

MTR070065

MITRE TECHNICAL REPORT

Practical Words about Shared Service
Identification

April 2007

Stacey Darnell

Sponsor:
Dept. No.: E142 Project No.: 03075620-XA

The views, opinions and/or findings contained in this report are those of
The MITRE Corporation and should not be construed as an official
Government position, policy, or decision, unless designated by other
documentation.

Approved for Public Release; Distribution Unlimited
Case #07-0607

©2007 The MITRE Corporation. All Rights Reserved.

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 07-0607

iii

Approved by:
Michael McFarren
Department Head, E142

 Practical Words about Shared Service Identification
Stacey Darnell

The MITRE Corporation
McLean, VA

ABSTRACT

This document describes a path to identify shared services
while maintaining the connection with the business need.
The business data fields included in the process outcomes
are defined by the business team. The business process
outcomes are evaluated and graduated as services for
automation. Technical information is collected about each
graduated service. Technical flows are created to identify
the technical components and how technical components
are used to support the service. Services are identified and
service metadata specified.

SERVICE DEFINITION

This paper will take direction and definition from the
Organization for the Advancement of Structured
Information Standards (OASIS).1OASIS refers to a service
as:

• The capability to perform work for another
• The specification of the work offered for another
• The offer to perform work for another

OASIS continues by saying, “Service Oriented
Architecture (SOA) is a paradigm for organizing and
utilizing distributed capabilities that may be under the
control of different ownership domains … The perceived
value of SOA is that it provides a powerful framework for
matching needs and capabilities and for combining
capabilities to address those needs.… in SOA, services are
the mechanism by which needs and capabilities are
brought together. SOA is a means of organizing solutions
that promote reuse, growth, and interoperability.” SOA is
an “organizing and delivery paradigm that enables one to
get more value from use of both capabilities which are
locally owned and those under the control of others.”1

This paper will maintain that a need without a capability is
limited, and a capability without a need lacks purpose. The
need is usually aligned with the business aspects of SOA
and the capability is usually facilitated by the technical
aspects of SOA. For this reason we start the search for
services within the outcomes of the business processes.
The business process is in place to provide for a business
need. This paper takes place at a point where business
input is available.

NOTES ABOUT PROCESS OUTCOMES

Processes are sometimes created by the professionals who
perform the tasks but not by business analysts with
training in proper process capture. Further, the business
models do not always align with technical models that
implement them.2 The information in the process diagrams
is sometimes only understood by the audience who created
them. The processes would not be understood by other
audiences or by implementers asked to automate them.
This lack of understanding can result in loss of time,
money, talent, and opportunity. However, even these
processes can be helped with a few simple techniques.

At a minimum, useful processes have a visible hierarchy,
all the inputs and outputs evident, and clear step sequence.
If processes are not in a useful state then bringing them to
a useful stage is the next step. The process outcomes are
very important for service identification.

Documents in the Chain to Reality series under the “Raw
Process Capture” link goes into greater detail about
making processes useful and then making processes
strategic. 3For now, this paper begins with the assumption
that the business processes are at least in a useful
condition. We start at the point where we have collected
all of the outcomes from our processes into a list. Not all
process outcomes require automation to provide a service.

OVERVIEW OF STEPS TO IDENTIFY SERVICES

1. Evaluate Outcomes: The next step is to evaluate which
process outcomes should be shared with the help of
technology. Evaluation criteria (discussed later in this
section) are necessary to judge the “service worthiness” of
an outcome. Outcomes that are deemed service worthy are
listed as outcomes that could move forward as automated
services. The reasons for not moving forward into
automation on a particular outcome should be documented.

2. Collect Targeted Technical Information: Before we can
understand what it will take to offer the service, we will
need to engage with the technical team. We will collect the
necessary information about the sources needed to support
the outcome. Pertinent technical information is collected

so expectations can be set about the system’s capacity to
expose and provide the data for the service consistently.

3. Create Technical Flows: Once the source system’s
capacity is understood, a technical flow is created. A
technical flow is a sequence of steps showing how data
flows between technical components that support a service
offering. Technical flows are created for all process
outcomes that need to be shared and deemed service
worthy.

4. Identify Services: The technical flows are examined to
identify where a “read” or “write” event occurs. For
instance, some information can only be viewed. Some
information can be written to, and some service offerings
allow both a “read” and a “write” event. Finding out what
can be done to the service establishes what the data
authority (create, read, update, delete) is for that service.

5. Specify Metadata: Compile all of the “read/write”
events and create a list of services to support the process
outcome. Make sure to include any “help” functions that
are presented universally across all process outcomes.
Document the metadata for the services. The data
elements of the data bearing process outcome are used to
supply the metadata for the service. Document any
supporting services that facilitate a service flow. For
instance, a service solely dedicated to making a request
would be a supporting service.

1. EVALUATE OUTCOMES

After the process outcomes have been listed they can be
evaluated for service worthiness. Not every process
outcome is service worthy for automation. For instance, a
training process may result in a trained team. A trained
team is the outcome that meets the goal of the process.
This is a good outcome, but not one that becomes an
automated service.

The most desirable service worthy candidates are usually
“data bearing” candidates. Part of understanding what to
share is based on common sense. However, there are two
other aspects to consider for service worthiness.
• The business case
• Service Characteristics

1.1 Building the Business Case
Deciding if an outcome should become a service is based
on value. First, does it even make business sense to create
a service out of the process outcome? If the process

outcome provides no value as a service, then it should be
eliminated from the list of service possibilities.

An example will be used through the remainder of the
paper to illustrate the concepts presented. The example
takes place within a response center that manages different
types of incidents related to the wellness of technologies in
production, and the customer experience of those using the
technologies. The incidents are recorded and then assigned
to resolution divisions with the expertise to solve the
incident. The response center generates a reason code list
that can change at any time depending on what is
happening in real time within the organization. The reason
codes are critical for generating response tickets that are
given to the correct responders. In the example, the
business team seeks to build a case to offer the current
reason code list as a service. The reason code list would be
used to automatically generate incident tickets. Suppose
the notes below were taken during a meeting with the
business team.

Table 1 Building the Business Case

Category Sample Response
Shared
Service
Business
Just-
ification

Business Goal: Automatic Ticket
Generation from within Enterprise Systems
for Response Center incidents.

Automate:
The Response Center reason code
availability is essential to the creation of
automated tickets. Dealing with Response
Center reason code combinations is a
manual process today for downstream
consumers of Response Center incidents.

The manual nature of today’s reason code
distribution limits the Response Center to
automated benefit of only a few specific
events that are automated through hard
coding. Maintaining the few events
available has proven to be costly. However,
as a service, newer technology would
expose all the incident events electronically
available for ticketing purposes and in real
time.

Ticketing information is gathered by
operating from a static list and through re-
keying the incident data 3-5 times within
the course of an incident. Team members
are not operating from the same or most
current list of reason codes. The current

Category Sample Response
distribution of the list results in a host of
costly errors.

Reasons for Sharing:
1. Increase Accuracy
The same and most current list will be
available to all team members.

Re-keying would be unnecessary thus
reducing the point where errors can occur.

2. Enhance User Experience
User experience benefits are also sought
within the Response Center. Even with the
dashboard, a Response Center user still has
10 + windows open. This automation could
also serve as an application reducer on the
user screen.

3. Increase Scalability
The automation of all Response Center
reason codes will help the Response Center
scale up to all event types.

Impacts
from a
Team
Perspective

The Response Center team can grow across
more Response Center reason
combinations and offer them automatically
to downstream systems.
• Reduce windows open on the Response

Center user workstation.
• Automate combination comparison of

Response Center Reason codes.
• Cut waste out of the process overall.

Downstream teams can eliminate 3-5 re-
keying processes per incident, make
assignments quicker and based on skills,
reduce errors from static Response Center
reason code lists and re-keying, and give
faster attention to high priority issues.

Impacts
from a
financial
perspective

Financial gains stem from an estimated
three minutes saved per incident due to
improved routing. This benefit benchmark
does not include improvements in the
downstream teams. Each minute of an
incident costs $X.XX. There are 20,000
incidents coming into the Response Center
per month. This simple change translates
into $XX.XXX in savings per month for
the Response Center alone.

Category Sample Response

Productivity gains are also expected from
the time an incident occurs to
implementing the solution.

There are also saving in licensing charges.
The licenses necessary to maintain come
down in price when redundancies are
removed from the ticket resolution process.

Visions of
solving the
problem
with a
shared
service

A shared service can be accessed by any
downstream partner of the Response
Center. The service shows the most current
code in real time and can be consumed for
processing.

Every downstream team would become a
partner in the Shared Services Environment
where the service is offered. The partnering
teams can integrate the service with the
reason code data directly into their own
business process to ensure a quicker time
to solution. The partnering teams of the
Shared Services Environment that receive
the reason code updates can do so
automatically (machine to machine) or
through a portal for user consumption.

Every team will be operating from the most
current information available.

Impacts on
growth

The same team member can process more
tickets. This output gain is important as
new responsibilities are added with the
merging and reorganization of operational
units.

At the end of the business case evaluation several key
answers can be given.

Business Information:
• What is the business case and intention for the service?
• Who are the business stewards who own the processes

that create the outcome?
• What is the proposed use for the service?
• What is the expected benefit?

The business team makes a strong case for the automatic
ticketing endeavor shown in Table 1. However, the case
from the business perspective is not the only criteria to
consider.

1.2 Service Characteristics
The evaluation is taken to a deeper level by looking at
what is characteristic of shared services.

If an outcome is to be a good candidate for a shared
service, then the outcome should emulate the
characteristics of a shared service. You may have heard the
saying, “If it walks like a duck, and talks like a duck, then
it’s a duck.” In our case the saying would be, “If it acts
like a service, and shares like a service, then it’s a service.”

Shared characteristics and their opposing characteristics
are presented for evaluation.

Shared Characteristics:
1. Consumes existing outcomes

• Opposite characteristic: 1. Builds data output
to be consumed

2. Workflow is accomplished by connecting shared
services together

• Opposite characteristic: 2. Workflow is
accomplished by using the source system’s
internal workflow engine

3. The service can mix and connect with other services
without needing to know where the other services
originally come from.

• Opposite characteristic: 3. Sharing data
outside the source system is accomplished
with specific instructions and interfaces to
other systems.

4. The service is made to be shared across machines and
boundaries and as a part of high volume server
applications.

• Opposite Characteristic: 4. The data and
processing of the data is local to specific
machines and can only be shared across
machines with specific instructions. Sharing
across machines is accomplished with
difficulty.

5. Services interoperate together.
• Opposite Characteristic: 5. Systems integrate

with each other.
6. Standard driven technology. The standards are focused

on interoperation.
• Opposite Characteristic: 6. Standard non-

specific technology. Standards exist but are
proprietary to the system. Ad hoc compliance
with industry interoperation standards.

7. Interaction is more dynamic.

• Opposite Characteristic: 7. Interaction is more
static. A dynamic result is achieved with
difficulty and cost.

8. Services are delivered for incremental use and in an
on-going fashion like an assembly line. Typically
services are delivered every 30 days

• Opposite Characteristic: 8. Applications are
delivered by isolated teams in response to a
project charge. Applications are delivered
every six months to a year.

The Point: If an outcome of a process such as, reason code
list, can match up in behavior with the service
characteristics then the outcome is a strong candidate for
an automated service.

2. COLLECTING TECHNICAL INFORMATION

The purpose of collecting technical information is to
determine the capability of the technical source. The
technical source may be an older system, but remains
valuable. The technical source may require other technical
components to assist with transporting and transforming
information to the Shared Services Environment. How the
service is exposed is important information for setting
expectations on how the service will perform.

Technical information gathering starts with what was
provided by the business team. The business team defines
the data elements that must be present in process outcomes
to perform their work. (See documents in the Chain to
Reality series under Process Modularization link)3

The technical team maps the technical fields to the
business data elements specified in the process outcome.

Technical Source Information for the field mappings
include:

1. The source system name(s) that support the
outcome

2. The name of the system owner/data steward for
the source system

3. The business and technical fields that make up the
consistent field structure of the outcome

4. The table, field, size, and type information

Information beyond the above list is gathered if an
outcome is graduated to a service. Additional information
is gathered to fully describe the process outcome. For more
definition on service description consult the Automation
package link and the Runtime Environment link of the

Chain to Reality series.3 Guide questions are available to
help the team member collect targeted technical
information. For now the major categories are given for
data collection.
• Service Definition
• Service Consumption
• Service Exposure
• Service Meta Data
• Service SLA’s

The information collected is refined following the
discoveries that are made with technical flows. The
outcomes from the processes are still in a stage where they
are “elected” as services, but not completely defined. The
engagement relationships between the provider, shared
services environment, and the consumer can be seen in the
service description information.

3. CREATE TECHNICAL FLOWS

Technical flows describe the technology support needed
for the service to function. Technical flows can be scripted
and diagrammed. Information from the business process
flows and the technical information that has been collected
during the technical interviews serve as input for creating
technical flows.

First, revisit the process flows:
Review the processes and look for every occurrence of the
process outcome. Notice how the process outcome is being
used in the processes. Pay close attention to places where
the process wants the user to supply information, read
output, or look up information.

For example, are there any points in a process where a user
searches for a reason code? Are the reason codes always
generated and distributed as read-only?

Second, revisit the technical information:
The technical information will determine the technical
utilities necessary to support the technical flow.

Diagram the technical utilities. Figure 1 shows the
technical tools that will be used to facilitate the technical
flows for the services supporting the process outcome
“Reason Code List.”

From our research we have identified that the technical
flow for the “Reason Code List” will leverage older and
newer technology:

• A user
• A data steward

• A user presentation portal
• A Shared Services Environment
• A Shared Services Environment condition engine
• Services
• Enterprise service bus
• Source System
• Partner systems
• Queues for guaranteed delivery

Technical
Flow

Data Steward

USER

Shared Environment - Library of Shared Services

Command Center
List Stage

Login- Role
 Based

On Change Updates Reason Code List
On User Request Sends Reason Code List

Condition
Engine
* Rules Applied to
recognize and
"PUT" reason code
list changes on the
queue

Partner System

PUT
QUEUE

GET
QUEUE

On Shared
Environment
"Put" to
queue
perform
automatic
"Get" action

* User Requests the Reason Code List
for Viewing

Exposure Technique: Enterprise Service Bus/Transformation
* Route Reason Codes to Shared Environment * Route User Requests to the Command Center

User Presentation Portal Connected to the Internet
* User Authentication

Services

Figure 1 Components for Technical flow

Although the flow lines in the picture have not been drawn
the sketch is a good start toward documenting the
components used from the Shared Services Environment
and the source system to accomplish the technical flow.

3.1 Narrate Technical Flows
Our research has produced two scenarios for the use of the
reason code list.

Scenario 1: Automatic updates for reason codes
Scenario 2: User views Reason Code list from portal

The steps for each scenario are written down in story line
resembling a use case.

Scenario 1: Automatic Updates for Reason Codes

1. Response Center reason code change occurs in
Response Center System

2. On change, XML Message prepared with Reason
Code List Changes

3. XML Message placed on Enterprise Service Bus
(ESB)

4. ESB transports updated reason code list entries to
Shared Services Environment….etc

Scenario 2: User Views Reason Code List from portal

1. The user authenticates via a login into a
presentation portal based on the Shared Services
Environment

2. The user invokes the “See Reason Code List”
choice in the user portal

3. A request for the list is routed to the ESB for
delivery

4. The ESB delivers the request to the Response
Center System

5. The Response Center System processes the
request…etc

4. IDENTIFY SERVICES

Look carefully at the technical flows. In particular, look
for occasions when a “read” or “write” event occurs.

Observations are made in regards to the “Reason Code
List” example. The technical flows reveal what is
happening to the reason code list.

Observations made across both scenarios:

• Conclusion: Data authority for the reason code list
is read-only.

o Reasoning: Across both scenarios, once
the reason code list is offered, no user or
machine can write to the list. Nothing is
allowed to change the values of the list.
The list is “READ ONLY.”

• Conclusion: The only time a user performs a
“write” in the flow is when a request for the reason
code list is made from the portal.

o Reasoning: The user portal scenario
allows a user to ask to see the reason code
list. When the user selects the option to
see the list, the user is performing a
“write” operation that populates the
request for the list.

• Conclusion: The reason code list is the same
structure regardless of the scenario

o Reasoning: For both scenarios, the reason
code list is sent from the Response Center
System. The same data elements for the
read-only list are sent regardless of a
request from a user display or an
automatic update. The message is exactly
the same in both cases.

• Conclusion: Delivery must be specified.
o Reasoning: The delivery is either to a

portal for user consumption or to a queue
for machine consumption.

o The condition engine in the Shared
Services Environment must be able to tell
the difference between a message coming
in for updates versus a message that
displays reason codes to a user on the
portal.

The observations from the technical flows show the
services necessary to accomplish the flow. There must be a
service to invoke a request from a user. There must also be
a service to present the reason code list. The reason code
list is the same data structure for both scenarios. Only one
service is needed to represent the reason code list. The list
of services for the “REASON CODE LIST” outcome is as
follows:

1. Request Reason Code List: Service – Write –One
Direction

2. Present Reason Codes: Service–Read –One
Direction

Figure 2 illustrates the interaction of services with the
technical components engaged from the source system and
the shared service environment.

Technical
Flow

Data Steward

USER

Shared Environment - Library of Shared Services

Command Center
List Stage

Login- Role
 Based

On Change Updates Reason Code List
On User Request Sends Reason Code List

Condition
Engine
* Rules Applied

Partner System

PUT
QUEUE

GET
QUEUE

* User Requests the
Reason Code List
for Viewing

ESB: Route and Transform

User Presentation Portal Connected to the Internet
* User Authentication

Services

Request
Reason Code
List - Write

Present Reason
Codes- Read

Portlet

To Portlet To Queue

Authenticate

Figure 2 Services in Technical Flow

The picture looks more complete now that the services are
present. We can see the user make a request and the
request handed off to the Response Center System by the
ESB. The ESB delivers the reason code list to the Shared
Services Environment. The condition engine in the Shared
Services Environment decides if the reason code list needs
to go to the queue for updates or to the portal for display.

5. SPECIFY METADATA

The Metadata provides the data structure for the service.
The elements identified in the outcome will be used to
populate the Present Reason Code service.

Reminders:

• Sometimes, additional fields, which may help the
technical flow of the service, are not present in the
process outcome metadata, but will be present in
the service metadata.

• Also, remember that sometimes other services are

necessary to supplement the technical flow.
o We have this case in our example. We

need a service to carry a request for the
list. The request service does not have
anything to do with the elements in the
process outcome. However, to achieve the
technical flow, we need the request
service to invoke the Response Center to
send the list.

o The technical information gathered is
refined to document the need for support
services.

The process outcome for the “REASON CODE LIST”
specified both business and technical elements. For our
reference, Table 2 shows the data elements in the process
outcome for, “REASON CODE LIST”

Table 2 Reason Code List Outcome fields

Business
Element

Technical Element Other
Technical

Detail
Reason Code RSN_ID Source,

Table, Field
Size…

Reason Code
Description

RSN_DESC Source,
Table, Field
Size…

Last Updated RSN_TME_DTE_LAST Source,
Table, Field
Size…

Incident Type RSN_TYPE Source,
Table, Field
Size…

Remember, two services have been identified to specify
metadata in support of the “REASON CODE LIST”
process outcome:

• Request Reason Code List
• Present Reason Code

Begin by specifying the meta data for the service “Request
Reason Code List.”

The metadata for the service “Request Reason Code List”
does not exist in the process outcome. The request data
present in this service is used to invoke the list provider to
send the list. The request service has only two fields
specified. A time stamp is a standard system field that can
be given at the moment the user makes the request. The
report code is the field that is used to trigger the
preparation of the list.

The fields for the request reason code list service are
shown in Table 3.

Table 3 Service Meta - Request Reason Code List

Business
Element

Technical
Element

Other Technical
Detail

Time of Request TMESTAMP Source, Table,
Field Size…

Report Code RPT_CODE Source, Table,
Field Size…

For the second service, present reason code list, all the
original data fields were used as specified in the process
outcome. However, a delivery parameter was added to the
service that instructs the condition engine in the Shared
Services Environment.

CONCLUSION

Very briefly this document has shown a path to identify
services starting with the outcomes from business
processes. The business data fields included in the process
outcomes are defined by the business team. The business
process outcomes are evaluated and graduated as services
for automation. Technical information is collected about
each graduated service. Technical flows are created to
identify the technical components and how technical
components are used to support the service. Services are
identified and service meta data specified.

Techniques are in place to help apply effort in the most
efficient manner. However, techniques do not replace the
thinking power of the human.

Whether describing a need, capturing a business process
for the first time or evaluating outcomes for services the
human should not cease to apply their mental gifts to the
task.

More practical information in regards to Service Oriented
Architecture can be found in the Chain to Reality series
and other referenced documents.
123

1 OASIS, Reference Model for Service Oriented Architecture,
Committee Draft 1.0, 7 February 2006, Document Identifier:
wd_soa_rm-cd1, Location: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=soa-rm
2 “From Business Process Model to Consistent Implementation: A case
for formal verification models” Jana Koehler, Giuliano Tirenni,
Santhosh Kumaran, IBM
3 The Chain to Reality Series is a collection of practical papers focusing
on the essentials for connecting “needs” with “capabilities.” The
techniques in the series are effective for SOA endeavors –Author:
Stacey Darnell

