
DEEP LEARNING COLLABORATIVE RADIOS -
TEAM ZYLINIUM PHASE 3

EMBEDDED INTELLIGENCE RESEARCH LLC

SEPTEMBER 2020

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2020-158

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2020-158 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
FRANCES A. ROSE
Work Unit Manager

GREGORY J. HADYNSKI
Assistant Technical Advisor
Computing & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEPTEMBER 2020
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

JAN 2017 – JAN 2020
4. TITLE AND SUBTITLE

DEEP LEARNING COLLABORATIVE RADIOS -
TEAM ZYLINIUM PHASE 3

5a. CONTRACT NUMBER
FA8750-17-C-0071

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Robert J. Baxley
Roy S. Thompson

5d. PROJECT NUMBER
SCC2

5e. TASK NUMBER
ZY

5f. WORK UNIT NUMBER
LI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
EMBEDDED INTELLIGENCE RESEARCH LLC
Team Zylinium
267 Kentlands Blvd., STE 5051
Gaithersburg MD 20878

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITE
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2020-158
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2020-2694
Date Cleared: 8/31/20
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Refined both the core radio features in our radio with more granular erasure coding and a more flexible MAC with
dynamic slot reallocation and FDMA, as well as the reasoning components of the radio that control when we change our
operating state to attempt more points and hog more spectrum. Demonstrated flawless co-existence with both active and
passive incumbents. It is encouraging to be part of the scientific process while also working to build technology that is
truly useful. We plan to participate in the POWDER follow on exercises to further flush out the applicability of our
technology.

15. SUBJECT TERMS

Spectrum Collaboration Challenge, Adaptive Wireless Networks, Spectrally Efficient Communication

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
FRANCES A. ROSE

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

53

i

Table of Contents

iii

1

2

2

2

3

3

3

4

5

5

8

9

9

10

14

17

18

19

20

21

22

25

List of figures

1 SUMMARY

2 INTRODUCTION

2.1 Competition Overview

2.1.1 SC2 Hardware & Radio Deployment

2.1.2 SC2 Competition Overview

2.1.3 SC2 Match Scoring

2.1.4 SC2 Tournament Ranking

2.2 Overall Strategy and Approach to the SC2 Problem

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Software Design and Architecture

3.1.1 Computational Performance

3.2 Radio Design

3.2.1 SCE Improvement Overview

3.2.2 Physical Layer

3.2.3 Packetization

3.2.4 Medium Access Control (MAC) Layer: Mechanics

3.2.5 Medium Access Control (MAC) Layer: Spectrum

Selection 3.2.6 Network Layer

3.3 Data Sources, Decision Making, & Flow Selection

3.3.1 Radio Node Spectrum Resource Allocation

3.3.2 Posture

3.3.3 Channel Selection

3.4 DevOps

4 CIRN Decision Making 29

4.1 If you notice another team struggling to pass the Ensemble Threshold, how will your CIRN react? 29

4.2 How does your CIRN determine the appropriate number of flows that the spectrum resources can
carry?

29

4.3 How does your CIRN handle its own high point value (i.e., priority) traffic? How does your CIRN
handle other CIRN's high point value traffic?

30

4.4 How does your CIRN handle active incumbents? What is the procedure/algorithm for learning its
pattern?

30

12

ii

4.5 How does your CIRN handle passive incumbents? What is the procedure/algorithm for adapting
aggregate interference? 32

4.6 How does your CIRN handle jammers? How are they detected? What type of reaction do you expect
from the CIRN? 32

4.7 When insufficient spectral resources are available, how does your CIRN decide which competitor's
spectrum to attempt to use? 33

4.8 Does your CIRN estimate whether it’s winning or losing a match? How does your radio react when
it’s winning? How does your radio react when it’s losing? 33

4.9 Is your CIRN able to detect which scenario it’s in, and tune its performance accordingly? What
scenario specific tuning does the CIRN do? 33

4.10 Do you have a strategy for ensuring you’re not eliminated during the round robins? 33

5 RESULTS AND DISCUSSION 34

5.1 Example: Collaboration Improving Performance 34

5.2 Example: Protecting a Passive Incumbent from Aggregate Interference 34

5.3 Example: Score Optimization with Weak Opponent & Strong Opponent 35

5.4 Example: Identifying Spectrum to Reuse 38

5.5 Example: Flow Prioritization 38

5.6 Example: Meeting Qualification Criteria 40

6 CONCLUSIONS 43

7 RECOMMENDATIONS/LESSONS LEARNED 44

8 REFERENCES 45

9 List of Acronyms 46

iii

List of Figures
Figure 1 Receiver processing chain .. 6
Figure 2 Transitter processing chain ... 7
Figure 3 Main radio flow graph .. 8
Figure 4 FPGA resource utiization ... 9
Figure 5 Waveform pilot, payload, and preamble structure .. 11
Figure 6 Visual illustration of a “burst”, “chunk”, and “slot” .. 13
Figure 7 Notional example of our original approach to erasure coding packet data 13
Figure 8 Example of more granular erasure coding at the chunk level... 14
Figure 9 Top: notional TDMA spectrum allocation, Bottom: notional TMDA/FDMA allocation 15
Figure 10 Top: spectrogram of a TDMA spectrum allocation, Bottom: spectrogram of a TDMA/FDMA
allocation ... 16
Figure 11 Trajectory of the carrier frequency offset over time ... 17
Figure 12 Left: unilateral channel selection by each node. Right: centralize channel selection with channel
selection refinement by each node. ... 18
Figure 13 Input and output relationship for MOE .. 19
Figure 14 Example matrix of pairwise distances .. 23
Figure 15 Description of how each radio creates the channel selection metric .. 24
Figure 16 Illustration of the comparison between our spectrum usage (top) and the channel selection
metric (bottom) ... 24
Figure 17 Spectrum occupancy as perceived by one of radios ... 25
Figure 18 Job creation and data processing workflow .. 26
Figure 19 Example log output produced by our log parsing pipeline ... 27
Figure 20 Example table of flow information that is printed as html after each run 28
Figure 21 Top: score of active incumbent match. Bottom: Incumbent INR reports over time................... 31
Figure 22 Comparison of performance with (right) and without (left) collaboration 34
Figure 23 Passive incumbent example .. 35
Figure 24 Spectrum voxel occupancy by team for a 5 team match .. 36
Figure 25 Spectrum voxel usage plotted in units of MHz used vs time.. 37
Figure 26 Score and spectrum usage for a match ... 38
Figure 27 Score for a 7089 match ... 39
Figure 28 Top: visualization of the capacity required for each flow. Bottom: visualization of mandates
were achieved by MP .. 40
Figure 29 Score in a qualification run ... 41
Figure 30 flow data for a qualification run ... 41
Figure 31 Spectrum usaage vs CIL reported usage for a qualification run ... 42

Approved for Public Release; Distribution Unlimited.
1

1 SUMMARY

Team Zylinium is pleased to present the following technical report to DARPA describing our
Collaborative Intelligent Radio Network (CIRN) design. We worked very hard throughout
Phase 3 to refine both the core radio features in our radio (more granular erasure coding and a
more flexible MAC with dynamic slot reallocation and FDMA) as well as the reasoning
components of our radio that control when we change our operating state to attempt more points
and hog more spectrum. While we did well in implementing our Phase 3 technical roadmap,
including features that were not originally on the roadmap, we still came up short with a 3rd
place finish. A main cause of our underperformance was not realizing until relatively late in the
competition how aggressive other teams would be in the spectrum.

As we discuss below, one of the most exciting aspects of our Phase 3 work is that we
demonstrate flawless co-existence with both active and passive incumbents. This is a notable
milestone because it means that there are many practical use cases for the radio technology we
developed. It is encouraging to be part of the scientific process while also working to build
technology that is truly useful. We plan to participate in the POWDER follow on exercises to
further flush out the applicability of our technology. We also have other commercialization
ideas that involve leveraging the best parts of the collaboration protocol.

Approved for Public Release; Distribution Unlimited.
2

2 INTRODUCTION

2.1 Competition Overview

The Spectrum Collaboration Challenge (SC2) is an ambitious DARPA grand challenge that
seeks to spur innovation in spectrum sharing technology [1]. SC2 was announced in 2016 and
ran to 2019 in 3 one-year phases. A goal of SC2 is to increase innovation in RF spectrum access
schemes and protocols. Demand for spectrum from commercial and military users is ever-
increasing and the hypothesis behind SC2 is that existing spectrum deconfliction mechanisms are
suboptimal.

The existing paradigm for spectrum management for civilian radio networks is one of two
extremes: exclusive licensed operation or unlicensed operation. Exclusive licenses are inefficient
because licensees rarely use the spectrum all of the time. In contrast, the wild-west of spectrum
access in unlicensed bands is both suboptimal and not consistent enough for certain wireless
communications use cases that demand a high quality of service (QoS). A third path, the path
explored by SC2, is to assume that a low-rate “collaborative” communication channel exists
between spectrum users. Over this channel, spectrum users can transmit simple performance,
observation, and request information. This information, coupled with machine learning and
advanced optimization techniques can allow the network of radios to robustly optimize for any
desired ensemble state. For instance, if a certain radio network has a high QoS requirement, then
the other radios can take in this information and optimize their usage accordingly.

We think that SC2 has been hugely successful in spurring innovation in this area. It is fair to say
that little practical work and no real deployments have been created around the use of automated
collaborative spectrum usage and deconfliction. SC2 is easily the most comprehensive display of
the “art of the possible” in this space. It is clear from SC2 that as 5G standards evolve, spectrum
collaboration will be a critical component to achieve vastly higher spectrum efficiencies.

2.1.1 SC2 Hardware & Radio Deployment

To support SC2, DARPA created a massive channel emulation and radio development
environment called “Colosseum”. The Colosseum has 128 two-channel Ettus X310 SDRs that
are wired together through a 256 x 256 channel emulation RF multiplexer. The emulator can be
configured to replicate channel environments that are representative of the many-to-many RF
connections present in the real world. Each SDR is connected to a 24-core Xeon-class server
computer with 128GB of RAM and a 10 GigE network connection to the radio.

To deploy a radio design to Colosseum, a team creates an LXC [2] image and then specifies how
many nodes that image should be deployed to. Once the LXC image is provisioned on
Colosseum nodes, DARPA starts and stops the radios through a radio control API that each team
implemented in their image. After a match completes, all log file information is copied over to
persistent storage on the team's gateway and the image is removed from the radio node to make
way for the next reservation.

Approved for Public Release; Distribution Unlimited.
3

2.1.2 SC2 Competition Overview

For the competition, 5 teams are in a match at a time and each team is composed of 10 radio
nodes. Each node is fed traffic from an IP traffic generator called MGEN [3]. The nodes see
this traffic on their wired network interface and are then responsible for transmitting the traffic
over their RF interface to other nodes in the network. The receiving node will then route the
traffic through its wired interface back to the MGEN so that the number of correct packets can be
recorded and tracked. Each traffic packet is associated with a data “flow” and different flows
have different traffic volumes and packet latency requirements. Flows also have a point value
associated with them. Harder flows tend to be worth more points. Teams are graded on how well
they can maintain the throughput and latency requirements for each flow.

2.1.3 SC2 Match Scoring

Specifically, a match is broken into a series of 1 second measurement periods (MPs). After a
flow's requirements are met for Q consecutive MPs, the team starts accumulating the points for
that flow in every subsequent MP. If an MP passes where the requirements are not met, then the
team stops earning points until the flow has been held for Q consecutive MPs again. So there is a
scoring premium given to teams that consistently achieve flow requirements.

The above-described score is the Measurement Period Score (MPS). This MPS is tracked for
each team in each match but is just an intermediate scoring metric. A team's Match Score is the
end-result score that teams are graded on and the Match Score is the worst team's MPS for each
MP unless all teams achieve a MPS above the pre-defined threshold. If all teams are above this
threshold, then the Match Score for a team in a given MP is their individual MPS.

While this may be slightly confusing, the resulting scoring dynamics are straight forward. Teams
have to be good spectral citizens, because if the worst team in the match does not score well,
then all teams receive that worst-team score. However, if a baseline of performance is achieved,
i.e. the MPS threshold is met for all teams, then a team needs to score well as its performance is
solely decided by the number flow-points it achieves in each MP. So there is a tension where
teams need to adaptively switch between being polite in the spectrum when at least one team is
below the threshold, to being aggressive in score seeking when all teams are above threshold.

2.1.4 SC2 Tournament Ranking

The tournament configuration is also a driving factor in the radio design. Ten teams were
admitted to the final tournament. The tournament consists of 5 knockout rounds and then
culminates in a final round. Up to the final round, in each round of the tournament, the last-place
team is eliminated. A team's score in each non-finals round is the sum of the match score for that
team in that round.

For the final round, the scoring dynamic changes considerably. While a team is still given a
match score, the tournament score in the final round is a function of the team's rank in each
match. With only 5 teams admitted to the final round and 5 teams in each match, there is no

Approved for Public Release; Distribution Unlimited.
4

dynamic where overly aggressive score seeking is detrimental. That is, if a team is very
aggressive with score seeking such that they jam all of the other teams, the worst-case outcome
is that the match will end in a draw. On the other hand, if a team under-scores in a finals match,
then its rank will be low and ultimately that team will score fewer points than other teams in the
finals. When combining all of these aspects, there is much more incentive to be aggressive with
spectrum usage and score seeking in the final round even if that detrimentally affects other
teams.

2.2 Overall Strategy and Approach to the SC2 Problem

Our strategy for SC2 was to create a configurable radio that had many degrees of operational
flexibility and then layer on various expert system and optimization routines in order to
maximize our score. To do this, as we describe in the following sections, we built a physical
layer based on channelized OFDM with both polar coding and erasure coding error correction
capabilities as well as mechanisms for each radio to unilaterally move in the spectrum without
having to preconfigure channel hopping across the network.

We overlaid a decision-making engine on top of this core radio technology called the Mandate
Optimization Engine (MOE). The MOE is the collection of decision making routines that our
radio network uses to determine which mandates to attempt, where to operate in the spectrum,
and what posture to assume in the spectrum. The MOE has both centralized decision-making
components as well as distributed components. The general separation of decision-making
concerns is split so that the centralized decision limits the action space of each node. Then each
node could unilaterally make decisions in the limited space in order to optimize their local
performance. We describe the details of how this works in the following sections.

Approved for Public Release; Distribution Unlimited.
5

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Software Design and Architecture

Our radio design uses both the custom processing blocks in the FPGA and the CPU. The radio
processing is orchestrated by GNU Radio [5], while a few separate Python processes handle CIL
messages and collaboration reasoning.

We used the Ettus RFNoC infrastructure [6] to connect IQ streams between processing blocks
internally in the FPGA, and to connect the FPGA to the host processing by leveraging the UHD
driver. In addition to using some of the standard blocks provided by RFNoC, we also
implemented 3 new RFNoC blocks by writing custom Verilog code:

1. Channelizer
● The Channelizer implements a polyphase anti-aliasing FIR filter and an FFT to

convert a wideband (sampled at Fs) IQ stream into a set of equally spaced
channels. The FFT size (N) can be set at run-time to be 8, 16, 32, 64, or 128.
Each channel that comes out of the channelizer is spaced by Fs/N, and sampled at
(Fs*2)/N (i.e. 2x oversampled). The outer half of the channels are dropped such
that the aggregate rates going into and out of the channelizer are the same.

2. Complex Correlator
● The Complex Correlator performs the complex correlation of the input IQ

sequence and a 256 sample replica sequence that can be loaded at run time. In
our radio implementation, this block is used to search for the start of each burst
preamble (which is a complex pseudo-random sequence). The complex
correlation is implemented using 3 256-tap FIR filters. Because these filters must
be able to support a high input rate, this is by far the most resource (DSP48 block)
consuming unit in our design.

3. Correlation Peak Detector
● The Correlation Peak Detector implements a CFAR detection algorithm to search

for peaks in a real-valued input stream above a configurable threshold. All
samples that are not determined to be peaks are set to 0 in the output stream. Our
implementation uses this block to find the exact sample that each received burst
starts on.

On the RX side, the X310 is configured to sample both antennas at 160MHz when running a
scenario with a 40 MHz maximum RF bandwidth. Because 160MHz is not an officially
supported sample rate of the X310, we perform a custom tuning of the clock NCO and calibrate
digital sample path between the ADC and FPGA at startup. Each antenna’s digital IQ stream is
then shifted by 42MHz to remove the LO offset and downsampled by 2x to 80MHz by the DDC
in the FPGA. The 80MHz IQ stream is sent to the RFNoC channelizer block which channelizes
the 80MHz wide IQ stream into 32 channels which are each offset by 1.25MHz and sampled at
2.5MHz.

Approved for Public Release; Distribution Unlimited.
6

The channelized IQ from both streams is sent directly to the host processor, and the IQ from the
first antenna is sent to the Complex Correlator RFNoC block which performs a complex
correlation with the waveform preamble sequence to create a real-valued correlation surface.
The correlation surface is passed to the Correlation Peak Detector, which finds peaks and zeroes
out all non-peak samples. The peaks for each channel are then passed on to the host to indicate
the start of received packets.

The IQ from both antennas, along with the peak detection locations are sent to the Zylinium
Demodulator, which performs the OFDM equalization and demodulation, polar decoding, and
CRC checking. Bursts that pass the CRC check are forwarded on to the Zylinium Link Layer
control unit, which reconstructs the bursts into packets and passes on to the Traffic Generator.
The processing blocks involved in this process are shown in the Figure below.

Figure 1 Receiver processing chain

Approved for Public Release; Distribution Unlimited.
7

On the TX processing side, we perform all of the modulation processing in software.
Specifically, packets are broken up into fragments that fit into our fixed chunk size. These
fragments are then allocated among the available channels by the Zylinium Link Layer Control
unit. The Zylinium Modulator performs the OFDM modulation of each channel, and then
combines all active channels into a wideband (40Mhz) IQ burst, which corresponds to the length
of our TDM slot. The burst IQ samples are then sent into the FPGA with a precise timestamp to
schedule the transmission so that it starts at the slot time assigned to this node. Within the
FPGA, this goes through an RFNoC DMA FIFO to a DUC that shifts digitally by 42MHz and
performs a 4x upsampling to the DAC rate of 160MHz. The TX processing chain is shown in
the figure below.

Figure 2 Transitter processing chain

All other radio stream processing is handled by software GNU Radio blocks. The figure below
shows the top-level GNU Radio flowgraph for our radio design. The flowgraph includes both
the RFNoC (FPGA) blocks and custom GNU Radio software blocks.

Approved for Public Release; Distribution Unlimited.
8

Figure 3 Main radio flow graph

In order to optimize processing efficiency and CPU core utilization, we run many modulation
and demodulation worker flowgraphs in parallel. Whenever the main flowgraph gets a
correlation hit on a new burst or needs to modulate a new transmit burst, it sends the relevant IQ
samples to one of the worker threads through a ZMQ socket message.

We also use ZMQ sockets to pass information from our main radio flow graph to our auxiliary
reasoning and collaboration processes.

3.1.1 Computational Performance

FPGA Utilization

The table below shows the utilization of the major processing blocks in our FPGA design. We
are currently using approximately 67% of the logic resources, 46% of the DSP resources, and
84% of the BRAM resources. Even though these numbers indicate that we have some margin to
add additional processing the FPGA, we have found in practice that it is difficult to be able to
route all signals and still meet the timing constraints even with this design.

Approved for Public Release; Distribution Unlimited.
9

Unit LUTs LUT % DSPs DSP % BRAM BRAM %

DDC (x2) 15064 5.93% 74 4.81% 22 2.77%

Channelizer (x2) 12550 4.94% 128 8.31% 150 18.87%

Complex Correlator 25326 9.96% 387 25.13% 105 13.21%

Correlation Peak Detect 13838 5.44% 1 0.06% 42 5.28%

DMA FIFO 3616 1.42% 0 0.00% 39 4.91%

DUC 6683 2.63% 55 3.57% 12 1.51%

Other/Infrastructure 94495 37.17% 71 4.61% 300 37.74%

Total 171572 67.49% 716 46.49% 670 84.28%
Figure 4 FPGA resource utiization

CPU Utilization

The CPU utilization is highly dependent on the scenario bandwidth and aggregate traffic level of
our radio. We have found that under high loading scenarios when running at 40 MHz, our static
CPU utilization is approximately 550% (or 5.5 of the 24 available CPU cores). The remaining
18.5 cores are available to run worker threads that perform modulation and demodulation
processing in parallel. The number of worker threads is configurable, but our default
configuration launches 10 modulator and 10 demodulator threads.

With the SCE configuration, our radio was rarely under strain in matches. However, we are not
confident we could accommodate more than 40MHz of processing. Because the post-
channelized IQ is 2x oversampled, and because we process the RX streams from both antennas,
the raw data rate going from the X310 to the SRN over the 10 Gb Ethernet link is approximately
5.12 Gbps (40MHz * 2x oversampled * 2 antennas * 32 bits/sample) + overhead. We have
found in practice that the UHD driver will occasionally drop samples from the X310 when
running at 40MHz, and if we run much higher than this, it will drop significant samples, which
can have major performance impacts. Because even occasional dropped samples can cause us to
miss a flow for a single MP and severely impact our match score, we configured the radio to use
a maximum sampling rate of 37.5 MHz when the scenario RF bandwidth is over 27.5 MHz, a
sampling rate of 30 MHz when then RF bandwidth is between 16.25 and 27.5 MHz, and a
sampling rate of 20 MHz when below 16.25 MHz.

3.2 Radio Design

3.2.1 SCE Improvement Overview

In SCE, we have extended our PE2 implementation in a number of ways including:

● Refactored our codebase so that the MOE is a stand-alone module that can be
independently tested and exercised.

● Built a simulation framework to simulate MOE decision making. The framework used
colosseum logs to emulate the SNR and packet drop rates from real scenarios.

Approved for Public Release; Distribution Unlimited.
10

● Changed the MAC so that the TDMA slots did not have to be uniformly distributed
across nodes.

● Decreased the per channel bandwidth and increased the number of channels available to
make it easier to find holes in the spectrum without interfering with other teams.

● Created an optimization procedure to allocate slots to maximize scoring given the
network capacity constraints and rate requirements.

● Changed MAC so that FDMA/TDMA frequency allocations are supported.
● Added support for streaming and file-based erasure coding.
● Changed packet structure to support robust erasure coding and low-latency links. Also

added ability to support data transmission to multiple receiving nodes in one packet.
● Implemented support for changing our aggressiveness posture based on match inputs.
● Increased our accuracy in our CIL reporting for voxel usage and score reporting.
● Overhauled our MOE logic to support the new rules and to be more effective as

incorporating CIL reports from other teams

Just as in the previous phases, we have implemented a version of channelized OFDM where
channels are allocated in time and frequency to different users. Previously, we implemented a
multi-hop routing protocol that reasons about the optimal hop path through the network based on
pairwise link signal-to-noise ratios broadcast by each node. It turned out that multi-hop routing
was only required to pass broadcast messages on links that did not have any flows, so we
removed this feature in SCE to simplify the control logic. It seems that in some scenarios, when
a link did not contain any data, the SNR of the radios in that link was extremely low. This is
despite the fact that the geometry of the nodes should have meant that the SNR was high.

3.2.2 Physical Layer

The physical layer of our radio is based on channelized OFDM. That is, we transmit using N
“channels” of OFDM. Each of these channels could be deactivated unilaterally by the
transmitter. At the receiver side, each receiver constantly looks for transmissions on all
channels, which means that we didn’t have to pass information to the receiver to instruct it to
tune to a certain channel. The channel width is 585.9kHz and the slot length is 3.4ms.

Each channel contains OFDM waveforms with K subcarriers per symbol and P symbols per slot.
In our competition design, we set K=128 and P=15. In PE2, P was 50; we reduced the burst size
in order to reduce the latency of packets so that we could meet the 120ms flow requirements. Of
the P symbols, the first two symbols were used for synchronization and for signaling the
modulation and error control rate of the error correcting code for that slot. Specifically, the first
symbol is a randomly modulated preamble symbol that is used for correlation. The second
symbol contains 60 digitally modulated BPSK subcarriers at ½ rate coding. These 60 bits
convey the TxId, intended RxId, the modulation coding scheme, and the number of sub-slots that
are populated in this slot.

Approved for Public Release; Distribution Unlimited.
11

The “payload” symbols in the slot contain a mix of data and pilot subcarriers [7]. Our
competition design contained 16 pilot carriers per symbols that were evenly spaced throughout
the frequency support of the symbol.

Figure 5 Waveform pilot, payload, and preamble structure

The receiver processing consists of the following steps:
1. Channelization into N channels,
2. Correlation with the preamble sequence to determine if signal was present and gather

coarse time synchronization,
3. Carrier frequency offset estimation using the preamble symbol,
4. Coarse channel frequency response estimation using the pilot symbol,
5. Determination of the payload modulation coding scheme from the second preamble

symbol,
6. Fine channel state information estimation using the symbol pilots,
7. Soft demodulation of the constellations in each subcarrier on each antenna,
8. Bit SIMO bit estimation, and
9. Erasure coding recovery of data chunks that did not pass CRC.

As part of the receiver-side processing, our radios implement SIMO diversity decoding. The
SIMO decoder uses a combination of selection diversity and combining diversity to leverage
multiple antenna streams. SIMO processing was only possible due to our FPGA channelization
processing. Without the FPGA handling the channelization load, we would not have been able to
handle decoding two receive streams.
Our SIMO decode processing works as follows: demodulate and try to polar decode one antenna,
if that fails, try to decode the other antenna stream (selection diversity), if those both fail,
average the subcarrier soft symbols between the two antennae and then decode these averaged
values (combination diversity). As expected, we achieved a 3dB performance improvement with
SIMO processing.
In correlating with the preamble, we found that vanilla correlation was not very robust to the
constantly changing noise floor and channel loss environments in Colosseum. Instead, we

Approved for Public Release; Distribution Unlimited.
12

implemented a constant false alarm rate (CFAR) correlation detector that used “training cells”
near the peak or “cell” under test location to estimate the noise power. We then used this
estimate of the noise power to scale the peak value. This peak detector has the dual benefits that
1) its threshold does not need to change with the background noise level and 2) that it can filter
out “near peaks” that might cross threshold with the vanilla correlation.
To estimate the channel state information, we use a minimum mean squared error estimation
procedure that implicitly estimates the delay spread of the channel response. The mechanics of
this estimation are that we stack the pilot subcarrier channel estimates in a vector and then apply
a linear operation (matrix multiplication) to the pilot estimates in order to interpolate the channel
estimate across the data subcarriers. The matrix we use is equivalent to a sinc-shaped
interpolation of the pilot channel estimates across the data subcarriers.
After reception and equalization, the soft constellation outputs are passed to our error correction
decoder that uses Polar codes. Polar codes were invented in 2009 and were shown to be capacity
achieving. The beauty of Polar codes is that they are the first capacity-achieving block code with
a deterministic construction. This is as opposed to LDPC, for instance, that rely on random
sparse encoding matrices. In addition to being deterministic, the block construction also has a
butterfly-like nature to it which makes it amenable to radix-2 “fast” matrix multiplication
implementations. In the case of Polar codes, this means that the encode and decode complexity is
on the order of n log(n), which makes polar codes extremely fast.
Another component of the physical layer was adapting the modulation and gain to the channel
condition. Specifically, we adaptively supported BPSK, 4-QAM, 16-QAM, and 64-QAM
depending on current channel conditions (i.e. measured SNR between 2 nodes). For each
modulation, we supported arbitrary Polar Code rates. We also experimented with 256-QAM, but
were unable to get it to perform reliably in the Colosseum, even under ideal channel conditions.
3.2.3 Packetization
One large SCE improvement to our radio was the addition of erasure codes. To understand how
those work, we first explain how we convert packets from the traffic generator into “bursts”
which are composed of “chunks” of bit. A “chunk” is the smallest atomic grouping of bits that
we can transmit and is 900 bits.
A radio will get various time slots and in each of those time slots, it will be able to use a subset
of the channels. The unit of spectrum that is in one time slot in one channel is called a “burst”.
The number of chunks that fit into one burst depends on the modulation coding rate that the link
supports. At the lowest modulation/coding, only one chunk fits in each burst, but at higher rates,
we may fit as many as 10 chunks in one burst. There may be situations where the
modulation/rate support 10 chunks, but we only send 7 because that is all of the data that needs
to be sent. The various components of our packetization architectures are illustrated in the figure
below.

Approved for Public Release; Distribution Unlimited.
13

Figure 6 Visual illustration of a “burst”, “chunk”, and “slot”

With the packetization explained, we can now explain how we modified our erasure coding
scheme to support correction in bursty noise environments.

Earlier in SCE, we implement erasure coding on the packet stream that came from the traffic
generator. This was useful for high-rate streams that had many packets per second, but many
streams were very low rate such that there was only one to three packets in each MP. Erasure
coding as we had it set up was of limited utility in this case because there was only 1 to 3 packets
that we were trying to recover. Moreover, a packet would span many chunks, so if a burst of
noise knocked out one chunk, we would lose an entire packet’s worth of data. The challenge is
illustrated in the figure below.

Figure 7 Notional example of our original approach to erasure coding packet data

Approved for Public Release; Distribution Unlimited.
14

In the last month of the competition, we completely rewrote our packetization routine so that we
could erasure code at the chunk level, thus enabling burst noise bit loss at the much more
granular chunk level. We proved that this led to an increase in performance in every scenario.
This also allowed us the flexibility to transmit an arbitrary number of erasure-coded chunks in
order to fill up the spectrum in more aggressive radio modes.

Figure 8 Example of more granular erasure coding at the chunk level

3.2.4 Medium Access Control (MAC) Layer: Mechanics

We implemented a hybrid TDD/FDD MAC for medium access control. To achieve this we
needed tight time synchronization across all radios in the network. At the start of a match, there
is no time synchronization among the nodes. To establish the time grid, the master node (i.e. the
collaboration gateway) is always assigned slot 0. The master node will start transmitting a burst
4 times per second containing its node number and all other nodes will be listening to hear this.
Once a node successfully receives and demodulates a burst from the master, it can determine the
exact time offset from node 0 that it should transmit on based on the precise time that it received
the burst from the master node and its relative node number.

This process continues until all nodes have received at least one burst from one other node and
the grid has been established. In practice, as long as each node can “hear” at least one other
node, the grid will typically be established properly within 1 second, and keep sync for the
duration of the match. One nice result of solely using our radio signal for synchronization is that
we do not require each node to have access to a universal time source such as GPS or NTP.

When it is each node’s slot to transmit, it can select which of the frequency channels to transmit
on. Each channel/slot is independently packetized and modulated, with a field in the burst
header set to indicate the set of destination SRN numbers or a special broadcast SRN number.

Approved for Public Release; Distribution Unlimited.
15

The receiving nodes process this header to determine if there are any chunks in the burst that are
addressed to them or that are addressed as broadcast packets.

The fixed TDMA-only structure we had in PE2 provides many desirable features such as
preventing multiple nodes from transmitting at the same time and allowing for clean sensing of
other networks, but it also introduces challenges, specifically that we have no mechanism to
dynamically re-allocate more spectrum to nodes that have the most data to transmit, and it is
difficult to achieve mandates with very low latency requirements since each node has to wait
until it is its turn to transmit.

In SCE, we expanded the radio degrees of freedom so that 1) each node can occupy more than
1/10th of the time slots, and 2) so that a given time slot can support multiple transmissions from
multiple radios on different frequency channels. The net result is that our SCE radio supports
dynamic time slot allocation and FDMA. The top figure below shows a TDMA-only scheme
where each node gets one timeslot. The bottom figure shows the same spectrum usage, but with
the bursts allocated in an FDMA/TMDA grid.

Figure 9 Top: notional TDMA spectrum allocation, Bottom: notional TMDA/FDMA allocation

Approved for Public Release; Distribution Unlimited.
16

The following two figure panes show spectrum captures of the TDMA-only operation (top)
compared to TDMA/FDMA operation (bottom)

Figure 10 Top: spectrogram of a TDMA spectrum allocation, Bottom: spectrogram of a TDMA/FDMA allocation

To make the dynamic slot reallocation work, we created the concept of a “frame” which is 50
slots. In each frame, every node needs at least one slot so that it can transmit broadcast and
timing information. That leaves the other 40 slots available for reallocation among the nodes.
The details of the optimization are discussed below in the MOE section.

To make FDMA work at the radio level, the radios had to converge on a common frequency
reference. If they were not precisely synchronized in frequency, then inter-carrier interference
would result, which severely degrades link performance. Converging on a common frequency
grid required that each radio estimate its carrier frequency offset (CFO) and then adjust its tuner
to compensate so that it was on the same frequency grid as the master node. The plot below
shows the CFO of two nodes in a link as they converge on a common frequency reference point.
The CFO units on the y axis are in terms of a proportion of the channel width. The x-axis is time.

Approved for Public Release; Distribution Unlimited.
17

Figure 11 Trajectory of the carrier frequency offset over time

3.2.5 Medium Access Control (MAC) Layer: Spectrum Selection

In PE1, our radio simply did unilateral spectrum sensing to determine where to transmit. This
was moderately effective but had a couple of disadvantages. The first was that unilateral
spectrum sensing across 10 TDD nodes meant that our team’s collective spectrum usage was a
hodge-podge of time-frequency tiles spread all over the spectrum. This made it difficult for
other teams to avoid being jammed by our transmissions. In PE2, we fixed this by 1) having all
nodes on our team globally converge on a list of channels that they could select from and 2)
using CIL spectrum request information as part of our channel selection process, which tends to
be much more stable than spectrum sensing readings. In SCE, we added modifications to the
reasoning to take into account our relative score position in the match when choosing how much
spectrum to use.

The mechanics of the channel selection process include both centralized and distributed
reasoning components. The first step in the process is that each radio transmits their channel
spectrum measurements to the collaboration gateway node. The gateway node then collects this
information, and voxel request information from competitors and from incumbents, to generate a
master list of the subset of channels a radio on our network is allowed to use. The size of the
subset is dictated by stage bandwidth and by the number of other teams that checked in on the
CIL and the aggression level of our network. We will describe the details of how that works
below in the MOE Flow Selection section.

Once the subset of “allowed channels” is established by the gateway node, it is broadcast to all
other nodes in the network. Each individual node then uses spectrum sensing to determine which
of the channels on the list it will use in each of its transmission slots. This procedure has the
benefit that it kept the spectrum usage of our nodes confined to a relatively small subset of the
available frequencies while also allowing each radio the local flexibility to avoid interference.

The figure below shows a hypothetical channel selection configuration without centralized
control. In that case, almost all channels are used even though less than half of the spectrum is

Approved for Public Release; Distribution Unlimited.
18

occupied. Having a transmit pattern like this makes it very difficult for other teams to find open
spectrum where they can transmit. Once we added centralized control, the channel allocation on
the right is more representative. In the plot on the right, there are red outlines that represent the
“allowed channels”. The same amount of spectrum is used in both cases, but on the right, our
team’s spectrum usage leaves more consistent holes where other teams can more easily slot in.

Figure 12 Left: unilateral channel selection by each node. Right: centralize channel selection with channel selection

refinement by each node.

3.2.6 Network Layer

The main functions of the Network Layer of our radio design are to 1) maintain a prioritized
queue of packets to be transmitted, 2) keep track of the current network state (i.e. SNR map
between all nodes in the network), and 3) route packets as necessary based on current conditions.

In PE1, our network packet queue structure was pretty simple: packets with the highest priority
went to the top of the queue. In PE2 and SCE, the scoring was more nuanced which made the
computation of priority much more complicated, but the basic idea of having a queue of packets
where the packets were organized in priority order was still in place. Just as in PE1, our
PE2/SCE queueing logic kept track of each packet’s latency and the latency requirements in
order to drop packets whose latency exceeded the requirement. But the PE2/SCE design had the
additional feature that we are continually refining and pruning the queue based on the link SNR
states and the observed latency of packets that had just been sent in previous slots. In this sense,
our PE2/SCE queue was less of a queue and more of a holding pin of packets.

In order to share information about the current performance of the network, each node transmits
a broadcast packet 2 times per second. This broadcast packet contains the pairwise link-snr
measurements, the spectrum sensing measurements for each channel, and CIL information (MOs
met, progress towards MOs, etc.). With this information, we can build up a map of the current
SNR between all nodes in the network. Additionally, this information is used by the
collaboration gateway node to populate its performance collaboration messages.

Broadcasts are randomly rebroadcast by receiving nodes 10% of the time. This is to ensure that
even if there is no direct link between two nodes, the broadcast packets will permeate the
network and reach all nodes.

Approved for Public Release; Distribution Unlimited.
19

3.3 Data Sources, Decision Making, & Flow Selection

A core component of our success is our mandate optimization engine (MOE). Since each radio
in our network is assigned non-overlapping time/frequency slots, each radio can act and optimize
its score without any effect on the other radios. This allows straightforward distributed
mandated reasoning optimization and means that each node can act unilaterally. The input-
output of the MOE and the core components of our radio reasoning are illustrated in the diagram
below.

As inputs, at each node, the MOE takes into account the 9 link SNRs to other radios, the list of
available mandates and their requirements, and feedback from the radio PHY as to whether
packets in a particular mandate are getting transmitted before the latency deadline.

Figure 13 Input and output relationship for MOE

The first step in MOE processing is to take the list of mandates and rank order them by
difficulty. The MOE does this by computing the fractional channel capacity that each mandate
requires. That is, the MOE can use the link SNRs to determine how much rate each link can
support. The MOE also knows the rate load that each mandate requires. The fractional capacity
is simply the mandate rate divided by available rate. The MOE takes these fractional capacity
numbers along with the mandate point values and does an iterative knapsack optimization to
determine which mandates fit in our capacity budget to maximize the number of points being
attempted.

In addition to picking which mandates to attempt, the MOE also keeps track of when a packet
has to be transmitted. The MOE takes advantage of latency requirements that are very high by
only transmitting those packets when less time-sensitive packets are not in the queue. This

Approved for Public Release; Distribution Unlimited.
20

works by simply choosing to transmit the packet with the shortest latency window first. Since
files have a huge number of packets and long latency windows, the radio can’t just procrastinate
on sending file packets until they become most pressing. Instead, we split the file up into parts
and assign a pseudo-latency requirement to each part. This effectively means that we attempt to
transmit the file at a constant rate.

The MOE gets feedback about which packets are being dropped due to our latency gate. If we
are consistently dropping packets, then the radio will start pruning the list of mandates that it is
attempting. The end result is that our radios are only attempting the combination of mandates
that are achievable.

3.3.1 Radio Node Spectrum Resource Allocation

At the network level, the master node performs mixed integer programming to determine how
many time/frequency slots to give each node. The optimization is given as

(1)

where Si is the slot count for the node i, T is the total slots available, m is a capacity margin that
we want to be big, 𝛿𝛿 is the weight parameter we give to the margin in the maximization, rk,i is the
rate required to achieve the kth flow that comes from the ith node, Ik ∈ [0,1] is an indicator of
whether the kth flow is active, ci is the capacity out of the ith node, lk is the maximum latency of
the kth flow, ɑ is the margin for the flow requirement, and pk is the point value of the kth flow.
The radio solves this optimization using Google's OR-Tools library [8].

The basic idea is to maximize the points while ensuring that each node has enough capacity to
achieve its active flows. The optimization will result in the flow indicator, Ik, being zero for
inactive flows. As part of the optimization, we also seek to maximize the capacity margin of
each flow--that is the amount of excess capacity given each node should be consistent. This
prevents the optimizer from doing a lopsided allocation for situations where all flows are easily
achieved with the available rate. That is, if all nodes only require one slot to achieve their flows,
then, without the slack variable, the optimizer will allocate 1 slot to 9 nodes and 41 slots to the

Approved for Public Release; Distribution Unlimited.
21

10th node. With the slack variable, the optimizer will allocated an equal number of slots to each
node in this example.

The last two terms handle the latency constraint. The idea is that we need the spacing between
slots to be less than the latency requirement and the spacing is approximately the total number of
slots divided by the slot count for the node under consideration times the slot interval, (3.4 ms
for this example but it can vary from 2-5 ms depending on the radio configuration).

Once the slot count is resolved, we perform a second optimization to evenly distribute the slots
among the nodes. For instance, we may have a slot count of S = [4,1,5,5,5,10,1,2,2,12].

We must translate this slot count per node to an actual slot schedule and we need the schedule to
evenly distribute the slots for a given node across time. To accomplish this goal, we solve

(2)

where Ni,q is the slot index of the qth slot of the ith node. The solution to this problem provides
the slot schedule which is then distributed to all nodes via broadcast transmissions.

At the individual radio level, each radio in our network is assigned non-overlapping
time/frequency slots so each radio can act and optimize its score without any effect on the other
radios. While the slot optimization at the master node produces a list of active and inactive flows
per node, each node must still decide whether to pursue all active flows as the channel conditions
evolve. To decide which flows to transmit, each node is continuously solving its local knapsack
optimization to attempt the set of flows that maximize its score. If a flow that should be feasible
continues to under-perform, it gets permanently blacklisted and excluded from the optimization
in all future time steps.

3.3.2 Posture

Towards the end of year three, it became apparent that we had crafted a samurai sword for what
was shaping up to be a gunfight. At that point our radio design was mostly optimized for precise,
low-impact, collaborative operation in the ensemble. This meant using the minimum amount of
spectrum required to achieve our flows, and erring on the side of settling for a lower score when
greedier teams were in the spectrum. It became clear from practice runs that other teams were
starting to use more than their “fair share” of the spectrum. This was a logical outcome of the
year three scoring function and tournament ranking system which rewarded aggressive score
seeking and even outright jamming of other teams in the spectrum.

Accordingly, we added two modes to our radio: one that would use much more spectrum than we
thought was needed in order to disrupt other teams and a second that used a FDMA allocation so
that we had multiple nodes transmitting in each time slot thereby increasing the transmit power

Approved for Public Release; Distribution Unlimited.
22

of each individual node. The master node assesses the performance of the other teams based on
their score reports. If the score of the lowest team exceeds the threshold score (75% of the
ensemble threshold score), then our radios all start using much more spectrum. If, in using much
more spectrum, we are still not achieving the score target established by our slot optimization
(80% of the score we think we should be achieving), we then transition into FDMA mode which
significantly increases our transmit power per node and has the dual effect of increasing our SNR
and increasing the interference we impart on the other teams' nodes.

3.3.3 Channel Selection

Our default behavior is to select the channels that are least occupied as we describe in the latter
part of this section. However, when we increase our aggressiveness level, we have to be mindful
of that the least robust team does not fall below the score threshold. So, when we are in higher-
level aggression modes, we choose the allowed channel list simply by avoiding voxels that the
lowest-scoring teams are transmitting in. This may mean that we have more collisions with
high-scoring teams, but that tradeoff is worth it to lower the impact on the lowest-scoring teams.

In the low-aggression mode, our radio makes extensive use of the collaboration channel. In
reasoning about which channels we choose to transmit on, we take into account spectrum voxel
requests from all teams. Specifically, we use the free-space path loss model to predict the effect
of a voxel request on each of our nodes. This leads to a 40 x 10 matrix per channel of how much
power each of our nodes can expect to see from each of the other teams’ nodes.

In order to build that power matrix, our radio first builds a distance matrix that has the pairwise
distance from our 10 nodes to all other nodes in the match (e.g. 40 nodes for a 5-team match).
An example distance matrix is displayed below. Some teams incorrectly report their position
which can cause extremely large distance measurements. To deal with this, we clip all distances
to 5000 m. It is clear in this run that one team is incorrectly reporting distances since we have 10
rows of 5000 m readings.

Approved for Public Release; Distribution Unlimited.
23

Figure 14 Example matrix of pairwise distances

These distances and the reported duty cycle from the CIL are used to create another matrix that is
the pairwise “power observed” transfer function for each combination of Zylinium and opponent
nodes. By summing down each column in this incident power matrix, we get the total power we
expect to see from all other nodes in the network. We use this estimate to provide a scalar
weighting of how occupied (from our team’s perspective) each channel is. The MOE combines
this collaboration occupancy information with information spectrum sensing broadcast
information in order to create an ordered list of channel occupancy across all nodes in our
network. The master node truncates this list to a smaller subset of channels and these are the
channels available to all nodes for transmission.

The diagram below shows how the various inputs are combined to create this “channel
occupancy” metric, Tc, over time. There is a voxel request component Vc that depends on the
duty cycle and the distance, there is a spectrum sensing component Sc that depends on the
spectrum sensing readings from our nodes, and then there is an incumbent component Ic, which
is weighted by a factor of 3. The resulting metric, Tc, is shown in the plot at the bottom of the
diagram.

The master node sort orders Tc and selects the N channels with the lowest occupancy, where N is
dictated by the aggression posture at that moment in time.

Approved for Public Release; Distribution Unlimited.
24

Figure 15 Description of how each radio creates the channel selection metric

The figure below shows our spectrum voxel requests plotted above the channel occupancy plot.
It is clear from the voxel requests that our radio is going in and out of aggressive mode. It is also
clear that there are stages where we use only a tiny amount of spectrum in the second half of the
match. We can see from the two plots that the voxel request plot has puzzle-piece-like shapes
that fit into the darker (lower-occupancy) portions of the spectrum occupancy plot. This
provides some level of confirmation that the radio is selecting channels as intended.

Figure 16 Illustration of the comparison between our spectrum usage (top) and the channel selection metric (bottom)

Approved for Public Release; Distribution Unlimited.
25

As an example, the plot below shows the sensed spectrum and the adjusted spectrum for a
passive incumbent run. Think of this plot as one vertical cross-section of the Tc plot above. In
this case, the passive incumbent occupied the upper half of the spectrum. It is clear that our
adjusted spectrum measurements are taking this into account because the upper channels have a
much higher “occupancy” value. It is also clear that there is another team in the match that is
requesting voxels. This is clear because the lower channels also have an adjustment factor,
though it is small. This adjustment factor is shown in the plot as the difference from the blue
“x”’s and the orange circles. This indicates that the other teams are far away from our radios.

Figure 17 Spectrum occupancy as perceived by one of radios

3.4 DevOps

A significant factor in our (near) success had to do with how rigorously we logged and analyzed
all of our Colosseum runs. We built a pipeline where we could kick off a batch job using any
combination of branch or git-sha identifiers for each repo involved in our radio. With the branch
specified, we had an Ansible [4] playbook that would build our LXC container, use jinja to
template out the radio and batch configuration files, copy the files to the LZ, and kick off the job.

After a job finishes, we parse both our internal logs and the drc logs. The log information is
stored in a postgres database. We also have a job that computes scores and metrics from each
match. The metrics and scores are stored in postgres and can be viewed using our Tableau
dashboards. In addition to Tableau, plots of the scores are sent to our team’s messaging app
(Slack) where they can be immediately viewed. In this process, we log the git-sha of all repos
involved in our build so that we have traceability back to the code that produced a specific result.
Storing the git-shas also allowed us to recreate any run by simply inputting those sha values into
our Ansible playbook. The workflow from Ansible to log artifacts is shown in the figure below.

Approved for Public Release; Distribution Unlimited.
26

Figure 18 Job creation and data processing workflow

The figure below shows an example of the radio configuration for a given run as that
configuration is printed in our Slack feed. You can see a dictionary of configuration parameters
followed by a long list of the repositories that are part of our build. For each repository, we are
printing out commit sha of that was used in the build.

Approved for Public Release; Distribution Unlimited.
27

Figure 19 Example log output produced by our log parsing pipeline

The figure below shows a snapshot of the flow-level metrics that are printed to Slack. We would
scrutinize these reports in order to find deficiencies in our radio logic. Towards the end of SCE,
we wanted to make sure that any flow our radio attempted led to an increase in our score. That
is, we wanted to avoid the doubly-bad scenario where we use spectrum transmitting packets, but
do not receive any points. We could do that check by ensuring if the “met_im” column was zero
(meaning we didn’t meet IMs for any MPs), then the percent should also be zero. If the percent
column was a large number, but met_im was a small number, this would indicate that we are
only getting a subset of the flow packets through and that, more importantly, we were not getting
enough packets through to meet the mandate.

Approved for Public Release; Distribution Unlimited.
28

Figure 20 Example table of flow information that is printed as html after each run

Approved for Public Release; Distribution Unlimited.
29

4 CIRN Decision Making

To ensure that we are responsive to the specific questions posed by DARPA we have addressed
each question as a subsection below. Some of this information is also discussed in the preceding
sections.

4.1 If you notice another team struggling to pass the Ensemble Threshold, how will your CIRN
react?

The master node in our network is continuously monitoring the performance reports from other
teams. In parallel, the master node has a decision loop callback that gets called once per second.
In this callback, we examine the worst-performing team’s score. If it is less than 75% of the
ensemble threshold and we are in aggressive mode, then we step down through our
aggressiveness levels at a rate of one step per 3 seconds. The aggressiveness levels are described
in the posture section above.

If we find that we are the worse-performing team, then we immediately jump to the most
aggressive posture regardless of whether other teams are struggling.

The master node keeps track of the network posture and transmits this to all other nodes in the
network every 500ms.

A second mechanism we implemented to protect weaker teams is that we switch our spectrum
allocation algorithm when we are in an aggressive posture mode. As background, when we are
at the lowest level of aggression and are using minimal spectrum, we choose spectrum based on
an algorithm that factors in the spectrum requests from all teams. This is described in the
Channel Selection section above. However, when we are in aggressive mode, we stop
considering the voxel requests from teams that are above threshold and instead only use voxels
from teams that are reporting being under ensemble threshold.

4.2 How does your CIRN determine the appropriate number of flows that the spectrum resources
can carry?

We have a two-level process for selecting which flows to attempt. There is a centralized
component that performs a global flow selection for all nodes. Then, there is a radio-local
component where more granular flow optimization decisions are made. At the centralized level,
the master node performs the optimization described in Channel Selection. The result of this
optimization is a “global flow blacklist” which is a list of the flows that should never be
attempted in the local flow optimization.

At the local level, flows are selected by solving a local knapsack optimization problem where
each node solves to maximize its points based on the capacity it has to each other node and the
rate requirement for each flow. In order to avoid “flow jitter”, we smooth the capacity estimates
over time so that the optimization is stable.

To support both levels of optimization, each node senses and tracks the SNR of the packets it
receives from every other node in the network. These packet-level SNRs get aggregated into a

Approved for Public Release; Distribution Unlimited.
30

link SNR between the node and all of the other nodes in the network. So each node is actively
estimating 9 link SNR values for all of the links into itself. In parallel, as part of the broadcast
thread, each node is transmitting these link SNR estimates.

The master node collects all of the link SNR estimates to create the full link SNR matrix for each
pairwise link in the radio network. The SNR matrix is converted to capacity and these link
capacities are what is used to perform the flow optimization.

One tricky element in the flow selection is that we do not know the rate required for the file
flows until the file is received from the traffic engine by the node meant to transmit that file. The
first file flow might not come in until well into the match. We had to implement two elements to
handle this: 1) each node maintains a rate estimate of its file flows and transmits these as part of
the broadcast messages, and 2) the flow optimization ignores file flows in the centralized channel
allocation before the flow’s rate is known.

4.3 How does your CIRN handle its own high point value (i.e., priority) traffic? How does your
CIRN handle other CIRN's high point value traffic?

High-point-value traffic is treated just like any other traffic in the sense that the global and local
flow selection optimization processes take into account the required rate and the point value of
each flow. These parts of the MOE then use that information to select the subset of flows that
are active. If the high-point flows have a rate requirement that is below the link capacity, then it
is likely that they will be made active.

A high-point flow will not be attempted if 1) the rate requirement for that flow is higher than the
capacity of the link or, 2) if the aggregate points of the other flows are higher and those flow can
all be executed with a lower capacity requirement. That is, if the high-point flow is very hard
relative to the number of points on offer, then the optimization may still not make that flow
active.

Even when a flow is active, if it requires a very high rate that is near capacity, we may not be
able to consistently close the link. If we sense that flow isn’t consistently being achieved, we
may deactivate it in favor of lower-rate flows even if those flows offer a lower point-per-capacity
rate.

We do not take into account the flow point values attempted by other teams at all.

4.4 How does your CIRN handle active incumbents? What is the procedure/algorithm for
learning its pattern?

We started with two assumptions: 1) the transmission schedule of the active incumbent is
periodic, and 2) that we can infer when the active incumbent is not active by noting when the
INR readings were exactly -12dB. Assumption 2 seemed to always hold, but assumption 1
occasionally fell apart due to the incumbent radio flowgraph dropping samples. It seems that the
intention was for the incumbent to be periodic, but there were occasional glitches that caused that

Approved for Public Release; Distribution Unlimited.
31

not to be the case. Nevertheless, the incumbent did usually maintain periodicity for long periods
of time.

Our approach was to:
1) First estimate the period of the incumbent transmission sequence by simply finding the

peak of the autocorrelation of the INR reports.
2) Estimate the “mask” of when the incumbent was off in a given period by marking each

100ms-interval where INR was not equal to -12 as a “1”, and other values as “0”.
3) Pass three pieces of information to all nodes using the broadcasts: a) the timestamp of the

beginning of a period, b) the length of a period, and c) a boolean mask of when it was
safe to transmit in a period.

4) Each node uses the mask information to only transmit in time intervals where the
incumbent was off.

As an example, here is a section of the broadcast message for RESERVATION-108854, which is
scenario 8352: "ai_prediction": {"ai_period": 6.000000, "ai_start_time": 1569470610.888695,
"ai_mask":
[0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,

0,1,1,1,1,1,1,1,1,1,1,1]}. This indicates that the period is 6 seconds. The mask elements
represent 100ms intervals. When the mask is “0”, nodes are allowed to transmit. The plot below
shows the active incumbent reports and our score. We were able to achieve all of the points
without tripping the incumbent’s threshold.

Figure 21 Top: score of active incumbent match. Bottom: Incumbent INR reports over time

Approved for Public Release; Distribution Unlimited.
32

Since our radio system relied on tight time synchronization across all nodes in order to achieve
TDMA, we already had a broadcast infrastructure to keep the nodes time synchronized to sub-ms
levels. To do this, each radio maintained a transmission event loop. The mechanics of that loop
were that a radio would sleep for short periods of time in a loop and then transmit if it was its
slot time. So we already had the mechanics of “blanking” transmissions while radios waited for
their TDMA slot.

Once we had the active incumbent mask distributed to all nodes, this mask essentially acted as a
TDMA slot mask such that nodes would only transmit if 1) it was their TDMA slot and 2) the
current time was not prohibited by the active incumbent mask.

This ended up being very effective. Using this approach, we were able to have 5 Zylinium
networks in the hardest active incumbent scenario at once, with all of the networks achieving the
ensemble score threshold.

4.5 How does your CIRN handle passive incumbents? What is the procedure/algorithm for
adapting aggregate interference?

There are two parts to how we handle passive incumbents: one part deals with the spectrum
occupancy of the incumbent and how we allocate our channels to stay out of the incumbent’s
way, and the second part deals with incumbent violation reports.

The incumbent channel reservations get incorporated into the rest of our channel allocation logic
in a similar way to voxel requests from other teams. That is, in our channel selection, we
accumulate occupancy weights for each of channels into the metric Tc. As outlined above, the
occupancy metric is a function of the distance of each team, their voxel requests, our spectrum
sensing, and the incumbent channel reservations. The incumbent reservation is weighted the
same as if three teams where requesting voxels. The net result of this scheme is that we will
choose to transmit in passive incumbent voxels if all the other voxels are requested by 3 teams.

In reaction to violation reports, our master sends out a message to all other nodes to go to “silent
mode”. In that mode, only the master radio transmits packets and the only packets it transmits
are broadcast messages twice per second. When the incumbent is no longer in violation, our
radios all resume their operation with no modifications.

4.6 How does your CIRN handle jammers? How are they detected? What type of reaction do you
expect from the CIRN?

We do not explicitly sense jammers. But each node is performing local channel selection based
on spectrum measurements. A jammer will cause the spectrum power measurements to be very
high in the channels used by the jammer. As a result, the radio will choose to use these channels
with a lower prioritization compared to open channels.

Approved for Public Release; Distribution Unlimited.
33

4.7 When insufficient spectral resources are available, how does your CIRN decide which
competitor's spectrum to attempt to use?

We have two modes for channel selection. When we are in “low-aggression mode”, we just
select the least occupied spectrum as perceived through the Tc metric. That is, we take into
account voxel requests, node distances, and power sensed data to find the least occupied
spectrum. In this mode we do not take into account the other teams’ score.

In “aggressive mode”, we perform the same channel selection process, but we exclude teams that
are above threshold from the calculation. That is, we do not consider any voxel requests from
teams above threshold in the calculation.

4.8 Does your CIRN estimate whether it’s winning or losing a match? How does your radio react
when it’s winning? How does your radio react when it’s losing?

We estimate our performance in a match by tracking our score estimate and the score reports
from other teams. If our radio is in last place, we immediately go into aggressive mode. If all
teams are above 75% of the ensemble threshold, we go into aggressive mode. If we are scoring
less than 80% of our expected score, we go into aggressive mode with FDMA. We do not have
any other rules that incorporate our relative match score position.

4.9 Is your CIRN able to detect which scenario it’s in, and tune its performance accordingly?
What scenario specific tuning does the CIRN do?

No, we make no attempt to fingerprint scenarios or to do scenario-specific tuning.

4.10 Do you have a strategy for ensuring you’re not eliminated during the round robins?

We were generally pretty generous with spectrum when teams are below threshold, so we didn’t
expect to have any trouble in the round robins. Our biggest fear was that we would introduce a
bug during our final development phases and that bug would cause a catastrophic failure that
would lead to an early knockout in the round robin.

Approved for Public Release; Distribution Unlimited.
34

5 RESULTS AND DISCUSSION

5.1 Example: Collaboration Improving Performance

Towards the end of Phase 2, after we implemented the MOE, we were able to turn off the
collaboration reasoning components in order to quantify how much collaboration helps the
ensemble. We are pleased to report that collaboration is more effective at increasing an
ensemble score than spectrum sensing alone. The plot below shows the outcome. It is clear that
by accepting and reasoning about the spectrum voxel requests, we achieve a huge performance
improvement.

Figure 22 Comparison of performance with (right) and without (left) collaboration

5.2 Example: Protecting a Passive Incumbent from Aggregate Interference

In reasoning about passive incumbents, we used a fairly simple algorithm: if the incumbent
power threshold is exceeded, stop transmitting everything but broadcast packets. The plot below
shows a 3-team freeplay match where the ensemble is just barely breaching the incumbent
threshold. Below the plot is a print out of our logs during this period. We can see both that we
have tracked the power violation and that we have sent the “be silent” message to all our radios
in an effort to reduce the ensemble power on the incumbent.

Approved for Public Release; Distribution Unlimited.
35

Figure 23 Passive incumbent example

5.3 Example: Score Optimization with Weak Opponent & Strong Opponent

We can demonstrate our dynamic approach to both weak and strong opponents in one match,
FREEPLAY-RESERVATION-109092. The following sequence of figures shows aspects of
how our radio reacts to the other radios in the match.

The first plot below shows the spectrum usage for the 5 teams in a freeplay match. We are the
team on the furthest left of the plot: Team 0. We have annotated the plot with periods of time
where our radio enters and leaves “aggressive mode”. These periods of aggressive mode are
clear from the plot because those are periods where our network is using most of the spectrum.
Team 3 has a similar pattern of aggressive periods where it is also using most of the spectrum.

Approved for Public Release; Distribution Unlimited.
36

Figure 24 Spectrum voxel occupancy by team for a 5 team match

The figure below shows two plots: one is a plot of our spectrum usage over time and frequency
as a spectrogram, and the other is a plot of the spectrum usage by team (y-axis) over time (x-
axis). This is a 20MHz scenario and Zylinium is the blue line in the plot. It is clear from the
plot, that there are periods of time where we choose to use 17MHz of the spectrum. These
periods blip on and off in the first two stages. They are triggered by the worst team reporting a
score over 75% of the ensemble threshold. Once the worst team drops below that level, our
spectrum usage drops back down to 7MHz of spectrum, which is our neutral posture.

From the plot, we can see that in stage 3, after entering high-bandwidth mode, we had a different
“fall off” response where we slower step our spectrum down back to the neutral posture level.
This indicates two things 1) that the worst team has stopped scoring above 75% of the ensemble
threshold and 2) that our network is not scoring at least 80% of the score our optimization
algorithm predicts we should be scoring. Team 3 (red line), has a similar gradual response out of
the top aggression level, although they take much longer to get back to their nominal frequency
usage. That is, they are more aggressive than we are.

Approved for Public Release; Distribution Unlimited.
37

Figure 25 Spectrum voxel usage plotted in units of MHz used vs time

The figure below compares the team score (left), with the spectrum usage plot from the last
figure. In the score plot, the red dashed line is the maximum score of that team at that MP, the
magenta dots indicate that that team is above ensemble threshold, and the green dots indicate that
the ensemble is above the threshold. Team 1 (second row) seems to be the performance-limiting
team in the match, but it is clear that when they have bursts of score above threshold, that those
small scoring bursts correspond to when our network uses the most spectrum, which verifies that
our rule is working.

By stage 3, Team 1 has stopped reporting its score, and thus, we no longer consider them to be
part of the match. Accordingly, our burst of aggression in stage 3 corresponds to the period of
time when both Team 2 and Team 4 briefly exceed the ensemble threshold.

Approved for Public Release; Distribution Unlimited.
38

Figure 26 Score and spectrum usage for a match

5.4 Example: Identifying Spectrum to Reuse

We never reuse the same channel in the same timeslot across the network. That is, we never have
two of our radios transmitting at the same time/frequency slot. Because of our very narrow time
slots and because the nodes only operated in the allowed channel set specified by the central
coordination component of our channel selection algorithm, it may appear at a macro level that
we are doing frequency reuse across different portions of our radio network. But, in fact, we
never reuse the same frequency in the same time. We only reuse frequency in an aggregate sense
such that in a period of multiple seconds all radios are likely to confine their transmissions to the
same set of “allowed channels”.

5.5 Example: Flow Prioritization

A critical aspect of the competition was the ability for a radio network to judiciously select
network flows to attempt. As explained in the preceding sections, we used variations on the
knapsack problem to decide which flows to attempt. In this example, we use several plots from
our analysis pipeline to show the behavior of our flow prioritization logic. These plots
correspond to a 3-team freeplay match in scenario 7089, which is the scenario with very high-
point-value flows. The first figure below is our score. It is clear from the plot that we are
scoring nearly the maximum score in most of the match, which means that our radio is able to
achieve the high-value flows.

Approved for Public Release; Distribution Unlimited.
39

Figure 27 Score for a 7089 match

The next figure shows two plots. The x-axis of the plots is time. Each dot corresponds to an MP
in the match. The y-axis of the plot has rows of dots plots and each row corresponds to a flow.
The annotation on the y-axis is “Tx ID - Flow ID - Point Value - Bps Requirement”. So both of
these plots show a subset of the flows for SRN 72. Some of the flows only require 260Bps (e.g.
5670-5674), while flow 5646 requires 918MBps.

The top plot has two dimensions of information encoded in each row: 1) the color encodes how
much relative capacity the flow requires compared to how much capacity is available in that link:
blue is nearly 0, while dark red indicates that the flow exceeds the capacity of the link, and 2)
wider lines indicate MPs where our flow selection optimization has “blacklisted” the flow which
means that, given the capacity, and our objective of maximizing the score, it is suboptimal to
attempt that flow. As time passes, the link conditions may change and create a condition where
it again makes sense to attempt this flow.

We can actually see this in the plot where the capacity requirement for the 5646 flow goes down
(color becomes less red), thus leaving room for the 10MBps 5651 flow to be attempted. So in
this example, the 5651 flow is the only flow that is avoided and it is only avoided for a short
period of time.

The second plot in this figure shows the performance of each flow by MP. Green indicates that
the flow requirements were met and the mandate was achieved in that MP, while red indicates
that the mandate was not achieved. In this case, we are doing well in the low-rate flows, but we
are not achieving the mandates for the two high-rate flows even though we are attempting those
flows. That is the optimization routine thinks we should have the capacity to achieve these flows
(i.e. they are not blacklisted), but we are actually not achieving these flows. In this case, bursty
interference kept us from achieving the flows.

Given more time, we would have developed more mechanisms to deal with missed mandates like
this. It is not immediately clear why we were underperforming on these flows in this example.

Approved for Public Release; Distribution Unlimited.
40

Figure 28 Top: visualization of the capacity required for each flow. Bottom: visualization of mandates were achieved

by MP

5.6 Example: Meeting Qualification Criteria

There were various qualification criteria. CIL compliance for score reporting and general
reporting is not that interesting. We simply verified that we met the criteria by running the CIL
tool. The two more interesting requirements were the traffic rate requirement and the voxel
reporting requirement.

For the traffic throughput requirement, we had a series of plots that showed the throughput of
each link. The traffic criteria was based on the aggregate flow rate of all links in a network
instead of the number of mandates achieve. Since this was the only situation where aggregate
rate was relevant, we did not have a plot for aggregate rate. But we did track the rate per flow
and we tracked the overall score, which is a function of the number of mandates met in each MP.
If a network achieved all of the mandates in all of the MPs, then that was a sufficient but not
necessary condition for passing the qualification hurdle.

The figure below shows a typical plot from our qualification run. In almost every MP, our score
(green dots) equaled the maximum stage score (red dashed line), which indicates that we met the
criteria.

Approved for Public Release; Distribution Unlimited.
41

Figure 29 Score in a qualification run

A second confirmation that we met the traffic criteria is given in the table below which shows
the flows from the first stage and part of the second stage for this match. The right-most column
lists the goodput rate in bits per second for each flow. The third-from-the-right column,
“req_bps” shows the average rate that we needed to achieve for all flows in order to meet the
qualification criteria. It is clear from comparing those two columns that every flow has exceeded
the average rate requirement and thus, that we have passed the qualification hurdle.

Figure 30 flow data for a qualification run

The other interesting qualification criteria was the spectrum compliance criteria. The figure
below shows our actual spectrum usage (red) overlaid on top of our CIL-reported spectrum usage
(blue). The opacity of blue encoded the duty cycle of the voxels that we reported in the CIL. It
was common for our voxel 'predicted_use': {'in_voxel_error':
{'competitor_value': 0.17, 'threshold_value': 0.39, 'pass': True},

Approved for Public Release; Distribution Unlimited.
42

'out_of_voxel_error': {'competitor_value': 0.05, 'threshold_value':

0.17, 'pass': True}. This shows that we passed the criteria by a large margin: 17% vs 39%
threshold and 5% vs 17% threshold.

Figure 31 Spectrum usage vs CIL reported usage for a qualification run

Approved for Public Release; Distribution Unlimited.
43

6 CONCLUSIONS

The main conclusion from three years of intense work is that it is possible to create waveforms
that can function in environments made of heterogeneous spectrum users. More importantly, we
collectively demonstrated that a low-rate collaboration channel between the spectrum users can
greatly enhance the collective ensemble radio performance. We intend to take our observations
about the nuggets of success from SC2 and apply them to new commercial ventures in the
spectrum space.

Approved for Public Release; Distribution Unlimited.
44

7 RECOMMENDATIONS/LESSONS LEARNED

The competition was very well run. We do not have any notable recommendations. Like any
large scale competition where there are competing objectives and many teams with conflicting
demands of the competition staff, some difficulties are impossible to avoid. Likewise, when
there is only one winner, non-winning teams will feel aggrieved in myriad ways. The
competition was certainly fair and all competitors had access to the rules and the Colosseum
resources to succeed. The Colosseum is a truly amazing resource for spectrum research and
development. Building and making it available to the community is a huge accomplishment for
the DARPA SC2 team.

As we discussed in the previous section, we are excited to carry the momentum of the
technological breakthroughs forward into larger-scale experiments and ultimately commercial
applications. We recommend that DARPA and the Federal Government continue to fund
research and development in these areas in order to keep the momentum going.

Approved for Public Release; Distribution Unlimited.
45

8 REFERENCES

[1] Tilghman, Paul. “If DARPA Has Its Way, AI Will Rule the Wireless Spectrum” IEEE
Spectrum 56.6 (2019): 28-33.
[2] Bernstein, David. “Containers and cloud: From LXC to Docker to Kubernetes.” IEEE Cloud
Computing 1.3 (2014): 81-84.
[3] Naval Research Laboratory, Multi-Generator (MGEN) traffic generation tool, 2019, Github
Repository, github.com/USNavalResearchLaboratory/mgen.
[4] Hochstein, Lorin, and ReneMoser. Ansible: Up and Running: Automating Configuration
Management and Deployment the Easy Way. O’Reilly Media, Inc., 2017.
[5] Eric Blossom, GNU radio: tools for exploring the radio frequency spectrum, Linux J. 2004.
[6] Braun, Martin, Jonathan Pendlum, and Matt Ettus.“RFNoC: RFnetwork- on-chip.”
Proceedings of the GNU Radio Conference. Vol. 1. No. 1. 2016.
[7] Tang, Z., Cannizzaro, R. C., Leus, G., Banelli, P. (2007). Pilot-assisted time-varying channel
estimation for OFDM systems. IEEE Transactions on Signal Processing, 55(5), 2226-2238.
[8] Perron, Laurent. “Operations research and constraint programming at Google.” International
Conference on Principles and Practice of Constraint Programming. Springer, Berlin,
Heidelberg, 2011.

Approved for Public Release; Distribution Unlimited.
46

9 List of Acronyms

ADC Analog to Digital converter
ACS/GCP Amazon Cloud Service/Google Cloud Platform
AP Access Point
API Application Programming Interface
BLE Bluetooth Low Energy
BPSK Binary Phase Shift Keying
BRAM Block Random Access Memory
BT Bluetooth
CFAR Constant false alarm rate
CFO carrier frequency offset
CIL CIRN Interaction Language
CIRN Collaborative Intelligent Radio Network
CPU Central Processing Unit
CRC Cyclic redundancy check
DAC Digital to Analog Converter
DARPA Defense Advanced Research Projects Agency
DDC Digital Downconversion
DMA Direct Memory Access
DSP Digital Signal Processor
DUC Dynamic Update Client
FCC Federal Communications Commission
FDD Frequency-driven development
FDMA Frequency-division multiple access
FFT Fast Fournier Transform
FIFO First In First Out
FIR Finite Impulse Response
FPGA Field-programmable gate array
GCP Google Cloud Platform
GNU GNU’S not Unix
GPS Global Positioning System
HTML Hypertext Markup Language
IM Individual Mandate
INR International Normalized Ratio
IoT Internet of Things
IQ Quadrature signal
ISM Industrial, Scientific, and Medical
LDPC Low-density parity-check
LO Local Oscillator
LTE Long-term Evolution
LUT Look up table
LXC Linux containers
LZ lzip archive
MAC Medium Access Control
MGEN Multi-Generator

Approved for Public Release; Distribution Unlimited.
47

MHz Megahertz
MO Mandated Outcome
MOE Mandate Optimization Engine
MP Measurement Period
MPS Measurement Period Score
MVP Minimum viable product
NCO Numerically-controlled oscillator
NR New Radio
NTP Network Time Protocol
OFDM Orthogonal Frequency-Division Multiplexing
PAWR Platforms for Advanced Wireless Research
PE Preliminary Event
PHY Physical Layer
QAM Quadrature Amplitude Modulation
QoS Quality of Service
RAM Random Access Memory
RF Radio Frequency
RFNoC RF Network on Chip
RX Receive
SC2 Spectrum Collaboration Challenge
SCE SC2 Championship Event
SDR Software Defined Radio
SIMO Single-input multiple-output
SNR Signal-to-noise ratio
SRN Standard Radio Node
TDD Test-driven development
TDM Time-division multiplexing
TDMA Time-division multiple access
TX Transmit
UHD USRP Hardware Driver
ZMQ ZeroMQ
ZSE Zylinium Spectrum Exchange

	Table of Contents
	List of figures
	1 SUMMARY
	2 INTRODUCTION
	2.1 Competition Overview
	2.1.1 SC2 Hardware & Radio Deployment
	2.1.2 SC2 Competition Overview
	2.1.3 SC2 Match Scoring
	2.1.4 SC2 Tournament Ranking
	2.2 Overall Strategy and Approach to the SC2 Problem
	3 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Software Design and Architecture
	3.1.1 Computational Performance
	3.2 Radio Design
	3.2.1 SCE Improvement Overview
	3.2.2 Physical Layer
	3.2.4 Medium Access Control (MAC) Layer: Mechanics
	3.2.5 Medium Access Control (MAC) Layer: Spectrum Selection
	3.2.6 Network Layer
	3.3 Data Sources, Decision Making, & Flow Selection
	3.3.1 Radio Node Spectrum Resource Allocation
	3.3.2 Posture
	3.3.3 Channel Selection
	3.4 DevOps
	4 CIRN Decision Making
	4.1 If you notice another team struggling to pass the Ensemble Threshold, how will your CIRN react?
	4.2 How does your CIRN determine the appropriate number of flows that the spectrum resources can carry?
	4.3 How does your CIRN handle its own high point value (i.e., priority) traffic? How does your CIRN handle other CIRN's high point value traffic?
	4.4 How does your CIRN handle active incumbents? What is the procedure/algorithm for learning its pattern?
	4.5 How does your CIRN handle passive incumbents? What is the procedure/algorithm for adapting aggregate interference?
	4.6 How does your CIRN handle jammers? How are they detected? What type of reaction do you expect from the CIRN?
	4.7 When insufficient spectral resources are available, how does your CIRN decide which competitor's spectrum to attempt to use?
	4.8 Does your CIRN estimate whether it’s winning or losing a match? How does your radio react when it’s winning? How does your radio react when it’s losing?
	4.9 Is your CIRN able to detect which scenario it’s in, and tune its performance accordingly? What scenario specific tuning does the CIRN do?
	4.10 Do you have a strategy for ensuring you’re not eliminated during the round robins?
	5 RESULTS AND DISCUSSION
	5.1 Example: Collaboration Improving Performance
	5.2 Example: Protecting a Passive Incumbent from Aggregate Interference
	5.3 Example: Score Optimization with Weak Opponent & Strong Opponent
	5.4 Example: Identifying Spectrum to Reuse
	5.5 Example: Flow Prioritization
	5.6 Example: Meeting Qualification Criteria
	6 CONCLUSIONS
	7 RECOMMENDATIONS/LESSONS LEARNED
	8 REFERENCES
	9 List of Acronyms

