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Introduction 

The landscape of combat is rapidly changing. In 2017, the Army released the Army 

Modernization Strategy, which emphasized an increase in research and technology development 

efforts to ensure continued over-match of our advisories to discourage conflicts (Milley & 

McCarthy, 2017). This strategy contains six priorities including, “long-range precision fires, next 

generation combat vehicles, future vertical lift (FVL), Army network, air and missile defense 

capabilities, and Soldier lethality” (Milley & McCarthy, 2017). The strategy stresses that future 

engagements will likely take place in multiple domains. Multi-domain operations (MDO) include 

traditional land, air, and sea battle spaces and extend into space and the virtual world with 

reduced communications. To be effective, Soldiers in MDO will be operating such that they will 

be using cognitive resources more than ever before as they will be required to travel over longer 

distances and remain alert for longer periods of time while using extremely complex systems of 

systems.   

To support the Army Modernization Strategy’s initiative of Future Vertical Lift, the 

Army is currently developing requirements for the future attack reconnaissance aircraft (FARA) 

and the future long-range assault aircraft (FLRAA). The FARA and FLRAA platforms will allow 

for longer periods in combat in addition to hosting a suite of advanced technologies and 

weaponry. These aircraft will likely be the most advanced and complex systems of systems the 

Army has in its arsenal. This means that these aircraft are likely to require pilots to multi-task on 

a level far above current helicopters. Because of the increasing demands placed on the pilots 

while flying these vehicles, the need to monitor pilot cognitive workload, health, and well-being 

in real-time has become integral to mission accomplishment. With real-time physiological 

monitoring, it will be possible to track and understand the degree of task cognitive demand and 

associated Mental Workload (MWL) placed upon the pilots throughout the various phases of the 

MDO mission sets. These data will inform leadership and team members, as well as provide 

critical feedback to the individual operators. These data will also inform key decision points for 

the cockpit layouts specific to human system interaction. However, much work remains, as 

unknowns exist regarding which measures are most effective at capturing and quantifying MWL, 

how best to deploy those sensors within the cockpit, and how to quantify the data such that the 

results can easily be interpreted in real-time to aid decision-making. 

In order to support the expanded FVL mission, research is ongoing at the U.S. Army 

Aeromedical Research Laboratory (USAARL; Fort Rucker, AL) to develop physiological 

measures that can readily and reliably capture and determine the cognitive state of pilots and 

crew. Although over a decade old, Cain (2007) provided a summary of the available measures of 

MWL, however, a knowledge gap exists regarding which measures best match the needs of the 

U.S. Army. Further, many different operational definitions of MWL have emerged over the 

years. MWL has generally been identified as the interaction between the cognitive resources 

required to complete a task and the resources available to complete a task (Wickens & Tsang, 

2015). Below we will expand on this definition to address operational needs. The present report 

provides information about the theory behind MWL and the three most common tools used to 

assess it: subjective measures, performance measures, and psychophysiological measures. 
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Mental Workload and its Assessment 

Interest in the concept of MWL and its assessment has increased over the last 50 years. In 

recent decades, advancements in technology have afforded researchers the ability to push the 

limits of data acquisition systems to capture more data per unit time with increased precision. 

The speed and miniaturization of computational hardware allows for many of these sensors to 

have a smaller footprint both on the person and within the environment. Wearable sensors and 

the associated hardware to drive the systems have shrunk in size by multiple log units over the 

last 50 years. Given the assessment tools now available, relating performance metrics to 

subjective and physiological responses requires less physical space and power than ever before. 

This data integration allows researchers to begin to conceptualize how these assessment tools fit 

together in practical applications. MWL assessment is currently ongoing at USAARL with the 

end goal of transitioning a real-time metric into flight trials to aid in FVL human system 

integration key decision points. This technical report is not an extensive evaluation of the current 

MWL literature. Rather, it is intended to introduce the basic concept of MWL, some of the 

foundational models that frame the topic, and the methodologies reported in the literature that 

may be employed to assess MWL in Soldiers and pilots. A more systematic review of the recent 

literature of MWL assessment in expert-trained populations is in preparation at USAARL. 

Mental Workload Definition and Terminology 

Van Acker, Parmentier, Vlerick, and Saldien (2018) proposed a formal, modern 

definition of MWL:   

“Mental workload is a subjectively experienced physiological processing state, revealing 

the interplay between one's limited and multidimensional cognitive resources and the cognitive 

work demands being exposed to."   

This definition, based on a concept analysis of the workload literature, provides a stable 

framework to begin conceptualizing what the abstract idea of what MWL encompasses relative 

to the variety of definitions found in the literature (Cain, 2007). Three aspects of MWL 

elucidated by this definition will be discussed: 

1. MWL is induced by the interaction of a specific operator’s capabilities (i.e.,

experience level, personality factors, mental capacity, etc.) and the specific demands

of the task(s), which can be further confounded by the environment in which the task

occurs.

2. MWL is a subjective experience that results from physiological processes taking

place while engaged in a task (e.g., neurophysiological activity, heart rate, etc.).

3. Cognitive resources utilized to perform a task are limited and multidimensional, and

the availability of these resources influence the experience of MWL.

Therefore, MWL is a physiologically based subjective experience that can be 

operationally measured to gain insight regarding the operator’s ability to accurately and 

efficiently continue a task or take on new tasks. 
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Mental workload as a task-resource interaction. 

The first aspect highlights MWL as the reaction of an operator to specific task demands 

in a specific environment. Tasks invoke different levels of MWL depending on the 

characteristics of the specific task, the subjective response of the operator, and the environment. 

Thus, MWL emerges from the interaction of an individual with a task in a specific environment. 

To discuss this interaction, it is essential to differentiate the characteristics of the task from those 

of the environment and from those of the individual. This point, while obvious, is subtle. For 

example, Hancock and Matthews (2019) point out that the MWL literature frequently is confused 

because of inconsistencies in the use of terminology to describe the characteristics of the task, 

the environment, and operator’s response to them. Early on, de Waard (1996) identified terms 

often associated incorrectly with MWL characteristics and task-environment interactions. To 

minimize such confusions, the present report uses de Waard’s terminology. 

Tasks come in a great variety of sizes, shapes, and complexities. Norman and Bobrow 

(1975) divided MWL tasks into those that are data-limited and those that are resource-limited. 

As the names imply, performance on data-limited tasks is limited by the incoming data 

presented to the operator, whereas performance on resource-limited tasks is limited by the 

capabilities of the operator for performing the task. This is an important distinction for MWL. 

When trying to perform a data-limited task, recruiting more mental resources to perform the task 

yields at best only marginal benefits since the increased effort does not deal with the 

shortcomings of the data signal; for example, when trying to read the small, blurry letter on a 

visual acuity chart, working harder will not make the text bigger nor will working harder un-blur 

it. On the other hand, recruiting more mental resources for resource-limited tasks may increase 

task performance. This is achieved by trying harder, focusing attention, and reducing distraction. 

For example, more effort must be expended to hold nine digits in working memory versus four 

digits. Additionally, with enough consistent practice with a resource-limited task, the task shifts 

to a more ‘automatic’ one, in a sense transforming the task from a resource-limited to a data-

limited task (Norman & Bobrow, 1975).   

Norman and Bobrow’s (1975) performance-resource dichotomy can be expanded to the 

multitasking domain to predict the interference that will occur between tasks. When two 

resource-limited tasks are performed simultaneously, each task competes for an operator’s 

limited resources. This results in performance decrements in both tasks, relative to each task 

being performed in isolation. Typically, this type of task pairing is to be avoided, but researchers 

can exploit resource competition between tasks to determine how much demand an operator can 

handle or to simulate real-world environments. Conversely, when a data-limited task is paired 

with a resource-limited task, there is little to no resource competition and no decrease in 

performance. Product designers can take advantage of this non-competitive task-pairing scenario 

to increase efficiency, safety, and user experience ratings. 

It is important to note that many tasks have both data-limited and resource-limited 

processes associated with their performance. Norman and Bobrow’s (1975) performance-

resource functions detail these combinations, as seen in Figure 1. Data-limited processes are 

indicated by flat regions (i.e., expending resources does not improve performance). Resource-

limited processes are indicated by curves with positive slopes (i.e., expending resources 

improves performance). Initially, a data-limited process will require some amount of resources 

via sensory processing (denoted by the initial slope on the data-limited curves outside the range 

of examined resource allocation). After sensory-related processing is complete, all that remains 
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is the operator’s decision based on the quality of the perceived signal. A resource-limited process 

requires indefinite resource expenditure across the examined range of resource allocation. Thus, 

performance can continuously improve as resources are being spent (up to their limited resource 

capacity). The term transitional process has been ascribed to tasks that exhibit both resource-

limited and data-limited functions in the performance-resource curve’s region of interest. 

Transitional processes encompass tasks that only require a finite amount of resource expenditure 

before a decision is to be made using the processed data.  

Figure 1. Norman and Bobrow's (1975) classes of performance-resource functions. Performance 

is represented on the y-axis and cognitive resource allocation on the x-axis. The middle section 

identifies the range evaluated by the researchers in their work. The region on the left represents 

tasks with fewer data-limiting processes that were below the levels tested. This depicts that data-

limited processes have performance that rises quickly with little increase in resource expenditure, 

reaches a maximum, and cannot increase with more cognitive effort; thus, the flat horizontal 

lines emerge after the initial increase in resource allocation. The authors predict performance 

based on increased resource allocation in the right region. These resource-limited processes show 

gradual increase in performance as resource allocation increases. Transitional-processes are a 

combination of the data- and resource-limited processes in the region of resource allocation 

examined. The shape of the line changes based on the degree to which the tasks are dominated 

by each process. Two different combinations are identified, one linear, and one sigmoid. 

The nature of the task is defined by the amount of resources expended to achieve a 

certain level of performance and determines several MWL factors. When examining the 

resources required to achieve a certain level of performance on a task, the concepts of task 

demand and task complexity require differentiation. Task demand represents the criterion 

resource capacity required to complete a task to the operator’s goal. Once this goal is set, the 

required resources are external and independent of the operator. For example, the ideal goal of 

achieving 100% on an exam represents a goal defined by the task, and yet, is external to the 

operators who take the exam. However, should an operator find that a score of 75% is 

acceptable; the operator sets a new subjective goal prior to engaging in the task. When 

comparing the demand between operators, the demand on the operator who seeks to reach the 

100% goal will experience higher levels of task demand than the operator who finds 75% as 

acceptable. Task complexity is causally related to demand, and is characterized by the number 
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of processing stages required to reach the goal. Intuitively, as the number of processing stages 

increase, the task complexity similarly increases. de Waard (1996) notes that demand and 

complexity are primarily external factors; they can be mediated by the subjective goals of the 

operator.  

Another descriptor of the task can be seen from the point of view of the operator. 

Difficulty is defined as the amount of voluntarily mobilized resources required by a specific 

operator to keep up with the demand imposed by the task to reach the goal. Thus, factors 

intrinsic to the operator, such as individual capacity limits, strategy, state, and motivation begin 

to influence the perceived task difficulty (de Waard, 1996). As stated by Kantowitz (1987), the 

difficulty of a task is the result of the interaction between the operator and the task, while factors 

like a task’s complexity looks at the task in isolation. Task difficulty is thus a perception whereas 

task complexity is a trait. Lastly, effort is the voluntary mobilization of an operator’s resources 

in order to compensate for increased task demands. While effort is a reaction to task demand to 

maintain performance, they are not necessarily related. The structure of the task (data-limited vs. 

resource-limited) as well as practice effects, the operator’s cognitive and physiological state, and 

the goals and strategies of the operator can affect how much effort is required to compensate for 

increasing task demand. Overall, a task cannot be defined by a specific level of workload due to 

individual differences. However, a task can be defined in terms of its processing type, criterion 

goals, complexity, and the attentional resources upon which the task places demand for criterion 

performance. On the other side of the interaction, the operator’s perception of task difficulty is 

mediated by several factors driven by subjective decisions made by each unique operator. Rouse, 

Edwards, and Hammer (1993) state the idea that ‘experienced load’ may be a better term to 

encapsulate the idea that MWL is not just task-specific, but is also person-specific. The task-

operator relationship will be expanded upon in the discussion of the region models of workload 

and performance. 

Workload is a subjectively experienced physiological processing state. 

MWL can be conceptualized as a subjective experience allowing for the introspective 

analysis of the physiological processing state and performance levels experienced during the 

task. This concept is clear to an individual who is engaging in tasks that impose significantly 

higher levels of workload. As such, through introspective reflection of the experience of 

completing a task, an operator can rank their subjective experiences of MWL, either on an 

arbitrary scale or against other tasks of varying difficulty. While this ranking may be unique to 

the operator, generalizability may be possible across metrics with highly trained subjects. 

Additionally, evidence suggests that physiological changes occur while experiencing high levels 

of MWL. For review, see Lohani, Payne, & Strayner (2019). Coupled with task performance 

metrics, subjective responses and physiological measures offer researchers a window into the 

abstract experience of MWL. 

O’Donnell and Eggemeier (1986) completed the foundational work that outlined the 

methodological criterion of workload assessment techniques. Using a set of five criteria, they 

outlined four methods of MWL assessment that interact with the subjectively experienced 

physiological-processing-state of the operator: primary task measures (performance-based), 

secondary task measures (performance-based), and physiological measures, and subjective 

measures. The two performance measures, primary task measures and secondary task measures, 

encompass strategies to relate a task’s performance metrics to the level of MWL experienced by 
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an operator. Physiological measures take advantage of subtle changes in the body that occur in 

response to increasing levels of task demand. Some obvious physiological changes perceived by 

an operator are increased heart rate, respiration rate, or muscle tension (Cain, 2007). Other 

physiological changes can occur without the operator’s awareness. Dilation of the pupil, changes 

in visual scan paths, blink rate and duration, blood pressure, blood oxygen levels, heart rate 

variability, skin conductance, brain oxygenation, brain electrophysiological activity, as well as 

many other physiological signals have been measured in response to increasing MWL (Lohani, 

Payne, & Strayer, 2019). Lastly, self-report methods can also be employed as the experience of 

MWL is primarily a subjective one. Scales, such as the Instantaneous Self-Assessment of 

Workload (ISA), Subjective Workload Assessment Technique (SWAT) and the NASA Task 

Load Index (TLX), reliably assess workload through self-report (Cain, 2007). These various and 

continually advancing techniques, when used in combination (performance + physiological + 

subjective measures), can provide a more robust operational measure of MWL as experienced by 

an individual. However, concern arises regarding dissociations among the various performance, 

subjective, and physiological measures that can make workload assessment techniques difficult 

to interpret and utilize effectively (Hancock & Matthews, 2019). 

Limited and Multidimensional Cognitive Resources 

Lastly, a current definition of MWL requires a discussion of available mental resources 

that can be characterized as limited and multi-dimensional. Humans have limitations in regards 

to the amount of data that they can process. In fact, the very nature of the human attentional 

system is designed to serve as a filter for enormous amounts of data. Without this filtering, 

humans would exist in a constant state of overload. To more fully understand cognitive filtering, 

the terms “resource” and “capacity” warrant differentiation despite being used interchangeably in 

some literature. Wickens (1992) defined capacity as the upper limit of processing capability of a 

particular operator for a specific resource. Resources are defined as mental effort voluntarily 

allocated to improve processing efficiency (Wickens, 1992; Norman & Bobrow, 1975; de 

Waard, 1996). As such, capacity and resources vary depending on the individual differences 

between operators. Of note, that capacity is elastic, and has the ability to vary, given the task 

demands and the applied effort of the operator (Kahneman, 1973). However, once capacity is 

reached, the operator will ‘hit their limit’ for a particular resource and failure in the task will 

begin to occur. 

Norman and Bobrow’s (1975) data-limited vs. resource-limited dichotomy can explain 

why some tasks can be performed in parallel more efficiently than others. This dichotomy 

explains why effective time-sharing can occur between combinations of some resource-limited 

tasks (e.g., a visual and auditory task set) but not others (e.g., a visual and visual task set). 

Wickens (1984) proposed the Multiple Resource Theory (MRT) to answer this question. Instead 

of assuming a single resource exists that is shared across all methods of processing (i.e., the 

‘modal’ view, as was initially commonly thought to be the case [Kahneman, 1973]), Wickens 

divides attentional resources into separate pools. These pools are based on four dichotomous 

dimensions: Stages (perceptual + cognitive/response), modalities (visual/auditory; can also 

expand to haptic), codes (spatial/verbal), and visual channels (focal/ambient). These dimensions 

can be seen in Figure 2, a depiction of the ‘Wickens Cube’ (Wickens, 2002). 
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Figure 2. Visualization of the MRT model; the ‘Wickens Cube’ (Adapted from Wickens, 2002). 

This figure shows four dichotomous dimensions: Stages (x-axis), modalities (y-axis), codes z-

axis), and visual channels (nested in the visual modality). Stages include the perception + 

cognition of data and the response selected and executed. Modalities are the channels used to 

deliver the information to be perceived and processed via cognition. The modality dimension 

represents sensory systems that can be efficiently time-shared and, in MRT, is often separated 

into visual and auditory modalities (but can be expanded to other senses, such as haptics). Codes 

represent the time-sharing efficiency between analogue/spatial and categorical/symbolic 

processes parts of perception, cognition and response that depend on separate resources divided 

across the two cerebral hemispheres (akin to Baddeley and Logie’s (1999) model of working 

memory which features a “visuo-spatial sketchpad” and “phonological loop” compartmentalizing 

the spatial/verbal dichotomy). Visual processing is divided into ambient and focal, with ambient 

representing unique aspects of peripheral vision and focal representing the information flow in 

central vision.  

Each of the resource pools has its own capacity and an individual task may be able to 

push an operator beyond their particular capacity for a specific resource resulting in operator 

overload. However, proper task and product design can typically prevent operator overload. The 

MRT overcomes limitations of other human information processing models through its 

explanation of multitasking. Multitasking situations are defined as when one task is concurrently 

performed with another task (as is the case with secondary task procedures). Subsequently, the 

relative performance on each task is lower than the performance that could be achieved on each 

task in isolation (Wickens, 2002). This decrement in performance occurs due to the interference 

caused by the two tasks competing for the same resource. For example, driving in a busy urban 

area while navigating a global positioning system (GPS) display on the center console of the 

automobile will cause resource competition. In this multitasking situation, the GPS display task 

and the driving task would interfere with each other along the visual dimensions. Driving in the 

busy area and searching for the correct icons on the display requires simultaneous and constant 
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visual surveillance of spatially distinct areas. Additionally, more interference may occur within 

the response-spatial (i.e., manual response) and cognition-spatial dimensions, as each task may 

require these resources. While MRT is most valuable when trying to account for performance in 

an “overload” situation, it can also be used as a framework in the design and development of 

products and research methods (Wickens, 2002; see computational MRT in Wickens, 2008).   

Summary 

Recalling the Van Acker et al. (2018) definition of MWL, continuing efforts exist to 

move towards a unified definition of the abstract concept: “Mental workload is a subjectively 

experienced physiological processing state, revealing the interplay between one's limited and 

multidimensional cognitive resources and the cognitive work demands being exposed to." Three 

major aspects of MWL are highlighted in this definition. First, MWL is the reaction of a specific 

operator to the task demands in an effort to reach a criterion level of performance. The specific 

properties of the task (processing limitations, demand, and complexity) and the response of the 

operator (perceived difficulty, motivation, strategies, and state) represent the core features of 

MWL. Second, MWL is a subjective and physiological experience, allowing for different 

assessment techniques (primary task, secondary task, physiological, and subjective measures) to 

provide windows into the operators’ state. Third, understanding that mental resources are both 

limited and multi-dimensional is key to explaining human behavior in regards to task 

performance. MRT (Wickens, 2002) explains how a multi-dimensional set of resources can 

accurately account for a range of human experiences in regards to task performance. Putting 

these elements together, researchers can begin to define precise experimental procedures to 

continue the modelling and assessment of workload under specific dimensional levels of task 

demand.  

Models of Mental Workload and Task Performance as a Function of Demand 

Combining the previously defined concepts formulates a model of MWL and task 

performance as a function of task demand. A foundational outline of the relationship between 

task performance and task demand was outlined by Meister (1976) and was adapted by de Waard 

(1996). This relationship is illustrated in Figure 3 in the Region Model. Three regions separate 

into three discrete states that are characteristic of performance-workload relationships: Region A, 

Region B, and Region C. Region A defines a state of low demand and high performance. In this 

region, an increase in task demands will not lead to a decrease in performance, as the operator 

can increase their effort (i.e., the voluntary recruitment of available resources to task demands) to 

maintain performance. Region B defines a state of increasing task demands coupled with 

decreasing levels of performance. As such, Region B represents workload levels that exceed the 

capabilities (i.e., the capacity of a utilized resource) of the operator, and performance begins to 

approach catastrophic decline. Lastly, Region C defines a state of total failure in a task, where 

task demands are high and performance remains stagnant at low levels, regardless of any 

additional exertion of mental effort made by the operator. 
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Figure 3. Region model. Relationship between task performance and task demand (Meister, 

1976). Figure referenced from de Waard (1996). Three regions separate the three discrete states 

that are characteristic of performance-task demand relationships. Region A defines a state of low 

demand and high performance. Region B defines a state of increasing task demands coupled with 

decreasing levels of performance. Region C defines a state of total failure in a task, where task 

demands are high and performance remains stagnant at low levels. 

This relationship determines where different workload assessment techniques can detect 

increases in capacity expenditure. For example, primary task measures are only sensitive to 

capacity expenditure (effort) in Region B, where actual performance begins to decline. 

Physiological measures, however, may discriminate levels of capacity expenditure in non-

overload conditions, such as in Region A (O’Donnell & Eggemeier, 1986). Depending on the 

nature of the task(s), researchers can use this basic function to determine which workload 

assessment techniques would be most effective given the known constraints of the task.  

However, Meister’s (1976) region model does not take into consideration the domain of 

underload (i.e., boredom), as is common in vigilance tasks. The idea that underload affects 

performance stems from a classic study performed by Yerkes & Dodson (1908), the cloudy 

genesis of the colloquially known ‘inverted U’ performance curve. The initial work of Yerkes 

and Dodson (1908) revealed that exposure to medium strength electric shocks were more likely 

to elicit learning of a habit in mice, compared to both low and high strength electric shocks. 

While Yerkes and Dodson (1908) focused on the relationship between state and learning, the 

idea has been expanded to include the effects of arousal (i.e., stress, motivation, task demand, 

etc.) on performance (Hebb, 1955; Kahneman, 1973; Teigen, 1994). This expansion to 

performance is commonly referred to as the Yerkes-Dodson Law. Optimal performance sits at 

moderate levels of arousal, but lowering or raising arousal from these levels can have a 

detrimental effect.  

de Waard (1996) expanded the region model to include the domain of underload and the 

‘inverted-U’ function. As seen in Figure 4, the extended region model depicts how the inverse 

relationship between MWL and performance varies as a function of task demand. The addition 
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of Region D, for ‘Disengagement’, encompasses the domain of underload. Region D defines a 

state of low task demands and low performance corresponding to higher levels of experienced 

MWL caused by a reduction in maximum capacity (see Malleable Attentional Resources Theory 

(MART) of Young & Stanton, 2002). The capacity bars in Figure 4 show that maximum 

resource capacity is severely reduced in Region D. As such, even small amounts of task demand 

utilize a large percentage of available resource capacity. Due to this higher rate of resource 

capacity expenditure, MWL is perceived by the operator as being high. 

 

Figure 4. Extended region model (adapted from de Waard, 1996). This model highlights the 

domain of underload (Region D), and separates the traditional Region A into three parts to 

identify changes that occur at the workload level. The addition of Region D completes the 

‘inverted U’ model of performance. The concepts of malleable capacities and resource 

expenditure are depicted for each region below the plot. 

As task demand increases, the operator becomes more engaged with the task and enters 

Region A, represented by high performance and moderate task demand. However, de Waard 

partitions Region A to display variations in MWL within this region. In Region A1, a reduction 

in MWL is observed. Using state-related effort, an operator becomes more engaged with the 

moderately demanding task and commits more resource capacity to the task. This expansion 

reduces the overall percentage of utilized resource capacity (relative to Region D), which, in 

turn, reduces MWL. Region A2, then, represents the ideal state of moderate task demands, high 
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performance, and low MWL. Region A3 encompasses the idea that human operators are flexible 

in their reactions to increasing task demands. In Region A3, an operator uses task-related effort 

to maintain high performance even as MWL and task demands increase. The capacity bar below 

Region A3 in Figure 4 shows how task-related effort increases resource capacity expenditure 

(i.e., the increasing orange bar) and, ultimately, MWL. Regions B and C represent maximum 

resource capacity expenditure with increasing diminished performance until task failure and/or 

abandon. 

In the context of the region model, MWL is interpreted in a multidimensional fashion. 

The different workload dimensions occupy different regions of the model simultaneously, as 

would be accounted for by MRT (Wickens, 1984). For example, consider a driving task where an 

operator must both drive a vehicle safely and engage in a conversation via text messaging. Visual 

and manual response resources are heavily taxed by both tasks individually and the performance 

of both tasks concurrently will likely push a driver into Region B or C for each resource. This is 

problematic, as driving-related performance decrements associated with Regions B and C are 

likely to lead to an accident. To remedy this situation, the visual and manual response demand of 

text messaging can be offloaded to the less taxed auditory and verbal response domains through 

the use of hands-free telephone operation. This offloading would result in lower levels of 

demand spread across multiple mental resources. Thus, the demand spread across multiple 

resources would result in the operator being in Region A2 or A3 for each resource, rather than 

remaining in the regions negatively affecting performance (i.e., Regions B or C).   

Using the region model, the ideal limits of experienced workload are determined by the 

point at which an operator begins to be overloaded. This threshold is typically referred to as the 

‘redline’ (Colle & Reid, 2005). Traditionally, the redline is a threshold set between the boundary 

of region A and region B in the original region model, or in de Waard’s (1996) expanded region 

model, Regions A3 and B. Therefore, the region to the left of the redline is referred to as the 

‘reserve capacity’ region, and the region to the right of the redline is referred to as the ‘overload’ 

region (Young, Brookhuis, Wickens, & Hancock, 2015). Depending on the task, and concerns 

for the well-being of the operator, adjusting the redline to occur between regions A2 and A3 may 

be ideal. This adjustment could mitigate the long-term effects of prolonged sessions of high 

MWL experienced in a work setting, such as long-term stress (Zijlstra & Mulder, 1989; de 

Waard, 1996) or hypertension (Johnson & Anderson, 1990). Likewise, working towards the 

domain of underload, an ideal redline would occur between regions A1 and A2, where enough 

state-related effort is utilized to keep the operator actively engaged. A definitive placement of a 

redline for the ‘underload’ region remains elusive given the current state of understanding 

(Young et al., 2015). When one resource capacity approaches the redline due to increasing task 

demand, diverting some of that demand to another resource capacity will improve performance 

(Dixon & Wickens, 2005). This diversion could be implemented through informed design of the 

task or product or even through strategies utilized by the operator. 
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Workload Measurement Techniques 

 

While MWL may be an abstract concept not entirely grounded by a representational 

architecture in the brain, there are tangible responses elicited by the human body that can provide 

a basis for quantifying MWL. These responses to variable levels of MWL manifest themselves in 

three domains: subjective experience, the performance of primary and secondary tasks, and 

physiology. As O’Donnell and Eggemeier (1986) describe, each of these domains has specific 

advantages and disadvantages. For example, physiological workload assessment techniques offer 

relatively sensitive, sometimes diagnostic (depending on the measurement used), and generally 

non-intrusive methods to measure MWL. On the other hand, secondary task performance 

measures provide sensitive, highly diagnostic, but intrusive methods to examine MWL. This 

section reviews some of the specific MWL assessment techniques used in the subjective, 

performance, and physiological modalities as framed by the aviation domain and criteria set forth 

by O’Donnell and Eggemeier (1986). 

 

Subjective Measures 

One of the major points put forward by the Van Acker, et al. (2018) definition of MWL is 

that workload is a subjectively experienced physiological processing state. Generally, when an 

operator is experiencing high levels of MWL, they are aware that they are being stressed and 

pushed toward their limits in terms of resources, time, attention, etc. Using introspection (i.e., 

reflecting on one’s experience), an operator can provide a report of their consciously experienced 

levels of MWL. As such, many attempts at capturing this introspective report have been made. 

Typically, subjective assessments of MWL rely upon the use of rating scales that identify how 

much effort or capacity was used during task completion. These rating scales are used to 

generate a unidimensional assessment of workload (as in the Crew Status Survey, Instantaneous 

Self-Assessment of Workload, Malvern Capacity Estimate, Modified Cooper-Harper, and the 

Rating Scale Mental Effort) or a multidimensional assessment of workload (as in the Subjective 

Workload Assessment Technique, NASA Task Load Index, and the Workload Profile). Such 

subjective workload assessments typically are obtained after the task is completed, relying on the 

operator’s memory of their experiences during the task. However, some rating scales can be 

administered during the task (as in the Instantaneous Self-Assessment of Workload) as a way to 

provide a more reliable measure of workload through different phases of the task but at the cost 

of potentially interfering with task performance. Rating scales are of a subjective nature and may 

be affected by factors outside of the task, thus the use of rating scales alone is often seen as 

unreliable (Cain, 2007).  

 

Crew Status Survey (CSS). 

The Crew Status Survey (CSS) is a seven-point unidimensional MWL assessment scale 

that was validated and verified through the testing of trained pilots and aircrew members (Ames 

& George, 1993). Operators are asked to assess their subjectively perceived level of MWL using 

two responses on the seven-point scale (1 = low workload; 7= high workload) as shown in 

Figure 5. The first response requires the operator to assess the maximum level of MWL that was 

experienced during the task by selecting one of the seven levels. The second response asks 

operators to identify the statement that best describes the average level of MWL experienced 

during the task. Addressing both the maximum and average values allows for more strategic 

analysis of the data compared to assuming operators are not biased towards maximum workload 
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inducing events that took place throughout the task. This quick assessment offers experimenters 

the ability to assess subjective MWL during the task and/or following the task.  

The CSS is a revision of the School of Aerospace Medicine (SAM) Form 202 MWL 

estimate that offered many advantages, such as ease of use, minimal training effort, and scale 

steps that were anchored in absolute terms. However, the SAM Form 202 lacked technical 

verification of the continuous underlying MWL dimension being tested. The development of the 

CSS involved revising the SAM Form 202 using a pair comparison and rank order estimation 

test. The results of Ames and George’s (1993) efforts yielded a revised scale (adopted as the 

CSS) with verified ordinal steps and nearly equal psychological intervals between steps. Based 

on this set of assumptions the authors argue that the CSS can be considered an interval scale; 

thus, allowing more types of statistical analyses to be performed with the resulting data than an 

ordinal scale. The potential usefulness of the CSS in flight test applications is supported by the 

many advantages of the SAM Form 202, the absolute MWL score output (compared to relative 

workload score output), and the fact that the revisions were performed with trained pilots and 

aircrew members. 

 

Figure 5. Anchor number and description used in the Crew Status Survey (CSS). 

Instantaneous Self-Assessment of Workload (ISA). 

The ISA was developed specifically to assess MWL of Air Traffic Controllers (ATC) as 

they performed their tasks. The ISA was designed to distract minimally from the primary ATC 

task (Brennan, 1992; Jordan, 1992). The ISA requires the individual to rate the level of MWL on 

a scale from one (very low workload) to five (very high workload) (scale shown in Figure 6) 

following the illumination of a red light emitting diode (LED) set to flash every two minutes. 

The ISA response is then entered on a specialized keyboard pad or as a verbal response to a tone. 

This measurement technique has been validated against the NASA-TLX and is thought to be one 

of the least distractive methods of gathering self-assessed MWL during a task (Casner & Gore, 

2010).  
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Figure 6. Instantaneous Self-Assessment Workload Scale (Kirwan et al., 1997). 

Malvern Capacity Estimate (MACE). 

The MACE was developed for use in evaluation of ATC, along with the ISA. The MACE 

is a self-report subjective scale that requires users to identify how much spare capacity they have 

available to complete secondary tasks while they are engaged in a primary task. Particularly, 

Goillau & Kelley (1996) utilized the MACE to determine how many more planes an ATC could 

direct at a given time. Following the completion of the task, participants were asked to use the 

scale to estimate on average how many planes they could handle per hour. They were also asked 

to rate how many planes they could handle at peaks of activity. The MACE was developed to 

“derive a direct estimate of capacity” (Goillau & Kelly, 1996, p. 7). See Figure 7. 
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Figure 7. Malvern Capacity Estimate. 

Modified Cooper-Harper (MCH). 

The Modified Cooper-Harper (MCH) was originally developed to evaluate the handling 

abilities of aircraft (Cooper, 1957). It was later modified to evaluate handling abilities as well as 

serve as an indirect measure pilot MWL (Cooper & Harper, 1969; Casali & Wierwille, 1983). 

The scale consists of a decision tree where an individual must rate the handling of the aircraft 

system from one (excellent) to ten (major deficiencies). A rating of one would suggest low MWL 



15 

and a rating of ten would suggest a high MWL. See Figure 8. The MCH has acted as a long-term 

aviation industry standard that has seen further modifications to more specific niches, such as 

unmanned vehicle systems (Cummings, Myers, & Scott, 2006), 

 

Figure 8. Modified Cooper-Harper (Cooper & Harper, 1969). Figure from Cummings, Myers, 

and Scott (2006). 

Bedford Workload Rating Scale (BWRS).  

The Bedford Workload Rating Scale (BWRS) is another modification of the original 

Cooper-Harper Aircraft-Handling Qualities rating scale, both of which were developed for use in 

the aviation domain (Roscoe, 1984). The BWRS requires that operators identify their levels of 

spare capacity while completing a task. To aid operator assessment, the BWRS juxtaposes a 

hierarchical decision tree with a ten-point scale with descriptors at each level, as seen in Figure 9 

(Bachelder & Godfroy-Cooper, 2019). Answers to the questions anchored in the decision tree 

provide information about whether it was possible to compete the task, whether MWL was 

tolerable, and if the levels of MWL experienced were satisfactory. Beyond those decision points, 

segmented sections of the ten-point scale offer a finer resolution of MWL assessment in terms of 

spare capacity from one (“Workload insignificant”) to ten (“Task abandoned. Pilot unable to 
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apply sufficient effort.”). The primary advantage of the BWRS lies in the descriptions tied to 

each of the available ratings (Casner & Gore, 2010), as each rating provides an interpretation of 

the rating itself. However, a fundamental issue with the BWRS lies in asking operators to 

evaluate their “spare capacity,” an ambiguous term with several interpretations (such as 

additional mental capacity, a free hand, extra time, etc.) that are not clearly defined in the scale 

(Casner & Gore, 2010).  

 

Figure 9. The Bedford Workload Rating Scale (figure from Bachelder & Godfroy-Cooper, 

2019). 

Rating Scale Mental Effort (RSME). 

The Rating Scale Mental Effort (RSME) is a measure of perceived MWL which asks 

operators to mark their level of mental effort on a scale of 0 (no effort) to 150 (extreme effort). 

The RSME is a visual analogue scale using a 150 millimeters (mm) long line with anchors set at 

every 10 mm. The operators mark on the scaled line where they perceive their level of effort to 

be during the task. Some anchor points set along the line are labeled with descriptions of 

invested effort, such as ‘some effort’ around 37 mm and ‘extreme effort’ around 112 mm, among 

others. Final scoring of the RSME is the measurement, in mm, from the origin on the line to the 

point marked by the operator. Zijlstra (1993) developed and validated the RSME in a series of 

experiments demonstrating its sensitivity to task load and correlations with physiological 

measures of MWL. de Waard (1996) notes that the operator’s reflection on “invested effort” is 

more attainable subjectively than reflections on more abstract concepts of MWL, such as 

reflections on “mental demand” as required by the NASA TLX. See Figure 10. 
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Figure 10. Rating Scale Mental Effort (RSME), developed by Zijlstra (1993), figure referenced 

from de Waard (1996). Note. Figure is not to scale. 

NASA Task Load Index (NASA TLX). 

The NASA TLX was developed as a multi-dimensional scale, rating MWL along six 

dimensions that can be combined into a unitary MWL score (Hart & Staveland, 1988). The six 

dimensions are mental demand, physical demand, temporal demand, effort, performance, and 

frustration. Each dimension has a complex description that is provided to the individual prior to 

using the scale (Figure 11). To complete the NASA TLX, the individual rates each dimension 

individually from low to high on a visual analogue scale. Each visual analogue scale consists of a 

horizontal line with twenty-one tick marks on which the individuals indicate perceived effort 

specific to each of the six dimensions. The individual dimensions are then weighted based on the 

individual’s own determination of each dimension’s importance. The reported values on each 

scale are tallied according to their respective weight to derive a unitary summary score. 

Alternatively, the summary score can be calculated without using the weighting technique, which 

provides a simpler method of calculating the summary score (Hart, 2006). 
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Rating Scale Definitions 

Title Endpoints Descriptions 

Mental Demand Low/High How much mental and 

perceptual activity was 

required (e.g., thinking 

deciding, calculating, 

remembering, looking, 

searching, etc.)? Was the task 

easy or demanding, simple or 

complex, exact or forgiving? 

Physical Demand Low/High How much physical activity 

was required (e.g., pushing, 

pulling, turning, controlling, 

activating, etc.)? Was the task 

easy or demanding, slow or 

brisk, slack or strenuous, 

restful or laborious? 

Temporal Demand Low/High How much time pressure did 

you feel due to the rate or pace 

at which the tasks or task 

elements occurred? Was the 

pace slow and leisurely or 

rapid and frantic? 

Performance Good/Poor How successful do you think 

you were in accomplishing the 

goals of the task set by the 

experimenter (or yourself)? 

How satisfied were you with 

your performance in 

accomplishing these goals? 

Effort Low/High How hard did you have to 

work (mentally and 

physically) to accomplish your 

level of performance? 

Frustration Level Low/High How insecure, discouraged, 

irritated, stressed, and 

annoyed versus secure, 

gratified, content, relaxed, and 

complacent did you feel 

during the task? 

Figure 11. NASA TLX Rating Scale Definitions (Hart & Staveland, 1988). 

 Subjective Workload Assessment Technique (SWAT).  

 The SWAT was developed to measure MWL along three domains, time load, mental 

effort load, and psychological stress load (Reid and Nygren, 1988). The SWAT User’s Guide 

defines time load as the amount of pressure related to time that the operator felt when completing 
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the task. “Mental Effort Load is the amount of attention or concentration that is required to 

perform a task; and Psychological Stress Load is the presence of confusion, frustration, and/or 

anxiety associated with task performance” (Reid, Potter, & Bressler, 1989, p. 11). The SWAT is 

typically completed in two steps. The first step is the “scale development phase,” in which users 

are required to sort 27 cards (each with a rank-ordered statement concerning each of the three 

domains tested) in order of importance so that the scale is tailored to their understanding of the 

terms associated with MWL (Reid et al., 1989). Following this step, the individual then 

completes a series of similar tasks with differing workload levels. Next, the individual rates the 

amount of effort required to complete each task using the tailored scale. The result is a 

personalized MWL score for each task. More information on the scaling procedures used in the 

SWAT can be found in Reid et al. (1989). The SWAT has been adapted into a computer program 

and is more complicated and time consuming than the other subjective workload scales discussed 

here, therefore it is unlikely to be useful in an operational setting. Despite this potential 

operational drawback, the SWAT provides MWL personalized to the individual operator. 

Workload Profile (WP). 

Subjective MWL assessment techniques are taken to be a global assessment of MWL; 

that is, they typically lack diagnosticity in terms of identifying which mental resources are being 

taxed by a task (O’Donnell & Eggemeier, 1986). However, Tsang and Velazquez (1996) 

challenged that idea by creating and validating a multidimensional instrument called the 

Workload Profile (WP). The WP was designed using Wickens’ (1984) MRT as its foundation. 

After completing the tasks, individuals rate the proportion of attentional resources expended 

during task engagement along the four MRT dimensions and sub-concept clustering (Figure 12). 

The rating scale for each dimension in the WP ranges from 0, the task placed no demand on a 

resource, and 1, the task required maximum attention of a specific resource (Tsang & Velazquez, 

1996). As seen in Figure 11, tasks (m2, m2s1, m2s3, etc.) are listed as rows in any order for each 

operator’s assessment. While this direct assessment of workload and mental resources does 

provide insight into the specific resources being utilized by an operator, it does require the 

operator to learn how to differentiate the multi-dimensional nature of the attentional resources at 

their disposal. However, if provided a thorough explanation of each resource, operators can 

generally make this assessment without extensive training (Tsang & Velazquez, 1996; Rubio, 

Diaz, Martin, & Puente, 2004). Rubio et al. (2004) found this scale more sensitive and diagnostic 

than both the NASA TLX and SWAT. Overall, the WP presents a simple method for combining 

the diagnostic benefits of secondary task measures with the low intrusiveness of subjective 

workload assessment techniques. 
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Figure 12. Workload Profile rating sheet (Rubio et al., 2004).  

Concluding note on subjective measures. 

All of these measurement techniques are identified as subjective, which is to be expected 

since the definition of MWL used here (Van Acker et al., 2018) identifies MWL as a subjective 

experience of physiological processing states. Each of the subjective MWL scales described 

above depends on and reflects an individual’s sensitivity to changes in their own physiology. 

Thus, these subjective scales rest on some form of introspection, which etymologically means to 

look inward. The implication is that some sensory processes analogous to vision, hearing, touch, 

olfaction, etc. are involved with introspection. All these MWL scales may rest on a common, 

shared, or similar form of introspection; in which case, the major differences among the scales 

derive from the different methods they use to structure the process of introspection. Thus, for all 

their differences, these MWL scales use the same basic strategy to assess MWL, introspection, a 

point worth noting since introspection continues to play an immensely important role in 

philosophy, quantitative experimental psychology, contemporary cognitive sciences, and, of 

course, daily life.  

Introspection can be defined as a process by which we observe our current or recent 

mental processes, which is completely consistent with the goal of measuring MWL. 

Introspection has a number of characteristics that have been identified and discussed in the 

context of other disciplines but which have not received much, if any, attention in the MWL 

literature. For example, while it is obvious that introspection addresses mental events, events that 

occur in the conscious mind with its associated brain states, unless the events can be called into 

consciousness, they are not amenable to introspection, and so do not figure into these subjective 

measures of MWL. Despite this, the border between introspective and non-introspective events is 

certainly soft, probably as soft as the border between the conscious and the unconscious mind. 

This must be the case since so many factors determine what can be made conscious or brought to 

mind at any one time. This malleability of recall seems to underlie the variety of subjective 

MWL scales since each scale structures the process of introspection differently. Regardless of 

their differences, it seems important to emphasize that all of them measure something that occurs 
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strictly in the mind as distinct from the physical world. In other words, these MWL scales reflect 

changing conditions in the physical world only to the extent that such physical changes impact 

the mind in some way that introspection can access (Huemer, 2019).  

Another important point is that any statement based on introspection describes the 

individual making that statement, the person reporting their introspection. It reflects the 

individual’s immediate direct access to the contents of their mind. It is private knowledge and 

pertains only to that individual’s mind or brain states at that moment. While this may be obvious, 

it has consequences that are subtle and important. For example, the individual can make whole 

classes of statements that are infallible and cannot be doubted or corrected unless deceit, 

deception, or some form of abnormality is discovered. Thus, only the individual can know 

without doubt what they are thinking, and assertions to the contrary are absurd. Introspection 

establishes special relations among the self, truth, falsehoods, and classes of knowledge 

(Schwitzgebel, 2019). 

The different subjective MWL scales implicitly acknowledge the importance time has for 

introspection. Judgements about one’s mental state or brain status are dramatically altered by 

time. One can describe the status of one’s mind at the moment or immediately in the past or 

possibly even in the imminent future. Over time, one’s introspection slips from current status to 

memory and recall. It is possible that the minimum interval between current status and the 

increasing role of recall is related to the psychological present moment. Thus, for example, one 

may recall that one was thinking of something else just a moment ago so that present 

introspection queries the recall of a past time. It is the recognition of the importance of this 

distinction that underlies the brevity of the ISA. 

Additional aspects of the process of introspection include the assumption that one’s 

mental state is immediately accessible. Even if that state is a jumble of confusion that needs 

sorting out, still the state is readily at hand, part of the immediate present, more like a phone call 

than a letter. In addition, introspection requires a change from one mental state to another. For 

example, with the ISA, the mind quickly shifts from the ATC task to the introspection necessary 

for self-assessment and the keypad response. The steps that are necessary for the ISA response 

all require effort, which is another characteristic of introspection; it requires effort and is to some 

extent necessarily intrusive. 

By the mid-nineteenth century, introspection had developed from philosophy to being an 

essential component of experimental psychology and physiology (Boring, 1950; 1953). As a 

discipline, introspection was most successful dealing with sensory psychophysics and the 

refinement of what have become standard psychophysical procedures, some of which may be 

applicable to the study of MWL. The major shortcoming or reservation about introspection 

serving as a research tool has been that the very process of introspection itself interferes with the 

mental act or brain state that it is deployed to assess. August Comte raised these objections at the 

very beginning of the development of introspection as a research tool. “But as for observing in 

the same way intellectual phenomena at the time of their actual presence, that is a manifest 

impossibility. The thinker cannot divide himself into two, of whom one reasons whilst the other 

observes him reason. The organ observed and the organ observing being, in this case, identical, 

how could observation take place? This pretended psychological method is then radically null 

and void” (Comte, 1830 – William James translation 1890, quoted in Schwitzgebel, 2019). 
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Granting the justice of Comte’s objection, which many others have voiced in different 

ways over the years, introspection has developed into an immensely powerful research tool in 

numerous areas, including the sensory sciences, which may serve as a model for the eventual 

development of an MWL psychophysics (Trnka & Smelik, 2020). 

 

Performance Measures 

One of the most obvious side effects of high levels of MWL is the reduction of 

performance in a task, usually through metrics concerning accuracy and speed. As such, an 

operator’s natural performance on a task can serve as an indicator of experienced MWL or spare 

capacity. Two types of performance measures are available: primary task measures and 

secondary task measures (O’Donnell & Eggemeier, 1986; Cain, 2007). Each of these measures 

has advantages and disadvantages in terms of sensitivity, diagonosticity, and task interference 

(see workload assessment criteria set forth by O’Donnell & Eggemeier, 1986), but both lend 

themselves to the assessment of MWL in the aviation domain. 

Primary task performance measures. 

The most intuitive way to measure the effects of MWL on performance is to assess the 

metrics that define performance in the task itself. That is, to obtain a primary task performance 

measure. The details of these metrics are typically defined by a specific task, but general metrics 

such as speed of performance (e.g., reaction time or latency) and number of errors have been 

shown to be sensitive to workload manipulations (O’Donnell & Eggemeier, 1986). Referring 

back to the performance-workload curve detailed by de Waard (1996), task performance begins 

to fall only as task demands push an operator from Region A3 to Region B. As such, while 

primary task performance metrics may be a good reflection of an operator’s efforts, primary task 

performance measures lack sensitivity beyond the ability to discriminate overload from non-

overload conditions (O’Donnell & Eggemeier, 1986). More specifically, with increasing task 

demands, changes in performance only occur in Region B, meaning primary task performance 

measures are only sensitive in this region. As this would suggest, primary task performance 

measures have no sensitivity to increasing workload in Regions A1, A2, and A3, where 

performance is steady even with changing levels of workload (in Regions A1 and A3), as well as 

Region C where an operator’s capacity is continuously overloaded and performance is low. 

Along with their relative insensitivity, primary task performance measures lack 

diagnosticity, which refers to the assessment technique’s ability to diagnose which set of 

resources, as defined by MRT, are affected by the task (O’Donnell & Eggemeier, 1986). 

Observing changes in reaction time or error rate in a primary task assessment will not provide a 

researcher insight into what resources are being utilized by the task. Instead, primary task 

performance measures provide a ‘global’ assessment of workload. As such, primary task 

performance measures provide a general picture of the workload elicited by a task and can guide 

decisions on the determination of overall system effectiveness. 

The sensitivity and diagnosticity limitations of primary task performance measures paint 

a relatively unexciting picture as far as MWL assessment is concerned, but there are benefits to 

their use. First, primary task performance metrics provide the most direct access to the moment 

when workload has exceeded a user’s capacity (i.e., entered Region B or crossed the redline). As 

such, while it would be ideal to predict this approach to Region B ahead of time (as may be 
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possible with other techniques), primary task performance measures provide a solid back up 

dataset for adaptive systems to initiate assistance. Second, while providing a demarcation 

between overload and non-overload conditions, primary task measures are in no way intrusive to 

the operator’s performance (O’Donnell & Eggemeier, 1986). Lastly, primary task metrics are 

data that are collected in most laboratory tasks regardless of whether they are being used to 

assess workload. Today, implementation requirements for these simple metrics are both efficient 

and affordable, even in operational environments. Overall, primary task performance measures 

provide researchers an MWL assessment technique that is directly tied to the capacity of the 

resources demanded by a task, but they lack the diagnosticity afforded by other performance 

measures. 

Secondary task performance measures. 

Examining performance changes when an operator is engaged in two tasks 

simultaneously provides another method of MWL assessment. This approach is referred to as a 

secondary task performance measure. In this multitasking arrangement, the main task of interest 

is defined as the primary task, while the additional task being performed is referred to as the 

secondary task. The concurrent performance of both the primary and secondary tasks provides an 

estimate of the primary task MWL experienced by the operator. This estimate is derived from 

performance on the secondary task, which serves as a measure of the spare capacity an operator 

has while engaged in the primary task (O’Donnell & Eggemeier, 1986). Performance on the 

secondary task begins to falter as the demands of the primary task begin to rise, allowing the 

decreasing performance on the secondary task to serve as an estimate of reserve capacity. Indeed, 

a secondary task can be designed in a way that forces it to weigh on or avoid specific resources 

(as defined by MRT) to assess their individual capacities. 

Using secondary task performance measures requires preparation steps to administer the 

dual task experimental configuration. First, it requires that both the primary task and secondary 

task have their performance assessed independently to serve as a baseline (O’Donnell & 

Eggemeier, 1986). This baseline allows for the comparison of performance between the tasks in 

isolation and the concurrent performance of the tasks. Second, either the primary or secondary 

task performance needs to be emphasized to operators. That is, the operators need to be 

instructed to focus on error-free performance and/or consistent performance on one of the tasks 

even at the detriment of the other task. As such, there are two different secondary task 

paradigms, a subsidiary task paradigm requires ideal performance on the primary task, 

allowing performance on the secondary task to falter; while a loading task paradigm requires 

ideal performance on the secondary task, allowing performance on the primary task to falter. 

Third, safety considerations must be addressed, given the nature of the tasks. For example, using 

a primary task of driving a vehicle in busy traffic may dictate a subsidiary task paradigm to 

ensure primary task performance is maintained, as well as carefully designing a secondary task 

to not weigh on already stressed resources (such as requiring visual identification or manual 

responses). 

While there are traditionally designed secondary tasks in the literature, it would be more 

efficient to describe how one could go about designing a secondary task using the framework of 

MRT (Wickens, 2008). Using task analysis, both the primary and secondary tasks can be defined 

by a task demand vector that highlights which task, and how strongly each task weighs on each 

of the resources defined by MRT. Then, depending on the application, sources of interference 
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between the tasks can shift accordingly throughout the design process. For example, a researcher 

may wish to avoid overloading an operator’s visual and motor responses, as is in the case of a 

primary task of driving, while weighing heavily on their cognitive-spatial resources to observe 

changes in eye scan patterns with the increased workload. As such, an ideal secondary task 

would avoid visual resources by being administered via the auditory modality. Likewise, to 

avoid interfering with the manual processing of vehicle controls, an ideal secondary task would 

avoid manual responses in favor of verbal responses. Lastly, to invoke the interference and 

higher levels of workload for the cognitive-spatial resource, the task should require mental 

processing of visual stimuli. Rather than picking an arbitrary task, this secondary task should be 

built with mental resources in mind, affording the secondary task performance measure a high 

level of diagnosticity (to make the overloaded resource identifiable and the stage of the task that 

caused the overload). Additionally, using a battery of secondary tasks, as there are no universal 

secondary tasks that work for all primary tasks, a researcher can begin to diagnose which 

resources are being overloaded through iterative testing with subsidiary tasks with different task 

demand vectors. 

The subsidiary secondary task paradigm is the more intuitive and more frequently used 

approach in the literature. In the subsidiary task paradigm the operator is instructed to maintain 

primary task performance at the expense of secondary task performance. As such, when the 

primary task demands increase, there are less resources available for the secondary task 

performance, and performance of the secondary task begins to decrease. This provides a notion 

of how much additional work can be performed by an operator at varying levels of task demand 

set forth by the primary task. Thinking in terms of the region model, the subsidiary task 

paradigm forces a shift in total workload from Region A to Region B, causing performance 

decrements to occur in the secondary task but not in the primary task. This concept is depicted in 

Figure 13 (O’Donnell & Eggemeier, 1986 adapted from Brown, 1964) with different levels of 

primary task demand changing the available reserve capacity for the secondary task. Compared 

to a single primary task performance measure, the subsidiary task paradigm prevents an operator 

from compensating for decreased performance on the primary task with increased performance 

on the secondary task, permitting for a more sensitive measure of capacity expenditure.  

 

Figure 13. Representation of subsidiary task paradigm (O'Donnell & Eggemeier, 1986; adapted 

from Brown, 1964). 
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In contrast to the subsidiary task paradigm, in the loading task paradigm, performance on 

the secondary task is to be maintained at an error-free performance level while the primary task 

performance is allowed to falter. This does not mean that the labels of the primary and secondary 

tasks change because the secondary task performance is emphasized. The task of interest is still 

the task defined as the primary task. Like the subsidiary task paradigm, the loading task 

paradigm pushes the operator from Region A to Region B, except, instead of the secondary task 

falling in performance, the primary task performance is negatively affected. As such, the loading 

task paradigm allows for the simulation of a more complex operational environment. Increasing 

the base level of load on a specific resource with a secondary loading task may be more 

indicative of the additional task demands presented in an operational environment. The loading 

task paradigm can be used in the evaluation of multiple types of secondary tasks, as one 

secondary task may push a primary task into performance degradation, while the other does not. 

Therefore, the task that does not induce primary task performance degradation would be an ideal 

choice. 

 

Concluding note on performance measures.  

Performance measures provide a simple method to measure MWL by providing tangible 

evidence of changes to resource capacity based on performance outcomes on either the primary 

or secondary task, depending on the approach used. Using primary task measures, a direct 

measurement of operator performance is obtained and used to make decisions about how much 

an operator can handle during a specific task. Additionally, the use of performance measures to 

estimate MWL allows for an easy-to-implement assessment of MWL that maintains ecological 

validity. For example, using an embedded task such as radio communications as a secondary task 

during a flight simulation allows for measurement of MWL while utilizing a task that would be 

more natural during actual flight.  

Psychophysiological Measures 

Referencing again the definition of MWL: “Mental workload is a subjectively 

experienced physiological processing state, revealing the interplay between one's limited and 

multidimensional cognitive resources and the cognitive work demands being exposed to." MWL 

produces characteristic physiological responses, which are easily identified using various metrics 

and modalities, which have been found to correlate with subjective measurements (e.g., 

workload questionnaires such as those mentioned above) (Lohani et al., 2019). With few 

exceptions, the modality of these measures often gravitate around the physiological measurement 

of the tone of the autonomic nervous system (ANS), and are thus not under the operators’ 

volitional control. Measures such as blood pressure, heart rate, heart rate variability, pupil 

diameter, electrodermal activity, and central and peripheral oxygenation are all heavily 

dependent on an individual’s level of arousal, which is directly reflected in the “tone” of the 

ANS (i.e., the balance between the sympathetic and parasympathetic nervous systems). While 

these measures are sensitive to workload, they are also heavily influenced by fitness, stress, fear, 

and fatigue. Thus, there is a great amount of inter-individual variability, and the assessment of 

MWL requires an accurate accounting of those influences. However, there are other 

physiological metrics that rely on the measurement of more volitional activity. Eye movement 

analyses and blinking activity patterns are good examples of this. However, if the operator is 

intrinsically monitoring this behavior, the individual influence on these measures can be 

increased. Regardless, given the appropriate consideration when interpreting these data, all of 
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these measures can provide invaluable insight into the psychophysiological state of the operator. 

 Oculometrics. 

Researchers have been using the eyes as “windows to the soul” for a few hundred years 

and have developed several means to recording oculometric activity. Eye movements that are 

believed to be related to workload include blink rate and duration, pupil diameter, and saccadic 

eye movement. Ahlstrom and Friedman-Berg (2006) cite that when workload is high, the number 

of blinks and the duration of blinks decrease, pupil diameter increases, and saccadic eye 

movement activity decreases. Ahlstrom also reports that eye movement has become a 

popularized measure of workload since it is non-invasive, objective, and because the study tasks 

need not be interrupted to measure current or incremental workload changes. There are multiple 

techniques used to capture oculometric data for workload assessment. 

 

Electrooculography (EOG) involves recording changes in the corneo-retinal standing 

potential between the front and back of the eye. When electrodes are placed around the eye 

(typically above and below) these changes can be mapped to the position of the eye in the orbit 

and provide a coarse designation of where a person is looking and the eye movements involved. 

This method is far less accurate and more invasive than modern eye tracking solutions. However, 

EOG collected using electrodes above and below the eye are very effective at capturing blinking 

activity in a manner that is more reliable and robust than video-based tracking systems, so it is 

still widely employed.  

 

Advances in digital camera technology have led to a host of entirely non-invasive eye 

tracking solutions that pair well with MWL studies. An infrared camera focused on the eyes 

creates a digital recording that is analyzed in real-time to identify the pupils and compares that 

position to another reference on the face (e.g., the nose) or the eye, itself (e.g., corneal 

reflection). This method has the distinct advantage of allowing accurate estimates on the size of 

the pupil in real-time (often at sample rates of hundreds of Hertz [Hz]), as well as a gaze-

position-tracking-accuracy of less than a visual degree. Further, the cameras can be mounted to 

the platform or the operator, providing flexibility to collect in operational and near-operational 

environments. As easy as it is to collect, the quality of the data is heavily dependent on the 

environment in which the data is collected and the quality of the calibration.  

Pupillometry. 

It has been observed that changes in MWL also induce small, rapid, changes in pupil 

diameter. Aura, Temme, & St. Onge (2020) found that increasing task difficulty on a visual 

search task resulted in significant increases in pupil diameter during the execution of that task. 

Further, using a simplified approach, Aura et al. (2020) were able to extract a sinusoidally 

modulating luminance signal from the pupil diameter and still detect a significant increase in 

pupil diameter during high MWL variations of a continuous recall task (N-Back). However, the 

level of filtering used in Aura et al. is far from that which will be necessary to measure these 

variables in the constantly changing luminance of the operational environment. Fortunately, 

there are promising analytics in development that may effectively address this issue. 

 

A dilation or constriction of the pupil evoked by changes in environmental luminance 

levels can complicate capturing and interpreting MWL changes. The Index of Cognitive Activity 
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(ICA) was developed by Marshall (2000; 2002; 2007) to separate pupillary activity caused by the 

pupil’s response to light from that evoked by changes in MWL by examining sudden 

discontinuities of pupillary activity. The ICA has been demonstrated to be an effective metric in 

operational environments such as the surgical suite (Nguyen, Chen, Marshall, Ghodoussipour, 

Chen, Gill, & Hung, 2020; Richstone, Schwartz, Seideman, Cadeddu, Marshall, & Kavoussi, 

2010) and in driving tasks (Dlugosch, Conti, & Benglar, 2013; Platten, 2012). 

Duchowski et al. (2018) referenced the proprietary nature of the ICA and, developed a 

similar metric to the ICA called the Index of Pupillary Activity (IPA). Additionally, the authors 

provide the IPA as open-source Python code. Both use a wavelet analysis approach, but the IPA 

differs in the choice of wavelet thresholding approach and the use of the modulus maxima. 

Application of the IPA revealed its sensitivity to task difficulty, corroborated through 

performance and subjective measures, and its independence from working memory capacity.  

 Electrocardiography (ECG) and cardiovascular measures.  

ECG is used to collect the small electrical changes that result from the depolarization and 

repolarization of the cardiac muscles. From the resulting electrocardiogram, psychophysiological 

measures including heart rate and heart rate variability can be derived. Data collection using 

ECG requires the application of electrodes on the operator and an associated amplifier and data 

recording mechanism. There are a number of electrode placement option available that have 

proven to be effective. One of the most commonly used electrode placement techniques is the 

Lead II configuration (Figure 14).  

 
Figure 14. Lead II configuration of ECG electrode placement (Christensen & Wright, 2014). 

Depicted is positive, negative, and reference electrode placement.  

Heart rate refers to the number of heart beats in a specified amount of time and is 

commonly measured as the number of heart beats that occur in one minute, or beats per minute 

(bpm) (Hughes, Hancock, Marlow, Stowers, & Salas, 2019). Heart rate has been found to be a 

sensitive measure of changes in MWL. By way of specific example, Lahtinen, Koskelo, Laitinen, 

and Leino (2007) found that heart rate was particularly sensitive to workload changes in a 

combat flight test of experienced and inexperienced pilots. Further, results indicated that not only 

was there a significant difference in heart rate between all phases of flight compared to baseline, 

but that the greatest change in heart rate occurred when the pilots were required to complete a 

tactical maneuver, which was designed to be the most cognitively tasking phase of flight. 

Heart rate variability refers to the analysis of changes in the inter-beat-interval, or R-R 

interval (Figure 15), over time. Heart rate variability can be examined along two domains of 
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measurement, the frequency-domain and the time-domain. Successful measures common in the 

frequency domain include low frequency/high frequency (LF/HF) ratios and specific frequency 

bands (high, mid, and low frequency bands) (Tao et al., 2019). An increase in LF/HF ratio 

indicates higher MWL, while trends of decreasing frequency in each of the high, mid, and low 

frequency bands are correlated with higher levels of MWL. Among the time-domain measures, 

inter-beat-interval is the most commonly reported heart rate variability measure, with the inter-

beat-interval decreasing with increasing MWL (Tao et al., 2019). A meta-analysis conducted by 

Hughes et al. (2019) identified that heart rate variability is most effective in studies that have 

tasks that take longer periods, and tasks in which workload levels are manipulated continuously, 

especially in contrast to measures like blood pressure, which showed little to no effect from 

MWL manipulations. 

 
Figure 15. R-R Interval of PQRS complex of normal healthy heart beats. (Murai, Hayashi, 

Maenaka, & Hyguchi, 2015). 

Respiration.  

Respiration rate is a widely used measure of MWL (Tao et al., 2019). Respiration rate is 

often measured using a transducer affixed to a belt that is placed around the torso of an 

individual where inspiration and exhalation movement is most obvious (Figure 16). Cain (2007) 

explains that respiration rate often increases when the individual experiences stress or higher 

than normal workload. In Tao et al.’s (2019) review, respiration rate proved a sensitive workload 

metric across multiple types of tasks, from air traffic control and simulated aviation tasks to 

mental arithmetic and continuous memory tasks. Cain (2007) also notes that while respiration is 

a valuable piece of information in determining MWL, it would not be appropriate to infer 

workload based on respiration data alone.  

 

Figure 16. Individual outfitted with BioNomadix respiration belt (biopac.com). 
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Catecholamines and hormonal responses. 

The psychophysiological responses to MWL and stress due to an anticipation of 

increased workload, either physical or mental, cause a release in catecholamines (e.g., adrenaline 

[aka epinephrine] and noradrenaline) and cortisol into the bloodstream (Leino, Leppaluoto, 

Ruokonen, & Kuronen, 1999). These chemicals are neurotransmitters, which influence an 

individual’s heart rate, heart rate variability, and respiration rate, as well as other physiological 

stress responses. All of these responses are measureable functions of the nervous system. Testing 

for increases in the presence of these hormonal chemicals in individuals is often carried out 

through salivary samples or through blood draws. The samples provided then must be analyzed 

in a laboratory to determine the probable MWL level of the individual and are therefore less 

feasible in an operational environment (Cain, 2007).  

Electrodermal activity (EDA).  

EDA refers to the electrical conductivity of the skin due to the human body’s autonomic 

response of sweating. EDA is often referred to in the literature in a number of ways, for instance, 

Mehler, Reimer, Coughlin, and Dusek (2009) refer to the use of EDA as skin conductance level 

whereas Nourbakhsh, Wang, Chen, and Calvo (2012) use the term “galvanic skin response”. It is 

believed that when workload increases, the EDA increases. EDA is often measured by placing 

special electrodes on the hand or finger to measure the electrical conductivity (Figure 17). This 

conductivity is generally caused by the opening of the pores of sweat glands. There are multiple 

problems that have been identified with using EDA alone as a measurement of MWL. For 

instance, Shaffer, Combatalade, Peper, & Meehan (2016) explain that environmental conditions 

(e.g., humidity) can greatly affect measurements of EDA and cause misleading measurements. 

 

Figure 17. EDA measurement hook-up (biopac.com). 

Electroencephalography (EEG). 

EEG refers to the amplification of electrical signals put out by the pyramidal cells of the 

brain (Lohani, Payne, & Strayer, 2019). These electrical signals are transmitted through 
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electrodes placed on the scalp of a subject, which is connected to an amplifier (Figure 18). Data 

is often analyzed by looking at the relative power in several frequency bands, including Delta 

(less than 4 Hz), Theta (4 - 8 Hz), Alpha (8 - 14 Hz), and Beta (14 - 30 Hz). Lohani et al. (2019) 

cites that “…mental workload increases theta power and reduces alpha power activity (Mun, 

Whang, Park, & Park, 2017), whereas fatigue increases alpha power (Käthner, Wriessnegger, 

Müller-Putz, Kübler, & Halder, 2014)” (p. 3). Cain (2007), in his extensive review of MWL 

measurement techniques, quotes Wickens (1992) that EEG is not the measurement of how hard 

someone is working cognitively on a given task or during a period of time, rather EEG is able to 

measure the capacity that remains within the individuals’ cognitive ability. Cain (2007) further 

notes that EEG data can be affected by environmental factors during data collection and requires 

complicated analysis and interpretation practices.  

 

Figure 18. B-Alert EEG data collection system (advancedbrainmonitoring.com). 

Electromyography (EMG). 

EMG refers to the measurement of the preliminary activity of a muscle or muscle group 

prior to movement in response to some prompt and is generally used in MWL studies as a 

measure of response time (D’Addario, Donmez, & Ising, 2014). EMG measurement is often 

completed by placing special electrodes on the muscle or muscle groups of interest. D’Addario et 

al. (2014) explains that aside from response time of preliminary muscle movement as a measure, 

researchers often focus on electromechanical delay, which is the average time between the 

preliminary activity of the muscle or muscle group and the actual response or movement of the 

muscle to respond to a particular prompt. Gaetan et al. (2015) used EMG measurement of the 

right finger of helicopter pilots. Pilots were first assessed on their flight experience and then were 

tasked with completing missions of differing MWL levels in a helicopter simulator. Their 

physiological stress responses were measured using the muscle movement as well as EDA of 

their right finger. It was found that EMG in conjunction with personalized physiological and 

psychological profiles were effective in predicting the individual pilots’ MWL. 
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Functional near-infrared spectroscopy (fNIRS). 

Functional Near-Infrared Spectroscopy (fNIRS) is a diffuse optical method for measuring 

oxygen-dependent metabolism processes occurring in localized regions of the brain (von 

Lühmann, Herff, Heger, & Schultz, 2015). Like functional magnetic resonance imaging (fMRI), 

fNIRS provides a localized functional response of how oxygen supply in the blood changes for a 

specific brain region. However, fNIRS does not require an operator to be confined in a small 

space, like fMRI, and can potentially be used within an operational setting (Herff, Heger, 

Fortmann, Hennrich, Putze, & Schultz, 2014). To provide this measurement, a Near-Infrared 

(NIR) light is emitted into a specific region of the head. The light is then scattered and absorbed 

by the various tissues (skin, muscle, bone, etc.) it is transmitted through, attenuating its overall 

magnitude. The light is then propagated back towards the surface where it can be detected and 

measured by a NIR-sensitive photodetector (von Lühmann et al., 2015). As such, fNIRS offers 

researchers the ability to observe resource consumption (in this case, oxygen) by a specific 

region of the brain pertaining to a specific function, which, in turn, suggests the fNIRS approach 

can be favorable in terms of diagnosticity. 

Research in MWL has successfully utilized fNIRS technology, especially during the last 

ten years, as it has become more reliable and affordable. Discrimination between different levels 

of MWL induced by working memory tasks of varying complexity has been performed with high 

degree of accuracy. Especially, when using fNIRS to measure hemodynamic activity in the 

prefrontal cortex (Herff et al., 2014; Aghajani, Garbey, & Omurtag, 2017; Sassaroli et al., 2008). 

Additionally, fNIRS-related MWL level discrimination has seen success in workload assessment 

with more complex tasks, such as remotely operated vehicles (Durantin, Gagnon, Tremblay, & 

Dehais, 2014), air traffic control (Ayaz, Shewokis, Bunce, Izzetoglu, Willems, & Onoral, 2012), 

and driving (Foy & Chapman, 2018). However, there are limitations to consider when using 

fNIRS, especially in operational environments, such as head and face movement induced 

artifacts, ambient light and sound, muscle movements, and the slow timing of the hemodynamic 

response (Girouard et al., 2010). Luckily, much of this noise can be removed with proper data 

filtering, an area of continued research (von Lühmann et al., 2015). 

Concluding note on physiological metrics. 

The measurement of physiological responses to workload in aircrew during flight has 

traditionally been difficult. The flight environment of rotary-wing aircraft in particular 

contributes to this difficulty, namely due to the high vibration patterns. However, increases in 

physiological technology and processing techniques have made it possible record usable signals. 

Recent studies at USAARL using a UH-60 full-motion simulator have assessed all of the 

aforementioned measures, except fNIRS and EMG. The EEG, EOG, and ECG have provided the 

cleanest and most usable data, while the EEG and ECG data have most frequently shown 

associations with performance and workload ratings (Feltman, Kelley, Bernhardt, Britt, & 

Mathews, 2019; Feltman, Bernhardt, & Kelley, 2020). Several eye tracking systems have been 

used in simulator studies as well (e.g., Feltman et al., 2018; Feltman et al., 2020; Hayes, Aura, & 

Feltman, 2020), but have resulted in difficulties in interpreting and using the data. For example, 

changes in the visibility in the cockpit (e.g., night conditions, snowing) impacts the light 

available which causes an automatic change in pupil dilation. Thus, use of pupillometry is 

difficult under varying lighting conditions common in the flight environment. Ongoing work at 

USAARL continues to examine the diagnositicity of physiological metrics in identifying the 
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source of workload. 

Associations, Insensitivities, and Dissociations of Workload Measures 

Using performance, physiological, and subjective measures, researchers can characterize 

an operator’s MWL in terms of direct performance decrements, objectively measured reflexive 

indicators, and subjectively perceived levels of mental effort. As is often the recommendation, 

multiple measurement types should be combined to accurately assess MWL. However, with this 

combination, the potential for inconsistencies across measurement types appears to be a common 

problem in the literature (Hancock & Matthews, 2019). In general terms, the three categories of 

workload measures can have one of three responses: increasing, decreasing, or insensitive (i.e., 

stable) responses. When all of the measures respond in the same manner, they are said to 

experience association with each other (i.e., all measures show increasing values when under 

higher levels of MWL). Conversely, when measures disagree they demonstrate dissociation. An 

extreme example of dissociation (e.g., a double dissociation) would be when a performance 

measure elicits no change in performance (insensitivity), while the measured physiological 

activity decreases relative to baseline, and subjective responses show heightened levels of 

workload. This situation would make interpretation of the collected MWL measures very 

difficult.  

In an effort to conceptualize this problem, Hancock and Matthews (2019) demonstrated 

how the three primary measurement methods could relate to each other in Figure 19. The 

combination of the three matrices yields a cube that represents 27 distinct outcomes that can 

occur with combinations of subjective, performance, and physiological measures. The regions 

marked A+ and A- in Figure 19 indicate outcomes where all three measures share the same trend 

of either increasing or decreasing, respectively. These outcomes are termed double associations 

and are ideal for interpretation, as all three measures paint the same picture of the operator’s 

experienced MWL. Indeed, single associations can occur when two measures agree with each 

other while the third measure is either insensitive or dissociates with the pair. Recalling the 

region model of workload and performance, if an operator is not pushed into Region B where 

performance begins to falter, primary task performance measures will show insensitivity. 

However, even though performance remains stable throughout Regions A1-3, subjective and 

physiological measures may likely show an association as the operator approaches Region B 

through means of task-related effort. As such, in de Waard’s modified region model (1996), 

Region A3 presents this outcome (insensitive primary task measures potentially associating 

physiological and subjective measures) as a common occurrence. Associations, insensitivities, 

and dissociations may function as a feature that could identify the region in which an operator is 

functioning. Using this conceptual model, the relationship between measures can be plotted for 

specific measures, tasks, and operators. 
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Figure 19. Hancock and Matthews’ (2019) depiction of the associations, insensitivities, and 

dissociations of MWL measurement techniques (performance, physiological, and subjective 

measures). Twenty-seven distinct outcomes are possible. Outcomes marked by A+ and A- 

indicate areas of double association (i.e., where all three measures change with a similar trend of 

increasing or decreasing).  

Conclusions 

In a study using physiological, psychological, and experience profiles of helicopter pilots 

to predict workload, Gaetan et al. (2015) determined that individualizing workload baseline 

profiles is an important factor in the future of real-time workload monitoring, but that the field is 

promising and could be impactful in determining the fitness of pilots in real-time in the near 

future. In order to support the FVL mission through enhanced operations, it will be critical to 

develop physiological sensors that will directly and constantly measure the cognitive state of 

pilots and crew. It will become paramount that leadership monitor individual physiological data 

undertaking missions in FVL aircraft. The conceptual review provided here serves as an 

exploration of the available and widely used MWL measurement techniques for consideration in 

future research. 
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Appendix A. Acronyms 

Acronym Definitions 

ANS Autonomic nervous system 

BWRS Bedford Workload Rating Scale 

CSS Crew status survey 

ECG Electrocardiography 

EDA Electrodermal activity 

EEG Electroencephalography 

EMG Electromyography 

EOG Electrooculography 

FARA Future attack reconnaissance aircraft 

FLRAA Future long-range assault aircraft 

fNIRS Functional near-infrared spectroscopy 

FVL Future vertical lift 

GPS Global positioning system 

ICA Index of cognitive activity 

IPA Index of pupillary activity 

ISA Instantaneous self-assessment of workload 

MACE Malvern capacity estimate 

MART Malleable attentional resources theory 

MCH Modified Cooper-Harper 

MDO Multi-domain operations 

mm Millimeter 

MRT Multiple resource theory 

MWL Mental workload 



42 

NASA TLX NASA task load index 

RMSE Rating scale mental effort 

SAM School of Aviation Medicine 

SWAT Subjective workload assessment technique 

TEPR Task evoked pupillary response 

USAARL United States Army Aeromedical Research Laboratory 

WP Workload profile 
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