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Introduction 
 
The National Airspace System (NAS) is the collection of airports, airspace, and other resources 
which enable air transportation in the U.S.  When considered in light of the interactions with 
airspace users (airlines and non-commercial flight operations) and environmental conditions 
(e.g., winds and weather), this larger gestalt is quite complex.  One of its notable attributes is 
uncertainty – there is uncertainty in nearly every aspect: flight take-off times, airport and 
airspace capacities, effects of decisions made by airspace users and airspace managers, etc.  
Traffic Flow Management (TFM) is the function, performed by the Federal Aviation 
Administration (FAA), which seeks to balance demand and capacity for airspace/airport 
resources.  Also, more informally called “resource management”, TFM typically must 
manipulate air traffic demand, since resource capacity (e.g., weather impacting air routes, or 
runway repair impacting airport operations rate) is typically non-negotiable. 
 
In the last years, a new idea in the area of TFM planning and analysis has evolved, known as 
“Probabilistic TFM” (PTFM) [[GNC 2004][ATM 2005][Hunter and Ramamoorthy, 2006].  
PTFM pursues an explicit recognition of uncertainty – it attempts to incorporate probability 
theory and thereby to improve the decision-making.  PTFM can be thought of as applying 
broadly to two areas: 1) visualization and event-alerting technology, and 2) decision support 
analysis.  Regarding visualization, consider notional figures 1 and 2. 
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Figure 1. A probabilistic airspace 
congestion  
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In Fig. 1, using weather forecasts, contours have been constructed to delineate regions of 
likelihood of severe en route weather, at levels >50% and >75% likelihood.  Considering 
these impacts on airspace sector capacity and staffing, as well as expected air traffic 
demand, a probabilistic score can be associated with affected sectors, here >50% and 
>75% probability of congestion.  Figure 2 shows the demand vs. capacity situation for 
Sector 2 over time.  The blue boxes show capacity, expressed as an expected or mean 
value in the middle of the box, plus 50% error bounds at the top and bottom of the box.  
Green, yellow, and red boxes, corresponding to increasing probability of congestion, 
show expected demand, using the same format of mean and confidence interval bounds.  
(Boxes have mean lines not necessarily evenly splitting the vertical extent of the box, 
since the probability distributions are typically non-normal and even non-symmetric).  A 
traffic flow manager could manage resources using an automation tool with a display as 
in Fig. 2, by reducing demand (either in time via delay or in space via alternate routing) 
until the red boxes become lower on the display (the color would thence become yellow), 
matching better the blue, underlying capacity distributions.  
 
Note that this example is notional – concepts and prototypes are currently being pursued, 
but are not in the field.  Current TFM systems do not consider uncertainty.  Alerts, for 
quarter-hour intervals some hours into the future, are either green (“do nothing”), yellow 
(“monitor the situation”), or red (“investigate to see if intervention is necessary”).  A 
congestion risk of 50%, as this phrase is used in this paper, approximately corresponds to 
a “red” alert in the field currently, even though today’s alerts are not explicitly 
probabilistic. 
 
Regarding PTFM used for decision support analysis, that is the topic of this paper.  We 
will show an application of probability theory – incremental problem solving addressing 
the TFM challenge in stages: given a problem such as severe en route weather, multiple 
decision points are defined, and some decision activity takes place at each decision point.  
By contrast, today’s TFM approach uses first a strategic approach, and then a tactical 
one.  A first pass is undertaken from a strategic perspective, by the national TFM facility.  
It is understood that this is not a complete problem solution, and will have to be fine-
tuned – the fine tuning is performed, as needed as events unfold, by the local TFM 
facilities, using a tactical perspective.  In terms of benefits analysis, a contrast can be 
created: today’s approach of strategic, then tactical treatments vs. an incremental 
approach of successive partial solutions, backed by quantitative analysis. 
 
It can be argued that, on the face, the incremental approach should best a single, early, 
one-time solution, but is that intuition borne out in quantitative experimentation?  This 
paper presents experimental results to answer that question. 
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Background: A Challenging Problem involving Severe En Route Weather 
 
Consider Figure 3, a good example of challenging TFM in light of en route capacity 
shortfalls due to en route weather.  The figure has key visual features: actual weather is 
shown on the geographic display as green, yellow, and orange/red regions.  Predictions 
for the movements of high-intensity weather are delineated as the black-outlined 
polygons with accompanying movement vectors.  Other visual features: airspace sectors 
with red cross-hatching are where demand is predicted to exceed capacity; sectors with 
yellow cross-hatching are where demand may exceed capacity. 
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Figure 3: Example of Severe En Route Weather, with Predicted Movement of Weather 
and Capacity-Impacted Airspace Sectors 
 
 
This figure is a typical challenging severe en route weather TFM scenario.  Uncertainty 
overshadows all of the decision-making, and some questions arise: 
 

1) When should air traffic be restricted? 
2) Which flights should be affected? 
3) How can NAS operators participate? 
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The challenge presented in this scenario is addressed in the subsequent sections of this 
paper. 
Solving the Problem Incrementally  
 
We propose a process for systematic, incremental intervention to solve the problem of en 
route demand exceeding available sector capacity, which we call the Probabilistic 
Incremental Congestion Alleviator (PICA).  Figure 4 gives a diagram of the process. (For 
a fully-detailed description, see [ATM 2007]). 
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Figure 4: Congestion Resolution Decision Tree 
 
Starting on the far left of the figure, a set of flight trajectories are subjected to Monte 
Carlo modeling, creating a population of realizations for the predicted flights.  
Congestion evaluation is performed, and sector congestion is forecast for future time T.  
Since the probability of congestion in one or more sectors exceeds 50%, it is necessary to 
intervene.  Moving right in Figure 4, Decision Point 1 (DP1) takes place 90 minutes prior 
to the predicted congestion problem, at time T-90.  Here we show that three options are 
considered and modeled: do nothing, partial resolution, and full resolution.  The partial 
and full resolution options apply ground delays and/or reroutes to address the expected 
sector congestion.  Trajectories with these maneuvers are substituted in each set of flight 
realizations.  The costs of the delays and reroutes are saved, as they will be used in a later 
step. 
 
Now, half-way through Figure 4, at the three vertical circles, simulated time elapses 
during which certain events occur (in the context of this modeling system): flight 
cancellations, new flight plan filings (“pop-ups”), and changes in flights’: departure 
times, route, cruise altitude, and speed.  These events have the effect of altering the 
“virtual history” of the simulation system, as in the real world – as time passes, some 
uncertainty evaporates. Predicted events unfold in one way or another: sector capacity is 
impacted, or not; scheduled flights show up for service, or they don’t.  DP2 at T-60 
minutes is the next column of pictographs moving right in Figure 4, the three vertical 
squares.  Given the current population of realizations, spawned by the selected option 
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from Decision Point 1, three intervention options are again considered.  Again congestion 
is solved to some level per one of three options; delays and reroutes are substituted in the 
populations of realizations. 
 
Note the multiplicity of solution paths brought forward.  Coming from Decision Point 1, 
3 populations of realizations, corresponding to the 3 options, move forward in the 
process.  Each of these three populations is considered for the 3 options at Decision Point 
2, yielding 3 x 3 = 9 populations of realizations to be brought forward.  As the number of 
decision points and options at each point expand, the problem grows ever larger.  
However, the final decision point must have only a single option, 50% probability of 
congestion, since any residual congestion (any remaining after the earlier interventions) 
must be removed.  This is shown in the next section. 
 
A Simple Example 
 
An example problem shown in Figure 5 will make some of the above explanations 
clearer.  Corresponding roughly to the region depicted in Figure 3, we assume that the en 
route airspace sectors known as ZKC31 and ZKC84 (ZKC is the identifier for the Kansas 
City Air Route Traffic Control Center) are predicted to experience congestion, and the 
decision points are 90 and 30 minutes prior to that time.  As part of the problem solution, 
sectors adjacent to the subject impacted sectors are also monitored – these sectors 
likewise will be managed to avoid congestion – this could happen if rerouted traffic 
avoided ZKC31 and ZKC84, only to “bunch” in the adjacent sectors.   
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Figure 5: Example Problem: Decision Points and Options 
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At DP1, three options are considered –  allow 100%, 60%, or 50% chance of congestion.  
At DP2, the final decision point, a single option must be taken – all remaining congestion 
must be handled, and so 50% is the single option to be undertaken.  The right-most box 
says “Compare Results” – this is the step of evaluating which path through the decision 
tree, i.e., which sequence of options taken yielded the lowest cost.  Cost is the only 
measure of interest, since “TFM efficacy” is insured by the final decision point wherein 
all remaining congestion is handled.  
 
Translating these into English, they are as follows: 
 
DP1=100%, DP2=50%  –  “Wait until the end, then solve everything” 
DP1=  60%, DP2=50%  –  “Partial solution up front, revise later” 
DP1=  50%, DP2=50%  –  “Solve everything up front” 
 
 
Using total positive delay minutes as the cost measure (not shown), results show what 
might be guessed, a “middle path” solution approach is reasonable.  By solving a portion 
of the problem early, and then later solving the remainder is better than either of the other 
two approaches.  The (50%, 50%) “Solve everything up front” approach is overly 
conservative – more delay was assigned than was necessary, since there was so much 
uncertainty at DP1.  Likewise (100%, 50%) “Wait till the end, then solve everything” 
could have done some of TFM intervention earlier.  The best approach was (60%, 50%) 
“Partial solution early, then revise”.  It may be that 90 minutes prior to predicted 
congestion in an en route sector is simply too early to act – too many of the involved 
flights have yet to depart, and take-off time uncertainty is the largest single contributor to 
overall flight uncertainty. 
 
Although these results may be intuitive, we now have a simulation facility to experiment 
with various problems and the parameter settings, yielding a new (as far as the authors 
know) area of knowledge for the TFM research community. 
 
Note regarding final version of the paper 
 
In the final version of this paper, we will present results for several larger problems, and 
explore the impact of parameters such as: number of decision points, number of choices, 
timing of decision points, sample sizes in the Monte Carlo modeling, etc.  One problem 
of especial interest was presented at ATIO 2006 [ATIO 2006] – one of the worst days of 
2004 with respect to severe weather, involving nearly 1000 flights, and scores of affected 
sectors.  Benefits measures will include counts of flights, miles of path deviation, ground 
delay, plus a “monetarizing” step which yields a rough dollar estimate of the potential of 
this technique. 
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Notice 
 

The contents of this material reflect the views of the authors and/or Director of the 
Center for Advanced Aviation System Development.  Neither the FAA nor the 
Department of Transportation makes any warranty or guarantee, or promise, expressed or 
implied, concerning the content or accuracy of the views expressed herein. 
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