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1 Introduction 
According to recent worldwide sales figures reported by Gartner [1], Android is the most popular 
operating system (OS) when considering all general-purpose computing platforms (smartphones, 
tablets, laptops, and PCs). Mobile OSes such as Android introduce new security architectures 
designed with the experience of past lessons learned from traditional computing platforms. Most 
notably, Android provides a sandbox for applications (hereinafter “apps") which isolates app 
data and code execution from other apps [2]. Android places security controls on allowed 
interactions between apps, and between each app and underlying device resources. The Android 
security architecture is designed to provide protection from malicious app behaviors, and to 
increase resilience to prevent or minimize the impact of exploitation of security vulnerabilities. 
By default, apps cannot access data stored by another app, and are restricted from interfering 
with the behavior of another app. Apps must request permission to access device capabilities 
such as the microphone, camera, or physical location services, such as Global Positioning 
System (GPS). Apps also must request permission to access sensitive information repositories 
such as contact lists. Apps are also limited in their ability to access other underlying device 
resources and services. Every app must include a manifest file (AndroidManifest.xml) that 
defines the app’s permissions and other important properties. The contents of the manifest file 
are read and enforced by the Android OS. 
Nevertheless, opportunities for exploiting app security vulnerabilities exist. Several types of 
vulnerabilities are commonly found in Android apps. These vulnerabilities, when present, can be 
exploited by resident malicious apps or by network-based attackers. Additionally, malicious apps 
may attempt to exploit Android platform vulnerabilities as a means of bypassing Android’s 
sandbox protections. This report describes the results of our research efforts to mitigate these 
issues by: 

• Developing static analysis checks that allow app developers, security analysts, and app 
store operators to identify and eliminate common Android app vulnerabilities. 

• Enhancing the Android OS to prevent common vulnerabilities from being exploited, to 
prevent use of common malicious app attack patterns, and to improve the security 
services provided to apps. 

Our static analysis checks have been merged into the Android Open Source Project’s lint tool. 
They are present in the Android Studio 2.0 beta release and in the current beta release of the 
Android Plugin for Gradle. Our contribution has been noted in the Android Security 
Acknowledgements web page [46]. 
Enterprises are investing significant resources in app vetting personnel, tools, and techniques to 
determine whether apps are safe to deploy on their devices. Stronger understanding of the 
sandbox protections provided by the Android OS, and improvements to those protections where 
appropriate, will enable enterprises to efficiently allocate and prioritize their limited vetting 
resources based on the security protections already provided by the underlying device platform.  
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2 Addressing Android App Vulnerabilities with the Android Lint 
Checker 

The Android Open Source Project includes a free, open source Software Development Kit (SDK) 
typically used by software developers to create Android apps. The SDK contains a code scanning 
tool called lint [3]. Lint scans app code using defined rules and alerts the developer to potential 
issues (including, but not limited to, security issues). Lint is integrated into Android Studio and 
Eclipse, the primary graphical environments used by Android app developers. Lint is also 
integrated into command-line Android app development tools such as gradle and ant. Thus, 
placing checks for common app security vulnerabilities in lint enables developers to easily 
identify and correct security mistakes up-front in the app development lifecycle, minimizing 
security risks and costs. Lint can also be used by security assessors who have access to source 
code. 
We developed several new lint checks, discussed below, for common app security 
vulnerabilities. Our checks were accepted by the Android Open Source Project and are included 
in the Android Studio 2.0 beta release and in the current beta release of the Android Plugin for 
Gradle used by the Android SDK when compiling apps from the command line. Appendix A 
provides historical information, no longer needed, describing how to compile the checks as 
custom rules and incorporate them into the lint tool as a plugin. Appendix B provides details of 
an app with deliberately introduced vulnerabilities that we used to demonstrate the lint checks.  
Figure 1 shows an example of output from the lint tool reporting a vulnerable HostnameVerifier 
implementation (as described below in Section 2.1.1). In this example, the lint tool’s HyperText 
Markup Language (HTML) output is shown. Lint can also output EXtensible Markup Language 
(XML) or plaintext. 

 
Figure 1: Example Lint Output Reporting a Vulnerable HostnameVerifier Implementation 

 

2.1 App Data-in-Transit Vulnerabilities due to Insecure Certificate 
Validation or Hostname Validation 

Numerous efforts have documented common failures by Android apps to properly check X.509 
certificates while establishing Secure Socket Layer (SSL) and Transport Layer Security (TLS) 
sessions, making the network connections susceptible to man-in-the-middle (MITM) attacks: 

• Fahl, et al. [4] statically analyzed 13,500 popular free apps from the Google Play Store 
and found that 1,074 apps contain SSL specific code that either accepts all certificates, or 
accepts all hostnames for a certificate, and thus are vulnerable to MITM attacks. They 
performed a manual audit of 100 apps and found that 41 of those 100 were vulnerable to 
MITM attacks. 
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• Sounthiraraj, et al. [5] statically analyzed 23,418 apps from the Google Play Store to 
similarly search for TrustManager and HostnameVerifier issues, finding 1,453 
potentially vulnerable apps. They applied dynamic analysis to those apps and confirmed 
726 to be vulnerable to MITM attacks. 

• FireEye [6] reviewed “the 1,000 most-downloaded free apps in the Google Play Store as 
of July 17, 2014.” They found that of the 614 apps that use SSL/TLS to communicate 
with a remote server, 448 use TrustManagers that do not properly check certificates, 
and 50 use HostnameVerifiers that do not properly check hostnames. 

• Montelibano and Dormann [7] dynamically analyzed 1,000,500 Android apps using the 
CERT Tapioca tool, finding TLS-related vulnerabilities in 23,667 of the apps. 

Additionally, as described by Grace et al. [8], network communications are in some cases used 
by apps to dynamically download new code for the app to execute. Grace et al., found this 
behavior in advertising libraries embedded into mobile apps, meaning that the app developer 
may not even be aware of the functionality and its potential security impact. Successful MITM 
attacks could provide remote code execution ability, as demonstrated by Ryan Welton of 
NowSecure against a keyboard app running with system-level privileges on many Samsung 
devices [9]. 
Android’s standard TLS library uses implementations of the X509TrustManager Java class 
to perform certificate validation. By default, an OS-provided X509TrustManager class is 
used, but apps have the ability to define and use their own X509TrustManager. 
For example, app developers commonly, and legitimately, provide their own 
X509TrustManager to implement certificate pinning. Certificate pinning is the practice of 
defining a restricted list of trusted certificate authorities (CAs) for the app’s network connections 
rather than trusting all of the CAs in the default Android trust store. While this can prevent 
MITM attacks due to malicious certificates issued by rogue or compromised CAs, the risk of 
implementation mistakes increases when developers provide their own X509TrustManager 
instead of using the platform default implementation. 
Similarly, Android’s standard TLS library uses implementations of the HostnameVerifier 
Java class to ensure that the hostname asserted by the other endpoint’s X.509 certificate matches 
the expected value. By default, an OS-provided HostnameVerifier is used, but apps have 
the ability to define and use their own HostnameVerifier. Just as with 
X509TrustManager, the risk of implementation mistakes increases when developers provide 
their own HostnameVerifier implementation rather than use the platform default 
implementation.  
To guard against the use of X509TrustManager and HostnameVerifier 
implementations that bypass the desired security checks, we wrote 4 lint checks targeting trust 
management functionality. We wrote a lint check that identifies insecure X509TrustManager 
implementations whose checkServerTrusted or checkClientTrusted methods do 
nothing, thus causing any presented certificate chain to be trusted [10]. Acting on the suggestion 
of a Google engineer who reviewed our lint checks, we additionally also wrote a lint check for 
use of SSLCertificateSocketFactory.getInsecure(), which returns an 
SSLSocketFactory with certificate checks disabled [11]. We wrote a lint check that 
identifies insecure HostnameVerifier implementations whose verify method always returns 
true, thus trusting any hostname and making the connection susceptible to MITM attacks [12]. 
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We also wrote a lint check for use of 
SSLCertificateSocketFactory.createSocket() with an InetAddress (an IP 
address) as the first parameter rather than a DNS name, disabling hostname verification [11]. 

2.2 App Data-at-Rest Vulnerabilities due to Insecure File Permissions 
Each Android app has its own internal storage directory. Linux file permissions are supposed to 
prevent apps from reading or writing files in another app’s internal storage directory. However, 
an app may inadvertently set its file permissions to world-readable or world-writable, allowing 
other apps to read or manipulate the app’s private files. 
For example, file permission vulnerabilities were identified in the Skype app for Android in 2011 
[13]. Skype stored sensitive information including account information and contact list 
information as both world-readable and world-writable. 
More recently, NowSecure identified apps that store their own executable code with world-
writable permissions [14], allowing a malicious app to overwrite the executable code and achieve 
the ability to execute malicious code with the privileges of the vulnerable app. 
The Android SDK deprecated the ability for apps to use the Android 
MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE flags to set insecure file 
permissions, and strongly discourages this practice in the Android developer documentation. Lint 
checks already exist to detect use of these flags by app developers, but do not cover all of the 
applicable methods. We expanded the coverage of the MODE_WORLD_READABLE and 
MODE_WORLD_WRITEABLE lint checks [15], and additionally introduced checks for use of the 
java.io.File.setReadable() and java.io.File.setWritable() methods [16], 
which can also be used in Android to set file permissions. 

2.3 Broadcast Receiver Vulnerabilities 
Android provides Intents as a means of communication between applications. An Intent 
can be used to invoke an Android Activity, Service, or BroadcastReceiver. An 
Intent can be declared as either explicit or implicit. An explicit Intent declares the 
destination application and component within that application. An implicit Intent does not 
declare an exact destination, but rather declares an action string and other information. Potential 
destination applications declare Intent filters in their AndroidManifest.xml file for the types 
of Intents they would like to receive. The Android OS uses this information to determine 
which destination components to deliver an implicit Intent to. 

Android apps can define BroadcastReceiver components to receive and act upon 
broadcast intent messages sent from the Android OS or from other installed Android apps. We 
wrote lint checks to identify two common BroadcastReceiver vulnerabilities [17]. 

The first check identifies broadcast receivers that declare an Intent filter for a protected-
broadcast action string but fail to actually check the action string in received broadcast 
Intents. Intents containing protected-broadcast action strings can only be sent by Android 
OS components, not by third-party apps. However, if the receiver simply assumes that the 
received broadcast intent contains the protected-broadcast action string without actually 
checking, then as described by Chin et al. [18], a malicious third-party app can inject its own 
broadcast intent into the broadcast receiver. This issue likely originates due to app developers 
mistakenly believing that intent-filters declared in their app manifests act as a security 
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mechanism, when in reality intent-filters are only used by Android to resolve the 
destination of implicit Intents. Intent senders can use explicit Intents to attempt to deliver 
Intents to any destination regardless of intent-filter.  
The second check identifies broadcast receivers that declare an intent-filter for the 
SMS_DELIVER or SMS_RECEIVED action string but fail to ensure that the sender holds the 
BROADCAST_SMS permission. In these cases, a malicious third-party app can potentially inject 
broadcasts into the vulnerable app that would then be treated as if they were Short Message 
Service (SMS) messages received by the device [19]. This issue was mitigated beginning in 
Android 6.0 by adding the action strings to the protected-broadcast action string list [20] 
(however, if the receiver does not check the sender’s permission, then it must be sure to check 
the received intent’s action string). 

2.4 Best Practices for Native Code 
As a best practice, apps should place their native shared libraries in the “lib” directory within the 
app package. The Android package manager extracts these files into an app library directory in 
/data/app-lib that apps themselves cannot write to, forcing code updates to be distributed 
as updated app packages rather than permitting apps to directly modify their own code. The 
ability for apps to update their own code is an attack vector that has been observed in malicious 
apps and also a source of app security vulnerabilities, for example as described by [14]. 
Apps can use either the load method or loadLibrary method (in either the 
java.lang.Runtime class or the java.lang.System class) to load native code. The 
load method takes in an absolute path, allowing apps to load native code from any location. 
The loadLibrary path simply takes the library name itself and will only load libraries from 
authorized locations (the platform library locations /system/lib and /vendor/lib and the 
app’s library directory in /data/app-lib). 

We proposed a lint check to identify calls to java.lang.Runtime.load() and 
java.lang.System.load() and recommend the use instead of 
java.lang.Runtime.loadLibrary() and java.lang.System.loadLibrary() 
[50]. 
We additionally proposed a lint check to identify the presence of native code in the assets and 
res app build directories and recommend that the native code instead be placed so that it gets 
bundled into the compiled app package’s lib directory. 
These best practices, if followed by app developers, could improve the feasibility of removing 
the ability for apps to execute code in their internal storage directories in a future Android 
release. Our recommendations for this are described in more detail in Section 3.3.1. 
 

2.5 Demonstrating Effectiveness of Lint Checks 
The following sections discuss the effectiveness of the Android lint checks that we created for 
this effort. 

2.5.1 MITRE Secure Code Review Practice 
MITRE’s Secure Code Review Practice analyzes software code for security flaws at the request 
of MITRE project leaders. We applied the Android lint tool, including our new checks, to three 
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Android apps submitted for code review in 2015 and 2016. Lint enabled us to identify a number 
of security issues that we subsequently reported to the developers. 

2.5.2 F-Droid 
F-Droid [21] is a repository of open source Android apps. In April 2015, we ran the Android lint 
tool against 981 apps obtained from the repository1. Our new lint checks at the time (we 
developed additional checks since) identified potential security issues in 127 of the 981 apps. 
The combination of our lint checks and the security checks already included in the Android lint 
tool identified potential security issues in 568 of the 981 apps. 
As an example, we identified a BroadcastReceiver vulnerability in an app that displays 
received SMS messages. The app does not verify that the sender holds the BROADCAST_SMS 
permission. The app also does not check that the received broadcast intent actually contains the 
android.provider.Telephony.SMS_RECEIVED action string. As shown in Figure 2, 
we were able to demonstrate using a malicious app to inject a spoofed SMS into the vulnerable 
app, which caused the SMS to be displayed to the user. 

 
Figure 2: Spoofed SMS Intent Example 

2.6 Applying Lint Checks without Source Code Access 
We demonstrated a limited ability to apply the Android lint tool to compiled Android app 
packages (.apk files), rather than just on apps for which source code is available. 
Android lint checks primarily analyze either Java source code files (.java files), compiled Java 
bytecode (.class files), app manifest files (AndroidManifest.xml) or a combination of the 
three2. Without source code access, we could run the lint checks that operate on compiled Java 
bytecode or app manifest files and obtain output, but the checks that operate on Java source code 
files obviously do not produce any results since no Java source code files are available in this 
case. 
In July 2015, we ran the Android lint tool (using the pre-existing security checks in the lint tool 
as well as the subset of our checks that were ready for use at the time) on 1726 Android app 
packages obtained from the Google Play Store. These were gathered from the top free 100 apps 
in each of the Play Store’s 20 categories; some apps were in multiple categories or failed to 
download. We identified potential vulnerabilities in a large number of apps, including: 

• Potential Transport Layer Security vulnerabilities (842 apps) 

                                                
1 F-Droid contained 1671 applications at the time of our analysis. We were only able to get 981 applications to successfully 
compile and provide lint output, so only those 981 applications were included in our analysis. 
2 Lint checks can also analyze application resource files as well as any arbitrary file within the application build directory. 
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• Does not declare allowBackup in the manifest. Defaults to true, perhaps 
unintentionally allowing the app’s internal data to be backed up over USB using ‘adb 
backup’ (664 apps) 

• Broadcast Receiver can potentially receive spoofed system broadcasts (417 apps) 

• App was published with debug capabilities enabled (156 apps) 

• Broadcast Receiver can potentially receive spoofed SMS broadcasts (36 apps) 
Further detailed examination would be needed to determine if any of the potential vulnerabilities 
are actually exploitable.  
Unfortunately, Android Studio’s lint integration does not support the use of Java bytecode-based 
lint checks, which has led Google to move towards the use of Java source code-based lint checks 
and away from the use of Java bytecode-based lint checks. This practice will limit the 
effectiveness of applying the lint tool to compiled Android app packages. 
Google takes steps of its own to assess the security of apps in the Google Play Store, likely by 
applying its own internal static analysis checks to compiled Android app packages. If issues are 
found, Google provides notifications to developers of the affected apps [59] [42] [43] [44].  
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3 Enhancing Android OS Platform Security 
In the following section, we discuss changes that we proposed to the Android OS to make the 
platform more secure. 

3.1 Data-in-Transit Vulnerabilities 
A common security issue found in network communication of Android apps is communicating in 
cleartext rather than cryptographically protecting network communication using TLS or a similar 
protocol. 
Android 6.0 introduced the usesCleartextTraffic manifest attribute3 [22] [23]. The 
attribute currently defaults to true, but when set to false declares the app developer’s 
intention that the app should not perform any cleartext network communication. The Android OS 
will then make a best-effort attempt to prevent the app from using cleartext protocols such as 
HyperText Transfer Protocol (HTTP) rather than a cryptographically protected protocol such as 
HTTP Secure (HTTPS). The manifest attribute is enforced by Android’s built-in network 
communication libraries. If apps themselves were to bundle in their own network communication 
implementations, the attribute would not necessarily be enforced. 
Motivated by usesCleartextTraffic, we proposed several additional manifest attributes, 
detailed below. Google and the Android Open Source Project did not accept our proposals, 
responding that they already had an effort underway to provide similar capabilities. Their initial 
proposal was posted to their public code review system in early November 2015 [24] well after 
we had initiated our own investigations and has since been included in the Android N Developer 
Preview as the Network Security Configuration feature [57] [58]. 

3.1.1 Certificate Pinning Manifest Attribute 
Inspired by previous work done by Tendulkar and Enck [25], we proposed [26] a cert-pin 
manifest attribute to enable app developers to declare certificate pins that should be used for 
TLS-protected network connections made by the app. As described above, app developers 
currently must write a custom X509TrustManager to implement certificate pinning. By 
allowing developers to specify certificate pins in the manifest and having those be automatically 
used by Android’s built-in TLS implementation, developers would no longer need to write a 
custom X509TrustManager, eliminating a potential source of security bugs. Additionally, it 
is much simpler for security assessors to audit the manifest attribute contents than to audit the 
application source code or compiled bytecode. 
Android currently includes certificate pinning support, but it (until the Android N Developer 
Preview) only supports a system-wide certificate pin list, can only be updated by an authorized 
entity such as Google, and does not allow per-app modifications to the list4. Our implementation 
built upon this already existing certificate pinning support but extended it to be customizable on 
a per-app basis. 

                                                
3 Apple iOS 9, released around the same time as Android 6.0, added a similar new feature called App Transport Security that 
defaults to requiring all application network communication use HTTPS with TLS 1.2 and specific cipher suites (cryptographic 
algorithms). Unlike Android 6.0, Apple iOS 9’s default behavior is to enable the feature. 
4 Nikolay Elenkov provides a detailed description of Android’s built-in certificate pinning functionality here: 
http://nelenkov.blogspot.com/2012/12/certificate-pinning-in-android-42.html (accessed 30 July 2015), with the caveat that his 
statement that “the standard checkServerTrusted() method doesn’t consult the pin list” is no longer accurate. The 
checkServerTrusted() method in the default X509TrustManager does now use the pin list. 
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3.1.2 Manifest Attributes to Prevent Overriding X509TrustManager and 
HostnameVerifier 

As previously described, custom X509TrustManager implementations are a common source 
of security vulnerabilities. We proposed an allowTLSTrustManagerOverride manifest 
attribute with an initial default value of true. When the variable is set to false, the app is 
declaring that it does not intend to override the Android platform’s default TLS 
TrustManager implementation used to verify server certificates. The Android platform’s TLS 
library will then ignore attempts by the app to override the TrustManager. This is a best-
effort mechanism that would only be effective for apps that use Android’s built-in TLS 
implementation, although third-party implementations could also choose to honor the flag. We 
implemented this attribute, modified Android’s conscrypt library to make use of it, and 
demonstrated its effectiveness with a proof-of-concept app. 
We additionally proposed a similar manifest attribute 
allowTLSHostnameVerifierOverride with an initial default value of true [28]. When 
false, the app is declaring that it does not intend to override the Android platform’s default 
TLS HostnameVerifier implementation used to verify server hostnames. The Android 
platform’s built-in library will then ignore attempts by the app to override the 
HostnameVerifier. 

3.2 Data-at-Rest Vulnerabilities due to Insecure File Permissions 
As previously described, Android apps may inadvertently set file permissions to world-readable 
or world-writable, potentially placing sensitive data at risk of being read or manipulated by other 
apps. 
Security-Enhanced Linux (SELinux) mandatory access control policies can be used to prevent 
apps from reading/writing to the internal storage directory of other apps, regardless of file 
permissions, while still allowing Android’s preferred methods of sharing data between apps such 
as ContentProvider to be used. However, adding SELinux policies introduces compatibility 
concerns for any apps that depend on the ability to set file permissions.  
In an effort to improve app security while addressing the compatibility concerns, we proposed a 
new isolatedAppData app manifest attribute [29] to provide app developers with the ability 
to opt-in to have these stricter policies applied upon their apps. The attribute declares whether the 
platform should prevent read and write access to the app's internal data storage directory by other 
apps and also prevent the app from reading or writing to other apps’ internal data storage 
directories regardless of assigned file permissions. The attribute’s default value is false, but the 
default could be changed to true (or better yet, forced to true) in a future Android API level after 
providing app developers adequate warning and time to adjust their apps. We implemented this 
SELinux opt-in approach by appending a “:isolated” suffix to the app’s seinfo string within 
the Android OS. The seinfo string is used by Android to determine what SELinux domain the 
app will be executed in and what domain will be used for the app’s internal storage directory and 
files. 
Unfortunately, our isolatedAppData app manifest attribute was not accepted. In January 
2016, we proposed an alternate approach that, without introducing a new manifest attribute, 
could be used to automatically apply the policy based on the app manifest’s 
targetSdkVersion field. We proposed a minTargetSdkVersion input selector be 
added for use in the seapp_contexts file [62]. The seapp_contexts file, part of the 
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device SELinux policy configuration, determines the SELinux domain and related policy 
configuration to be applied to each Android app based on the app’s properties. The 
minTargetSdkVersion input selector could be used to phase in new SELinux policies for 
apps by giving app developers an opportunity to make any needed compatibility changes to their 
apps before updating each app’s targetSdkVersion field in the app’s AndroidManifest.xml. 
The targetSdkVersion field is used by the app developer to specify, for compatibility 
purposes, the highest version of Android (by API level) that the developer has tested the app 
with [60]. This general pattern has been used in the past for Android security improvements that 
could affect app compatibility. For example, Android Content Providers used to be exported 
(made available for use by other apps) by default, but this behavior was changed for apps with a 
targetSdkVersion of 17 or higher [61]. 

3.3 Mitigations for Platform Exploitation Techniques 
In this section, we discuss techniques that a malicious user can employ to exploit the Android 
platform, and our recommended mitigations. 

3.3.1 Preventing Dynamic Code Execution 
A number of app vetting services exist that attempt to analyze Android app behavior for 
malicious activities, the most well-known being the Google Bouncer service used to assess apps 
that are submitted to the Google Play Store. 
Malicious apps can evade app vetting by dynamically downloading and executing malicious 
code at execution time, for example as illustrated in Figure 3 below. Since the malicious code is 
not included in the app package that went through the vetting process, it likely will escape 
detection. This approach was suggested and demonstrated by Jon Oberheide [30], and described 
by Poeplau et al. [31]. A real-world example of this technique was found in materials allegedly 
leaked in July 2015 from Hacking Team, an Italian company that provides “easy-to-use offensive 
technology to the worldwide law enforcement and intelligence communities”. These leaked 
materials contained source code for an Android app that Hacking Team apparently placed in the 
Google Play Store, which downloads and executes platform exploit code after installation [32]. 
Maier et al. also describe their success using these techniques [33]. 
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Figure 3: Example of a Malicious App Downloading and Executing Exploit Code after Installation 

 
As a best practice, Android apps should place native shared libraries in the lib directory within 
the app package. At installation time, the Android package manager extracts these shared 
libraries into an app library directory in /data/app-lib that apps themselves cannot write to. 
This approach forces code updates to be distributed as app package updates, preventing apps 
from directly modifying their own code and enabling code review by app stores. However, 
nothing currently prevents Android apps at execution time from downloading native code, 
writing the code to a storage directory that the app has write permission to (such as the app’s 
internal data storage directory), and then executing the code5. 
SELinux mandatory access control policies can be added that block apps from having execute 
permission over any location that they can write to, forcing the developer to bundle executable 
code with the distributed app package where it is more feasible to inspect. In the master 
development branch of the Android Open Source Project, this policy was recently put in place 
for platform apps (apps signed by the vendor), but not yet for third-party apps, likely due to 
compatibility concerns. We believe the compatibility concerns are well-founded. In March 2014, 
we downloaded 2420 of the most popular free Android apps from the Google Play Store, chosen 
by selecting the top 100 free apps in each of the Play Store’s 27 categories (some apps were 
listed in multiple categories and some apps failed to download). We found that 71 of the apps 
contained at least one native executable or shared library bundled in the app package in a 
directory other than lib, meaning they would likely be incompatible with this proposed policy. 
Other apps would be incompatible as well (but harder to detect with solely static checks) if they 
download or extract and then run executable code at run-time. 
We proposed introducing an opt-in Android app manifest attribute 
preventDownloadExecution with a default value of false [34]. When set to true, the 
Android app is declaring to the platform that it does not intend to execute app-writable files, and 

                                                
5 Similarly, applications could also place native code in other locations within their application package, such as the resource or 
assets directory, in an obfuscated or encrypted form, and then extract and execute the code at run time. 



 

 15 

 

the platform would execute the app in a SELinux context that prohibits execution of app-writable 
files. The manifest attribute could be used as part of app inspection (for instance, by Google 
Bouncer or by an enterprise vetting system) to determine the potential risk level of the app and 
the rigor of evaluation that should be applied. The manifest attribute could also be phased in to 
potentially be true by default (or better yet, forced to always true) in a future Android release 
after giving app developers time to adjust their practices. Unfortunately, just as with our 
proposed isolatedAppData app manifest attribute discussed previously in section 3.2, our 
proposal was not accepted. We submitted a new proposal in January 2016 to make use of our 
minTargetSdkVersion proposal described in section 3.2 to phase in the stricter SELinux 
policy based on the targetSdkVersion declared in each app’s AndroidManifest.xml [63] 
instead of defining a new manifest attribute.  
Copperhead Security, a company developing an open source hardened Android distribution, has 
noted that this proposal, along with our proposal described in Section 3.2, “would be major game 
changers for the app security model” [51]. 
Even if apps are prevented from having execute privilege over app-writable files, apps still have 
the ability to map memory as both writable and executable, another vector allowing them to 
execute dynamic code. Copperhead Security proposes addressing this gap by adding W^X 
memory protections (requirements that the same memory regions cannot be both writable and 
executable) to Android using the PaX MPROTECT feature, roughly equivalent to removing 
SELinux execmem permission. 
Unfortunately, enforcing W^X memory protections upon apps (whether using PaX MPROTECT, 
removing SELinux execmem permission, or another approach) introduces compatibility issues 
due to the use of just-in-time (JIT) compilation in the Android OS and potentially by apps 
themselves. 
Android’s Dalvik runtime, used until Android 4.4, regularly performs JIT compilation during 
app execution of each app’s architecture-independent Dalvik code into optimized native code. 
Starting with Android 4.4, Android switched from Dalvik to the Android Runtime (ART). ART 
implements ahead-of-time (AOT) compilation, compiling portions of the app bytecode into 
optimized native code at app install time instead of at app run time, partly alleviating the need to 
allow apps to map memory regions as both writable and executable. Unfortunately, two main 
challenges continue to exist that prevent broad removal of execmem privilege from apps: 

• Android’s WebView capability, commonly used by apps, includes its own JIT compiler 
for optimizing web page JavaScript execution. 

• ART still includes a JIT compiler that could potentially be invoked under some 
conditions. 

Additionally, apps may include their own JIT compilation implementations. 

3.3.1.1 Android WebView 
Android WebView provides the capability to embed basic web browsing capabilities into 
Android apps. Android WebView is built from Chromium, Google’s open source web browser, 
and includes a JIT compiler to optimize web page JavaScript execution. As shown in Appendix 
D.2, any app that uses WebView with JavaScript support enabled needs to have the ability to 
map memory as both writable and executable, making such an app incompatible with stronger 
executable memory protections. 
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Copperhead Security addressed this compatibility issue in its open source hardened Android 
distribution by automatically scanning apps for calls to setJavaScriptEnabled() and, if 
found, exempting the app from PaX MPROTECT [35]. However, we do not think this approach 
is practical for mainstream apps. We surveyed 1726 of the top free Google Play Store apps (the 
top 100 apps in each of the Play Store’s 20 categories, only counting apps once that are in more 
than one category, and minus apps that failed to download). We observed references to 
android.webkit.WebView in 1572 out of the 1726 apps. JavaScript is not enabled in 
WebView by default, but 1518 of the apps call 
android.webkit.WebSettings.setJavaScriptEnabled(). Many of these calls 
were found in app development frameworks such as Adobe AIR that are bundled into the app, 
making it unclear whether each app’s running functionality actually uses WebView (or 
JavaScript within the WebView). Regardless, Copperhead Security’s current approach would 
exempt almost all popular apps from its executable memory protections, severely decreasing the 
value of those protections. 
WebView (and its JIT compiler) run with the privileges of the calling app. WebView uses a 
single process model to perform all actions including web page rendering and JavaScript 
interpretation [36]. The Chrome app for Android, which shares the same underlying Chromium 
code since Android 4.4, takes a different approach. The Chrome app uses Android’s 
isolatedProcess feature to run its JIT compiler (and other web page rendering processing) 
in a separate process with its own SELinux security context (isolated_app). In the case of 
the Chrome app, it appears to be feasible to impose executable memory protections upon the 
main app, allowing an exception only for the isolated rendering process. As shown in Appendix 
D.1, only the Chrome processes running in the isolated_app security context appear to map 
memory pages as both writable and executable. Since the isolated rendering process runs with 
very limited privileges, the potential harmful impact of an attacker taking advantage of its lack of 
executable memory protections would be limited. 
We recommend exploring the feasibility of adopting Chrome’s isolated process model for 
Android WebView, so that JIT compilation is isolated into its own process running with a very 
limited security context. This approach would require adopting the multi-process model used by 
the Chrome Android app into WebView. 
Alternatively, the performance impact of removing JIT compilation from WebView could also 
be explored. If WebView’s JavaScript performance is not severely impacted by removal of JIT 
compilation capabilities, then we would recommend removing it in order to improve the 
feasibility of enforcing stricter executable memory protections.  
Until the current implementation of JIT within WebView is addressed, we do not believe it is 
practical to impose executable memory protections onto arbitrary Android apps.  

3.3.1.2 ART 
As described above, ART primarily performs ahead-of-time compilation of app bytecode into 
native code at app installation time and OS upgrade time, partly alleviating the need for apps to 
map memory regions as both writable and executable. However, for performance reasons, ART 
does not always actually compile all code ahead-of-time. Optimization options passed into the 
dex2oat command allow tradeoffs between compiling all, some, or none of the code ahead-of-
time. By default, ART uses an interpreter to execute bytecode that has not been compiled ahead-
of-time. Interpreters do not present a conflict with executable memory protections. However, 
ART still includes an optional JIT compilation capability, which does conflict with executable 
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memory protections. It appears that JIT compilation in ART is currently only enabled by default 
in Android engineering builds (special debug builds of the OS), so does not present a current 
concern, but would present a concern if ART’s default behavior is changed in the future. 
Additional details are provided in Appendix C. 
The Android N Developer Preview documentation describes changes in this area [64]. We have 
not examined the changes in detail or analyzed the impact. 

3.3.1.3 Dynamic Bytecode Execution 
Even if dynamic execution of native code from outside the system or app’s library directories 
were to be blocked using SELinux policies, apps could still dynamically download and execute 
Dalvik bytecode through DexClassLoader. Apps could also embed their own interpreters 
directly into the app. The potential impact is unclear. Privilege escalation exploits appear to 
generally require native code execution capability. Further work is needed to assess the potential 
threats posed by bytecode. 

3.3.2 Limiting Privileges of the System Userid 
Many access control checks throughout the Android OS solely check that the caller holds the 
system (1000) Linux userid (uid). The system uid is used by numerous Android services and 
privileged platform apps. Currently, gaining malicious code execution as the system uid is 
disastrous to the overall security of the device, despite the movement of many of these system 
components into their own SELinux domains. 
Changing these access control checks to instead use SELinux provides the ability to institute 
finer-grained checks. It also provides improved visibility into and the ability to centrally audit 
security policies. 
As an example, the Android KeyChain service checks that the caller holds the system uid before 
allowing it to perform certain privileged operations. In reality, most of these privileged 
operations only need to be callable by the DevicePolicyManagerService (runs within 
the system_server domain), with a few operations that additionally may be called by the 
com.android.settings and com.android.certinstaller apps. We submitted a 
proposal to the Android Open Source Project to perform SELinux access control checks for these 
operations, along with SELinux policies granting the appropriate accesses to system_server, 
com.android.settings, and com.android.certinstaller [45]. Our proposal is 
still under consideration. This model could be applied to strengthen access control checks across 
the Android OS. 

3.4 KeyChain Improvements 
The Android OS provides a KeyChain service [37] [38] used to securely store private keys and 
make them available for use by installed apps. When available, devices can use hardware-backed 
security capabilities such as Trusted Execution Environments (TEEs) or Trusted Platform 
Modules (TPMs) to protect the private keys from disclosure, even if the Android OS is 
compromised. Figure 4 provides an example screenshot of the strongSwan IPsec Virtual Private 
Network (VPN) Client app requesting access to use a key stored in the KeyChain. 
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Figure 4: Example of Using the KeyChain to Select a Key 

Unfortunately, Android currently does not provide API calls to generate keys within the 
KeyChain, forcing the keys to be generated elsewhere and imported in, unnecessarily increasing 
the risk of exposure of private keys. 
We developed new calls to Android’s DevicePolicyManager, the API used by mobile 
device management systems, to enable the ability to generate keypairs within the Android 
KeyChain, obtain a certificate from a PKI, and place the issued certificate into the KeyChain. 
When these calls are used, the private key never exists outside of the Android KeyChain. We 
submitted our patches to the Android Open Source Project where they are currently under 
consideration [39]. 
We extended Google’s Android Basic Managed Profile sample app to demonstrate using our 
proposed Android Open Source Project enhancements. We embedded Cisco’s open source libest 
library and estclient example app binaries into our app. Our app calls our proposed 
DevicePolicyManager.generateKeyPair() method to generate a keypair within the 
KeyChain, obtains the public key, calls estclient to connect to Cisco’s Enrollment over 
Secure Transport (EST, IETF RFC 7030) test server to obtain a certificate, and calls our 
proposed DevicePolicyManager.setCertificate() method to place the issued 
certificate into the KeyChain. We are then able to demonstrate the use of the generated keypair 
and issued certificate with KeyChain-aware apps such as the Chrome web browser and the 
strongSwan Internet Protocol Security (IPsec) VPN client. We made our example app available 
as an open source project on GitHub [40].  
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4 Conclusion and Potential Future Work 
Our work demonstrated the ability to improve the security of the Android platform by adding 
static analysis checks to the tools regularly used by Android app developers in order to help 
developers identify and correct vulnerabilities up-front in the app development lifecycle, and by 
building upon the Android’s security architecture to reduce or eliminate at the operating system 
level the potential impact of common app vulnerabilities and malicious behaviors. 
We recommend continued efforts to contribute security-related static analysis checks to the 
Android Open Source Project’s lint tool used by Android Studio and the Android Software 
Development Kit. Additionally, we recommend providing tools within the development 
environment to help and encourage app developers to leverage emerging Android platform 
security features such as the Network Security Configuration feature newly extended in the 
Android N Developer Preview, which allows app developers to declaratively request certificate 
pinning and other network security features from the platform without the need to make error-
prone security customizations within app source code itself. 
We also recommend continued efforts to work with the Android Open Source Project to 
strengthen the security properties enforced upon apps and reduce the impact of app 
vulnerabilities and malicious behaviors, whether as default behavior or through interfaces that 
enable app developers to declaratively state each app’s security properties. As these 
improvements are made, we recommend streamlining enterprise app vetting processes to take 
into account the security protections provided by the device platform.  



 

 20 

 

5 References 
[1]       (Viewed 2 July 2015). Gartner Says Tablet Sales Continue to Be Slow in 2015. Gartner. 

Available: http://www.gartner.com/newsroom/id/2954317 
[2]       (Viewed 4 November 2015). Security Tips. Google. Available:       

http://developer.android.com/training/articles/security-tips.html 
[3]       (Viewed 4 November 2015). Improving Your Code with Lint. Google. Available: 

http://developer.android.com/tools/debugging/improving-w-lint.html 
[4]       Fahl et al. (October 2012). Why Eve and Mallory Love Android: An Analysis of Android 

SSL (In)Security. ACM CCS ’12. 
[5]       Sounthiraraj et al. (February 2014). Large Scale, Automated Detection of SSL/TLS Man-

in-the-Middle Vulnerabilities in Android Apps. NDSS ’14. 
[6]       (August 2014). SSL Vulnerabilities: Who listens when Android applications talk? 

FireEye. Available: https://www.fireeye.com/blog/threat-research/2014/08/ssl-
vulnerabilities-who-listens-when-android-applications-talk.html 

[7]       Montelibano and Dormann. How We Discovered Thousands of Vulnerable Android Apps 
in One Day. RSA Conference USA 2015. Available: 
https://www.rsaconference.com/writable/presentations/file_upload/hta-t08-how-we-
discovered-thousands-of-vulnerable-android-apps-in-1-day_final.pdf 

[8]       M. Grace et al. Unsafe Exposure Analysis of Moible In-App Advertisements. WiSec ’12. 
Available: http://www4.ncsu.edu/~mcgrace/WISEC12_ADRISK.pdf 

[9]       (Viewed 6 July 2015). Remote Code Execution as System User on Samsung Phones. 
NowSecure. Available: https://www.nowsecure.com/blog/2015/06/16/remote-code-
execution-as-system-user-on-samsung-phones/ 

[10] M. Peck. (4 October 2015). Add lint check for insecure X509TrustManager 
implementations. Android Open Source Project. Available: 
https://android.googlesource.com/platform/tools/base/+/c660c577ba072bd94dc20c92f28f9d7
6102530e1 

[11] M. Peck. (26 October 2015). Lint checks for insecure use of 
SSLCertificateSocketFactory. Android Open Source Project. 
https://android.googlesource.com/platform/tools/base/+/b98fb2952479587aa38b4e260feb2bd
454ece3b4 

[12] M. Peck. (8 October 2015). Lint check for declaration or use of insecure 
HostnameVerifier. Android Open Source Project. 
https://android.googlesource.com/platform/tools/base/+/b669f60e6aded9fb50b9025e56e3a00
7cc482ad7 

[13] J. Case. (14 April 2011). Exclusive: Vulnerability in Skype for Android Is Exposing Your 
Name, Phone Number, Chat Logs, And a Lot More. AndroidPolice. Available: 
http://www.androidpolice.com/2011/04/14/exclusive-vulnerability-in-skype-for-android-is-
exposing-your-name-phone-number-chat-logs-and-a-lot-more/ 

[14] J. Van Dyke. (10 August 2015). World Writable Code Is Bad, MMMMKAY. NowSecure. 
Available: https://www.nowsecure.com/blog/2015/08/10/world-writable-code-is-bad-
mmmmkay/ 

[15] M. Peck. (5 October 2015). Check for calls to getDir with insecure file permissions. 
Android Open Source Project. Available: 



 

 21 

 

https://android.googlesource.com/platform/tools/base/+/3adca6769e92362751721c18c649e9
e9c94fbb63 

[16] M. Peck. (23 October 2015). Lint checks to identify setting files world-readable or world-
writable. Android Open Source Project. Available: 
https://android.googlesource.com/platform/tools/base/+/87f30697958a693a063169738aa8fb6
c369b8a13 

[17] M. Peck. (4 October 2015). Add lint checks for insecure broadcast receivers. Android 
Open Source Project. Available: 
https://android.googlesource.com/platform/tools/base/+/50bfc95d9945178dc8d3e0112e26c8
286d47a1ae 

[18] E. Chin et al. Analyzing Inter-Application Communication in Android. MobiSys ’11. 
Available: https://www.eecs.berkeley.edu/~daw/papers/intents-mobisys11.pdf 

[19] (6 October 2013). Secured Broadcasts and SMS Clients. The CommonsBlog. Available: 
https://commonsware.com/blog/2013/10/06/secured-broadcasts-sms-clients.html 

[20] A. Mahajan. (26 May 2015). Declare SMS broadcasts as protected to ensure only system 
apps send those. Android Open Source Project. Available: 
https://android.googlesource.com/platform/packages/services/Telephony/+/dcec1e1471a1d32
918b5a2beb239693708c548e7 

[21] (Accessed 9 November 2015). F-Droid. Available: https://f-droid.org/ 
[22] (Accessed 9 November 2015). Android:usesCleartextTraffic. Android Open Source 

Project. Available: http://developer.android.com/guide/topics/manifest/application-
element.html#usesCleartextTraffic 

[23] J. Kozyrakis. (17 June 2015). Android M and the war on cleartext traffic. Available: 
https://koz.io/android-m-and-the-war-on-cleartext-traffic/ 

[24] C. Brubaker. (23 October 2015). Add initial network security config implementation. 
Android Open Source Project. Available: https://android-
review.googlesource.com/#/c/179902/ 

[25] V. Tendulkar and W. Enck. (May 2014). An Application Package Configuration 
Approach to Mitigating Android SSL Vulnerabilities. MoST 2014. 

[26] M. Peck. (September 2015). Add ability to declare certificate pins in application 
manifest. Android Open Source Project. Available: https://android-
review.googlesource.com/#/q/Ie357b3e8fd0b5e0f21e1ef9226f94ce945b1cfb8 

[27] M. Peck. (October 2015). Add ability to prevent applications from overriding 
TrustManager. Android Open Source Project. Available: https://android-
review.googlesource.com/#/q/If6ab0ab309488926cdde7fd55539bd059eea964d 

[28] M. Peck. (October 2015). Add ability to prevent applications from overriding 
HostnameVerifier. Android Open Source Project. Available: https://android-
review.googlesource.com/#/c/173951/ 

[29] G. Kini. (September 2015). Add app-level isolatedApplicationData manifest attribute. 
Android Open Source Project. Available: https://android-
review.googlesource.com/#/q/I5b9f4f3743f3fa544d14b44ac04549cf87a7ebfe 



 

 22 

 

[30] J. Oberheide. (June 2010). Android Hax. Summercon 10. Available: 
https://jon.oberheide.org/files/summercon10-androidhax-jonoberheide.pdf 

[31] Poeplau et al. (February 2014). Execute This! Analyzing Unsafe and Malicious Dynamic 
Code Loading in Android Applications. NDSS ’14. 

[32] Alleged Hacking Team Android source code. (Accessed 9 November 2015). Available: 
https://github.com/hackedteam/core-android-market and https://github.com/hackedteam/core-
android/tree/master/RCSAndroid/jni 

[33] Maier et al. (September 2014). Divide-and-Conquer: Why Android Malware cannot be 
stopped. ARES 2014. Available: https://www1.cs.fau.de/filepool/projects/android/divide-
and-conquer.pdf 

[34] G. Kini. (September 2015). https://android-
review.googlesource.com/#/q/Iacc7a5fd7518fcb92d4b029ed4c97c23950038fb 

[35] (25 August 2015). Automated PaX exceptions for WebView JavaScript. Copperhead 
Security. Available: 
https://github.com/copperhead/android_frameworks_base/commit/84a0f4e9e312eb0d38e747
5853804f99bce35fb5 

[36] (November/December 2013). Why does Chromium WebView on Android run in single-
process mode? Available: 
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-dev/7l4l6LZyFxk 

[37] (Accessed 9 November 2015). KeyChain. Google. Available: 
http://developer.android.com/reference/android/security/KeyChain.html 

[38] (Accessed 9 November 2015). Android KeyStore System. Google. Available: 
http://developer.android.com/training/articles/keystore.html 

[39] M. Peck. (October 2015). Add ability to generate keypairs within KeyChain. Android 
Open Source Project. Available: https://android-
review.googlesource.com/#/q/If41721a58b0d2fd282d194713b828d78a81217ed 

[40] M. Peck. (October 2015). Demonstrate generating keypairs within the Android 
KeyChain. The MITRE Corporation. Available: https://github.com/mpeck12/android-
BasicManagedProfile/tree/keychain 

[41] M. Peck. (October 2015). Demonstrate generating keypairs within the Android 
KeyChain. The MITRE Corporation. Available: https://github.com/mpeck12/android-
BasicManagedProfile/tree/est 

[42] (25 September 2015). Google Play Warning: SSL Error Handler Vulnerability. GitHub. 
Available: https://github.com/liveservices/LiveSDK-for-Android/issues/63 

[43] (17 July 2015). GmsCore_OpenSSL can provoke app rejected from Google Play with all 
updated? StackOverflow. Available: http://stackoverflow.com/questions/31378617/gmscore-
openssl-can-provoke-app-rejected-from-google-play-with-all-updated 

[44] (28 August 2015). Google Play reminder of deadline for resolving Apache Cordova 
vulnerabilities. StackOverflow. Available: 
http://stackoverflow.com/questions/32273656/google-play-reminder-of-deadline-for-
resolving-apache-cordova-vulnerabilities 



 

 23 

 

[45] M. Peck. (November 2015). Use SELinux to perform authorization checks for privileged 
KeyChain operations. Android Open Source Project. Available: https://android-
review.googlesource.com/#/q/I70f3324857cf20ef01d718610d766e8395982ffd 

[46] (Accessed 9 November 2015). Android Security Acknowledgements. Android Open 
Source Project. Available: 
https://source.android.com/devices/tech/security/overview/acknowledgements.html 

[47] F. Chung. (July 2011). Custom Class Loading in Dalvik. Android Developers Blog. 
Available: http://android-developers.blogspot.com/2011/07/custom-class-loading-in-
dalvik.html 

[48] (Accessed 9 November 2015). Sample: hello-jni. Android NDK. Available: 
http://developer.android.com/ndk/samples/sample_hellojni.html 

[49] A. Pyles and M. Peck. (November 2015). Code Execution Demonstration App. The 
MITRE Corporation. Available: https://github.com/mpeck12/custom-class-loader 

[50] M. Peck. (November 2015). Lint check to identify calls to Runtime.load() and 
System.load(). Android Open Source Project. Available: https://android-
review.googlesource.com/#/c/179980/ 

[51] (November 2015). Copperhead Security. Available: 
https://twitter.com/CopperheadSec/status/663443145095442432 

[52] M. Franchin. (22 February 2015). HKG15-300: Art’s Quick Compiler: An unofficial 
overview. Linaro. Available: https://www.youtube.com/watch?v=iho-e7EPHk0 

[53] L. Armasu. (4 May 2015). Android Runtime To See Major Performance Boost Thanks to 
Redesigned Compiler. Tom’s Hardware. Available: 
http://www.tomshardware.com/news/android-runtime-art-optimizing-compiler,29035.html 

[54] N. Hajdarbegovic. (May 2015). Brace Yourselves Android Developers, A New Android 
Compiler Is Coming. Toptal. Available: http://www.toptal.com/android/brace-yourselves-
new-android-compiler-is-coming 

[55]  (Accessed 9 November 2015). Configuring ART. Android Open Source Project. 
Available: https://source.android.com/devices/tech/dalvik/configure.html 

[56] M. Chartier. (17 February 2015). Add JIT. Android Open Source Project. Available: 
https://android-review.googlesource.com/#/c/123156/ 

[57] (Accessed 12 March 2016). Network Security Configuration. Google. Available: 
http://developer.android.com/preview/features/security-config.html 

[58] J. Kozyrakis. (15 February 2016). Network Security Policy configuration for Android 
apps. Available: https://koz.io/network-security-policy-configuration-for-android-apps/ 

[59] A. Ludwig. (March 2016). Building an Android Scale Incident Response Process. RSA 
Conference 2016. Available: 
https://www.rsaconference.com/writable/presentations/file_upload/mbs-r03-building-an-
android-scale.pdf 

[60] (Accessed 12 March 2016). Android targetSdkVersion documentation. Google. 
Available: http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#target 



 

 24 

 

[61] (Accessed 12 March 2016). Android provider element documentation. Google. Available: 
http://developer.android.com/guide/topics/manifest/provider-element.html 

[62] M. Peck. (Accessed 12 March 2016). Add minTargetSdkVersion input selector. Android 
Open Source Project. Available: https://android-
review.googlesource.com/#/q/Ib9f6ded9bd2f426861a6d843861b4074084253b0 

[63] M. Peck. (Accessed 12 March 2016). Add untrusted_app_legacy domain, make 
untrusted_app stricter. Android Open Source Project. Available: https://android-
review.googlesource.com/#/c/195590/ 

[64] (Accessed 14 March 2016). Profile-guided JIT/AOT compilation. Google. Available: 
http://developer.android.com/preview/api-overview.html#jit_aot 

  



 

 25 

 

Appendix A Using the New Lint Checks 
All of our proposed lint checks have now been merged into the Android Open Source Project and 
included in the current beta releases of Android Studio 2.0 and the Android Plugin for Gradle. 
This appendix provides historical information of how to separately compile the lint checks and 
include them in the Android development environment as a jar plugin through the following 
steps: 

• Download the source code for the desired lint checks from the Android Open Source 
Project: https://android.googlesource.com/platform/tools/base/+log/studio-master-
dev/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks 

• Place the source code in its own directory tree, e.g. in a directory called 
“androidlint” 

• Change the package names in the source code to reflect the created directory tree (e.g. 
change the package entry at the top of each source code file to a value such as 
“package androidlint;”) 

• Create a MyIssueRegistry.java with contents similar to the below, with an entry 
in the array for each Issue declared in the lint check source code: 

 

• Compile the lint checks and issue registry, e.g. javac –cp <sdk-
path>/tools/lib/lint-api.jar *.java where <sdk-path> is the installed 
location of the Android SDK 

• Create a MANIFEST.MF file with contents similar to the below: 

 

package androidlint; 
 
import java.util.List; 
import java.util.Arrays; 
 
import com.android.tools.lint.client.api.IssueRegistry; 
import com.android.tools.lint.detector.api.Issue; 
 
public class MyIssueRegistry extends IssueRegistry { 
 @Override 
 public List<Issue> getIssues() { 
        return Arrays.asList( 
            TrustAllX509TrustManagerDetector.ISSUE, 
            UnsafeBroadcastReceiverDetector.ACTION_STRING); 
 } 
} 
 

Manifest-Version: 1.0 
Lint-Registry: androidlint.MyIssueRegistry 
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• Bundle the compiled lint checks, issue registry, and MANIFEST.MF file into a jar file by 
running: jar cmf MANIFEST.MF custom.jar androidlint/*.class 

• Create an .android/lint directory under the user’s home directory and copy the jar 
file to it, e.g. cp custom.jar 
/home/<username>/.android/lint/custom.jar on most Linux 
distributions, or copy custom.jar 
C:\Users\<username>\.android\.lint\custom.jar on Windows. 

• Run lint –list Security and verify that the new lint checks appear in the list. 
They will now be used by default when running lint from the command line (e.g. with 
lint or gradlew lint). Unfortunately, additional steps are needed to integrate the 
lint checks directly into the Android Studio UI. 
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Appendix B Demonstration Application 
We wrote an application based on Google’s sample custom class loading app [47] and the hello-
jni sample app found in the Android Native Development Kit (NDK) [48] that demonstrates the 
ability to download and execute Dalvik bytecode and native code from arbitrary websites. The 
app demonstrates several of the security vulnerabilities that are identified by our Android lint 
checks and/or are mitigated by our proposed Android OS security enhancements. 
The app deliberately performs several poor security practices: 

• Use of plaintext http rather than https to download code, enabling susceptibility to man-
in-the-middle attacks 

• Toggle-able ability to use an insecure X509TrustManager that does not validate the 
server’s X.509 certificate when connecting over https, enabling susceptibility to man-in-
the-middle attacks 

• Toggle-able ability to store downloaded files as world-readable and world-writable, 
opening the files up to manipulation by other apps installed on the device 

More information (including how to compile and use the app) can be found in our GitHub 
repository [49]. 
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Appendix C Android Runtime (ART) Additional Discussion 
C.1 ART Background 
In Android 4.4, the Android runtime switched from Dalvik to Android Runtime (ART). Dalvik 
used a bytecode interpreter along with an always-enabled just-in-time (JIT) compiler. The focus 
of ART is ahead-of-time (AOT) compilation. With AOT compilation, application bytecode is 
compiled prior to execution into executable code optimized to the particular device platform. The 
AOT compilation is accomplished with the dex2oat compiler installed on Android devices, 
where OAT refers to the file format of the optimized native executable code produced by the 
compiler. AOT compilation occurs when a new application is installed and can also occur when 
an operating system update is installed. In the case of a system update where all applications may 
need to be recompiled, AOT compilation can introduce undesired delays at device boot time, 
particularly if full optimization is enabled.   
Among the various dex2oat compiler options, we focus on two: --compiler-backend 
and --compiler-filter.  The --compiler-backend option refers to either “quick” 
or “optimized”. The default option is “quick”. The “optimized” compiler appeared to still be 
under development and not available for use as of Android versions 5.0-5.1 [52] [53] [54].  
The “quick” compiler has two levels of Intermediate Representations (IR) [52]. The compilation 
flow goes from dex code to Mid Level IR (MIR), to IR and finally to OAT format. This multi-
stage process can have different behavior depending upon the optimization levels (compilation 
time and disk space are factors) selected. Some optimization levels can potentially result in some 
methods omitted from the final OAT output. 
Additionally, the “quick” compiler has several optimizations that can be fed in through the --
compiler-filter options. The options range from no compilation to full compilation that 
compiles all methods. The “interpret-only” option skips all compilation and relies solely 
on the interpreter, which is probably the fastest AOT option with respect to installation time. The 
“everything” option compiles almost all methods including rare methods. The full range of 
options is described in [55]. 
The AOT compiler’s behavior in ART ranges between a long wait time at app installation and 
system update time and larger size on disk (“everything”) to quick installation with minimal 
compilation options (“interpret-only”), which largely mimics the older Dalvik behavior. 
The default option in Android version 5.0 is the “speed” option. This method is designed to 
“compile most methods and maximize runtime performance” [55]. 

C.2 JIT Compilation in ART 
We observed from the Android Open Source Project source code commit history that just-in-
time (JIT) compilation was introduced into ART in February 2015 [56].  JIT compilation is 
controlled by the dalvik.vm.usejit system property, and is currently only enabled by 
default in engineering builds (these are special builds not used in production device 
deployments). The motivation behind the inclusion of a JIT compiler as well as security concerns 
are addressed in the following paragraphs. 

C.2.1 Motivation   
The --compiler-filter options within the ART AOT compiler provide a range of 
behaviors that the ART runtime has to be able to handle. For instance, the runtime behavior for 



 

 29 

 

the “interpreter-only” option will perform a lot slower than the runtime behavior for the 
“everything” option. We speculate that the JIT compiler was added to ART to handle these 
cases where major portions (or all) of the application code were not included in the ahead-of-
time compilation. The worst-case scenario for runtime performance presumably would be to run 
ART with the “interpreter-only” flag, which without JIT compilation would require all 
code to be interpreted at runtime. 
It seems logical that JIT may also improve the behavior of the default “speed” compilation 
flag. As described earlier, most methods are compiled, but it is possible that certain “hot” 
methods which are missed with the AOT compilation phase are called regularly and would 
benefit from JIT compilation. 

C.2.2 Security Risks 
Reintroducing JIT into the ART runtime poses some security risks. Use of JIT adds memory 
mappings with RWX security permissions to every application. It may be possible for an attacker 
(running within the same application) to locate the RWX memory region and add arbitrary code. 
We wrote proof-of-concept code that runs as a native library within an Android application. This 
code (which doesn’t need any special permissions) reads from /proc/self/maps and locates the 
map with RWX permissions. It is then straightforward to locate the JIT mapping and alter it 
arbitrarily. 
Additionally, as previously discussed in Section 3.3.1, JIT compilation interferes with the ability 
to impose executable memory security protections upon applications.  
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Appendix D Memory Mapping Examples 
The below sections provide examples of memory mappings observed in Android apps. These 
examples are meant to supplement the discussion in Section 3.3.1. 

D.1 Memory Mappings of Chrome App 
Below in Figure 5, we show the results of examining the memory mappings of the Chrome web 
browser Android app. The results indicate that the writable and executable mappings are only 
present in the processes running in the isolated_app security context. 

 

# ps -Z |grep chrome 
u:r:untrusted_app:s0           u0_a94    2195  263   com.android.chrome 
u:r:isolated_app:s0            u0_i38    5911  263   com.android.chrome:
sandboxed_process1 
u:r:isolated_app:s0            u0_i40    6431  263   com.android.chrome:
sandboxed_process2 
u:r:untrusted_app:s0           u0_a94    25892 
263   com.android.chrome:privileged_process2 
# grep rwx /proc/2195/maps 
# grep rwx /proc/5911/maps 
2700a000-270ff000 rwxp 00000000 00:00 0  
2ba0a000-2ba0b000 rwxp 00000000 00:00 0  
2c30a000-2c3ff000 rwxp 00000000 00:00 0  
2f60a000-2f648000 rwxp 00000000 00:00 0  
37a0a000-37a0b000 rwxp 00000000 00:00 0  
37f0a000-37fff000 rwxp 00000000 00:00 0  
7ab0a000-7ab0b000 rwxp 00000000 00:00 0  
7e20a000-7e2ff000 rwxp 00000000 00:00 0  
7ee0a000-7eeff000 rwxp 00000000 00:00 0  
7f20a000-7f2ff000 rwxp 00000000 00:00 0  
7f90a000-7f9ff000 rwxp 00000000 00:00 0  
8140a000-814ff000 rwxp 00000000 00:00 0  
# grep rwx /proc/6431/maps 
2b10a000-2b10b000 rwxp 00000000 00:00 0  
38e0a000-38eff000 rwxp 00000000 00:00 0  
3b10a000-3b10b000 rwxp 00000000 00:00 0  
3e90a000-3e948000 rwxp 00000000 00:00 0  
7a90a000-7a90b000 rwxp 00000000 00:00 0  
7ea0a000-7eaff000 rwxp 00000000 00:00 0  
80a0a000-80aff000 rwxp 00000000 00:00 0  
# grep rwx /proc/25892/maps 
#  

Figure 5: Memory Mappings of Chrome App 
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D.2 Memory Mappings of Application Using WebView 
Below in Figure 6, we show the results of examining the memory regions of the 
com.audible.application Android app. It uses Android WebView with JavaScript enabled, 
causing the app to map memory regions as both writable and executable: 

 

# ps -Z |grep audible 
u:r:untrusted_app:s0           u0_a233   18607 
263   com.audible.application 
 
# grep rwx /proc/18607/maps 
3810a000-3810b000 rwxp 00000000 00:00 0  
38f0a000-38f0b000 rwxp 00000000 00:00 0  
8230a000-8230b000 rwxp 00000000 00:00 0  
8260a000-8266a000 rwxp 00000000 00:00 0  
8560a000-856ff000 rwxp 00000000 00:00 0  

 Figure 6: Memory Mappings of Audible App 


