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ABSTRACT 

In this work we focus on the relationship between the Dempster-Shafer (DS) and Bayesian evidence accumulation. 
While it is accepted that the DS theory is, in a certain sense, a generalization of the probability theory, the approaches 
vary in several important respects, including the treatment of uncertain information and the way the evidence is 
combined, making direct comparison of results of the two analyses difficult.  In this work we ameliorate these 
difficulties by proposing a mathematical framework within which the relationship between the two methods can be made 
precise. The findings of the investigation elucidate the role uncertainty plays in the DS theory and enable evaluation of 
relative fitness of the two techniques for practical data fusion scenarios. 
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1. INTRODUCTION 
Dempster-Shafer (DS) theory is one of the main tools for reasoning about data obtained from multiple sources, subject to 
uncertain information [12], [16]. The principal task of such reasoning is data fusion, or evidence accumulation.  The goals 
of data fusion are to identify the most likely of a set of alternatives and to decrease uncertainty by accumulating evidence 
from multiple sources.  The DS approach has applications in several areas, including sensor fusion, medical diagnostics, 
biometrics, and decision support. [2], [17], [18], [23], [24] 
 
Despite the ubiquity of the DS technique in science and engineering, several problems remain unsolved, making an 
effective translation of theory into practice difficult.  Among these problems are: (1) lack of model-based rules for mass 
assignment, (2) lack of theoretical justification for the evidence combination rule, (3) lack of an appropriate formalism 
that would allow one to interpret evidence combination results in probabilistic terms, (4) high asymptotic complexity of 
the evidence combination computation, and (5) doubts about the treatment of incompatible evidence. [9], [13], [30], [31] 
 
Many alternative approaches to evidence accumulation have been proposed to address these issues. [1], [20], [21], [22],  [27] [28], 

[29]   While these approaches seem to address some of the aforementioned concerns to a certain degree, they often 
increase the complexity of the analysis and generally yield different results.  Since no consensus on which of these 
methods is to be preferred has emerged, it appears that, despite its shortcomings, the original DS approach still remains 
the standard reference.  
 
In this work we focus on the relationship between the DS and Bayesian evidence accumulation.  There are several 
reasons for doing so. First, this relationship encapsulates the key ideas of data fusion and links all of the aforementioned 
problems.   Second, since the latter technique is both more familiar and better understood, it is reasonable to expect that 
specification of the relationship between the two analyses will produce new insights into the DS theory.  While it is 
accepted that the DS theory is, in a certain sense, a generalization of the probability theory [2][26], the approaches vary in 
several important respects,  including the treatment of uncertain information and the way the evidence is combined, 
making direct comparison of results of the two analyses difficult. In this work we ameliorate these difficulties by 
proposing a mathematical framework within which the relationship between the two methods can be made precise and 
computations performed by the two analyses can be compared.  The findings of the investigation elucidate the role 
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uncertainty plays in the DS theory and enable evaluation of the relative fitness of the two techniques for practical data 
fusion scenarios. 
 
The approach chosen for the analysis of the DS evidence accumulation is based on semigroup theory. This is appropriate 
as, properly defined, the DS set is a semigroup with respect to the DS evidence combining operation. The abstract 
algebra approach allows one to access the DS theory at the most general level, highlighting in the process its most 
essential properties. Focusing on the semigroup-theoretic structures of the fundamental DS concepts reveals key 
relationships between certain special cases of the DS analyses and, most importantly, between the DS and Bayes 
analyses. In particular, it is shown that operation on certain subsets of the DS set is equivalent to combination of 
Bayesian probabilities, and that, in certain cases, up to the uncertainty value, the results of the two analyses are 
identical.[4] 
 
The content of the paper is as follows.  
Section 2 reviews Dempster-Shafer evidence accumulation.  
Section 3 reviews Bayesian evidence accumulation 
Section 4 provides a resume of some elementary facts of group and semigroup theory.  
Section 5 investigates the semigroup structure of Dempster-Shafer and states the main results relating it to Bayes.   
Section 6 gives concluding remarks. 
 
.  

2. DEMPSTER-SHAFER EVIDENCE ACCUMULATION 

Denote by Ω { 1 n, }ω ω= K  the non-empty set of n possible outcomes (alternatives) of the event of interest, and let 2Ω  
denote the power set of Ω (the collection all possible subsets of  Ω) .  A Dempster-Shafer mass assignment is a mapping 

such that and  : 2 [0,a Ω a 1] ∅ ( ) 0a a= ∅ =

 
2

1AA
aΩ∈

=∑  
We call  the mass of A.  By an abuse of notation we will also write Aa { } 2A A

a a Ω∈
= and refer to a as a mass assignment 

or a Dempster-Shafer element.  Finally, we will call the pairing of each set A with its corresponding masses the body 
of evidence of a.   We will distinguish a special type of assignment, in which mass is assigned only to singletons or to the 
entire set Ω, by calling it singleton Dempster-Shafer. 

Aa

 
The key difference between probability and mass is that probability is a measure and therefore it satisfies the additivity 
condition, that is, given a finite sequence iA of disjoint subsets of Ω, 
 
  ( )i iP A P( A= ∑U ).

 
In general, this additivity condition is not satisfied by a mass assignment. 
 
Removing the additivity constraint can be convenient, as it permits inclusion of subjective judgments in the DS 
information fusion system, but it also has the undesirable consequence of making the interpretation of results of such 
fusion problematic.  In particular, when considered together with the DS rule of combination, it is not always clear when 
mass can be made consistent with the standard probability evaluation. 
 
A key feature of the Dempster-Shafer theory is the rule for combining bodies of evidence.  Let a and b be two distinct 
bodies of evidence.  The DS rule for combining the masses of a and b into a resultant body of evidence c is given by 
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where is the conflict coefficient.  When the renormalization constant 11
i j

i j
A B

a bκ
∩ =∅

= ∑ ≠ 0κ− = , the assignments a and 

b are said to be incompatible and the result of their combination will be set to an algebraic zero, 0.  The combination of a 
zero with any other assignment is also a zero.  (Zero will be discussed further in section 4, on semigroups.) 
 

Apart from mass, two other concepts play a key role in the DS theory: balance and plausibility.  Balance (also variously 
termed, belief, support, or lower probability) of a set A is the sum of the masses assigned to all subsets of A., i.e., 

A B
B A

P a∗
⊆

= ∑ . 

Plausibility (also termed upper probability) of a set A is the sum of the masses of all sets having non-empty intersection 
with A, i.e., 
 

B

*
B

A
AP a

∩ ≠∅

= ∑  

 
Balance and plausibility, like mass, are mappings from the power set of Ω to the unit interval. 
 
It is immediate from the definitions that. . *

A AP P∗ ≤
 

Most practitioners of DS focus on balance, but the plausibility on the singleton sets turns out to be related to Bayesian 
evidence accumulation (see section 5). 

 

3. BAYESIAN EVIDENCE ACCUMULATION 

The conditional probability of a measurement B, given an alternative ωi is  
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Given a measurement B, the probability of each alternative iω  is given by Bayes rule: 
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Although the probabilities conditioned on different alternative do not generally sum to one, we can renormalize them: 
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Then both ai ≡ P( iω )  and the bi function as probability assignments that combine by component-wise multiplication and 

renormalization, when , as: 
=1

0n
i ii

b aΣ ≡ ≠∑
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When the renormalization constant Σ = 0, the combination is set to an algebraic zero and assignments are said to be 
incompatible. The combination of zero with any other assignment is always zero. (Zero is discussed further in section 4.)  
This, for our purposes, is the Bayesian method of evidence combination.   



 
 

 
 

 

4. SEMIGROUP PRIMER 
 
The main algebraic structures considered in this paper are abelian semigroups, monoids and groups.  We will review the 
most elementary properties of these structures. More advanced concepts are covered in the standard texts, including [10], 

[14], [15]. 
 
Suppose S is a non-empty set and o is a binary operation on S.  If is associative, i.e.,o ( ) ( )a b c a b c=o o o o

a
 for 

all , then S is a semigroup.   If, additionally, is commutative, i.e., a,b,c S∈ o a b b=o o a,b S∈for all , then the 
semigroup S is an abelian semigroup.  
 
A semigroup S that contains the identity element 1 i.e., 1S 1S Sa a a= =o o for all a S∈ , is a monoid.  
 
A monoid S such that for every there is an inverse elementa S∈ 1a− S∈ , i.e., 1 1Sa a− =o  for all , is a group.   A 
partial semigroup is a non-empty set with associative binary operation defined on some pairs of its elements.  The 
algebra of partial operations, including partial semigroups, is described in detail in [19].  It is possible to develop an 
algebraic theory of Dempster-Shafer and Bayesian evidence accumulation without defining zeros by working with 
partial semigroups, but it is more cumbersome and we will not take that approach. 

a S∈

 
Suppose S is a semigroup and T is a nonempty subset of S.  If T is a semigroup under the operation in S, then T is a 
subsemigroup of S.  The same convention is used for monoids and groups. 
 
A subset J of S is called an ideal, or an absorbing set of S if for all j in J and a in S, the combinations and are 
both in J.  An ideal that consists of a single element is a zero, denoted 0, and has the usual zero-multiplication property, 
namely,  for all , zero annihilates, i.e.,

j ao a jo

a S∈ 0 0a a 0= =o o .   
 
Of fundamental importance in theory and applications are mappings between sets that preserve algebraic structures. 
One of these mappings is a semigroup (monoid, group) homomorphism.  
 
Suppose and are semigroups.  A mapping (S ,o) )(T ,å : S Tφ → is a semigroup homomorphism if and only if 

 
 ( ) ( ) ( ) for alla b a b a,b S.φ φ φ= ∈o å  
 
If and are monoids with the identity elements  and1 , respectively, the semigroup homomorphism (S ,o

: S T
) )(T ,å 1S T

φ →  is a monoid homomorphism if and only if ( )1Sφ 1T= .  Any homomorphism partitions its domain into disjoint 
sets called equivalence classes.[11] 
 
Group homomorphism is defined identically to semigroup homomorphism, since for groups conservation of identity 
elements follows from conservation of group operation. 
 
 

5. HOMOMORPHIC AND CONVERGENT RELATIONSHIP BETWEEN DS AND BAYES 

 
Suppose the non-zero mass assignments in a and b are made entirely to singleton sets.  We can denote the mass that a 
assigns to alternative iω by and the mass assigned by b to alternativeia iω  by . Then the DS combination of a and b is ib
 



 
 

 
 

 1 1 n na ba ba b , ,⎛ ⎞= ⎜ ⎟Σ Σ⎝ ⎠
o K , 

 
where the normalizing constant Σ is the sum of the numerators.  (As in sections 2 and 3 the result will be 0 if 0Σ = .)  
This is the Bayesian combination of a and b, so DS combination becomes Bayesian combination in the special case in 
which mass is assigned only to singleton sets.  We will return to this point shortly.  First we show that Dempster Shafer 
combination is commutative and associative. 
 
Commutativity:  Set Suppose Dempster-Shafer assignments a, b, are compatible, that is, .  Then 

since 
0a b ≠o

a b b a=o o

2 2

1 1
A B B AA B C A B C

C C

a b a b b a b a
Ω Ω

∩ = ∩ =
∈ ∈

⎧ ⎫ ⎧ ⎫= = =⎨ ⎬ ⎨ ⎬
Σ Σ⎩ ⎭ ⎩ ⎭

∑ ∑o o  

by the commutativity of ordinary multiplication and the commutativity of set intersection.  If  then a and b 
assign mass only to collections of sets that do not intersect each other.  So 

0a b =o

0b a a b= =o o . 
 
D-S Associativity:  We show that ( ) ( )a b c a b c=o o o o . 

Proof:  Suppose that for Dempster-Shafer assignments a, b, and c the combinations ( )a b co o and are 

compatible. The mass assigned by (  to the set D is given 

( )a b co o

)a b co o
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The mass assigned the set D by  is given (a b co o
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Since the re-normalization constant must be equal to sum of the un-normalized terms A B CD A B C D

a b c
∩ ∩ =∑ ∑ , it follows 

that  and the assignments A B CD A B C D
a b c

∩ ∩ =
′ ′Σ Σ = = Σ Σ∑ ∑ ′′ ′′ ( )a b c

υ
⎡ ⎤⎣ ⎦o o  and ( )a b c

υ
⎡ ⎤⎣ ⎦o o  are equal.  If any of the 

combinations forms a zero then the collections of sets assigned non-zero mass do not intersect, so 
. �  ( ) ( )0a b c a b c= =o o o o

 
It follows that the set of Dempster-Shafer assignments over n alternatives is a commutative semigroup under Dempster-
Shafer combination.  A fortieori, the set of Bayesian assignments over n alternatives is also a commutative semigroup. 
Both sets have identity elements.  The identity element for DS combination assigns all mass to the entire set of 
alternatives:   
 

 
1

1
0D

A = Ω⎧
= ⎨ Α ≠ Ω⎩

 

 
If is a DS assignment, then the combination 1{ } 2A A

a a Ω∈
= D a a=o  , since A A∩ Ω =  and .  The element 1 is 

not a Bayesian assignment since it assigns mass to a non-singleton set. 
1 Aa a⋅ = A D

 



 
 

 
 

The Bayesian identity assigns equal mass, 1
n , to all n alternatives: 

 
 ( )1 11B n n, ,= K  
 
If  is a Bayesian assignment, then the combination ( 1 nb b , ,b= K )
 

( )1
11 n

B b

b nb n
b , , b , ,b⎛ ⎞= =⎜ ⎟Σ Σ⎝ ⎠
o K K b= . 

 
Since both the DS set and the Bayes set have identity elements they are both monoids.   
 
The DS combination of the Bayesian identity with an arbitrary DS assignment a is a Bayesian element (assignment of 
mass only to singletons): 
 

1 ::1 n AA A AA A
B

aa
a , , ωω ∈∈

⎛ ⎞
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∑∑
o K . 

as the intersection of any set A with a singleton set { }iω  is either empty if i Aω ∉ , or else is { }iω if i Aω ∈ .  By 
inspection, the n numerators are the plausibilities of the n alternatives. 
 
We now define a functionφ from DS to Bayesian assignments by 
 
 ( ) 1Ba aφ = o  , 
 
which, from the previous equation, consists of the plausibilities on the n alternatives, normalized to sum to one.  The 
following result is then readily apparent: 
  
Theorem: φ  is a homomorphism of the DS set onto the Bayes set. 
Proof: ( ) ( ) ( )1 1 1 1 1B B B B Ba b a b a b a b a b .φ φ= = = =o o o o o o o o o oφ �  
 
In particular, the homomorphism maps the DS identity to the Bayes identity ( )1 1D Bφ = , so the homomorphism is a 
monoid homomorphism. 
 
This homomorphism between Dempster-Shafer and Bayesian representations, which has been overlooked until our 
investigations, has many interesting implications for evidence accumulation. Every DS assignment has a corresponding 
Bayesian assignment, and the combination of any two DS assignments results in a DS element in the pre-image of the 
Bayesian combination of the corresponding Bayesian assignments.  In a sense, every DS combination is governed by its 
corresponding Bayesian combination, and the DS evidence accumulation process is governed by Bayesian evidence 
accumulation. 
 
As with any homomorphism, φ partitions all DS assignments into sets (equivalence classes) according to their Bayesian 

images:  For distinct elements b and c in the Bayes set, the DS sets ( ){ }DS:bD d d bφ= ∈ = and 

are disjoint.  The structure of this partition for singleton Dempster-Shafer is explored in [4].  In 
[8] the implications of the homomorphism approach are explored for other evidence approaches, including un-
normalized DS and Smets’ Transferable Belief Model.  Here we emphasize the implications of the homomorphism to 
assignments in applications, especially the convergence to Bayes that is implied.   

( ){ DS:cD d d cφ= ∈ = }

 



 
 

 
 

The convergence of DS evidence accumulation to Bayesian evidence accumulation is immediate if any element in the 
accumulation process is Bayesian because the Bayes set is an ideal in the DS set, as follows.  If g is Bayesian 
then 1Bg g= o and 
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So in this case we can replace each DS assignment by its image under the homomorphism (its Bayesian homomorph) 
and do Bayesian combination, which is computationally more efficient. 
 
Even if none of the assignments is Bayesian, there will be convergence toward a Bayesian result, as intersecting sets 
always produce sets with equal or fewer members than the smaller of the two sets, and as mass accumulates on the 
resulting smaller sets.  The following Monte Carlo result illustrates the point.  Based on a set of three alternatives with 
mass assigned to Ω  randomly over the interval from 0.2 to 0.8, with the rest of the mass randomly assigned among the 
three alternatives, it shows the rapid disappearance in the composite of the mass assigned to “uncertainty”  i.e., to Ω . . 
 

 
Fig. 1. This MonteCarlo result illustrates the rapid convergence of Dempster-Shafer evidence accumulation to a Bayesian 

result.  Dempster-Shafer mass is assigned to Ω  (“uncertainty”) uniformly and randomly in the interval from 0.2 to 0.8, 
with the remaining mass randomly assigned among the three alternatives.  The average value of uncertainty after the 
number of combinations given by the ordinate appears as the middle curve with a fit-curve beneath it.  The curves 
immediately above and below the average represent the average plus or minus one standard deviation, and the outer-
most curves represent the maximal and minimal levels of mass assigned to uncertainty seen across the Monte Carlo 
runs (400 runs).  If lower values of uncertainty were allowed the convergence would be still more rapid. 



 
 

 
 

 

For Dempster-Shafer evidence accumulation to provide a richer insight than Bayesian accumulation we must have three 
factors present: there must be no Bayesian assignments in the evidence stream, the number of combinations must be 
small enough that Bayesian convergence is not too closely approached, and yet the evidence must not be so uncertain 
that the process reaches no useful decisions.  Because it may be difficult to achieve all these conditions, and because the 
Dempster-Shafer combination is potentially 2n n  times more computationally more expensive than Bayesian 
combination, most practical applications will find Bayesian evidence accumulation more suitable. 

 

6. CONCLUSIONS 
Developments of this paper reveal an underlying link between computations taking place in Dempster-Shafer and 
Bayesian evidence accumulation.  This link is made precise by the homomorphism theorem, which shows that 
Dempster-Shafer combinations are governed by Bayesian combinations. Since the set of Bayesian assignments is an 
ideal (absorbing set) in the set of Dempster-Shafer assignments, the combination of a DS assignment with a Bayesian 
assignment yields a Bayesian result  This last property permits viewing the DS analysis as a monoid extension of the 
Bayes analysis.    When all the evidence assignments are non-Bayesian, replacement of the DS computation with the 
corresponding Bayesian computation, results in loss of the uncertainty estimate, as homomorphism distributes 
uncertainty among all components of the composite mass. This likely will not be a significant drawback in situations 
when uncertainty is either very small or very large. In the former case the results of DS and Bayes evidence 
accumulations are immediately convergent.  In the latter case (much less likely to occur as combination of evidence 
reduces uncertainty very quickly) it is unlikely that either approach will produce effective decisions. However, a loss of 
potentially useful information might possibly occur when uncertainty assumes an intermediate value. This loss needs to 
be evaluated, for a given application, and compared with the gains brought about by the replacement of the DS approach 
with the Bayes approach--reduction of computational complexity of the combining operation and simplification of the 
analysis--before the Dempster-Shafer can be decisively ruled out.  
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