4ℓ polynomial 𝐴𝐴(𝑥𝑥) ≡ 1 − 𝑅𝑅ℓ2(𝑥𝑥;Δ).  𝐴𝐴(𝑥𝑥) is an even, real 
polynomial so it suffices to list only the roots with non-negative real and imaginary parts. These 
can be split into the multisets: 

𝑆𝑆0 = {0, 0}, (18)  

𝑆𝑆[1,∞) = ��1 + Δ2� , (19) 

 

𝑆𝑆𝐶𝐶 = {𝑠𝑠𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛 ∶  𝑛𝑛 = 1, … , ℓ − 1} (20) 
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with  

𝑠𝑠𝑛𝑛2 =
1
2

(1 + Δ2) sin �
𝑛𝑛𝑛𝑛
2ℓ
��sin �

𝑛𝑛𝑛𝑛
2ℓ
� + �1 − �

1 − Δ2

1 + Δ2
�
2

cos2 �
𝑛𝑛𝑛𝑛
2ℓ
��  (21) 

 and  

𝑏𝑏𝑛𝑛2 =
1
2

(1 + Δ2) sin �
𝑛𝑛𝑛𝑛
2ℓ
��−sin �

𝑛𝑛𝑛𝑛
2ℓ
� + �1 − �

1 − Δ2

1 + Δ2
�
2

cos2 �
𝑛𝑛𝑛𝑛
2ℓ
��  (22) 

 
Step 2: We can use these roots to generate a function 𝑊𝑊(𝑥𝑥) such that 𝐴𝐴(𝑥𝑥) = 𝑊𝑊(𝑥𝑥)𝑊𝑊∗(𝑥𝑥).  Using 
our results from Equations 18 - 22: 

𝑊𝑊(𝑥𝑥) = 𝐾𝐾𝑥𝑥 �Δ𝑥𝑥 + 𝑖𝑖�1 − 𝑥𝑥2�1 + Δ2��𝑄𝑄𝑛𝑛(𝑥𝑥)
ℓ−1

𝑛𝑛=1

(23) 

where 𝐾𝐾 is a real constant and 

𝑄𝑄𝑛𝑛(𝑥𝑥) ≡ 𝑐𝑐𝑛𝑛𝑥𝑥2 − (𝑠𝑠𝑛𝑛2 + 𝑏𝑏𝑛𝑛2) + 𝑖𝑖�1 − 𝑥𝑥2�𝑐𝑐𝑛𝑛2 − 1 𝑥𝑥 (24) 

 with  

𝑐𝑐𝑛𝑛 ≡ 𝑠𝑠𝑛𝑛2 + 𝑏𝑏𝑛𝑛2 + �(𝑠𝑠𝑛𝑛2 + 𝑏𝑏𝑛𝑛2)2 − 2(𝑠𝑠𝑛𝑛2 − 𝑏𝑏𝑛𝑛2) + 1 (25) 

 

𝑊𝑊(𝑥𝑥) has the form 𝐵𝐵(𝑥𝑥) + 𝑖𝑖√1 − 𝑥𝑥2𝐶𝐶(𝑥𝑥), where 𝐵𝐵(𝑥𝑥) and 𝐶𝐶(𝑥𝑥) are polynomials. 

Step 3: Define complex polynomials 𝑃𝑃(𝑥𝑥) = 𝑅𝑅ℓ(𝑥𝑥;Δ) + 𝑖𝑖𝐵𝐵(𝑥𝑥) and 𝑄𝑄(𝑥𝑥) = 𝑖𝑖𝐶𝐶(𝑥𝑥).  𝑃𝑃(𝑥𝑥) is then a 
degree-2ℓ even polynomial, 𝑄𝑄(𝑥𝑥) is a degree-(2ℓ − 1) odd polynomial, and |𝑃𝑃(𝑥𝑥)|2 +
(1 − 𝑥𝑥2)|𝑄𝑄(𝑥𝑥)|2 = 1.   

Step 4: Complex polynomials satisfying the conditions in step 2 allow us to calculate modified 
phase factors 𝜙𝜙�0, … ,𝜙𝜙�2ℓ.  For 𝑃𝑃(0)(𝑥𝑥) = 𝑃𝑃(𝑥𝑥) and 𝑄𝑄(0)(𝑥𝑥) = 𝑄𝑄(𝑥𝑥), the procedure is: 

a. Starting from 𝑚𝑚 = 0, define 𝜙𝜙�2ℓ−𝑚𝑚 by 

𝑒𝑒2𝑖𝑖𝜙𝜙�2ℓ−𝑚𝑚 =
coefficient 𝑠𝑠2ℓ−𝑚𝑚 of highest-order term in 𝑃𝑃(𝑚𝑚)(𝑥𝑥)

coefficient 𝑞𝑞2ℓ−𝑚𝑚−1 of highest-order term in 𝑄𝑄(𝑚𝑚)(𝑥𝑥)
 (26) 

 

b. Eliminate the highest-order terms in 𝑃𝑃(𝑚𝑚)(𝑥𝑥) and 𝑄𝑄(𝑚𝑚)(𝑥𝑥) by defining: 
𝑃𝑃(𝑚𝑚+1)(𝑥𝑥) = 𝑒𝑒−𝑖𝑖𝜙𝜙�2ℓ−𝑚𝑚 �𝑥𝑥𝑃𝑃(𝑚𝑚)(𝑥𝑥) + 𝑒𝑒2𝑖𝑖𝜙𝜙�2ℓ−𝑚𝑚(1 − 𝑥𝑥2)𝑄𝑄(𝑚𝑚)(𝑥𝑥)�  (27) 

 
and 

𝑄𝑄(𝑚𝑚+1)(𝑥𝑥) = 𝑒𝑒−𝑖𝑖𝜙𝜙�2ℓ−𝑚𝑚 �𝑒𝑒2𝑖𝑖𝜙𝜙�2ℓ−𝑚𝑚𝑥𝑥𝑄𝑄(𝑚𝑚)(𝑥𝑥) − 𝑃𝑃(𝑚𝑚)(𝑥𝑥)�  (28) 
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c. Repeat steps a and b for 𝑚𝑚 = 0, 1, … ,2ℓ − 1. 
d. Finally, define 𝜙𝜙�0 by 𝑃𝑃(𝑥𝑥) = 𝑒𝑒𝑖𝑖𝜙𝜙�0. 

Step 5: The correct phase factors are related to the modified phase factors by 𝜙𝜙1 = 𝜙𝜙�0 + 𝜙𝜙�2ℓ +
(2ℓ − 1) 𝜋𝜋

2
 and 𝜙𝜙𝑗𝑗≠1 = 𝜙𝜙�𝑗𝑗−1 −

𝜋𝜋
2
. 

 

4 RESULTS AND DISCUSSION 
Our results for the theoretical exploration of quantum walks and known obstructions to classical 
computers can be found in sections 3.1 and 3.2. In reflection of the three, separate, computational 
efforts with regards to QLSP – the QuTiP implementation of the Subasi et al (Section 3.3.1), 
algorithm, the Qiskit implementation of the Subasi et al. algorithm (Section 3.3.2), and the 
QuTip implementation of the Lin and Tong algorithm (Section 3.4) – results and discussion on 
the theoretical and computational examination of QLSP will be divided into three parts. 

4.1 Results of Quantum Walks 
Presently, we have utilized Piddock’s approach, which builds upon our own, to design a faster 
backtracking method based on effective resistance estimates. Additionally, we have improved 
upon these results by reducing the dependence upon the number of marked states. Although our 
improvement provides us with a significant advantage in the case that there are exponentially 
many marked states, it is presently insufficient to improve asymptotic scaling beyond Piddock’s 
𝑂𝑂�√𝑇𝑇𝑅𝑅log (𝑀𝑀)� when that restriction is relaxed. Improving upon this logarithmic term using 
Piddock’s method, which with our present understanding is critical to using local operations to 
search unknown graphs, still seems possible. We believe that using similar methods to the 
classical/quantum hybrid approach we currently pursue will be able to eliminate the logarithmic 
factor, but a specific algorithm remains elusive. 
An additional roadblock to the development of optimal local query algorithms is the requirement 
for the upper bound 𝑇𝑇. A method for estimating 𝑇𝑇 was previously developed by Ambainis and 
Kokainis [13]. We have made substantial progress in understanding their method and have 
shown that many of their statements (slightly generalized) are still true on general graphs. At 
present, we are generalizing this method and aim to merge it with the JW/Piddock approach to 
obtain what is ultimately an optimal algorithm. We have reason to believe that, since 2𝑇𝑇𝑅𝑅 
corresponds to the classical commute time between two vertices in a graph and the classical 
random walk algorithm for estimating the commute time is somewhat trivial, there may be a 
quantum algorithm for directly estimating commute time as well. Such an algorithm, which we 
are presently pursuing, may provide a provably optimal quantum algorithm for local query type 
search. 

4.2 Results of Classical Separation 
We mapped 𝐻𝐻 to the graph sample from the ground state of 𝐻𝐻. In particular, we rely on three 
subroutines that combine to produce appropriate samples of the ground state of 𝐻𝐻. These 
subroutines will be featured in a manuscript that is pending review and will be made available to 
AFRL upon project completion.  

Algorithm 1 takes as a seed a random vertex 𝑣𝑣 ∈ 𝑉𝑉 and prepares an empty list of vertices 𝐿𝐿 = ∅. 
For each neighbor 𝑢𝑢 of 𝑣𝑣, Algorithm 1 compares 𝑢𝑢 to each member of 𝑙𝑙 ∈ 𝐿𝐿 and uses a method 
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FindRepresentative to determine whether there exists a color-preserving automorphism 𝑓𝑓 such 
that 𝑓𝑓(𝑢𝑢) = 𝑙𝑙. If there does not exist such an 𝑓𝑓, then Algorithm 1 adds 𝑢𝑢 to 𝐿𝐿. Algorithm 1 calls 
itself recursively and, eventually, returns the list 𝐿𝐿. 

If the automorphism group is sufficiently large and FindRepresentative is efficient, then 𝐿𝐿 
returned by Algorithm 1 consists of at most 𝑂𝑂(𝑠𝑠𝑝𝑝𝑙𝑙𝑦𝑦(𝑛𝑛)) many vertices which are unique 
representatives of each equivalence class defined over color-preserving automorphisms. (That is, 
for all pairs (𝑙𝑙, 𝑙𝑙′) ∈ 𝐿𝐿 × 𝐿𝐿, there does not exist a color-preserving automorphism such that 
𝑓𝑓(𝑙𝑙) = 𝑙𝑙’.) 

Algorithm 2 uses Algorithm 1 to find an effective subspace graph. By beginning with 𝐿𝐿 returned 
by Algorithm 1, Algorithm 2 builds an effective graph by querying the weights in 𝐺𝐺 of all edges 
connected to each member of 𝐿𝐿. Algorithm 2 then returns the effective graph 𝐺𝐺′. 

Finally, Algorithm 3 takes as input 𝐺𝐺′ = (𝑉𝑉′,𝐸𝐸′) and, using standard polynomial-time 
algorithms, produces the ground state 𝑓𝑓:𝑉𝑉′ → [0,1] of a corresponding Laplacian matrix with 
appropriate boundary constraints. Then, Algorithm 3 returns a vertex 𝑣𝑣 ∈ 𝑉𝑉′ with probability 
𝑓𝑓(𝑣𝑣)2. 

The most difficult subroutine in this process is FindRepresentative. To do this, we convert our 
color mapping to a clausal theory, which in turn has a natural graph representation, and apply 
Babai’s graph isomorphism algorithm [32] to implement FindRepresentative in quasipolynomial 
time. We are presently checking that our analysis in terms of clausal theories is indeed correct 
and intend to publish this work in the near future. 

4.3 Results from Exploring QLSP 
4.3.1 Results from Implementation and Exploration of the Subasi et al. Algorithm in 

QuTiP. 
Numerical results indicated minimal value added by the RM, as we suspected. Figure 9 shows 
trace distance from the target state versus step number (each change in Hamiltonian is one step) 
for the unmodified RM and two other variations dependent upon the total number of RM 
repetitions. The three algorithms reach similar final errors, with the randomization method 
consistently performing slightly better.  However, a larger number of repetitions does not appear 
to improve the performance of the RM. Further investigation showed that the slightly better 
performance of the RM versus its variations vanishes when we use fidelity, rather than trace 
distance, to measure performance. The performance improvement can be shown analytically to 
be simply a feature of the difference between fidelity and trace distance when comparing an 
average of multiple runs to a pure target state. 

Consider a set of 𝑁𝑁 runs that produces output states |𝜓𝜓𝑖𝑖⟩ which approximate a target state |𝑡𝑡⟩.  
The fidelity between the 𝑖𝑖th run and the target state is 𝐹𝐹𝑖𝑖 = |⟨𝑡𝑡|𝜓𝜓𝑖𝑖⟩| and similarly the trace 

distance is 𝐷𝐷𝑖𝑖 = �1 − 𝐹𝐹𝑖𝑖2, since both states are pure. The trace distance between individual runs 

can also be defined as follows: 

𝐷𝐷𝑖𝑖𝑗𝑗 = �1 − ��𝜓𝜓𝑖𝑖�𝜓𝜓𝑗𝑗��
2

  (29) 
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Figure 9: Comparison of RM and Algorithm Variations for Several Choices of Number of 

Repetitions 

The average of all runs, defined by 𝜌𝜌avg = 1
𝑁𝑁
∑ |𝜓𝜓𝑖𝑖⟩⟨𝜓𝜓𝑖𝑖|𝑁𝑁
𝑖𝑖=1 , can also be compared to the target 

state using fidelity 𝐹𝐹avg = �⟨𝑡𝑡|𝜌𝜌avg|𝑡𝑡⟩ and trace distance 𝐷𝐷avg = 1
2

Tr�𝜌𝜌avg − |𝑡𝑡⟩⟨𝑡𝑡|�. The distance 
between the average state and the target state is then related in a simple way to the distances of 
the individual runs from the target state and each other: 

𝐹𝐹avg = �
1
𝑁𝑁
�𝐹𝐹𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

 (30) 

𝐷𝐷avg = �
1
𝑁𝑁
�𝐷𝐷𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

−
1
𝑁𝑁2��

1
2
𝐷𝐷𝑖𝑖𝑗𝑗2

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

  (31) 

 

The important thing to note here is that there is an extra term in 𝐷𝐷avg that makes the average state 
closer to the target state when there is more scatter between individual runs. In terms of fidelity, 
however, it is impossible for the average state to attain better fidelity with the target state than 
the best individual run does: 𝐹𝐹𝑖𝑖 ≤ 𝐹𝐹best and thus 
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𝐹𝐹avg ≤ �1
𝑁𝑁

(𝑁𝑁𝐹𝐹best
2 ) = 𝐹𝐹best (32) 

 
These results are demonstrated in Figure 10.  Note that the fidelity of the average state is 
consistent with the average fidelity of a single run, while the trace distance of the average state is 
better than the best run. Tracing out the ancilla qubit makes all states less distinguishable in 
terms of both distance measures. This decreases the scatter between individual runs, thus 
bringing the trace distance of the average state closer to the average trace distance of a single 
run. Thus, we can conclude that the averaging procedure associated with RM does not add value 
to the algorithm.  
 

 
Figure 10: Performance of Individual RM Runs Compared to the Average of All Runs 

4.3.2 Results from Implementation and Exploration of the Subasi et al. Algorithm in Qiskit. 
We ran simulations on select example problems; one such case is included in the supplementary 
information. We noticed that setting number of QAOA steps 𝑠𝑠 = 1 is not always sufficient for 
the convergence of the classical optimization scheme. One must find a suitable 𝑠𝑠 >= 1 for a 
given problem instance. We also found that the algorithm, in some cases, requires multiple runs 
with different initializations in order to converge to the minima. Such aspects of QAOA in the 
context of QLSP require further research in order to develop a better understanding of the issue. 
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4.3.3 Results from the Detailed Implementation of Lin and Tong Algorithm. 
We produced a detailed implementation plan for LT, which can be used for future exploration of 
the algorithm’s performance at varying levels of abstraction.  We obtained an analytic expression 
for the roots of a high-degree polynomial, the calculation of which contributes to numerical 
instability in the original LT.  We are currently using this result to pursue an analytic expression 
or approximation for the phase factors used in eigenstate filtering, thus potentially producing a 
speedup polynomial in the degree 𝓵𝓵 and/or improvement in numerical stability of LT. 

 
5 CONCLUSIONS 
Over the course of this research effort, we have made exciting progress on several fronts of 
quantum algorithm development and implementation. This includes generalizing local query 
model quantum walk algorithms, and further illuminating the quantum-classical divide in the 
adiabatic model, as purely theoretical efforts, and extensive investigations of recent algorithms 
for the QLSP, which include both theoretical and implementation components. 
As is customary in research, in addition to our progress there have been necessary dead ends and 
pivoting, and we have been diligent about reporting these ups and downs to the AFRL algorithms 
team to advance the collective knowledge base. This has taken the form of regular seminars and 
conference calls. 
In the following subsections we offer more detailed concluding remarks on each of our research 
efforts.   

5.1 Conclusion from Quantum Walks 
Our research has led to an improved local query search algorithm, as well as numerous new 
avenues of investigation. In particular, we are presently investigating the possibility of either 
applying the methods of [13] to generic graphs or, more promisingly, designing a quantum 
algorithm that can directly measure commute time.  

5.2 Conclusion from Classical Separation 

The divergence in the 𝐿𝐿1 and 𝐿𝐿2 does not seem to provide a genuine obstruction to simulations of 
the adiabatic algorithm and, further, to generic simulations of the ground state of the 
Hamiltonians under consideration. In fact, our algorithm is efficient in cases where known 
quantum algorithms are expected to fail.  
Another interesting open question is whether the quasipolynomial time algorithm is necessary. 
That is, it remains unclear whether solving this problem is fully equivalent to solving graph 
isomorphism (GI). It does not appear that general GI reduces to solving our Hamiltonian 
problem, however it is indeed possible that the hardest cases of GI do. If indeed this is true, it 
may demonstrate a quasipolynomial separation between classical and quantum systems of this 
variety and partially solve a longstanding open question. We are aggressively looking into 
whether this is provable or, alternatively, whether a more efficient algorithm that precludes more 
than a polynomial time separation might exist.  
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5.3 Conclusions from QLSP 
Our work on circuit level QLSP simulations provides natural segue to actual implementation of 
such a scheme on the hardware. While developing the framework, we noticed several places 
where the gate set provided by Qiskit can be replaced by a more economical gate set, hence 
leading to the possibility of reduced circuit depths. Such gate customizations were avoided in the 
current work but would be necessary if one wants to run on the actual hardware.  
Current work opens up the possibility of using our implementation to study Hamiltonian 
simulations encountered in areas like chemistry and statistical physics. It will be important to 
understand the circuit size requirements and modifications needed to fit such problem instances 
on the hardware. Note that feasibility of such calculations on the hardware will depend heavily 
on hardware level noise and control errors and is another direction to be explored.        
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APPENDIX A: NOTE ON SOURCE CODE 
All source code has been submitted as a separate document to the client. 
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LIST OF ACRONYMS 
AFRL – Air Force Research Laboratory 
AI – Artificial intelligence 
AK – Ambainis and Kokainis 
DPLL – Davis-Putnam-Logemann-Loveland algorithm 
FPGA – Field programmable gate array 
GI – Graph isomorphism 
HHL – Quantum algorithm for linear systems problem developed by Aram Harrow, Avinatan 
Hassidim, and Seth Lloyd. 
JWP – Jarret and Wan/Piddock 
LT – Lin and Tong’s algorithm 
NISQ – Noisy intermediate-scale quantum 
PCB – Printed circuit board 
PMT – Photomultiplier 
QAOA – Quantum approximate optimization algorithm 
QED – Quantum electrodynamics 
QLSP – Quantum linear systems problem 
QML – Quantum machine learning 
RH – Relative humidity 
RM – Randomization method 
SAT – Boolean satisfiability 
VoIP – Voice over internet protocol 
Yb – Ytterbium, number 70 on the periodic table of the elements 
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