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Abstract

Previous turbulence measurements along a near-ground, 500 m, horizontal path

using two helium-neon laser beacons and a Hartmann Turbulence Sensor (HTS)

yielded profiles of C2
n by estimating turbulence parameters such as Fried’s coherence

length, inner scale, and Greenwood frequency by measuring local aberrated wave-

front tilts. The HTS C2
n estimates were consistent with integrated turbulence values

collected along the same path by a BLS900 scintillometer. Further validation of the

HTS profiling method is necessary to produce accurate optical turbulence profiles for

wavefront correction and to eventually gain an improved understanding of turbulence

in the lower atmosphere and its variation as a function of altitude. In order to add

confidence to the HTS dual-beacon profiling method, a collection of sonic anemome-

ters was added along the path to collect point measurements of C2
T , which were used

to derive values of C2
n. Comparison of the independently measured data sets helps le-

gitimize the HTS turbulence profiling method. Propagation over a non-homogeneous

path (i.e. part grass and part concrete) ensured the turbulence profile along the path

is more varied. C2
n profiles in this work derived from HTS data captured on 25 and 26

July 2019 agreed strongly with the collocated anemometer and BLS measurements.
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VALIDATION OF HTS OPTICAL TURBULENCE PROFILING VIA SONIC

ANEMOMETRY

I. Introduction

Any field relying on atmospheric propagation, whether it be long-range imaging or

laser operation, must take into account the detrimental effects of optical turbulence.

Knowledge of key turbulence parameters, such as the Fried coherence length, r0,

the refractive index structure parameter, C2
n, and the Greenwood frequency, fG is

necessary to model the turbulence along a path. The Hartmann Turbulence Sensor

(HTS) was designed by the Optical Science Company (tOSC) as a tool to provide time

efficient and reliable estimates of these statistical parameters [1]. A novel method of

turbulence profiling using an HTS system is discussed in this thesis.

1.1 Motivation

For decades, researchers have attempted to produce models of optical turbulence

in the surface layer of the atmosphere (<100 m), where its effects on wavefront prop-

agation are most prominent [2]. Negative impacts of atmospheric turbulence include

laser wavefront degradation and an increase in transmission bit error rates in commu-

nication systems. The task of modeling and profiling turbulence has proven difficult

due to the chaotic nature of turbulence and lack of proper measurements. Methods

using scintillometry are effective to estimate statistical parameters of the turbulence

along a path. However, scintillometers are easily saturable over long paths and there-

fore have limited operational range [3]. Adaptive optics (AO) systems have demon-

strated their effectiveness in compensating for the optical turbulence through use of
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a deformable mirror, but under highly anisoplanatic conditions, compensation with a

single mirror is inadequate and additional information on the turbulence profile must

be gathered for effective compensation. If the full turbulence profile is known, mul-

tiple deformable mirrors can be operated to correct the phase distortions [4]. In the

past, these profiles have been found using techniques like Scintillation Detection and

Ranging (SCIDAR), which suffers from similar saturation problems as scintillometers,

and Slope Detection and Ranging (SLODAR) [5, 6, 7, 8, 9]. These techniques are

restricted by their need for large apertures and data processing requirements. The

present technique of HTS operation uses SLODAR-like measurements. However, the

methodology to derive the profiles is much different. The HTS uses a phase-based

technique rather than irradiance-based and hence does not suffer from saturation is-

sues. HTS operation also benefits from a very high-speed camera that is capable of

collecting extensive sample sizes in short periods of time for reliable estimation of

turbulence parameters. This makes the HTS an ideal candidate to feed information

into AO systems, which require accurate real-time knowledge of turbulent parame-

ters in order for their closed-loop feedback mechanisms to function properly. A new

method of HTS operation developed at the Air Force Institute of Technology (AFIT)

Center for Directed Energy (CDE) is outlined and presented as a potential solution

to the problems outlined above.

1.2 Objective

Previous work [2] has proven that HTS operation with two source beacons is an ef-

fective method of profiling turbulence by comparison with a commercial scintillometer

along the same horizontal path. The scintillometer provides single, center-weighted,

integrated C2
n values. Therefore, the comparison was made to the center-path mea-

surements of the HTS profile. The purpose of this thesis is to further validate this

2



two-beacon profiling method by comparison with a scintillometer and with sonic

anemometers collocated along the path. This work will eventually help in obtain-

ing a greater understanding of surface-layer optical turbulence. The final product

from this work will be C2
n profiles and r0 estimates under varying turbulent condi-

tions including time of day, cloud coverage, and wind velocity. The C2
n profiles will

be optimized and compared with the C2
n estimates produced by a boundary-layer

scintillometer and with the C2
n point measurements derived from anemometer data.

The wavefront tilts found from HTS measurements could later be passed through

an AO system to correct for the turbulence-induced phase distortions in real time.

The inhomogeneous profiling path chosen for this work includes sections of grass and

sections of concrete, which will provide more information on how these parameters

affect local turbulence strength.

1.3 Organizational Structure

Chapter 2 of this thesis provides a literature review of the past work in the field

of optical turbulence and the methods of estimating turbulence parameters as well as

the applications of this work. It lays the theoretical foundation supporting this work.

Chapter 3 is a summary of the operating equipment, the experimental methodology,

and the theory used to generate and optimize the profiles. Chapter 4 presents the

results and their significance. Lastly, chapter 5 discusses the results in terms of the

goal of this thesis and provides possible routes for future work on the subject.
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II. Background

The purpose of this chapter is to provide the foundational level of knowledge

needed to reproduce this thesis by summarizing the literature. Electromagnetic wave

propagation is discussed along with its connection to first principles. Then, optical

turbulence in the atmosphere and the Kolmogorov theory are summarized along with

any underlying assumptions. Previous methods of measuring turbulence parameters

such as slope detection and ranging (SLODAR) and scintillation detection and ranging

(SCIDAR) are also outlined as well as their connection with this work and the goal

of this thesis. Finally, adaptive optics is introduced as an applicable method of

correcting for turbulence distortion.

2.1 Electromagnetic Wave Propagation

In order to understand how light propagates through a turbulent atmosphere, one

must understand how light propagates through a still atmosphere. Under the stan-

dard assumptions that the atmosphere is a linear, inhomogenous, isotropic medium,

Maxwell’s equations, which describe the electric and magnetic fields, E and H re-

spectively, of an electromagnetic wave are written

−∇× E =
∂

∂t
(µH) (1)

∇×H− σE =
∂

∂t
(εE) (2)

∇ · (εE) = ρ (3)

∇ · (µH) = 0. (4)
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The permittivity ε, the permeability µ, the charge density ρ, and the conductivity

σ are all electromagnetic properties of the medium [10]. ε0 and µ0 denote the per-

mittivity and permeability in free space. In the atmosphere, each of these properties

fluctuate temporally and spatially and hence the fields E and H can be written as

E(r, t) = e−iωtE(r) (5)

H(r, t) = e−iωtH(r), (6)

where ω = 2πν is the angular frequency and i =
√
−1 is the imaginary number.

Substituting (2) and the curl of (1) into the vector identity

∇× (∇×A) = ∇(∇ ·A)−∇2A (7)

along with some further simplifications and assumptions outlined in detail by Mahalov

et al. [10], results in the vector Helmholtz equation

∇2E(r) + k20n
2(r)E(r) = 0. (8)

k20 = ω2µ0ε0 is the wavenumber and n is the refractive index, which physically repre-

sents how fast light will travel through the medium at location r. ∇2 is the Laplacian

operator defined by

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (9)

The solutions to (8) satisfy the scalar form of the Helmholtz equation

∇2u+ k20n
2(r)u = 0, (10)
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which itself has solutions of the form

u(r) = A(r)eik0φ(r), (11)

where A is the amplitude at location r and φ is the phase at r.

The Helmholtz equation results from a derivation of the wave equation when

looking specifically at the complex component of the wave and is therefore useful

in more elaborate situations [11]. In a more general sense, propagating waves are

solutions to the three-dimensional differential wave equation

∇2u =
1

v2
∂2u

∂t2
, (12)

where v = ω/k is the wave’s propagation velocity. Light waves emerging from a point

source are described as spherical because of their rounded wavefronts. Spherical waves

are described mathematically by

u(r, t) =
A

r
ei(kr∓ωt), (13)

where A is known as the source strength, or the wave’s amplitude at the source, r

is the propagation distance and k = 2π/λ is the wavenumber. A/r is the wave’s

amplitude, which degrades as the wave propagates and spreads. After propagation

over long distances, such as the case when observing distant stars, the curvature of

the wavefront becomes negligible and they can be estimated as planar, or flat, as

represented by

u(r, t) = Aei(k·r∓ωt), (14)

Where A is now a constant amplitude that doesn’t change as a function of propagation

distance. Each of these equations are solutions to the wave equation [11].
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Once effects such as diffraction are introduced, it becomes difficult to describe

mathematically how light will react. Huygens’ principle, which is a direct result from

the differential wave equation, attempts to simplify this complexity by assuming each

point across a wavefront is itself a source of a spherical wavelet that exhibits the same

velocity and frequency as its predecessor [11]. Huygens’ principle is a greatly simpli-

fied theory of wave propagation that does not account for interference effects. More

complicated phenomena such as propagation through turbulence must be described

using different methods.

2.2 Atmospheric Turbulence

The collection of molecules in the atmosphere move as a mostly inviscid fluid

with two evident states of motion: laminar flow and turbulent flow. Laminar flow is

smooth and uniform such that mixing within the velocity field does not occur, whereas

turbulent flow is random, chaotic, and leads to a nonuniform velocity field, which

diffracts propagating light waves unevenly across their wavefronts [12]. To categorize

the fluid motion, Osborne Reynolds [13] introduced a dimensionless quantity

Re =
V l

ν
(15)

known as the Reynold’s number, where V is a characteristic velocity, l is a charac-

teristic length, and ν is the kinematic viscosity (m
2

s
). The similarity principle for

incompressible flow states that for a given set of boundaries, the Reynold’s number is

the only control parameter [14]. The transition from laminar to turbulent flow occurs

at a point known as the critical Reynold’s number [12]. The kinematic viscosity of

air is ν = 1.5 × 10−5 m2

s
. If a scale size of l = 10 m and a velocity of V = 1 m

s
are

assumed, a Reynold’s number of Re = 6.7×105 is obtained [15]. This value is greater
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than the critical Reynold’s number and is therefore high enough to ensure the air

flow in the atmospheric is almost always turbulent. Once in the turbulence regime,

the turbulent motion is dominated by inertial forces, which produce flow instabilities

and chaotic eddies. However, at very high Reynold’s numbers, statistical symmetries

seem to reappear. Turbulence under these conditions is known as fully developed

turbulence.

By nature, the fluid motion of the atmosphere is turbulent. Temperature, pres-

sure, and humidity fluctuations lead to pockets of unstable air currents known as

optical turbules, or more colloquially, eddies. The effects of pressure and humidity

are often considered negligible and therefore turbulence is seen as a function of only

temperature fluctuations [16]. Temperature variations on the scale of less than 1◦ C

produce small fluctuations in atmospheric density, and subsequently, in the index of

refraction. The slight variations in refractive index can accumulate on a light beam

and lead to major inhomogeneities, which in turn cause detrimental effects like beam

wander, scintillation, and beam spreading [4]. Eddies form at the macroscale when

energy sources such as wind shear and convection increase the wind velocity, which in

turn increases the Reynold’s number of the turbulent flow until it passes the critical

Reynold’s number. Kolmogorov’s energy cascade theory of turbulence adopted from

Richardson [17] shown in Figure 1 states that large scale eddies transfer their energy

to the continuum of smaller scale eddies. The outer scale of eddy size, denoted by

L0, is the upper bound below which the turbulent flow of eddies is independent of the

parent flow. The inner scale, l0, is the lower bound below which the energy cascade

ceases and the energy contained by the eddies is instead dissipated in the form of

heat. The inner scale is related to the dissipation rate of turbulent kinetic energy, ε,
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Figure 1. Kolmogorov energy cascade theory of turbulence, where eddies at the outer
scale, L0, transfer kinetic energy to the continuum of eddies towards the inner scale,
l0. Eddies smaller than the inner scale dissipate their energy as heat [12].

and the kinematic viscosity, ν, by [4]

l0 = 7.4

(
ν3

ε

)1/4

. (16)

Eddies larger than l0 and smaller than L0 form the inertial subrange. From ground

level to approximately 100 m above ground, the outer scale is assumed to grow linearly

as a function of height [12].

The atmospheric index of refraction is particularly sensitive to temperature fluc-

tuations and turbulent mixing. The effect on refractive index is powerful enough that

it becomes spatially and temporally random. These variations in refractive index,

which perform as lenses in beam propagation, are the driving factor behind optical

turbulence [7]. A light beam passing through a turbulent medium experiences inho-

mogenous phase distortion across its wavefront because patches across the wavefront

propagate at a slightly different velocity based on the varying refractive indices they
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encounter. With longer exposures (i.e. longer propagation distances), more phase

distortion is accumulated on the wavefront. This phenomenon causes optical tur-

bulence to behave as a low-pass spatial filter, which softens sharp edges and causes

point sources to appear as blurs [18]. The effects of optical turbulence on an incident

planar wavefront are shown in Figure 2.

Figure 2. Atmospheric distortion of a planar wavefront due to optical turbulence.
As the wavefront contacts eddies, points across the wavefront propagate at varying
velocities based on the indices of refraction they pass through, which in turn distorts
the wavefront.

One of the most significant parameters of optical turbulence strength, known as

the Fried coherence length denoted by r0, was introduced by David Fried in 1967

[19]. The Fried parameter physically represents the diameter of a circular patch of

wavefront over which the root-mean-square aberration due to turbulence is equal to

1 radian. For telescopes without AO and with apertures larger than r0, imaging

resolution will be limited by turbulence and thus diffraction-limited performance is

not achievable. In adaptive optics design, r0 is used to determine the spacing of

deformable mirror actuators [20]. The Fried coherence length is described mathemat-
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ically for a plane wave as

r0 =

[
0.423k2sec(β)

∫
Path

C2
n(z)dz

]−3/5
, (17)

where k is the wavenumber, z is the height from ground [12], and β is the zenith angle

(i.e. the angle of observation relative to surface normal) [21]. For the purpose of this

work, which assumes spherical waves from the HeNe point sources, r0 is given by

r0 =

[
0.423k2

∫
Path

C2
n(z)

(
1− z

L

)5/3
dz

]−3/5
, (18)

where L = 511 m is the path length, β is assumed to be 0, and z is now position

along a horizontal path (z = 0 at the aperture plane). This integral can be discretized

as

r
−5/3
0 = 0.423k2

L∑
i=0

C2
ni

(
1− zi

L

)5/3
∆z, (19)

where ∆z is the step size, which has been chosen in this experiment to be 0.5 m.

For a telescope looking near zenith, r0 can be as large as a few meters under good

seeing conditions at infrared wavelengths. During poor seeing conditions at visible

wavelengths, r0 may be only a few centimeters [21].

High spatial frequencies correspond to fine image detail, therefore optical systems

that permit these high frequencies are considered superior. The spatial frequency

bandwidth of an optical system is closely related to the system’s modulation transfer

function (MTF). The MTF of an incident plane wave through turbulence as a function

of spatial frequency ν is given by

MTFturb(ν) = exp

[
−3.44

(
λfν

r0

)5/3
]
,

1

L0

� ν � 1

l0
, (20)

where λ is the wavelength and f is the focal length of the telescope. Equation 20
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displays how low spatial frequencies transmit more easily through turbulence and high

spatial frequencies are largely filtered out [12]. This effect significantly degrades the

resolution of images propagated through the atmosphere. When an optical imaging

system is introduced, the resolution of the system becomes a function of the MTF of

the turbulence and the receiver optics by

R =

∫ 2π

0

∫ D
λf

0

MTFO(ν)MTFturb(ν) νdνdθ

=
4D2

λ2f 2

∫ 1

0

u
(
cos−1u− u

√
1− u2

)
exp

[
−3.44

(
Du

r0

)5/3
]
du, (21)

where D is the diameter of the telescope aperture. Equation 21 limits the resolution

of the system under turbulent conditions to

Rmax =
πr2o

4λ2f 2
. (22)

The ratio of the system resolution to the maximum resolution can then be closely

approximated as a function of the aperture diameter and Fried’s parameter as

R

Rmax

≈

(
D
r0

)2
(

1 +
(
D
r0

)5/3)6/5
. (23)

By Equation 23, the ratio is approximately 1 whenD � r0 and approximately (D/r0)
2

when D � r0. Therefore, optical performance of the system is heavily dependent on

the aperture size and Fried’s parameter, which imposes a strict limit to the telescope’s

aperture size.

At its core, turbulence is a non-linear process in a viscous medium with motion
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described by the incompressible Navier-Stokes equation

∂tv + v · ∇v = −∇p+ ν∇2v (24)

∇ · v = 0, (25)

where ∂t is a partial time derivative, v is the flow velocity vector, p is the pressure,

and ν is the kinematic viscosity [14]. Theoretically, one should be able to predict the

movement of all turbulent flow using the Navier-Stokes equations. However, three-

dimensional closed-form solutions to the Navier-Stokes equations have not yet been

proven to exist for all systems due to the sheer amount of random parameters that

must be considered. Therefore, it is currently only possible to describe turbulence in

a statistical sense and through use of approximations.

2.3 Statistical Model of the Atmosphere

Many cases of random processes can be described accurately using stationary ran-

dom functions. This is not the case for the main atmospheric parameters: wind ve-

locity fluctuations, temperature fluctuations, and refractive index fluctuations. Each

of these fields vary spatially and temporally with mean values that are only constant

over short periods of time. Therefore the fields may only be considered stationary

over short increments. In order to describe processes of this nature, a function must

account for the shifting mean [12]. This is the purpose of the structure function. A

random process x(t) can be described by

x(t) = m(t) + x1(t), (26)

where m(t) is the mean of x and x1(t) satisfies 〈x1(t)〉 = 0 to account for the time-

varying average, which is a zero-mean fluctuation. The structure function of this
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process is then

Dx(t1, t2) =
〈
[x(t1)− x(t2)]

2
〉

= [m(t1)−m(t2)]
2 +

〈
[x1(t1)− x1(t2)]2

〉
. (27)

If the mean of x(t) varies slowly, the first term in Equation 27 becomes negligible

[12].

In the time domain, a stationary random process x(t) can be described by the

correlation function

Rx(τ) = 〈x(t)x∗(t+ τ)〉 , (28)

where τ is the stationary increment in time. Similarly, the covariance function is

Bx(τ) = Rx(τ)− |m|2. (29)

Clearly, if the mean value of x(t) is zero, its correlation and covariance functions

are equal. When the time step is zero (τ = 0), Bx(0) is simply the variance of the

variable x. For a zero-mean random process and by the Riemann-Stieltjes integral

x(t) =

∫ ∞
−∞

eiωtdν(ω), (30)

the covariance/correlation function can be written

Bx(τ) =

∫ ∫ ∞
−∞

ei(ω1t1−ω2t2) 〈dν(ω1)dν
∗(ω2)〉 . (31)

The Wiener-Khintchine theorem states the covariance function is related to the

power spectral density (PSD) function as a Fourier transform pair. The PSD function

describes the distribution of power amongst the frequency components of the signal.
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The relation between the two is

Bx(τ) =

∫ ∞
−∞

eiωtSx(ω)dω (32)

Sx(ω) =

∫ ∞
−∞

e−iωtBx(τ)dτ, (33)

where Sx represents the PSD.

A random process is considered stationary if its statistical properties don’t vary

in time. Equivalently, the probability density function (PDF) of a stationary random

process is dependent solely on time increments τ [12]. In turn, this means the random

field in question must be statistically homogeneous and isotropic. Atmospheric tur-

bulence can be treated as a process that is stationary only in increments. Therefore,

the covariance function is not applicable to most cases of turbulence. For this rea-

son, the structure function is generally used instead to describe the random turbulent

processes even though it contains less information.

The functions described in this section are only approximations that estimate

the stochastic field as locally homogeneous. Kolmogorov[22] worked based on these

approximations in order to develop his theory of turbulence and thus did not derive

his work from first principles.

2.4 Kolmogorov Theory

In the earliest days turbulence research, it was regarded as a purely stochastic, or

random, process. Andrei Kolmogorov in 1941 was the first to begin viewing turbu-

lence using statistics, which allowed it to be theoretically modeled [12]. Kolmogorov

adopted Richardson’s energy cascade theory of turbulence. In the Kolmogorov theory,

eddies smaller than the outer scale are assumed to be statistically homogeneous and

isotropic (no preferential direction), while eddies larger or equal to the outer scale are
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assumed to be anisotropic with ill-defined structure [12]. Therefore, Kolmogorov’s

statistical approach to turbulence only applies to eddies within the inertial subrange.

The spatial and temporal fluctuations of refractive index are described by the

structure function

Dn(r) = 〈(∂n)2〉 = 〈[n(x, t)− n(x + r, t)]2〉, (34)

where 〈 〉 represents ensemble averaging, n is the refractive index, r is the separation

vector, t is time, and x is the position vector. Under Kolmogorov’s assumptions for

large Reynold’s numbers and at scales below L0, the structure function becomes

Dn(r) =

 C2
n l
−4/3
0 r2, 0 ≤ r � l0

C2
n r

2/3, l0 � r � L0

(35)

where C2
n is the refractive index structure parameter (units m−2/3) and r is now the

magnitude of the separation vector [7]. The spatial variations in refractive index have

been empirically related to the temperature and pressure at the same point by

n(r) = 1 + 77.6× 10−6
(

1 +
7.52× 10−3

λ2

)
P (r)

T (r)2

≈ 1 + 79.2× 10−6
P (r)

T (r)2
, (36)

where λ is the optical wavelength on the order of 0.5 µm [12]. As shown in Equation

36, the index of refraction at r is inversely proportional to the temperature at r. This

gives rise to a relation between C2
n and the temperature structure parameter C2

T [23]

by

C2
n =

(
79.2× 10−6

P (r)

T (r)2

)2

C2
T . (37)
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Physically, C2
n describes the strength of the refractive index fluctuations in space

and time, which indicates the extent of the distortion a wavefront will experience

when passing through that region at that instance. C2
n generally ranges from 10−17

to 10−12 m−2/3, with larger values indicating “stronger” turbulence. C2
n values tend

to be largest at the Earth’s surface due to mechanical mixing and greater convective

flow effects and decrease as a function of height above the surface [12]. The struc-

ture parameters for temperature and humidity, C2
T and C2

q , are defined similarly for

their respective structure functions [7]. Kolmogorov showed by dimensional analy-

sis that each of these structure functions follows a universal 2/3 power law within

the inertial subrange. The 2/3 power law states generally that for a turbulent flow

at large Reynold’s numbers, the mean squared increments of velocity, temperature,

and refractive index between two points behave as the 2/3 power of their separation

distance [14].

If the refractive index of the atmosphere is assumed to behave as a random process

of fluctuating index about a mean value (Equation 26), the covariance of the refractive

index field is then

Bn = 〈n1(r + r1)n1(r1)〉 , (38)

where 〈 〉 represents an ensemble average. The three-dimensional power spectrum

of phase fluctuations, also known as the power spectral density (PSD), is the Fourier

transform of this covariance

Φn(κ) =
1

(2π)3

∫
d3rBn(r)e−iκr, (39)

where κ is the three dimensional spatial wavenumber (units rad
m

). Within the inertial

subrange, by changing to spherical coordinates and calculating the ensemble average,
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the PSD becomes

Φn(κ) =
5

18π
C2
nκ
−3
∫ L0

l0

sin(κr)r−1/3dr. (40)

If the integral limits are allowed to diverge, l0 → 0 and L0 →∞, the PSD follows a

-11/3 power law known as the Kolmogorov spectrum [4, 6] according to

Φn(κ) = 0.033C2
n κ
−11/3,

1

L0

� κ� 1

l0
. (41)

The one-dimensional analog to Equation 41 follows a -5/3 power law. C2
v and C2

T

follow the same power law. Outside of the inertial subrange, both the 2/3 and the

-11/3 power laws begin to break down. Each of Kolmogorov’s theorems have been

consistent across a number of experiments [24], yet there is still no solution that

begins with the Navier-Stokes equations to derive these laws. Experimental methods

of measuring turbulence using Kolmogorov’s theories have been in use for decades

and have proven their credibility.

2.5 Methods of Turbulence Profiling

SLODAR and SCIDAR are both triangulation-based remote sensing methods for

determining the distribution of atmospheric optical turbulence that have proven effec-

tive in the past. Both methods are used by astronomers to produce vertical profiles of

C2
n. They can also be used to record temporal and spatial characteristics of turbulence

at different altitudes as the overall structure is shifted by the wind.

The classical SCIDAR technique as described in the literature [5, 8] uses detec-

tion of scintillation, or fluctuations in intensity, in the pupil plane of a telescope to

generate the C2
n profile. A generalized SCIDAR technique first suggested by Fuchs

[25] extracts spatial information from the scintillation images of double star targets

(binary star systems) to produce vertical C2
n profiles of the total atmosphere. Wave-
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fronts emerging from a star can be considered planar by the time they reach the

Earth. When these wavefronts pass through layers of turbulence at height h, they

form scintillation diffraction patterns relative to the C2
n structure they pass through.

The second star in the binary pair, separated by θ (typically a few arcseconds), will

produce wavefronts that are distorted in a slightly different manner because of the

differences in propagation path through the turbulent layers. The cross-correlation

function of the two scintillation patterns shows a peak at the distance θh with ampli-

tude proportional to C2
n [9]. If multiple layers of turbulence are observed rather than

just one, they each impose independent intensity perturbations. The cross-correlation

function represents the sum of the contributions from each layer. If the two spatial

autocorrelation functions in the parallel and perpendicular directions to the star sep-

aration are represented by C‖ and C⊥ respectively, then their difference (as given by

Avila et al. [9]) is

B(x) = C‖ − C⊥

=

∫ ∞
0

dhK(x, h)C2
n(h) +N(x), (42)

where B(x) is the difference of the two autocorrelation functions measured at the

pupil plane of the telescope by a charge-coupled device (CCD). K(x, h) is known as

a kernel and is the theoretical autocorrelation function generated by a single layer of

turbulence at height h. N(x) is the estimated noise over the system. K(x, h) is a

diagonal matrix and can therefore be inverted to obtain the C2
n(h) profile along the

path.

The SCIDAR technique is ideal for astronomical imaging because of the long

path distances. Scintillation occurs because of the atmosphere’s diffractive effects.

Therefore, there must be ample propagation distance from the source to the telescope

for the effects to be impactful. As shown by Roddier [26], variance in scintillation is
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proportional to h5/6. For this reason, SCIDAR is restricted in measuring turbulence

near the telescope.

SLODAR is a method similar to SCIDAR, with the main distinction being SLO-

DAR uses phase aberrations on the wavefront rather than scintillation patterns. SLO-

DAR is of particular interest to this thesis because the HTS uses SLODAR-type mea-

surements to estimate the turbulence profile along a horizontal path. SLODAR relies

on the measurements of local wavefront tilts (the first derivative of the wavefront)

found by the Shack-Hartmann Wavefront Sensor (SHWFS) when observing a binary

star system through turbulence. The n×n SHWFS lenslet array samples the wave-

front and focuses a subimage of the wavefront patch onto a subaperture array, which

measures the 2-dimensional spot motions (also called Zernike tilts or Z-tilts) of the

subimage within each subaperture.

Wilson[27] outlines the following steps used in the SLODAR method to determine

the turbulence profile:

1. Subimages from the SHWFS are recorded simultaneously for each star in the

binary pair for short exposures such that the turbulence is invariant during

image capture.

2. The centroid locations within each subaperture are measured to calculate local

wavefront tilts in both the tip and tilt direction. The mean slope is subtracted

from the stars’ individual slopes to eliminate telescope tracking error.

3. The cross-correlation of the collected slopes is measured. From the slope, si,j(t),

of subaperture (i, j) at time t and the concurrent slope from the second star

at a neighboring subaperture, s′i+δi,j+δj(t), where δi and δj are the separations,
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the cross-correlation is

C(δi, δj) =

〈∑
i,j

si,j(t)s
′
i+δi,j+δj(t)

O(δi, δj)

〉
. (43)

The angled brackets indicate ensemble averaging over many individual frames

and O(δi, δj) is the number of overlapping subapertures for the given separation.

4. Similarly, the autocorrelation of a single star at a pair of subapertures is

A(δi, δj) =

〈∑
i,j

si,j(t)si+δi,j+δj(t)

O(δi, δj)

〉
. (44)

The autocorrelation provides an estimate of the system’s impulse response due

to a single layer of turbulence. A(δi, δj) can be deconvolved with C(δi, δj) to

recover the turbulence profile. If the axis of source separation is aligned with

the SHWFS axes, only the one-dimensional cross-correlation along δi or δj must

be calculated to recover the profile.

5. Given the normalized turbulence profile from Step 4, the full integrated turbu-

lence strength along with r0 estimates are found by tracking centroid motion

with algorithms such as the differential image motion method (DIMM)[28].

The cross-covariance of two stochastic processes X and Y (e.g. two independent

paths through turbulence) is a measure of the similarity between the two outcomes

as a function of relative time between the two. The cross-covariance of X at time t1

and Y at time t2 is defined as

CXY (t1, t2) = 〈
(
Xt1 − 〈Xt1〉

)(
Yt2 − 〈Yt2〉

)
〉, (45)

where 〈 〉 represents the expectation value operator. The cross-covariance function
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introduces an anisoplanatic term, which causes the impulse response, or the shape of

a turbulent layer’s covariance at a set altitude, to fluctuate at points along the path.

The impulse response of SLODAR relative to altitude and the power spectral density

of turbulent phase fluctuations is then determined with a fractional error. Ignoring

the previously introduced anisoplanatic effects and under Kolmogorov turbulence

assumptions, the fractional error of C2
n calculation takes values anywhere from 0% at

the telescope to 20% at the source [29].

The locations of discrete points along the path where C2
n is estimated are deter-

mined by the path crossings of the two stars, which are themselves determined by

the lenslet array geometry and the angular separation of the star system as shown

in Figure 3. If the number of subapertures is represented by n, the heights of each

Figure 3. SLODAR geometry for a binary star system and n = 4 subaperture array.
The crossings are determined by the angular separation between the stars, θ, and the
diameter of the subapertures, w. D represents the diameter of the telescope pupil.
Adapted from Goodwin [6].

subsequent crossing are given by hm = m · δh, where m ranges from 0 to n-1 and

δh = w
θ
. The distance from the stars to the subaperture array is then hmax = D

θ
. Star
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pairs having a larger angular separation will lead to higher resolution data of ground

layer turbulence (at the wavefront sensor) and lower resolution at the source end.

These methods, along with many others (differential imaging [3, 5], MASS [5],

etc.) all attempt to estimate the turbulence profile along a path. Once the tilts along

the path are known to a degree, the information can be fed into an adaptive optics

imaging system, which can correct for the turbulence-induced distortion and allow

for near aberration-free propagation through the turbulence.

2.6 Adaptive Optics

When left uncompensated, the effects of atmospheric turbulence on a wavefront

include significant degradation like distortion and blur. This negative effect lead

to the creation of adaptive optics (AO), which is used to improve the performance

of optical systems that require propagation through the atmosphere. The overall

purpose of AO is to compensate for wavefront distortion in real time using a closed

loop by sensing the phase distortion of a known reference source and applying the

conjugate phase to the outgoing beam (or incoming image) to correct the distortion.

The main components of an AO imaging system are a deformable mirror to induce

a controlled distortion to the wavefront, a wavefront sensor to measure turbulence

degraded wavefronts, which determine how the mirror will be shaped, and an actuator

command computer to shape the mirror properly [12]. The schematics of a typical

AO system are shown in Figure 4.

AO systems attempt to constantly correct for the rapidly changing effects of the

atmospheric distortion. Ideally, this allows for undistorted images to be received,

which is of great interest to astronomers [30]. It also allows for laser wavefronts to be

propagated such that they have little to no distortion upon contact with their target,

which dramatically increases their lethality. However, the task of correcting for the
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Figure 4. Schematics of an adaptive optics imaging system. The distorted source image
is divided by a beam splitter and passed to a wavefront sensor. The wavefront sensor
passes information about the wavefront distortion to a control computer, which in turn
alters the shape of the deformable mirror to induce a conjugate phase on the corrected
outgoing wavefront. Figure adapted from Tyson [4].

randomly shifting distortion imposed by atmospheric turbulence is non-trivial. The

AO loop must be fed rapid and accurate information about the atmospheric conditions

in order to function properly. In practice, AO systems are limited by the finite amount

of incident light received by the wavefront sensor and the difference in the turbulence

profile that may occur between the path of the known source and the outgoing signal.

The latter effect is quantified with a variable known as the isoplanatic angle, θ0,

which determines the field of view over which spatial invariance may be assumed

[31]. Anisoplanatic tilt error in the optical system may lead to the deformable mirror

not being shaped to the proper turbulence profile, leading to a non-ideal outgoing

wavefront. If the path difference between the reference and the outgoing beam is

greater than θ0, proper correction for the atmospheric distortion is not possible. Just

like r0, the isoplanatic angle is closely related to the MTF of the optical system. θ0
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represents the 1/e point of the MTF assuming a spherical wave by

MTFθ(θ) = exp

[
−
(
θ

θ0

)5/3
]
. (46)

The isoplanatic angle in Equation 46 can be written

θ0 =

[
2.91 k2

∫ L

0

C2
n(z)z5/3dz

]−3/5
. (47)

Greenwood [32] studied formulas for the bandwidth of AO systems and in doing so,

proposed a term to quantify the characteristic atmospheric frequency, which is now

known as the Greenwood frequency, fG. He defined the characteristic frequency as

fG =

[
0.0196

(
k

σr

)2 ∫ L

0

C2
n(z)v5/3(z)dz

]3/5
, (48)

where σr is the total uncorrected power and v(z) is the wind speed transverse to the

propagation path. Greenwood proposed two specific cases and how the characteristic

frequency is defined for each: ground-based operations along near-horizontal paths

and astronomical observations [32]. The case of interest for this thesis is the near-

horizontal path, which Greenwood defined as

fG =

{
7.34× 10−3

(
k

σr

)2

C2
n

v8/3

ω

[(
1 +

ωL

v

)8/3

− 1

]}3/5

, (49)

where C2
n is assumed to be constant along the path and the transverse wind speed is

composed of a constant v and a pseudowind ωz in terms of an angular slew rate ω. The

reciprocal of the Greenwood frequency is known as the Greenwood time constant, τ0,

which gives the time interval over which the turbulent conditions remain essentially

constant. For constant transverse wind speed v⊥, the characteristic time constant is
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directly related to the Fried parameter by

τ0 =
0.32r0
v⊥

, (50)

which is typically on the order of ms [32].

The performance of AO systems is measured in many ways. One method of

classification is known as the Strehl ratio (SR), which is defined as the ratio of the

maximum mean irradiance in the focal plane through turbulence vs. free-space prop-

agation. Under weak turbulence conditions, the SR can also be written in terms of

the ratio of the point spread functions (PSF) of turbulent conditions to free-space

conditions by

SR =
PSF (0)

PSF0(0)
=

1

1 + (D/r0)5/3
D/r0 � 1, (51)

where D is the aperture diameter. The PSF, or impulse response, of an incoherent

imaging system represents the system’s irradiance in the output plane in response to

a point source.

2.7 Multi-Conjugate Adaptive Optics

Adaptive optics methods are a very promising solution to correcting the phase

distortions induced by optical turbulence. However, use of a single deformable mirror

(DM) in wavefront correction has limitations over extended regions of interest. A sin-

gle mirror is only capable of improving wavefront/image quality over a small angular

field of view [33]. AO telescopes are only effective over a field area that is approx-

imately the size of the isoplanatic patch. For this reason, AO systems can produce

high-resolution images of binary stars, but are incapable of correcting images of plan-

ets and galaxies. One method proposed to increase the corrected field of view of AO

telescopes is to apply a three-dimensional phase correction by a series of DM’s placed
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in the optical train of the telescope [34]. It is widely accepted that a greater num-

ber of deformable mirrors operated in series could provide full phase correction even

during highly anisoplanatic situations [4]. This method is known as multi-conjugate

adaptive optics (MCAO). Despite the agreement on its potential, technical hurdles

and cost considerations have limited the use of MCAO systems [33]. In order for a

MCAO system to apply the proper conjugate phase for each atmospheric layer, the

profile of the turbulence must be known.

It has been shown[35] that atmospheric turbulence is often concentrated within

vertical layers rather than being uniformly distributed. MCAO systems attempt to

correct for each “layer” separately by assigning a deformable mirror to each section,

effectively increasing the isoplanatic patch [4]. Even in the absence of measurement

noise, angular anisoplanatism serves as the limit to AO telescope performance [34].

The schematic difference between a single DM AO system and a two-mirror MCAO

system are shown in Figure 5.

It can be assumed that the atmosphere is composed of discrete thin layers of

turbulence at varying heights. In the near-field approximation, the resulting phase

Φ(r,α) at the telescope pupil from zenith angle α is the sum of the contributions

from each layer

Φ(r,α) =
Nt∑
j=1

Φj(r + hjα), (52)

where r is the pupil coordinate, Φj are the phase distortions by the jth turbulence

layer at altitude hj, and Nt is the total number of layers [36]. Each phase is corrected

by a different DM at the image of the respective turbulence layer.

27



Figure 5. Schematic comparison of a single mirror AO system (a) and a two-mirror
MCAO system (b) when observing two individual layers of turbulence (e.g. surface
layer and tropopause). Φi at each crossing represents the phase distortion from that
location. ΦC is the corrective phase. Adapted from Johnston et al. [34].
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III. Experiment

This chapter serves to connect the ideas discussed in Chapter 2 with the work done

in this thesis. The theory applied to the work, in particular the weighting functions,

is derived. The constrained nonlinear optimizer used to enhance the C2
n profiles is

detailed. An outline of the equipment used for the experiment and the specifications

of each device is presented. Lastly, the methodology of the experiment is laid out in

full detail.

3.1 Theory

Weighting Functions.

The weighting functions used to generate C2
n profiles from the HTS data have

been derived thoroughly by Fried [19] and Bose-Pillai [2] and will be derived again

here. Consider the geometry of a pair of point sources and a pair of subapertures as

shown in Figure 6.

Differential angle of arrival (i.e. first derivative of the phase difference) mea-

surement using two sources reduces common mode noise in the measurements (e.g.

platform vibrations and angular tracking error). By the geometric weighting function

method used in this work, it would not be possible to profile with a single beacon.

With one source, the beacon to aperture geometry would produce weighting func-

tions that are too similar to one another to accurately profile the turbulence. Fried

[37] relates the mean-square differential angle of arrival between two subapertures,

〈(α1 − α2)
2〉, to the coherence length, r0, by

〈
(α1 − α2)

2
〉

=
〈
α2
〉
I(S,Ψ), (53)

29



r1

𝛉2 𝛉1

Source 1 Source 2

Aperture 2Aperture 1

Δ𝛉

r2

Figure 6. Geometry of a subaperture pair with two sources used to derive the crossing
weighting functions.

where 〈α2〉 is the two-axis mean-square tilt defined by

〈
α2
〉

=
〈
(αx)

2 + (αy)
2
〉

(54)

= 1.027

(
3.44

π2

)(
λ

D

)1/3(
λ

r0

)5/3

(55)

and I(S,Ψ) can be written as

I(S,Ψ) =

(
16

π

)2 ∫ 2

0
πdθ

∫ 1

0
du

u

{
1

8
cos−1(u) +

√
1− u2

[(
u3

12
− 5u

24

)
+

(
u3

3
− u

3

)
cos2(θ)

]}
·
{[

S2 + 2Sucos(θ + Ψ) + u2
]5/6

+
[
S2 − 2Sucos(θ + Ψ) + u2

]5/6 − 2u5/3
}
,

(56)

where S = S
D

. Equation 56 can be evaluated numerically for various subaperture

separations/diameters and the angle of tilt direction relative to the separation vector

of the two subapertures (Ψ = 0 for parallel and Ψ = π/2 for perpendicular). The
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geometry of the sensing path and aperture separation vector between one source and

two subapertures will always form a triangle with no path crossings. This ultimately

results in multiple scaled versions of the same weighting function, making it impos-

sible to correctly profile the turbulence due to lack of variability between weighting

functions. The clearest solution to these issues is to introduce a second beacon for

profiling. Calculating the mean-square difference in angle of arrival measurements

between the two sources eliminates the tracking error, which is equivalent for both

sources and therefore drops out of the difference. A second source also allows for the

generation of multiple weighting functions with greater variability over the path, thus

making profiling possible.

The subapertures in Figure 6, each with diameter D, are located at positions r1

and r2 with centers separated by s = r2 − r1. The Z-tilt of the 2nd source image at

the 1st aperture in the direction θ2 is given by

α1(θ2) =
32λ

π2D4

∫
W (r − r1)φ(r, θ2)dr(r − r1), (57)

where λ is the wavelength, φ(r, θ2) is the wavefront distortion experienced by the

2nd source following propagation through turbulence to coordinate r, and bold font

indicates a vector quantity. W (r − r1) is called the circular aperture function, which

serves to limit the region of integration, which would otherwise be infinite over the

aperture plane, by

W (r − r1) =

 1, r − r1 ≤ D
2

0, r − r1 > D
2

(58)

The Z-tilt across the 2nd aperture by the 1st source in direction θ1 is given similarly

by

α2(θ1) =
32λ

π2D4

∫
W (r − r2)φ(r, θ1)dr(r − r2). (59)
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The Z-tilts are zero-mean random processes, which allows for the differential tilt

variance to be expressed as

〈[
α1(θ2) − α2(θ1)

]2〉
=

〈[
α1(θ2) − α2(θ1)

]
·
[
α1(θ2) − α2(θ1)

]〉

=

(
32λ

π2D4

)2
〈∫ ∫

drdr′
[
(r − r1)W (r − r1)φ(r, θ2)− (r − r2)W (r − r2)φ(r, θ1)

]

·
[
(r′ − r1)W (r′ − r1)φ(r′, θ2)− (r′ − r2)W (r′ − r2)φ(r′, θ1)

]〉
,

(60)

where 〈 〉 represents ensemble averaging. By changing the order of the integration

and ensemble averaging and multiplying the individual pieces, Equation 60 can be

written equivalently as

〈[
α1(θ2) − α2(θ1)

]2〉
=

(
32λ

π2D4

)2

·[∫∫
drdr′(r − r1) · (r′ − r1)W (r − r1)W (r′ − r1)

〈
φ(r, θ2)φ(r′, θ2)

〉
−
∫∫

drdr′(r − r2) · (r′ − r1)W (r − r2)W (r′ − r1)
〈
φ(r, θ1)φ(r′, θ2)

〉
−
∫∫

drdr′(r − r1) · (r′ − r2)W (r − r1)W (r′ − r2)
〈
φ(r, θ2)φ(r′, θ1)

〉
+

∫∫
drdr′(r − r2) · (r′ − r2)W (r − r2)W (r′ − r2)

〈
φ(r, θ1)φ(r′, θ1)

〉 ]
.

(61)
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Alternatively, this is written as

〈[
α1(θ2) − α2(θ1)

]2〉
=

(
32λ

π2D4

)2

·[∫∫
drdr′(r · r′)W (r)W (r′)

〈
φ(r + r1, θ2)φ(r′ + r1, θ2)

〉
−
∫∫

drdr′(r · r′)W (r)W (r′)
〈
φ(r + r2, θ1)φ(r′ + r1, θ2)

〉
−
∫∫

drdr′(r · r′)W (r)W (r′)
〈
φ(r + r1, θ2)φ(r′ + r2, θ1)

〉
+

∫∫
drdr′(r · r′)W (r)W (r′)

〈
φ(r + r2, θ1)φ(r′ + r2, θ1)

〉 ]
.

(62)

Because
∫∫

drdr′(r · r′)W (r)W (r′) = 0, terms that are functions of exclusively r

or r’ can be added to Equation 62 without changing the result. Therefore, Equation

62 can be written〈[
α1(θ2) − α2(θ1)

]2〉
= −

(
32λ

π2D4

)2

·

[∫∫
drdr′(r · r′)W (r)W (r′)·[

Dφ(r − r′)− 1

2
{Dφ(r − r′, θ1 − θ2, s) +Dφ(r − r′, θ2 − θ1, s)}

]
,

(63)

where

Dφ(r − r′) =
〈

[φ(r + r1, θ2)− φ(r′ + r1, θ2]
2
)
〉

=
〈

[φ(r + r2, θ1)− φ(r′ + r2, θ1]
2
)
〉
, (64)

and

Dφ(r − r′, θ1 − θ2, s) =
〈

[φ(r + r2, θ1)− φ(r′ + r1, θ2]
2
)
〉
, (65)

Dφ(r − r′, θ2 − θ1, s) =
〈

[φ(r + r1, θ2)− φ(r′ + r2, θ1]
2
)
〉

(66)

are the set of phase structure functions [2]. For the case of spherical wavefronts
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propagating from each source through Kolmogorov turbulence defined with the power

spectrum in Equation 41, Equation 63 can be written as

〈[
α1(θ2) − α2(θ1)

]2〉
= −2.91k2

(
32λ

π2D4

)2 ∫ L

0

dzC2
n(z)

·
∫∫

drdr′(r · r′)W (r)W (r′) ·

[∣∣∣∣(r − r′)(1− z

L
)

∣∣∣∣5/3
− 1

2

{∣∣∣∣(r − r′)(1− z

L
) + s− ∆θz

∣∣∣∣5/3 +

∣∣∣∣(r − r′)(1− z

L
)− s+ ∆θz

∣∣∣∣5/3
}]

,

(67)

where ∆θ = θ2 − θ1 represents the angular distance between the sources, k is the

wavenumber, and L is the path length. The HTS aperture plane is at z = 0 m and the

helium-neon laser sources are at z = L. Equation 67 also assumes the wave structure

function, which is the summation of the log-amplitude structure function and the

phase structure function, is approximately equal to the phase structure function [2].

Fried[38] and Winick et al.[31] describe the technique to integrate over r and r’

by a change of variables where u = 1
D

(r − r′) and v = 1
2D

(r − r′). These techniques

reduce Equation 67 to

〈[
α1(θ2) − α2(θ1)

]2〉
=

∫ L

0
dzC2

n(z)fdc(z), (68)

where fdc(z) is the crossing path weighting function defined by

fdc(z) = −2.91

(
16

π

)2

D−1/3

∫ 2π

0

dθ

∫ 1

0

du

[
(u cos−1u)− u2(3− 2u2)

√
1− u2

]
·

{∣∣∣u(1− z

L

)∣∣∣5/3
− 1

2

[
u2
(

1− z

L

)2
+

(
|s− z∆θ|

D

)2

+ 2u
(

1− z

L

)( |s− z∆θ|
D

)
cosθ

]5/6

− 1

2

[
u2
(

1− z

L

)2
+

(
|s− z∆θ|

D

)2

− 2u
(

1− z

L

)( |s− z∆θ|
D

)
cosθ

]5/6}
.

(69)

Equation 69 can not be simplified any further and thus requires numerical evaluation

from this point. Crossing path weighting functions are generated for every aperture
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Figure 7. Path weighting functions over the 511 m range for 22 different subaperture
separations. The HTS subaperture plane is located at z = 0 m and the HeNe sources
are at z = 511 m. The weighting function with notch at 0 m is the self weighting
function. Increasing the aperture separation moves the notch closer to the source end.

separation from 0 to 35.09 cm (increments of 1.67 cm), with the s = 0 cm separation

weighting function known as the “self” weighting function because only one aperture

is considered. The 22 weighting functions are plotted in Figure 7. Each weighting

function drops to zero at the source end, implying that turbulence near the sources

has almost no effect on the wavefront tilts observed by the HTS [2]. Each weighting

function dips to zero at a singular point along the path. This location is where the

two sensing paths from the sources and apertures cross as was shown in Figure 6.

At the location of the crossing, the turbulence experienced by each sensing path is

exactly the same, therefore the contribution to the differential tilts at that location

has no effect on the signal.

The non-crossing weighting functions do not cross along the path, but rather

behind the subapertures or sources as shown in Figure 8. As observed in Figure 8,

s
d⊥

= h
h+z

. Therefore, d⊥ = s(h+z)
h

= s + sz
h

. From the same geometry, s = h∆θ.

Hence, d⊥ = s + z∆θ for the non-crossing weighting functions, which differs from

the crossing weighting functions where d⊥ = s − z∆θ. From this, the non-crossing
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Figure 8. Source and aperture geometry of non-crossing weighting functions. The ab-
sence of path crossings produces weighting functions with no locations of zero influence.

weighting functions are then

fdc(z) = −2.91

(
16

π

)2

D−1/3

∫ 2π

0

dθ

∫ 1

0

du

[
(u cos−1u)− u2(3− 2u2)

√
1− u2

]
·

{∣∣∣u(1− z

L

)∣∣∣5/3
− 1

2

[
u2
(

1− z

L

)2
+

(
|s+ z∆θ|

D

)2

+ 2u
(

1− z

L

)( |s+ z∆θ|
D

)
cosθ

]5/6

− 1

2

[
u2
(

1− z

L

)2
+

(
|s+ z∆θ|

D

)2

− 2u
(

1− z

L

)( |s+ z∆θ|
D

)
cosθ

]5/6}
.

(70)

Non-crossing weighting functions are calculated for every separation from 1.67 cm

to 35.09 cm in increments of 1.67 cm. However, the functions produced for each

separation end up very similar. For this reason, only the five closest separations and

the largest separation non-crossing weighting functions were considered for this thesis.

Through trial and error, it was determined this combination produced the optimal

measurement noise cancellation and acted as DC values for the differenced crossing
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weighting functions, which lose information about magnitude once differenced. The

six utilized non-crossing weighting functions are shown in Figure 9. The non-crossing

weighting function for the smallest subaperture separation has the smallest amplitude

at z = 0 and the functions representing subsequent separations are ordered with

increasingly larger values at the same location.

Figure 9. Non-crossing weighting functions for the five closest and largest aperture
separations.

Once the 28 different crossing and non-crossing weighting functions are generated,

they are combined into a 28×1023 matrix, M , where each row corresponds to an

individual weighting function and the columns are where the functions are sampled

along the path (every 0.5 m for 511 m). Given this matrix, the estimated C2
n along

the path is simply

C2
n,est = M+V, (71)

where M+ is the Moore-Penrose pseudo-inverse of M and V is the set of differential

tilt variances calculated for the same aperture separations as the weighting functions.

The pseudo-inverse is calculated with respect to a given threshold, which ensures all
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singular values of M below the threshold are not inverted. In the absence of noise,

the estimated C2
n values are related to the true values by

C2
n,est = M+MC2

n, (72)

where M+M can be viewed as the influence function, or impulse response matrix,

which describes how the estimated C2
n at a given position is affected by turbulence

elsewhere.

The technique outlined above is prone to noise and sometimes leads to negative

C2
n estimates, which are seen as gaps in the C2

n profile. This is especially common for

lower pseudoinverse thresholds when the estimates can hit the noise floor. For this

reason, larger thresholds are typically chosen to reduce noise. The trade-off for using

larger thresholds is that weighting functions with singular values (from the singular

value decomposition) lower than the threshold are set to zero during pseudoinverse

calculation. Fewer weighting functions factor into estimates at larger thresholds,

therefore higher thresholds lead to a smaller credible range and an influence function

that “breaks” earlier along the path as shown in Figures 10 and 11. In practice, the

smallest threshold that produces minimum C2
n dropouts was chosen for any one data

set.
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Figure 10. The influence function for a threshold of 11 at 100, 200, 300, and 350 m. The
function breaks immediately past 350 m. 5 weighting functions have singular values
below 11.

Figure 11. The influence function for a threshold of 31 at 100, 200, 300, and 350 m.
The function now breaks near 300 m. 12 weighting functions have singular values below
31.
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Constrained Nonlinear Optimization.

For data sets with particularly strong turbulence, an additional effort to reduce the

measurement noise of the data must be applied. A constrained nonlinear optimizer

function, which attempts to minimize an objective function, was chosen to improve

the profiles. The objective function to beat measurement noise is

(∆xMX − V )2 , (73)

where ∆x = 1
2

comes from the discretization of step sizes into half-meter increments,

M is the matrix of weighting functions at each discrete location, X is the minimizer of

the function in place of C2
n, and V is the vector of tilt variances corresponding to each

weighting function. The original profile with the thresholded pseudoinverse is passed

to the optimizer as the initial guess. The negative C2
n values for each profile are set

to a specified floor value, which is changed depending on the initial profile estimate.

The lower and upper bounds of operation are also set based on the initial profile. A

constraint on r0 estimation for each data set was also used in the optimization.

3.2 Equipment

Hartmann Turbulence Sensor (HTS).

The HTS was designed to be the ideal tool for measuring local wavefront tilts

due to optical turbulence. Brennan et al.[20] outlines 5 requirements for an ideal

turbulence sensor:

1. A large telescope aperture to collect the maximum amount of light

2. A large collection of subapertures for statistical averaging
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3. Small subapertures for inner scale estimation with l0>0.3d where d is the sub-

aperture diameter

4. A high frame rate camera for estimation of high Greenwood frequencies and for

differencing adjacent frames for noise estimation

5. A large dynamic range within each subaperture to measure large tilts during

strong turbulence

Each of these specifications were taken into account when designing the HTS, a

Shack-Hartmann wavefront sensor based on a 16” Meade LX200 coma-free telescope

[1]. The Shack-Hartmann sensor takes pupil plane measurements of local wavefront

tilts through use of a Thor Labs MLA150-5C lenslet array represented in Figure 12

[39].

Figure 12. Schematic of the Shack-Hartmann wavefront sensor. Collimated wavefronts
incident on the lenslet array are focused to different points on the focal plane array
based on their local slopes [4].

The entire HTS system is mounted within a trailer on a floating suspension system,

which protects the system during transportation. The custom optics bench within the

HTS consists of a lenslet array, a Vision Research Phantom v7.3 high speed camera

(captures up to 8,639 frames/sec [1]), and relay optics to collimate and invert the
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image. Two 2.2 mW helium-neon (HeNe) laser beacons at 632.8 nm are incident

on the telescope. The 632.8 nm wavelength corresponds to a peak in the Phantom

camera’s quantum efficiency [1]. Each laser was fitted with a beam expander to

entirely illuminate the HTS telescope aperture. The center of the aperture is blocked

by a central obscuration, which houses the secondary mirror. The telescope’s pupil

plane is imaged onto a 32×32 array of lenslets, which sample the wavefront and focus

subimages onto the Phantom camera’s CCD. On the CCD, an 18×18 pixel region is

designated for each subaperture.

Figure 13. Original 18×18 pixel grid (dashed) compared to modified 12.7×12.7 pixel
grid (solid). Telescope magnification is altered slightly to get 13×13 pixel regions for
each spot.

The lenslet array directs the incident wavefronts onto the Phantom camera’s CCD,

where their point of focus is determined by local tilts as shown in Figure 14.

For this experiment, the subaperture mask was rotated by 45 degrees to provide

more separation between the focused spots from the two lasers. This resulted in a

12.7×12.7 pixel region for the subimage from each laser. To avoid the complexity

of fractional pixel computation, the telescope magnification was slightly altered such
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Figure 14. Depiction of how a microlens’ focus point is affected by the local wavefront
tilt. Here, f is the lens’ focal length, ∆y is the displacement of the focus from the
optical axis, and d is the lens diameter.

that the mean focus position lie at the center of 13×13 pixel boxes [2]. The resulting

subaperture mask is shown in Figure 13. The circular lenslets, each with focal length

5.2 mm, are 146 µm in diameter and arranged in a square grid spaced 150 µm apart

with the areas between lenses masked with chrome to prevent light from passing

through [1].

Figure 15. Approximate locations of the optics on the HTS optical bench. The focal
plane of the telescope is at 0 m. L1 collimates the telescope beam through the lenslet
array (LA). L2 and L3 invert the image vertically and recollimate the beam onto the
CCD[1].

The optical setup of the HTS is depicted in Figure 15. The alignment procedure

is outlined thoroughly in the HTS manual [1]. The system must be aligned using

an alignment source, which ideally fully illuminates the telescope aperture with a
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Optic Label Focal Length (mm) Diameter (mm) Location (mm)
Melles Griot 01LAL413/078 L1 50 20 46.339

Thor Labs MLA150-5C LA 5.2 0.146 105.07
Melles Griot 01LAO018/078 L2 25 8 138.31
Melles Griot 01LAO018/078 L3 65 25 230.41

Vision Research Phantom V7.3 CCD n/a n/a 283.24

Table 1. Specifications of the HTS optical bench outlined in Figure 15.

perfectly collimated or spherical wave. The Hartmann sensor has a minimum focal

distance of around 50 m, which limits the acceptable curvature of incident light en-

tering the telescope. Any misalignment in the optical bench will produce aberrated

subimages on the CCD and be detrimental to estimation of turbulence parameters.

Table 1 (adapted from Mann et al. [1]) outlines the HTS optics in further detail in

reference to Figure 15.

The inner HTS optics ensure the cells behind each subaperture are large enough

to prevent light from neighboring points to overflow but small enough to keep the

computation time of the centroiding algorithm to a minimum [39]. A mask is applied

to the subapertures that receive little to no light either due to the telescope aperture

or its 4.8” diameter central obscuration [1, 40]. This reduces the total active regions

from 1,936 to 1,258. Additional subapertures may also be removed for individual data

sets if they are distorted or not focused correctly. The large number of subapertures

in use allows for quick and accurate estimates of turbulence parameters, making it

an ideal wavefront sensor for an AO system.
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Sonic Anemometers.

Four Applied Technologies SATI/3A ultrasonic anemometers were used for point

measurements of C2
n at 100 m increments along the path. This model was chosen

for its three non-orthogonal axes of wind velocity (U, V, and W) measurement. The

design is optimal for measuring high speed wind and attempts to minimize the flow

distortion by the transducers [41]. The arms holding the anemometers were also

pointed due west (the direction of prevailing wind) to minimize flow distortion from

the arm. A pair of transducers are mounted in each axis separated by 15 cm [42].

The design of the anemometer is shown in Figure 16.

Figure 16. SATI/3A ultrasonic anemometer non-orthogonal design with 120◦ sepa-
ration between transducers. The U,V,W axes refer to the upper orientation of the
anemometer.

A sonic pulse is emitted by one of the transducers and captured by its opposing

transducer and vice versa [41]. The transit time of the signal between the transducers

is then calculated by

t = D

√
c2 − v2n ± vd
c2 + v2

, (74)
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where D is the path length, c is the velocity of sound in still air, v is the absolute

velocity, and vn and vd are the normal and parallel components of velocity, respectively

[42]. The parallel component is found by

vd =
D

2
(

1

t1
− 1

t2
), (75)

where t1 and t2 are the transit times of the two opposing pulse directions [42].

From the sound velocity measurements, the anemometers can be used to obtain

sonic temperature information. The temperature structure parameter, C2
T , is obtained

from the temperature measurements using

C2
T = 〈[T ′(t+ ∆t)− T ′(t)]2〉(〈V 〉∆t)−2/3. (76)

T’ is the temperature flux that comes directly from anemometer measurements of

temperature, where T ′ = T − 〈T 〉 [43]. 〈 〉 represents ensemble averaging, V is the

magnitude of the mean wind velocity vector, and ∆t is the time between measure-

ments. The anemometers were operated at a 10 Hz collection rate (∆t = 0.1 s) and

over a 1 minute collection period. From Equation 37, C2
n can then be calculated using

C2
T by

C2
n = (79.2 · 10−6

P

T
2 )2 · C2

T , (77)

where the overbar represents a mean averaging, P is the pressure [16]. The SATI/3A

anemometers collect data at 200 Hz and output averaged data sets at 10 Hz. The

1-minute averaged data sets for 25 and 26 July are shown in Figure 17.

Figure 17 shows an interesting phenomenon that occurs following sunset. The 30

minute time span following sunset is a quiescent period during which atmospheric

heating by the sun rapidly fades. During this time, the atmosphere settles into a

horizontally layered structure. At the beginning of the quiescent period when the
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Figure 17. 1-minute averaged C2
n plots derived from sonic anemometer measurements

taken during the early evening on the 25th and the late afternoon on the 26th. Station 1
is on the HTS side of the path and station 4 is on the source end. As observed, station
2 lost power around 00:00 UTC during collection on the 25th.

ground heating by the sun starts to weaken, the grass portions of the path cool faster

than the concrete segments. The convective movement in the atmosphere throughout

this period produces a counterintuitive rise in C2
n measurements as well as an increase

in measurement noise. This can be observed in the 25 July subplot of Figure 17, where

the anemometer stations over grass show a clear increase in C2
n following sunset at

0055 UTC. However, the functioning anemometer station over concrete did not see
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this sharp C2
n increase but rather the slow decline one would expect. This effect can

be explained by the temperature stratification over grass that is not present over the

concrete, which gives rise to greater convective motion leading to an increase in C2
T

and in turn, larger C2
n values measured by the anemometer stations.

The anemometer stations at both ends of the path also powered a Campbell

Scientific NR-LITE2-L net radiometer to measure the difference between incoming

versus outgoing (ground-reflected) solar radiation. For this work, the net radiometers

were used to keep a record of cloud coverage. The radiometer plots are shown in

Figure 18 with clear dips indicating clouds passing overhead. Station 1 on 26 July is

consistently higher than station 4 throughout the day likely due to reflections from

nearby surfaces that factor into net irradiance measurements. This did not affect

results because the radiometer readings were only used to capture cloud coverage. The

25 July plot shows a deviation in measurements between the two stations following

sunset at 0055 UTC. Negative net radiometer values indicate more outgoing irradiance

relative to incoming. Past sunset, the radiometer located over concrete recorded

greater outgoing radiation. This indicates the grass cools much more quickly following

sunset.

Boundary Layer Scintillometer (BLS).

Scintillometers operate by sensing the intensity fluctuations of light (i.e. scin-

tillation) caused by optical turbulence. By measuring the covariance of intensity

fluctuations over the path, scintillometers can produce singular path-integrated val-

ues of C2
n and thus act as a reliable calibration tool in comparing the HTS against

the constant turbulence case. The BLS generates a path-integrated value of C2
n by
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Figure 18. Net radiometer plots to display cloud coverage at times in UTC on 25 and
26 July. Station 1 is the anemometer tower closest to the HTS (100 m) and station 4
is on the opposite end of the path (400 m).
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the log-amplitude variance, B11, where

B11 = 4π2k2

∫ ∞
0

κΦn(κ)dκ

∫ R

0
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)
[

2
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where k is the optical wavenumber, κ is the spatial wavenumber, Φn(κ) is the three-

dimensional refractive index spectrum, J1 is a Bessel function of the first kind, Dr

is the receiver diameter and Dt is the transmitter diameter. The path weighting

function is center-weighted as shown in Figure 19.

Figure 19. The path-weighting function used by the BLS to determine a singular C2
n

estimate over the path from a point source [44]. The function is weighted heaviest in
the center of the path.

The Scintec BLS900 was deployed along the path for measurements of C2
n as

another method of validating the HTS estimates. The BLS transmitter contains 888

infrared (880 nm) LEDs [45] that are viewed by the receiver at the other end of the

path (511m separation). Because 880 nm and 632.8 nm wavelengths are affected
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differently by refractive index fluctuations, a conversion is applied to the BLS values

to account for the difference thus making the BLS and HTS C2
n estimates comparable.

For this experiment, the BLS transmitter was 1.3 m from the ground and the receiver,

which was mounted in the remote sensing trailer, was 2 m from the ground. This

height difference was accounted for in the calculation of C2
n from the BLS. The path

reduction aperture was removed from the receiver, allowing it to correctly operate

over the 511 m path [45]. The BLS produced a single averaged C2
n value over the

path every minute during data collection displayed in Figure 20. This value can

be multiplied by the impulse response matrix generated by HTS measurements to

represent a profile under constant turbulence conditions.
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Figure 20. BLS center-weighted C2
n path measurements from 25 July and 26 July. No

measurements were made from 2003-2023 UTC on 26 July likely because the path from
the BLS transmitter to receiver was blocked.
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3.3 Methodology

Figure 21. 511 m path oriented in the direction of the prevailing wind (west) with
anemometers distributed across. The remote sensing trailer containing the BLS re-
ceiver and HeNe lasers is on the left. The HTS trailer containing the HTS and the
BLS source is on the right.

The HTS profiled the 511 m path depicted in Figure 21 located on the taxiway of

the National Museum of the US Air Force in Riverside, Ohio. The first half of the path

is almost entirely grass and the second half is concrete. This inhomogeneous path was

chosen to observe the difference of turbulence strength over the two types of ground.

However, the concrete on the taxiway has greatly deteriorated, meaning it may not

generate as much turbulence from surface heating as it would if it were properly

maintained. This weakens the inhomogeneity from grass to concrete. Therefore,

the difference observed between concrete and grass turbulence in this experiment is

lessened but still observable in some profiles. Four sonic anemometers were mounted

2.64 m from the ground and placed at points along the path 100 m, 200 m, 300 m,

and 400 m from the HTS. The anemometers height difference from the HTS sensing
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path was corrected based on the h−4/3 conversion factor. The averaging algorithm

used by the anemometers when estimating C2
T contained issues that were corrected

by multiplying by a factor of 1.89. The derivation to obtain this value is given

in Appendix A. Previous experiments [46] have determined a potential correlation

between the direction of the turbulence anisotropy and the wind direction relative to

the path. For this reason, the path was chosen to face west into the direction of the

prevailing wind such that wind will primarily push the turbulence structure along

the path rather than transverse to the path. The anemometers at each end logged

wind velocity and air temperature data using a Raspberry Pi microprocessor, while

the center stations use Campbell Scientific CR6 dataloggers. The two HeNe laser

beacons were located within the remote sensing trailer and separated by 11 cm. This

11 cm separation ensured the laser subimages were each focused into the center of

their 13×13 pixel regions.

HTS data was captured on 25 July from 1744 to 2133 and on 26 July from 1615

to 1734 (all EST, UTC-4). Each individual set of data contains 100 frames of back-

ground data and 1,000 frames under laser illumination. The Phantom camera cap-

tures 600×800 pixel frames, which are later cropped to 572×572 pixels for processing.

The camera was operated at 2 µs exposure to prevent over-saturation during periods

of low turbulence and to capture the quickly varying temporal statistics.

The data from the HTS was first collected using National Instruments’ c© Lab-

VIEW software and later processed in MATLAB R©. LabVIEW logs each set of HTS

data as a big endian file with two additional marker bits at the beginning of each file.

These bits are removed when using MATLAB to read in the data. The mean of the

100 background frames was computed and subtracted from each of the 1,000 laser

frames. A mask was then applied to each data frame in order to cover the subaper-

tures receiving little to no light either due to the telescope aperture or the central

54



obscuration. The mask was applied in such a way that the first box in each row

contains light from the laser on the right (from the perspective of the HTS looking

into the remote sensing trailer). To make sure the spots on the CCD were ordered

properly, two sets of data were captured with the laser beacons operating individually

before each set of simultaneous operation. Then, by comparing spot locations, the two

lasers could be distinguished. This ensures the tilt variances are calculated properly.

Some sets of data, especially those taken during periods of fluctuating temperature,

contained subaperture pairs that are blurred or cut off due to incorrect focusing. The

telescope focus drifts due to thermal expansion and contraction of the HTS optics and

must be corrected constantly. In these cases, the flawed subapertures were covered

and therefore removed from calculations. This did not significantly affect the results

for the individual data sets because of the large population of subapertures factoring

into calculations.

Following the mask application, an auto-focusing algorithm is performed, which

corrects for any shifting focus and moves each centroid to the center of its region.

The auto-focus code first finds the center of each region not covered by the mask (i.e.

regions where the mask has a value of 1). Then, it finds the location of the centroid

within every cell in the mean frame, which is the average of all 1,000 frames. An

11×11 pixel box is then drawn around each centroid and moved to the center of its

respective cell. If the turbulent conditions are weak enough, a 13×13 pixel box may

be used instead. For more turbulent data sets, this method fails because the local

tilts are large enough to move the spots outside of their respective 13×13 pixel region,

which affects the mean image and hence subsequent focus correction.

20% of the maximum value within each cell is subtracted from each pixel in the cell

in an attempt to remove the noise pedestal. A raw set of tilt variance measurements

and the corresponding auto-focused data frame with the background subtracted are
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shown in Figure 22.

Figure 22. Example of a raw 600 x 800 HTS data frame against an averaged cropped
frame with the correct mask applied, auto-focused, and the background subtracted.
Additional flawed subapertures are also covered. 13 x 13 pixel red boxes are drawn
around each spot to ensure the correct focusing.
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At this point, the centroids of each spot for all 1,000 focus-corrected frames are

calculated to track their movements over the period of data collection. This allows

for the differential and non-crossing differential tilt variances to be determined. The

Fried coherence length in the horizontal and vertical axes is also found from the

centroid information. The mean variance over each subaperture in the longitudinal

and transverse direction is first calculated. The components of r0 are then

rL,T0 =
VL,T

KL,Tλ2D−1/3

−3/5
, (79)

where λ is the wavelength, VL,T is the set of tilt variances in the longitudinal and

transverse direction, D is the subaperture diameter (1.15 cm), and

KL = 0.364

(
1− 0.532 ·

(√
2

150

146

)−1/3
− 0.024

(√
2

150

146

)−7/3)
(80)

KT = 0.364

(
1− 0.798 ·

(√
2

150

146

)−1/3
+ 0.018

(√
2

150

146

)−7/3)
, (81)

where 150 µm is the subaperture separation and 146 µm is the lenslet diameter and

the
√

2 is from the 45◦ mask rotation. This produces four r0 values in total: VL,

VT , HL, HT , where L denotes longitudinal (parallel to separation axis), T denotes

transverse (perpendicular to separation axis), V is vertical, and H is horizontal.

Through trial and error, a set of weighting functions was chosen specifically for

the greatest diversity, range, and noise suppression possible. This set turned out to be

all of the crossing weighting functions differenced by their nearest neighbor combined

with the first five and final non-crossing weighting function. Differencing the crossing

functions eliminates knowledge of the functions’ magnitude. The addition of the non-

crossing functions reintroduces the DC component. This combination produces an

ideal delta-like influence function from 0 m to 350 m (before applying a pseudoinverse
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threshold). Beyond 350 m, the weighting functions are very similar and hence the

present technique fails to profile past this point. The differencing technique success-

fully reduced noise between neighboring subapertures. The weighting functions used

to generate the profiles for this thesis are displayed in Figure 23.

Figure 23. The combination of weighting functions used in data processing for this
work. The differenced crossing weighting functions contain notches at varying points
along the path whereas the non-crossing functions have notches behind the apertures
(not shown).

Finally, the thresholded pseudoinverse of the weighting functions is multiplied to

the set of tilt variances along with a factor of 2 (from the inverse of the step size) to

give C2
n estimates along the path. C2

n values from the HTS, BLS, and anemometers are

then plotted on a logarithmic axis against path distance, z. The non-linear optimizer

is applied with constraints specific to each profile to minimize measurement error in

the profile.
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IV. Results

Experimental results are displayed and explained in this chapter. Each of the tur-

bulence profiles presented contains four different sets of data: C2
n point measurements

derived from the anemometer collections, the single BLS C2
n reconstructed with the

influence function to represent a constant turbulence profile, the raw pseudoinverse

profile from the HTS measurements, and the optimized HTS profile. The pseudoin-

verse threshold values determine the lower limit below which all singular values of M

are not inverted. To better quantify these values, they will be given in terms of the

percentage

α =
Threshold

Largest Singular V alue
× 100%. (82)

For the chosen combination of weighting functions, the largest singular value is 1,350.

The optimizer effectively flattens the small-scale and non-physical C2
n fluctuations in

each profile that arise from measurement noise. Various combinations of weighting

functions were tested in order to find the set with the largest functional range and

to minimize the noise statistics. The influence function produced by the chosen set

of weighting functions is only reliable to 350 m at most. Therefore, none of the

following profiles display reliable data past 350 m. r0 estimates for each data set are

also presented.

Each of the following profiles are presented in UTC (4 hours ahead of local time in

the summer). The profiles are ordered chronologically, beginning at 2200 UTC on 25

July 2019 and ending at 2134 UTC on 26 July 2019. C2
n is plotted on a logarithmic axis

so both large-scale and small-scale changes along the path are visible. Fluctuations

in the reconstructed BLS profiles indicate the locations where fidelity in the profiles

is lost.
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Figures 24 and 25 were captured at 2200 and 2218 UTC, respectively. Despite

being taken so closely in time, the two sets of data produced dissimilar results as

expected due to the randomly varying statistics of turbulence. At 2200 UTC, the

BLS measured a C2
n of 4.0e-14 m−2/3, which is relatively low compared to other

measurements. Weaker turbulence conditions led to less measurement noise, which

allowed the pseudoinverse in this case to be performed with a threshold of 11 (α =

0.8%). At 2218 UTC, the BLS measurement of C2
n more than doubled from 2200 UTC

at 9.3e-14 m−2/3. Because of this, the threshold had to be raised to 31 (α = 2.3%) to

beat the measurement noise and eliminate dropouts in the profile.

Figure 24. 25 July 2200 UTC turbulence profile with threshold of 11 (α = 0.8%) and
BLS measured C2

n of 4.0e-14 m−2/3.
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Figure 25. 25 July 2218 UTC turbulence profile with threshold of 31 (α = 2.3%) and
BLS measured C2

n of 9.3e-14 m−2/3.
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The 2232 UTC data set from 25 July contained multiple blurred subapertures due

to the drifting focus of the HTS optics. With these flawed subapertures removed, the

optimized HTS profile matched the anemometers very well.

Figure 26. 25 July 2232 UTC turbulence profile with threshold of 26 (α = 1.9%) and
BLS measured C2

n of 7.3e-14 m−2/3.
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The 2247 UTC data set in Figure 27 was captured during a period of strong

turbulence. The BLS estimated C2
n values of 5.4e-14 m−2/3 at 2247 UTC and 1.4e-

13 m−2/3 only a minute later indicating strong turbulence fluctuations at this time.

This explains why the profile at this time still shows dropouts at a threshold of 31

(α = 2.3%).

Figure 27. 25 July 2247 UTC turbulence profile with threshold of 31 (α = 2.3%) and
BLS measured C2

n of 5.4e-14 m−2/3.
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Figure 28 was produced a large threshold value of 45 (α = 3.3%). This causes the

influence function to fail faster than usual at 250 m. Even at such a large threshold,

measurement noise during this data set is significant enough to produce negative

values in the raw pseudoinverse near 75 m and 120 m.

Figure 28. 25 July 2305 UTC turbulence profile with threshold of 45 (α = 3.3%) and
BLS measured C2

n of 6.6e-14 m−2/3.
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A large threshold was also used in Figure 29 although dropouts are still present

in the profile. As time approaches sunset, changes in the atmosphere contribute to

additional measurement noise in the system. This effect is partly responsible for the

increased dropouts in the 2320 UTC profile.

Figure 29. 25 July 2320 UTC turbulence profile with threshold of 31 (α = 2.3%) and
BLS measured C2

n of 3.4e-14 m−2/3.
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Figure 30 shows an upward slope towards 300 m that does not agree with the

anemometer at 300 m. This same trend is present in various other profiles and often

disagrees with the anemometer measurements (e.g. Figures 25 and 33). This effect

could be a result of measurement noise or the HTS may be seeing higher turbulence

over the concrete portion of the path that the anemometers are missing.

Figure 30. 25 July 2348 UTC turbulence profile with threshold of 18 (α = 1.3%) and
BLS measured C2

n of 6.2e-14 m−2/3.
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Sunset on 25 July occurred at 0055 UTC (2055 local). The increase in turbulence

strength and subsequent fall following sunset (due to the quiescent period) is observed

in Figures 32 and 33, respectively. The anemometer station at 200 m lost power at

2359 UTC on 25 July and is therefore not shown in Figures 31, 32, and 33. The

power was restored the next day for data collection.

Figure 31. 25 July 0024 UTC turbulence profile with threshold of 18 (α = 1.3%) and
BLS measured C2

n of 1.0e-13 m−2/3.
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A lower threshold was used in Figure 32 so the raw pseudoinverse would accurately

profile the dip in C2
n at 300 m. The trade-off for this is the dropout that occurs near

290 m. The anemometers at this time recorded an order of magnitude difference in

C2
n from 100 m to 300 m. This set of data was captured 8 minutes before sunset

on 25 July. The difference in measurements can be attributed to the net radiometer

readings in Figure 18, which shows a deviation in net irradiance following sunset.

Figure 32. 25 July 0047 UTC turbulence profile with threshold of 15 (α = 1.1%) and
BLS measured C2

n of 1.7e-13 m−2/3.
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Figure 33 was the first profile generated following sunset at 0055 UTC. At this

time, the anemometers measured approximately constant turbulence over the path.

The HTS estimate disagrees with the anemometers and shows an upward trend to-

wards the end of the path. This trend and the C2
n dropout are likely due to the

measurement noise produced as the atmosphere settles into layers following sunset.

Figure 33. 25 July 0133 UTC turbulence profile with threshold of 31 (α = 2.3%) and
BLS measured C2

n of 7.4e-14 m−2/3.
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The following data sets are all from 26 July. Many of the data sets from this day

were either too defocused or too turbulent for data processing and are therefore not

shown. The high turbulence of these sets caused the spots to move outside of their

specified regions. At the moment, the HTS operating scheme and processing script

cannot produce accurate profiles under strong turbulence conditions. This will be

addressed in future work.

Figure 34. 26 July 2049 UTC turbulence profile with threshold of 31 (α = 2.3%) and
BLS measured C2

n of 4.4e-13 m−2/3.
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Figure 35. 26 July 2134 UTC turbulence profile with threshold of 11 (α = 0.8%) and
BLS measured C2

n of 9.6e-14 m−2/3.
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4.1 Profiles Affected by Cloud Coverage

The two remaining profiles presented do not follow a common trend with the

anemometer values and are displayed for the purpose of explaining the disagreement.

The HTS data from 2120 UTC in Figure 36 did not correlate with the 1 minute

averaged anemometer values because of the quickly shifting cloud coverage. The

anemometers captured data during a period of overcast from a large cloud that was

missed by the HTS. For this reason, 5-minute averaged anemometer values were added

to Figure 36 in an attempt to minimize the effect of the overhead clouds.

Figure 36. 26 July 2120 UTC turbulence profile with threshold of 15 (α = 1.1%) and
BLS measured C2

n of 4.4e-13 m−2/3.
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Figure 37 shows a clear opposite trend between HTS and anemometer measure-

ments. 26 July saw a sky full of large clouds, which is the explanation for the dis-

agreement in this case. The anemometers averaged data over a 1 minute collection

period while the HTS data captures only recorded a 10 second interval (1,000 frames

at 100 fps). Figure 18 shows a cloud over anemometer station 4 (at the 400 m mark)

at 2128 UTC. Over their longer capture period, the anemometers at 300 m and 400

m saw a dip in C2
n from the cloud that the HTS did not see.

Figure 37. 26 July 2128 UTC turbulence profile with threshold of 15 (α = 1.1%) and
BLS measured C2

n of 1.7e-13 m−2/3.
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4.2 Fried Parameter Estimates

An estimation of r0 was also calculated from each data set. For each set, hori-

zontal longitudinal and transverse as well as a vertical longitudinal and transverse r0

components were calculated where longitudinal represents centroid motion parallel to

the axis and transverse accounts for perpendicular centroid motions. Unequal longi-

tudinal and transverse components suggest non-Kolmogorov turbulence. Dissimilar

horizontal longitudinal and vertical longitudinal components (and transverse) also

suggests anisotropy in the turbulence. The following table provides the derived r0

values found by each set of tilt variances. The percent difference between the two

axes is given as a measure of anisotropy.

Date/Time BLS C2
n (m−2/3) r0 (cm): VL VT HL HT % Difference

25 Jul 2200 4.0413e-14 2.44 2.48 2.44 2.52 2.4
25 Jul 2218 9.2957e-14 2.52 2.67 2.44 2.74 8.3
25 Jul 2232 7.3331e-14 2.49 2.53 2.39 2.68 6.2
25 Jul 2247 5.3523e-14 2.65 2.71 2.75 2.69 2.2
25 Jul 2305 6.5973e-14 2.44 2.64 2.61 2.55 4.9
25 Jul 2320 3.3617e-14 2.61 2.73 2.65 2.77 4.4
25 Jul 2348 6.1513e-14 1.92 1.94 1.86 2.00 4.0
25 Jul 0024 1.0473e-13 1.35 1.42 1.30 1.45 7.6
25 Jul 0047 1.6519e-13 1.29 1.33 1.24 1.37 6.2
25 Jul 0133 7.3675e-14 3.75 4.31 3.90 4.33 11.5
26 Jul 2049 4.3788e-13 0.75 0.69 0.80 0.64 14.0
26 Jul 2120 4.4472e-13 0.88 0.72 0.86 0.75 15.5
26 Jul 2128 1.7216e-13 1.38 1.22 1.33 1.27 8.1
26 Jul 2134 9.5701e-14 2.10 2.12 2.01 2.20 4.8

Table 2. Vertical and horizontal components of r0 relative to the measured C2
n value

from the BLS. For the r0 components: V represents vertical, H is horizontal, subscripts
L and T are longitudinal and transverse, respectively.

As expected, the smallest r0 values were estimated at the same time the BLS C2
n

measurements were largest. The majority of the r0 estimates show approximately

isotropic turbulence. However, the estimates at 0133 UTC on 25 July (about 30
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minutes after sunset) show stronger turbulence along the vertical axis likely due to

the layering of the atmosphere at this time. The largest anisotropy estimations by

percent differences are seen in the 2049 and 2120 UTC profiles on 26 July when the

r0 values are the smallest and following sunset at 0133 UTC on 25 July from the

layering.
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V. Conclusion

This analysis has shown that the atmospheric turbulence profiles generated from

HTS measurements of differential tilt variances agree very well with measurements

from two widely accepted C2
n estimation tools. This method of turbulence profiling

seems to produce the best results between 2200-2300 UTC when the turbulence is

moderate to weak. Data sets taken during strong turbulence and within the quiescent

period made profiling more difficult but still possible. However, many data sets were

unusable and therefore omitted either because of subimage misalignment that was

unsalvageable through autofocusing or because the tilts were great enough to move

spots outside of their allotted regions. Currently, the autofocusing algorithm is not

able to distinguish between two separate centroids that move into the same cell. A

more advanced algorithm with the ability to track each spot when outside of its allot-

ted cell would allow for profiling of stronger turbulence. The r0 estimates for each set

of data are mostly isotropic and therefore align with the assumptions of Kolmogorov

turbulence. However, this is not the case during the period directly following sunset,

where the r0 estimates suggest anisotropy. With further development and more ex-

periments, HTS measurements will eventually provide a deeper understanding of the

workings of surface layer atmospheric turbulence.

Operating a greater number of sonic anemometers in conjunction with the HTS

would give further confidence to the profiles. Ideally, additional anemometer stations

would be placed between 150 to 250 m along the path where the profile is the most

accurate. The chosen set of weighting functions only provided enough data for accu-

rate estimation out to 350 m on the path when pseudo-inverted with no threshold.

Therefore, the HTS profile was never accurate at the 400 m anemometer station. This

needs to be considered in future experiments of the same type.

The weighting functions used in this thesis were derived using a geometric optics
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approximation method and therefore neglect certain diffractive effects. The beam

spread from the laser sources was not considered in the calculations and its impact

on the results has not yet been explored. Currently, the location at which two sensing

paths cross is approximated as a point and thus the notches in the weighting function

occur at singular locations. If beam spread effects were accounted for, the sensing

paths would cross as a patch rather than a point. This would ultimately affect the

shape of the weighting functions and subsequently the estimate of C2
n. This will be

considered in future work.

The horizontal path considered during this thesis gives no indication of C2
n as a

function of altitude. In future experiments, the laser sources could be stationed at

a higher altitude (e.g. on a roof) while the HTS remains ground-based. Profiling

over this path would then provide empirical information on how turbulence varies

with height and how that dependence changes under varying turbulence conditions.

This would also provide a better understanding of the atmospheric layering following

sunset.

A major obstacle in this work is the inability to process strong turbulence and

misaligned subapertures. Alignment correction can be handled by a more robust

autofocusing algorithm. However, the problem of profiling stronger turbulence must

be addressed outside of the processing script. Future experiments extending this

work could potentially introduce laser beacons of multiple wavelengths or beacons

that are temporally modulated. Two or more laser sources at different wavelengths

(along with camera filters to distinguish the wavelengths) would allow spots from

both sources to share cells. There are two potential advantages from this: either the

subapertures can be widened to allow profiling of stronger turbulence by providing a

greater dynamic range for spot motion, or the subapertures are kept the same size

and data sets could measure centroids of two wavelengths when calculating statistics,
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therefore increasing the accuracy of the profiles. Temporal modulation of two lasers

would also make it possible for the two beams to share the same subapertures. It is

necessary that the modulation frequency be faster than the concurrent Greenwood

frequency in order for both lasers to see constant turbulence. If this condition is met,

this method would provide a greater number of measurements for profile estimation.

This thesis presents a novel method for profiling the turbulence distribution over

a path using two laser beacons and a Hartmann Turbulence Sensor. This method

is phase-based and can therefore be applied over greater operational distances than

irradiance-based techniques. The turbulence profiles produced by this method provide

a greater understanding of surface layer turbulence. The phase information gained

from the profiles generated in this work can be passed to a multi-conjugate adaptive

optics system as a powerful tool to reverse the negative effects on electromagnetic

waves following propagation through atmospheric turbulence. Ultimately, this work

will aid in enhancing the lethality of long-range laser propagation and increasing the

resolution of atmosphere-distorted imagery.
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Master Script to process data from the Hart-
mann Turbulence Sensor

clear; close; clc;

% Constants
wvl= 632.8e-9; % Laser wavelength
k  = 2*pi/wvl; % Wavenumber
D  = 1.15e-2; % Aperture size
L  = 511; % Path length
w  = 11e-2; % Laser Separation
s  = sqrt(2)*1.15e-2*(150/146); % Aperture separation with 45 deg
 rotation

% Run SLODAR Weighting

psi=0;
z=0:0.5:L;
wf=zeros(22,length(z));
for ii=0:21
    delt=(w+(ii*s))/L;
    wf(ii+1,:)=compute_slodar_weighting(D,ii*s,delt,psi,L,z);
end

% Run Non-Crossing Weighting

psi=0;
z=0:0.5:L;
wf1=zeros(21,length(z));
for ii=1:21
    delt=(w-(ii*s))/L;
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    wf1(ii,:)=compute_non_crossing_weighting(D,ii*s,delt,psi,L,z);
end

Make Mask
[mask,maskvals] = mask1();
close;

Make Mask 2
[mask,maskvals] = mask2();
close;

Load Data
N = 1000; % Number of frames

% Data
[pix,config]  = HTSf_readdata...
    ('E:\Alex 2019-07 HTS Test\HTS Data\25 July\Run 00007.txt');

% Background
[bgpix, bgconfig] = HTSf_readdata...
    ('E:\Alex 2019-07 HTS Test\HTS Data\25 July\Run 00004.txt');

% Crop the frames
spix = pix(18:589, 115:686, :);
bg=bgpix(18:589,115:686,:);

bgpixoff = mean(bg,3); % Background mean
bgpixoff = repmat(bgpixoff,[1 1 N]);
spix=single(spix)-bgpixoff; % Subtract background from each frame

spix = rot90(spix,2); % Flip image to correct after HTS imaging

mspix=mean(spix,3); % Mean frame

figure();
imagesc(mask.*mspix);colormap('gray');
hold on;
for i = 1:13:560
    for j=1:13:560
        rectangle('Position',[i-0.5 j-0.5 13 13],'Edgecolor','r');
    end
end
axis square;
grid on;

Cover bad subapertures with mask
Used to cover aberrated or misaligned subapertures by setting the mask to 0 at their location
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mask_new = mask;
steps = 1:13:size(mask_new)-12;

% mask_new(234:247,455:481) = 0;

% mask_new(247:260,468:494) = 0;
mask_new(247:260,455:481) = 0;
% mask_new(247:260,442:468) = 0;

%Remove first column
% for x = 12:2:34
%     mask_new(x*13:(x+1)*13,1:26) = 0;
% end

% mask_new(1:14,:) = 0; % Remove first row
% mask_new(end-13:end,:) = 0; % Remove final row

% Set values of mask to 0 after portions of mask have been removed
for i = steps
    for j = steps
        if mask_new(i,j) == 1
            maskvals(floor(i/13)+1,floor(j/13)+1) = 1;
        else maskvals(floor(i/13)+1,floor(j/13)+1) = 0;
        end
    end
end

figure();
imagesc(mask_new.*mspix);colormap('gray');
hold on;
for i = 1:13:560
    for j=1:13:560
        rectangle('Position',[i-0.5 j-0.5 13 13],'Edgecolor','r');
    end
end
axis square;
grid on;

Auto-Focus
centers_x = zeros(length(steps), length(steps));
centers_y = zeros(length(steps), length(steps));

% Finds the center of each box where the mask has a value
for i = steps
    for j = steps
        if mask_new(i,j) == 1
            centers_y(floor(i/13)+1,floor(j/13)+1) = i+6;
            centers_x(floor(i/13)+1,floor(j/13)+1) = j+6;
        end
    end
end
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centroid_x = zeros(44,44);
centroid_y = zeros(44,44);
xx = -6.5:1:5.5;
[xx, yy] = meshgrid(xx);
row = 1;

% Find centroids by looking for maximum intensity of each subaperture
% within the mean frame
for i = steps
    col = 1;
    for j = steps
           temp = mspix(i:i+12,j:j+12); % Consider a single
 subaperture
           temp_max = max(max(temp)); % Find the max intensity value
           temp = temp-0.99*temp_max;
           temp(temp < 0) = 0;
           cent_x_sum = sum(sum(temp.*xx));
           cent_y_sum = sum(sum(temp.*yy));
           pix_sum = sum(sum(temp)); % Total intensity in each box
           centroid_x(row,col) = cent_x_sum./pix_sum;
           centroid_y(row,col) = cent_y_sum./pix_sum;
           col = col+1;
    end
    row = row+1;
end

% Gets rid of values underneath the mask
centroid_x = centroid_x.*maskvals;
centroid_y = centroid_y.*maskvals;

% New subaperture centers based on calculated centroids
xpr = round(centers_x + centroid_x);
ypr = round(centers_y + centroid_y);

Skip Autofocusing
xpr = centers_x;
ypr = centers_y;

Make Centroids
clc;

count = 0;
centroid_x= zeros(sum(sum(maskvals)),N);
centroid_y= zeros(sum(sum(maskvals)),N);

% Pixel count for drawing boxes around centroids as 9x9, 11x11, or
 13x13
boxwidth = 11; % 9, 11, or 13

% Centroids for each frame based on absolute centers from autofocusing
for i = 1:44
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    for j = 1:44

        if boxwidth == 9
            xx = -4:1:4;
        elseif boxwidth == 11
            xx = -5:1:5;
        elseif boxwidth == 13
            xx = -6:1:6;
        end

        [xx yy]=meshgrid(xx);
        xx=repmat(xx,[1 1 N]);
        yy=repmat(yy,[1 1 N]);

        if maskvals(i,j) ~= 0 % Check that mask has a value

            count = count + 1;

            if boxwidth == 9
                temp = spix(ypr(i,j)-4:ypr(i,j)+4,...
                    xpr(i,j)-4:xpr(i,j)+4, :);
            elseif boxwidth == 11
                temp = spix(ypr(i,j)-5:ypr(i,j)+5,...
                    xpr(i,j)-5:xpr(i,j)+5, :);
            elseif boxwidth == 13
                temp = spix(ypr(i,j)-6:ypr(i,j)+6,...
                    xpr(i,j)-6:xpr(i,j)+6, :);
            end

            temp_max=max(max(temp,[],1),[],2);

            if boxwidth == 9
                temp_max=repmat(temp_max,[9 9 1]);
            elseif boxwidth == 11
                temp_max=repmat(temp_max,[11 11 1]);
            elseif boxwidth == 13
                temp_max=repmat(temp_max,[13 13 1]);
            end

            temp=temp-0.2*temp_max; % Attempt to remove noise pedestal
            temp(temp<0)=0;
            cent_x_sum=sum(sum(temp.*xx,1),2);
            cent_y_sum=sum(sum(temp.*yy,1),2);
            pix_sum=sum(sum(temp,1),2);

            centroid_x(count,:)=cent_x_sum./pix_sum;
            centroid_y(count,:)=cent_y_sum./pix_sum;

        end
    end
end

spixnew = zeros(572,572,N);
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% Create the new autofocused frames
for i = 1:44
    for j = 1:44
        if maskvals(i,j) ~= 0
            if boxwidth == 9
                spixnew((i-1)*13+3:(i-1)*13+11,...
                    (j-1)*13+3:(j-1)*13+11,:)=...
                    spix(ypr(i,j)-4:ypr(i,j)+4,
 xpr(i,j)-4:xpr(i,j)+4, :);
            elseif boxwidth == 11
                spixnew((i-1)*13+2:(i-1)*13+12,...
                    (j-1)*13+2:(j-1)*13+12,:)=...
                    spix(ypr(i,j)-5:ypr(i,j)+5,
 xpr(i,j)-5:xpr(i,j)+5, :);
            elseif boxwidth == 13
                spixnew((i-1)*13+1:(i-1)*13+13,...
                    (j-1)*13+1:(j-1)*13+13,:)=...
                    spix(ypr(i,j)-6:ypr(i,j)+6,
 xpr(i,j)-6:xpr(i,j)+6, :);
            end
        end

    end
end

meanpix = mean(spixnew,3);

% Show the new autofocused image
figure();
imagesc(mask_new.*meanpix); colormap('gray');
hold on

% Draw grid
for i = steps
    for j = steps
        rectangle('Position',[i-0.5 j-0.5 13 13],'Edgecolor','r');
    end
end
hold off

Make Centroids as Mask
centroid_total_x=zeros(sum(sum(maskvals)),1000);
centroid_total_y=zeros(sum(sum(maskvals)),1000);

centroid_total_x(:,1:1000)=centroid_x;
centroid_total_y(:,1:1000)=centroid_y;

clear centroid_x centroid_y;

for i=1:200:1000
    for j=1:sum(sum(maskvals))
    temp_x=centroid_total_x(j,i:i+199);
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    temp_y=centroid_total_y(j,i:i+199);

    % Correct for drift after every 200 frames
    centroid_total_x(j,i:i+199)=centroid_total_x(j,i:i+199)-...
        mean(temp_x(isnan(temp_x)==false));
    centroid_total_y(j,i:i+199)=centroid_total_y(j,i:i+199)-...
        mean(temp_y(isnan(temp_y)==false));
    end
end
cent_x=zeros(44,44,1000);
cent_y=zeros(44,44,1000);
count=0;
for i=1:44
    for j=1:44
        if maskvals(i,j)==true
            count=count+1;
            cent_x(i,j,:)=centroid_total_x(count,:);
            cent_y(i,j,:)=centroid_total_y(count,:);
        end
    end
end
 cent_x=cent_x*(wvl/(3*D));
 cent_y=cent_y*(wvl/(3*D));

Compute Differential Tilt Variances
count=1;
tilt_var=zeros(22,1);
for sep=1:2:43
    tilt_var(count)=compute_differential_variances...
        (cent_x,cent_y,sep,maskvals);
    count=count+1;
end

% Compute Non-Crossing Differential Tilt Variances

count=1;
tilt_var_noncross=zeros(21,1);
for sep=1:2:41
   
 tilt_var_noncross(count)=compute_differential_variances_noncross...
        (cent_x,cent_y,sep,maskvals);
    count=count+1;
end

Profiling Analysis
load('F:\HTS Script\weighting_function.mat','wf');
wf(wf<0) = 0;
load('F:\HTS Script\weighting_function_noncrossing.mat','wf1');
wf1(wf1<0) = 0;

clear wf2 tilt_var_2
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wf2 = wf;
tilt_var2 = tilt_var;

% Removes the largest separation function if first column is removed
% wf2 = wf(1:end-1,:);
% tilt_var2 = tilt_var(1:end-1);

% Differencing technique to reduce noise assuming noise statistics are
% constant between measurements
wf2=diff(wf2,1,1);
tilt_var2=diff(tilt_var2);

% Add non-cross weighting functions
wf2 = [wf2;wf1(1:5,:);wf1(21,:)];
tilt_var2 = [tilt_var2;tilt_var_noncross(1:5);tilt_var_noncross(21)];

% Calculate Fried parameters
[vr0_l, vr0_t] = calculate_r0('v',cent_x,cent_y,maskvals);
[hr0_l, hr0_t] = calculate_r0('h',cent_x,cent_y,maskvals);
fprintf('    V r0 L    V r0 T    H r0 L    H r0 T \n');
disp([vr0_l, vr0_t, hr0_l, hr0_t]);
r0_mean = (vr0_l+vr0_t+hr0_l+hr0_t)/4;

% Tilt due to a point source
tilt_pt = 0.3636*wvl^2*D^(-1/3)*r0_mean^(-5/3);

% r0 Weighting function
z = 0:0.5:L;
wf_r0 = 0.3636*wvl^2*D^(-1/3)*0.423*(k^2)*((1-z/L).^(5/3));
% wf2 = [wf2;wf_r0];
% tilt_var2 = [tilt_var2;tilt_pt];

thres = 11; % Set pseudoinverse threshold
C = 2*pinv(wf2,thres)*tilt_var2; % Cn2 profile
aa = pinv(wf2,thres)*wf2; % Influence function

% Plot the weighting functions
figure();
hold on
plot(z,wf2) % Crossing and Noncrossing functions
title('HTS Weighting Functions')
xlabel('Range (m)')
ylabel('Weighting Functions')
grid on;
hold off

figure();
semilogy(z,C);
hold on;
C1=9.5701e-14*ones(1023,1); % From BLS
C2=aa*C1; % Constant turbulence representation
semilogy(z,C2);
axis tight;
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grid on;

% Plot 1-minute anemometer values for comparison
plot(100, station1y(index1), 'ro')
plot(200, station2y(index2), 'ro')
plot(300, station3y(index3), 'ro')
plot(400, station4y(index4), 'ro')
% 5-minute averaged anemometer values
plot(100, station1y_5(index1_5), 'bo')
plot(200, station2y_5(index2_5), 'bo')
plot(300, station3y_5(index3_5), 'bo')
plot(400, station4y_5(index4_5), 'bo')

figure();
% Influence function, turbulence at one particular location influence
 by
% turbulence at other locations, should ideally be delta function
for i=1:1023
    plot(z,aa(i,:));
    drawnow;
    axis tight;
grid on;
end

Sonic Anemometer Data
Loads anemometer plots from a processed figure of Cn2

% 1 minute average
fig1 = load('E:\Alex 2019-07 HTS Test\Sonic Data Summer 2019\July\Used
\Night of 25th\25July_1minAvg_Cn2.fig','-mat');
% fig1 = load('E:\Alex 2019-07 HTS Test\Sonic Data Summer 2019\July
\Used\Afternoon of 26th\26July_1minAvg_Cn2.fig','-mat');

% 5 minute average
fig5 = load('E:\Alex 2019-07 HTS Test\Sonic Data Summer 2019\July\Used
\Night of 25th\25JulyCn2_Corrected.fig','-mat');
% fig5 = load('E:\Alex 2019-07 HTS Test\Sonic Data Summer 2019\July
\Used\Afternoon of 26th\26JulyCn2_Corrected.fig','-mat');

Pulls the Cn2 data from the anemometer plots
station1x = fig1.hgS_070000.children(1).children(1).properties.XData;
station1y = fig1.hgS_070000.children(1).children(1).properties.YData;
station2x = fig1.hgS_070000.children(1).children(2).properties.XData;
station2y = fig1.hgS_070000.children(1).children(2).properties.YData;
station3x = fig1.hgS_070000.children(1).children(3).properties.XData;
station3y = fig1.hgS_070000.children(1).children(3).properties.YData;
station4x = fig1.hgS_070000.children(1).children(4).properties.XData;
station4y = fig1.hgS_070000.children(1).children(4).properties.YData;

% Convert time and date into serial
datetime = datenum(2019, 7, 26, 21, 34, 0); % Y, M, D, H, Mn, S
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% Find closest value on y axis
timevect1 = repmat(datetime, [1 length(station1x)]);
timevect2 = repmat(datetime, [1 length(station2x)]);
timevect3 = repmat(datetime, [1 length(station3x)]);
timevect4 = repmat(datetime, [1 length(station4x)]);
[~, index1] = min(abs(station1x - timevect1));
[~, index2] = min(abs(station2x - timevect2));
[~, index3] = min(abs(station3x - timevect3));
[~, index4] = min(abs(station4x - timevect4));

Pull Cn2 data from 5-minute averaged plots
station1x_5 =
 fig5.hgS_070000.children(2).children(1).properties.XData;
station1y_5 =
 fig5.hgS_070000.children(2).children(1).properties.YData;
station2x_5 =
 fig5.hgS_070000.children(2).children(2).properties.XData;
station2y_5 =
 fig5.hgS_070000.children(2).children(2).properties.YData;
station3x_5 =
 fig5.hgS_070000.children(2).children(3).properties.XData;
station3y_5 =
 fig5.hgS_070000.children(2).children(3).properties.YData;
station4x_5 =
 fig5.hgS_070000.children(2).children(4).properties.XData;
station4y_5 =
 fig5.hgS_070000.children(2).children(4).properties.YData;

% Find closest value on y axis
timevect1_5 = repmat(datetime, [1 length(station1x_5)]);
timevect2_5 = repmat(datetime, [1 length(station2x_5)]);
timevect3_5 = repmat(datetime, [1 length(station3x_5)]);
timevect4_5 = repmat(datetime, [1 length(station4x_5)]);
[~, index1_5] = min(abs(station1x_5 - timevect1_5));
[~, index2_5] = min(abs(station2x_5 - timevect2_5));
[~, index3_5] = min(abs(station3x_5 - timevect3_5));
[~, index4_5] = min(abs(station4x_5 - timevect4_5));

Optimization Technique
Attempts to minimize an objective function to reduce measurement noise and dropouts in the Cn2 profile

% Initial guess passed into fmincon
C=2*pinv(wf2, thres)*tilt_var2;
C=abs(C*(1e10)); % Multiply by 1e10 to beat machine noise
C(C<=1.01e-4)=1.01e-4; % Floor % > lb
% C(C>=2.99e-2)=2.99e-2; % Ceiling

tilt_var1=tilt_var2*(1e10);
w_r0=0.423*(k^2)*0.5*((1-z/L).^(5/3)); % Step size 0.5 = delta_z

% Lower and upper bounds
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lb=ones(1023,1)*1e-4;
ub=4e-3*ones(1023,1);

fun=@(X)sum((0.5*wf2*X(:)-tilt_var1).^2); % Objective function X = Cn2
options = optimoptions(@fmincon,'MaxIterations',100000,...
    'MaxFunctionEvaluations',300000,'Display','iter',...
    'StepTolerance',1e-5 ,'ConstraintTolerance',1e-16);

% Optimize without r0 constraint
[X,fval,exitflag,output]=fmincon(fun,C,[],[],[],[],lb,ub,[],options);

% Optimize with r0 constraint
% Hard coded, initial guess must be smaller than r0 estimates
[X,fval,exitflag,output]=fmincon(fun,C,w_r0,0.01^(-5/3)*(1e10),...
    [],[],lb,ub,[],options);

C2=2*pinv(wf2, thres)*tilt_var2; % Raw profile for comparison

figure();
semilogy(z,C2);
hold on;
semilogy(z,X/1e10); % Optimized profile
semilogy(z, aa*C1); % BLS measurement profile
grid on;

% Plot anemometer values at their position
plot(100, station1y(index1), 'ro')
plot(200, station2y(index2), 'ro')
plot(300, station3y(index3), 'ro')
plot(400, station4y(index4), 'ro')
plot(100, station1y_5(index1_5), 'bo') % 5-min averaged
plot(200, station2y_5(index2_5), 'bo')
plot(300, station3y_5(index3_5), 'bo')
plot(400, station4y_5(index4_5), 'bo')

Published with MATLAB® R2017b
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function i= compute_slodar_weighting(D,s,delt,psi,L,z)
% Generates the weighting function for the crossing sensing path
% geometry.

i=zeros(1,length(z));
for count=1:length(z)

    f1=@(beta,u)((u.*acos(u)-u.^2.*(3-2*(u.^2)).*sqrt(1-
u.^2)).*((u.*(1-z(count)/L)).^(5/3)-0.5*((u.*(1-z(count)/L)).^2+((s-
delt*z(count))/D).^2+...
    2*u.*(1-z(count)/L).*((s-delt*z(count))/D).*cos(psi
+beta)).^(5/6)-0.5*((u.*(1-z(count)/L)).^2+((s-delt*z(count))/
D).^2-...
    2*u.*(1-z(count)/L).*((s-delt*z(count))/D).*cos(psi
+beta)).^(5/6)));

i(count)=-32*8*2.91*((1/pi).^2)*(D.^(-1/3))*integral2(f1,0,2*pi,0,1);
end
end

Published with MATLAB® R2017b
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function i= compute_non_crossing_weighting(D,s,delt,psi,L,z)
% Generates weighting functions for the non-crossing geometry.

i=zeros(1,length(z));
for count=1:length(z)

    f1=@(beta,u)((u.*acos(u)-u.^2.*(3-2*(u.^2)).*sqrt(1-
u.^2)).*((u.*(1-z(count)/L)).^(5/3)-0.5*((u.*(1-z(count)/L)).^2+((s
+delt*z(count))/D).^2+...
    2*u.*(1-z(count)/L).*((s+delt*z(count))/D).*cos(psi
+beta)).^(5/6)-0.5*((u.*(1-z(count)/L)).^2+((s+delt*z(count))/
D).^2-...
    2*u.*(1-z(count)/L).*((s+delt*z(count))/D).*cos(psi
+beta)).^(5/6)));

i(count)=-32*8*2.91*((1/pi).^2)*(D.^(-1/3))*integral2(f1,0,2*pi,0,1);
end
end
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function [Data,config]  = HTSf_readdata(filename)
% Reads in data from the HTS binary files and formats the data as a
% matrix that can be viewed using imagesc().

% open the txt file associated with the provided data file
fid = fopen([filename(1:end-4), '.txt']);
dtx = fscanf(fid, '%s');
fclose(fid);

% collect experiment information from data txt file
config.run = str2double(dtx(strfind(dtx,'RunNumber:')+...
    length('RunNumber:'):strfind(dtx,'RecordDate/Time:')-1));
config.timestamp = dtx(strfind(dtx,'RecordDate/Time:')+...
    length('RecordDate/Time:'):strfind(dtx,'DataFormat:')-1);
config.format = dtx(strfind(dtx,'DataFormat:')+...
    length('DataFormat:'):strfind(dtx,'Imagesize:')-1);
ImgSz = dtx(strfind(dtx,'Imagesize:')+...
    length('Imagesize:'):strfind(dtx,'CameraExposure(Microsec):')-1);
config.ImgSz = [str2double(ImgSz(strfind(ImgSz, 'x')+1:end)), ...
    str2double(ImgSz(1:strfind(ImgSz, 'x')-1))];
config.nframes.FBkgd = str2double(dtx(strfind(dtx,...
    'FastBackgroundFramesCollected:')+...
    length('FastBackgroundFramesCollected:'):...
    strfind(dtx,'FastDataFramesCollected:')-1));
config.nframes.FData = str2double(dtx(strfind(dtx,...
    'FastDataFramesCollected:')+length('FastDataFramesCollected:'):...
    strfind(dtx,'SlowBackgroundFramesCollected:')-1));
config.nframes.SBkgd = str2double(dtx(strfind(dtx,...
    'SlowBackgroundFramesCollected:')+...
    length('SlowBackgroundFramesCollected:'):...
    strfind(dtx,'SlowDataFramesCollected:')-1));
config.nframes.SData = str2double(dtx(strfind(dtx,...
    'SlowDataFramesCollected:')+length('SlowDataFramesCollected:'):...
    strfind(dtx,'PropagationDistance:')-1));
config.frate.FBkgd =
 str2double(dtx(strfind(dtx,'FastBackgroundFPS:')+...
   
 length('FastBackgroundFPS:'):strfind(dtx,'FastDataCollectFPS:')-1));
config.frate.FData =
 str2double(dtx(strfind(dtx,'FastDataCollectFPS:')+...
   
 length('FastDataCollectFPS:'):strfind(dtx,'SlowBackgroundFPS:')-1));
config.frate.SBkgd =
 str2double(dtx(strfind(dtx,'SlowBackgroundFPS:')+...
   
 length('SlowBackgroundFPS:'):strfind(dtx,'SlowDataCollectFPS:')-1));
config.frate.SData =
 str2double(dtx(strfind(dtx,'SlowDataCollectFPS:')+...
    length('SlowDataCollectFPS:'):...
    strfind(dtx,'FastBackgroundFramesCollected:')-1));
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config.Exp =
 str2double(dtx(strfind(dtx,'CameraExposure(Microsec):')+...
   
 length('CameraExposure(Microsec):'):strfind(dtx,'ImageBitDepth:')-1));

config.depth = str2double(dtx(strfind(dtx,'BitDepth:')+...
    length('BitDepth:'):strfind(dtx,'Ry:')-1));
config.yi = str2double(dtx(strfind(dtx,'Ry:')+...
    length('Ry:'):strfind(dtx,'Rx:')-1));
config.xi = str2double(dtx(strfind(dtx,'Rx:')+...
    length('Rx:'):strfind(dtx,'FastBackgroundStart:')-1));
config.timing.FBstart = dtx(strfind(dtx,'FastBackgroundStart:')+...
   
 length('FastBackgroundStart:'):strfind(dtx,'FastDataCollectStart:')-1);
config.timing.FDstart = dtx(strfind(dtx,'FastDataCollectStart:')+...
   
 length('FastDataCollectStart:'):strfind(dtx,'SlowBackgroundStart:')-1);
config.timing.SBstart = dtx(strfind(dtx,'SlowBackgroundStart:')+...
   
 length('SlowBackgroundStart:'):strfind(dtx,'SlowDataCollectStart:')-1);
config.timing.SDstart = dtx(strfind(dtx,'SlowDataCollectStart:')+...
   
 length('SlowDataCollectStart:'):strfind(dtx,'DownloadFinished:')-1);

config.propdist =
 str2double(dtx(strfind(dtx,'PropagationDistance:')+...
    length('PropagationDistance:'):end));

dtagrp = ' Fast Data Collect.bin';

% load data collect
datafile = strrep(filename, '.txt', dtagrp);
Nfr = config.nframes.FData;
Data = zeros(config.ImgSz(1),config.ImgSz(2),Nfr);
temp = zeros(config.ImgSz(2),config.ImgSz(1));

fid = fopen(datafile);
for n = 1:Nfr

    % labview places 2 bits as a marker at the
    % front of each frame in the binary file
    fread(fid, [2 1], 'uint16', 'b');

    temp(:) = fread(fid, [config.ImgSz(2)
 config.ImgSz(1)], 'uint16', 'b');
    Data(:,:,n) = temp';
end
fclose(fid);
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function
 var_tot=compute_differential_variances(cent_x,cent_y,d,mask_subap)
% Computes the tilt variances for the crossing weighting functions
% using the centroid motion information. Returns the calculated
% differential variance value.

var_tot=0;
count=0;
for i=1:44
    j=1;
    while j+d<=44
        if (mask_subap(i,j)==true)&&(mask_subap(i,j+d)==true)
            dx=cent_x(i,j,:)-cent_x(i,j+d,:);
            dy=cent_y(i,j,:)-cent_y(i,j+d,:);
            var_tot=var_tot+...
                var(dx(isnan(dx)==false))+var(dy(isnan(dy)==false));
            count=count+1;
            j=j+2;
        elseif (mask_subap(i,j)==true)&&(mask_subap(i,j+d)==false)
            j=j+2;
        else
            j=j+1;
        end
    end
end
var_tot=var_tot/count;
end
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function
 var_tot=compute_differential_variances_noncross(cent_x,cent_y,d,
 mask_subap)
% Computes the tilt variances for the non-crossing weighting functions
% using the centroid motion information. Returns the calculated
% differential variance value.

var_tot=0;
count=0;
for i=1:44
    j=1;
    while j+d+1<=44
        if (mask_subap(i,j)==true)&&(mask_subap(i,j+d+1)==true)
            dx=cent_x(i,j+1,:)-cent_x(i,j+d+1,:);
            dy=cent_y(i,j+1,:)-cent_y(i,j+d+1,:);
            var_tot=var_tot+...
                var(dx(isnan(dx)==false))+var(dy(isnan(dy)==false));
            count=count+1;
            j=j+2;
        elseif (mask_subap(i,j)==true)&&(mask_subap(i,j+d+1)==false)
            j=j+2;
        else
            j=j+1;
        end
    end
end
var_tot=var_tot/count;
end

Published with MATLAB® R2017b
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Appendix A. Anemometer Structure Function Averaging
Issues

The sonic anemometers are set to average and output temperature measurements

over 100 ms intervals. The structure function assumed by the anemometer when

calculating C2
T is

D(r) ≡
〈
(T (r1)− T (r2))

2
〉

= C2
T r

2/3, (83)

where T (r1) and T (r2) are the temperature at to locations with separation r. Taylor’s

frozen flow hypothesis states the advection of a turbulence field past a fixed point

can be approximated by the mean flow of the field. When the relative intensity of

the turbulence is small, Taylor’s hypothesis gives r = v∆t, where v is the mean wind

speed and ∆t is the time interval. This allows C2
T to be computed directly from the

structure function by

C2
T =

〈
(T (r1)− T (r2))

2
〉

(v · 100ms)−2/3. (84)

However, this methodology has been found to underestimate C2
T .

From Equation 83,

∫∫
D(x− y)dxdy =

〈∫∫
(T (x)2 − 2T (x)T (y) + T (y)2)dxdy

〉
, (85)

where x and y are two separate points in time. Assuming a collection time t and a

temporal separation δ gives the relation

1

t2

〈[∫ t

0

(T (x)− T (x+ δ))dx

]2〉

=
1

t2

〈(∫ t

0

(T (x)− T (x+ δ))dx

)(∫ t

0

(T (y)− T (y + δ))dy

)〉
=

1

t2

〈(∫ t

0

∫ t

0

(T (x)T (y)− T (x+ δ)T (y)− T (x)T (y + δ) + T (x+ δ)T (y + δ)dxdy

)〉 (86)
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It is then possible to manipulate this integral by adding zero in the form of

0 = T (x)2−T (x)2+T (y)2−T (y)2+T (x+δ)2−T (x+δ)2+T (y+δ)2−T (y+δ)2 (87)

to obtain

1

2t2

〈∫ t

0

∫ t

0

(− T (x)2 + 2T (x)T (y)− T (y)2

+ T (x+ δ)2 − 2T (x+ δ)T (y) + T (y)2

+ T (x)2 − 2T (x)T (y + δ) + T (y + δ)2

− T (x+ δ)2 + 2T (x+ δ)T (y + δ)− T (y + δ)2)dxdy

〉
(88)

or alternatively,

=
1

2t2

∫ t

0

∫ t

0
−D(x− y) +D(x+ δ − y) +D(x− y + δ)−D(x+ δ − y − δ)dxdy

=
1

t2

∫ t

0

∫ t

0
(D(x− y + δ)−D(x− y))dxdy

(89)

Assuming t = 10s and δ = 10s, Equation 89 gives

1

100

∫ 10

0

∫ 10

0

(D(x− y + 10)−D(x− y))dxdy = 9

(
2

5

)1/3

− 9

101/3
≈ 2.45. (90)

In the averaging, the anemometers simply assume

D(r) = C2
T r

2/3 = 102/3 ≈ 4.64 (91)

given C2
T = 1 m−2/3 and r = 10m. Therefore, the anemometers are underestimating

the true structure function value by a factor of 1.89. This correction is applied within

the anemometer processing script.
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