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This paper extends previous work that examines the utility of employing a Generalized 
Random Adaptive Search Procedure (GRASP) to minimize the impact on the National 
Airspace while resolving congestion.  As today's methods for managing congestion are 
mostly manual, and for which predictions of both capacity and traffic demand are uncertain, 
it is often difficult to find efficient, flight-specific resolution maneuvers for the hundreds of 
flights affected when congestion arises.  This work continues to investigate improvements 
upon previous research that develops a non-optimal flight-specific congestion solution 
strategy based on a prioritized flight list by iteratively perturbing this prioritization to find 
better solutions.  In this paper we examine the previous prioritization criteria considered 
and develop a new prioritization criterion that incorporates the two individual criteria.  The 
research shows that combining the two criteria effectively bridges the difference between the 
results produced by the single criteria resulting in consistently good solutions across multiple 
metrics and objectives.  Following this, we extend the optimization framework to include 
multi-metric objectives, examining the trade-off of congestion versus delay and how 
including inequity in the objective affects all three metrics.  The research shows that 
significant benefits can be derived even when a metric is only lightly weighted in the 
objective, showing that multi-metric objectives are a significantly desirable formulation.    

Nomenclature 
ADM = Aggregate Demand Model 
ATC = Air Traffic Control 
CMA = Congestion Management Area 
CRA = Congestion Resolution Area 
ETMS = Enhanced Traffic Management System 
GRASP = Generalized Random Adaptive Search Procedure 
LAT = Look-ahead Time 
MAP = Monitor and Alert Parameter 
NAS = National Airspace System 
TFM = Traffic Flow Management 

I. Introduction 
ITH the predicted increase in airspace demand over the next few years, new systems to aid in en-route 
congestion resolution are needed.  Present day en-route congestion resolution occurs when the predicted 

demand exceeds the nominal capacity for a sector.  Significant congestion problems typically involve hundreds of 
flights, and affect multiple en-route ATC facilities and U.S. National Airspace System (NAS) users (e.g. airlines).  
Currently, traffic managers in the NAS resolve congestion primarily through manual processes, relying on 
experience and limited traffic prediction data1.  However, the scope of these congestion problems can cause 
difficulties for the human decision maker as they need to make effective and coordinated solutions in real time. 

Identification of potential congestion relies on both the prediction of airspace demand and capacity over a 
several hour time horizon.  In the NAS demand predictions are generated by the Enhanced Traffic Management 
System (ETMS) for most sectors over several hours, in 15 min time bins.  These counts are based on filed flight 
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plans or schedule data, wind forecasts, and radar track reports for aircraft that are already airborne.  However, as 
deviations from the predicted traffic demand arise frequently from such sources as, modifications in flight schedules 
or flight cancellations, the initiation of previously unscheduled flights, or the effect of weather on cruise altitude and 
air traffic control (ATC) intervention, it is necessary to view traffic demand as uncertain.  The magnitude and 
characteristics of these uncertainties have been extensively described2, measured3, and modeled in the context of 
sector load forecasting4-6. 

Similarly, the nominal capacity of a sector is defined by a threshold called the Monitor/Alert Parameter (MAP), 
which provides an abstraction of the sector capacity, although does not capture the intricacies affecting controller 
workload7-8.   Uncertainty is also inherent in the prediction of sector capacity.  While ETMS generates alerts based 
on constant aircraft count thresholds, it is widely accepted that the real capacity of sectors depends on traffic 
complexity and weather, and should also be treated probabilistically.   

Given the inherent uncertainty in the data provided to traffic managers, these predictions are of limited use, as 
they provide one data source for traffic managers who must develop ground delay or reroute initiatives to control 
congestion.  There are no decision-support tools currently available to test traffic management initiatives, though 
extensive work has been done to develop such tools9-11.  Furthermore, these initiatives typically affect flows of 
aircraft (e.g., rerouting all traffic between a pair of airports, or miles-in-trail spacing restrictions) rather than 
individual flights. 

In order to alleviate some of these difficulties, pre-defined large-scale strategies, such as "National Playbook" 
routes1 have become a standard method for addressing congestion.  Given the prediction uncertainty arising from 
weather forecasts and flight plans and the effect of using large-scale resolution strategies, traffic managers tend to 
develop highly conservative decision making practices which can potentially result in unnecessary delays.  As such, 
it is desirable to develop an automated support system that assists in the identification and resolution of congestion. 

This paper presents research that is part of a broader effort to analyze traffic flow management (TFM) 
uncertainty through probabilistic modeling and to develop new decision support concepts that integrate this analysis 
in the congestion resolution process.  Previous work in this area has investigated the use of a prioritized sort list for 
ordering flights that employs a single-pass deterministic greedy algorithm12.  Further research has examined globally 
defined solutions through optimization with a genetic algorithm13 and the Multi-Objective Hybrid Genetic 
Algorithm14, which provide a 'global' solution to the problem but are computationally intensive.  A potentially useful 
alternative that provides a compromise to both approaches was initially developed in Taylor et al15 and this work 
continues to extend the concepts and address some issues presented.     

Specifically, the focus of this paper is the development of a heuristic optimization algorithm that provides an 
improved congestion resolution strategy without significantly increasing the computational requirements needed to 
obtain these solutions.  The heuristic algorithm, a Generalized Random Adaptive Search Procedure (GRASP), has 
been shown to aid in problems in which an ordering scheme must be defined but the exact nature of a desirable 
prioritization criterion is not fully understood16-17.  The current work focuses on extending GRASP to a multi-metric 
objective framework for resolving airspace congestion.  By analyzing the solution impact due to different relative 
weightings in the objective function and the application of an alternative prioritization criterion, further insight into 
the underlying behavior of the problem can be realized.   

The benefits of the multi-objective GRASP approach are evaluated by way of an illustrative example problem.  
The next section discusses the general problem formulation that motivates the work presented in this paper.  Section 
III presents the fundamentals of the GRASP algorithm, describes the different prioritization criteria used, details the 
metrics considered for inclusion in the multi-objective optimization and outlines the example problem considered.  
Section IV develops the new prioritization criterion considered in this paper and compares the results for single-
metric optimization.  Section V presents the results of multi-metric optimization with various weighting factors and 
examines how the inclusion of inequity in the objective function influences both delay and congestion.  The 
conclusions and continuing work are discussed in Section V.    

II. Problem Formulation 
The problem under consideration is the resolution of predicted airspace congestion, in which congestion is 

simply defined as the condition that demand exceeds capacity.    Given that both demand and capacity estimates are 
uncertain, we instead examine the probability of congestion, which identifies the probability that the expected 
demand exceeds the expected capacity.  Therefore, to define congestion, estimates of both demand and capacity are 
required.  

In this work, The Aggregate Demand Model (ADM) developed by Wanke et al6 is utilized to predict the demand 
at different look-ahead times (LATs) for each sector.  The ADM is a closed-form, statistical uncertainty model for 
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Figure 2. Detailed Congestion Predictions for Single Center 

 

en route sector demand predictions, suitable for both 
simulation and real-time applications.   It is based on a 
comprehensive set of statistics for sector peak count 
prediction uncertainty collected over an 8 month 
period.  The model forecasts peak traffic demand 
distributions based on four variables: the look-ahead 
time, the deterministic predicted peak count, the 
number of airborne flights in the peak count prediction, 
and the primary sector traffic type (departure, en-route, 
arrival, mixed). 

The capacity of a sector is also a probabilistic 
quantity, given the uncertainty of weather and 
complexity on capacity.  Although, an initial attempt 
has been made to define a probabilistic sector capacity 
metric18, this work is still preliminary.  As such, 
although only a rough abstraction of sector capacity, 
the MAP is the sector capacity value used in this work 
to identify areas of potential congestion.   

The resulting definition of the probability of congestion is obtained from the demand and capacity estimates as 
follows.  The predicted traffic demand distribution and the predicted sector capacity distribution are convolved to 
determine predicted congestion distribution.  The resulting congestion threshold is identified as the area of the 
convolved distribution where there is a probability that demand exceeds capacity.  

Figure 1 presents a notional probabilistic forecast of weather and congestion.  The pink and purple codes indicate 
the probability of congestion for the three sectors shown.  Sectors are classified into two categories: congestion 
resolution area (CRA) and congestion management area (CMA).  The CRA consists of sectors in which congestion 
is predicted and resolution actions can be taken to reroute or ground delay flights as necessary.  The CMA sectors 
correspond to neighboring sectors that must be monitored to ensure that resolution actions taken in the CRA do not 
adversely impact these neighboring sections.      

To clearly understand the evolution of congestion with look-ahead time, the congestion probabilities can be 
decomposed into 15 minute intervals several hours into the future.  Figure 2 presents this time-series information for 

 
Figure 1. Probabilistic Sector Forecast 
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Figure 3.  Overview of GRASP Congestion Management Algorithm 

Sector 02 from Figure 1.  The blue line represents the 50th percentile prediction of airspace capacity.  As we can 
see, the uncertainty in the capacity estimates are small at short LAT, since the weather is not expected to impact that 
area until 30 minutes into the future (1500).  For greater LAT, the weather is expected to reduce the capacity; 
however, the greater ranges reflect the uncertainty in the future position, size, and intensity of the weather. The gray, 
pink, and purple boxes reflect probabilistic demand predictions, for which the heights of the boxes, increasing with 
greater LAT, reflect the associated uncertainties in these predictions.  The bottom, midline, and top of the boxes 
represent the 30th, 50th, and 80th percentile of the predicted demand distribution, in this example.  The boxes are 
color-coded to reflect the probability that the actual demand exceeds the actual capacity.  

Given the uncertainties in demand and capacity estimates, the resulting congestion management goal can be 
expressed as a maximum congestion probability, or "congestion risk."   For example, a congestion management goal 
could be to take action such that there is a maximum congestion risk of 75\% for the next three hours.   This is 
shown in Figure 2 for a single sector.  The resolution problem, then, is to determine a set of flight-specific 
maneuvers that achieve this risk reduction while minimizing impact on airspace users.  For the problem considered 
in this paper, the resolution actions can be the imposition of a ground delay, reroute, or both for a given flight.  
Other possible resolution actions that were not explored include cruise altitude changes, and imposition of time 
constraints on flight path waypoints (metering). 

III. The GRASP Algorithm 
The GRASP algorithm evaluates multiple potential solutions and returns the best solution found.  Potential 

solutions are defined by randomly perturbing the prioritization scheme and resulting sort order of the candidate 
flight list, where the sorted candidate flight list determines which flights receive an undesirable resolution action in a 
given problem.  GRASP was utilized to obtain benefits over a previously implemented deterministic greedy 
heuristic, but operates under a similar framework.   Details of the greedy heuristic algorithm can be found in [Ref 
12].    

Figure 3 shows the overall implementation of the GRASP algorithm.  As we can see from Figure 3, GRASP 
develops a sorted candidate flight list that modifies the absolute implementation of a priority order to account for 
unknown probabilistic impacts.  Given that the sorted list is generated probabilistically, each iteration produces a 
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Figure 4.  Illustrative Flight Probability 
Distribution 

 

slightly different list which can change the overall impact on the system.  Therefore, multiple iterations are 
performed until the termination criteria are met.  A key aspect of the GRASP algorithm is how prioritization criteria 
are used to formulate the sorted candidate flight list.   

A. Prioritization Criteria Selection 
The GRASP algorithm uses prioritization criteria to influence the 

position of a flight in the sort order, in which priority in the sort order 
reflects a decreased likelihood of being assigned an undesirable 
resolution action.  Therefore, it is desirable that the prioritization 
criterion selected align with the objective function, so that the ordering 
of the flights promotes good solutions. 

This research considers two different prioritization criteria, namely 
time to congestion resolution area (CRA) and total time spent in the 
CRA.  Using the prioritization criterion of time to CRA prioritizes 
flights entering the CRA sooner than other flights.  This criterion 
represents how flights are traditionally prioritized in order to promote 
transparency and fairness in the decision process.  Prioritizing by time 
spent in the CRA reflects that some flights have a greater impact on the 
system because they travel through the CRA longer.  Therefore, if the 
flights that are in the CRA longer are prioritized lower and receive a 
resolution action, that resolution action may have a larger marginal 
benefit to the system than a resolution action for another flight that only 
minimally impacts the system.  For each flight, the prioritization criteria 
is computed based on the original route of the flight and scaled to 
appropriate units as necessary. 

B. Development of a Sorted Candidate Flight List 
A key aspect of the GRASP algorithm is in the construction of the sorted candidate flight list.  Instead of strictly 

ordering the flights by the prioritization criteria, the GRASP algorithm utilizes a set of score functions to inform the 
sorted flight list construction.  The score functions represent different weightings of the prioritization criteria and are 
constructed such that lower scores are more beneficial than higher scores for priority in the sort list. 

For each prioritization criteria ( ) selected, multiple score functions are defined that vary the relative weighting 
of priority importance between flights.  The score functions used to evaluate the prioritization criteria described 
above are:  

 
 
                                                                (1) 

 
 
In each iteration of GRASP, one of the score functions is selected uniformly at random from the set of defined 

score functions.  Using the selected score function, a score is calculated for each flight in the candidate list; however 
this score does not automatically determine the ordering of the flight in the sorted candidate list.  Instead, the 
GRASP algorithm uses these scores to determine the probability of selection of a given flight for priority ordering.  
That probability of selection is defined as 

 

                                                                                    (2) 

 
in which f  is a flight in the candidate list,   is the score of flight f evaluated for score function i, and  is the 
corresponding probability of selecting that flight.  As the summed probability over all flights is one, the probability 
of each flight can be viewed as the relative proportion of selection. 

Figure 4 illustrates this process through a simplified example.  Each sector of the circle represents the probability 
of selection of a given flight.  For each slot in the sorted candidate flight list, the wheel is “spun” and the next flight 
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in selected.  These probabilities are computed by defining the prioritization criterion and GRASP randomly selecting 
a score function. 

Flights with high probabilities of selection are more likely to be selected early in the process and therefore 
have a high priority on the sort list.  However, the relative probability values do not determine the final sort 
order in the flight list.  Instead, a flight is selected when a randomly generated number falls within the 
probability sector of the flight.  This process is repeated until all flights have been ordered in the candidate 
list. 

C. Measuring Solution Quality 
Multiple metrics are available to assess the quality of the resolution strategies developed, depending on 

organizational priorities.  For this research, three metrics were defined:  total delay, probability of congestion, and 
inequity.  The goal is to minimize the value of the objective function, defined as one or more of those metrics.   

The metric of total delay ( ) selects the solution that provides the minimal increase in total system delay while 
attempting to meet the congestion target.  Both ground delay (g) and airborne delay (a) contribute to the total delay.  
Only positive airborne delay is considered here to ensure that resolution actions that reroute flights to arrive at their 
destinations earlier than originally planned are neither penalized nor rewarded.  The mathematical expression of 
delay is the sum of those delays: 

 
                                                                 (3) 

 
The metric of congestion compares potential solutions on the basis of which option produces the minimum 

sector congestion.  Under all metrics, the congestion target is provided and resolution maneuvers are selected to best 
meet this target; however this target cannot always be met given previous decisions and the desire to meet other 
objectives.  The congestion metric (  ) reflects the system level goal of reducing sector congestion, in which the 
impact on individual flights is a secondary consideration: 

 
                                             (4) 

 
The quadratic cost term for positive deviations of congestion from the target level gives extra weight when the 

congestion of a sector ( ) deviates from the sector specific target level ( ).  A decreasing linear cost on look-ahead 
time is included to represent that congestion occurring at a given LAT ( ) is less concerning, all things being equal, 
when it is closest to the maximum look-ahead time ( ).  The weighting factors , , and  represent different 
relative weightings of the components in the metric, in which the value of these factors were previously chosen 
through an off-line experimental study13.  The total congestion is added for every sector and look-ahead time 
combination ( ) in which congestion is present. 

The final metric considered is inequity.  Equity, as defined in this research, is when the delay incurred by the 
assignment of resolution maneuvers is as evenly distributed as possible over the different NAS customers.  
Therefore, the inequity metric ( ) is defined as the minimum standard deviation of delay between customers.  The 
total number of flights affected by delay is represented by  and the number of customers with these affected 
flights is represented by .  For the purpose of this analysis, all general aviation (GA) flights are grouped together 
as a single customer. 

 

                                                                        (5) 

 
in which 

                                                                    (6) 

 
                                                                           (7) 

D. Assigning Resolution Actions 
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Figure 5.  Geometry for Example Problem 

 

Given the prioritized candidate list, the algorithm proceeds by selecting each flight in turn and evaluating its 
nominal path against the congestion risk target to 
determine what (if any) action needs to be taken.  The 
flight is then assigned a route and the total system cost 
incurred for that flight is computed, based on the selected 
metric to be minimized. 

Because the GRASP algorithm minimizes the total 
system cost, the cost incurred by the resolution action 
defined for each flight is iteratively added to the system 
cost, in order to measure the performance of the current 
solution.  If the current solution's accumulated cost is 
greater than the minimum cost solution found up to that 
point, the iteration is terminated and a new priority list is 
constructed.  If instead, after all flights have been 
evaluated, the current solution has less total cost, it 
replaces the best solution found.  The best solution found 
over all iterations is returned when the termination criteria, 
in this case defined to be the maximum number of 
iterations, is met. 

E. Example Problem 
In order to evaluate the performance of the GRASP 

algorithm, we constructed a sample and compared the 
results provided by each solution method to determine how 
effectively they resolve the congestion.  The example 
congestion problem was developed from traffic patterns 
and predictions observed during January 2004.  The traffic 
predictions used were from a TFM decision-support 
prototype19 that uses a probabilistic traffic demand model, 
namely the Aggregate Demand Model (ADM) described in 
Reference 13, to determine the probability that the demand 
on a specific sector exceeds the normal Monitor Alert 
Parameter (MAP) value. 
 Figure 5 illustrates the geometry of the airspace structure around Atlanta Hartsfield International Airport (ATL), 
which is the example problem considered in this research.  The CRA consists of two sectors:  ZTL38 and ZTL39.  
ZTL38 is a low altitude sector, controlling altitudes from 10,000 up to 24,000 feet, and primarily handles the 
departure traffic over fixes NOONE and NOTWO.  Departures from NOTWO transition into sector ZTL39, which 
is a high altitude sector handling traffic from 24,000 up to 35,000 feet.  ZTL39 also handles a complex pattern of 
cruising traffic, as illustrated by the jet airways intersecting at the VXV navigational aid. 

Figure 6 shows the congestion situation in the form of predicted sector counts.  This is a probabilistic Center 
Monitor (CM) that uses the ADM to estimate peak traffic counts and generate alerts.  In this version, the median 
predicted peak count for each sector is shown, thus compensating for prediction biases.  Also, the purple and pink 

 
Figure 6.  Probabilistic Congestion Display for Example Problem 
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alert colors are based directly on probabilities of congestion.  A purple alert indicates a higher than 75% probability 
that the actual peak traffic demand will exceed the MAP.  A pink alert indicates a 50% to 75% probability.  The 
maximum congestion target for the example problem defined is 0.5, meaning that the goal is to obtain a solution that 
reduces congestion probabilities below 50%.   

In Figure 6 both sectors 38 and 39 show congestion alerts between for the time periods between 45 and 90 
minutes LAT (between 1445 and 1530), with a maximum probability of congestion of 0.96.    Flows through these 
two CRA sectors are analyzed to determine all possible sectors to which flights in the CRA can exit, and from which 
sectors flights can enter.  The 29 adjacent sectors identified constitute the congestion management area (CMA) for 
this problem and have a maximum probability of congestion of 0.61. 

The goal of the GRASP algorithm is to determine a solution that meets the congestion target of 0.5 in the CRA, 
without adversely impacting the congestion in the CMA and with minimum total cost.  For each prioritization 
criteria and objective function defined, the GRASP algorithm is run twenty-five times, with each run consisting of 
100 iterations, and the results presented are averaged over all runs. 

 

IV. Prioritization Criteria Development 
In previous work15 we showed that the two prioritization criteria, time to CRA and time spent in the CRA, 

provided improved solution quality as measured by the three metrics considered.  However, there wasn’t a single 
prioritization criterion that provided high quality solutions for each metric.  Instead, the choice of prioritization 
criteria varied.   As such, FY09 research delved deeper into the underlying dynamics of the prioritization criteria and 
score function selection to develop alternative criteria.  

A. Impact of Score Functions 
The value of implementing a variety of score functions and randomly choosing a score function for an iteration 

lies the change of the relative probability of selection in the sorted order for a given flight.  Modifying the relative 
probability of selection in effect changes how likely flights are to swapped in the sorted list order, potentially 
leading to improved solutions.   

The score functions described in Eqs. (1) provide five different probability distributions for each of the two 
prioritization criteria examined.  The probability distributions are computed for each prioritization criteria using the 
original flight information of the 64 flights in the example problem described in Section III.E.  The curves are 
generated by applying a fit to the histogram of probabilities generated using the given prioritization criteria and the 
chosen score function.    

Using score function #5 a few flights have high probabilities of selection and therefore will most likely be 
selected first in the sort order.  The majority of flights has relatively the same probability of selection and therefore 
can easily be interchanged, thereby producing vastly different sorted lists.  Alternatively, using score function #3, 
there is a larger selection of flights with higher probabilities, yielding a greater interchange of orders at the top of the 
list.  These flights however, are more likely to be chosen before the flights with lower probabilities.  Effectively, this 
probability distribution bins the flights in the sort order, allowing only localized movement in the list.  

Figure 7 shows the probability distributions associated with the score functions when selecting the prioritization 
criteria of time to CRA.  Examining Figure 7 shows that each score function produces a different probability 
distribution; however they all do share the general characteristic that a high proportion of flights have a probability 
near 0.015.  For example, taking the distribution of score function #5 ( ), we see a high peak at around .015.  
Alternatively, examining score function #3 ( ), we see a smaller peak at around the same probability, however 
instead of falling off as drastically at higher probabilities, a smaller but significant number of flights have a 
probability of 0.02.  The probable impact of these different probability distributions in determining the sort order is 
as follows. 

Examining the probability distributions for the score function when using the prioritization criteria of time spent 
in the CRA reveals a different picture.  Figure 8 shows a more uniform probability distribution for each of the five 
score functions, where the general shape is the same for all, with only small shifts in height, width and location of 
the peaks.  Selecting the prioritization criterion to be the time spent in the CRA produces different ordering than 
time spent in the CRA; however, both have been shown in previous research15 to improve the solution quality as 
compared to solutions produced through deterministic orderings, but more improvements can be gained.  
Furthermore, we are searching for a single prioritization criterion that consistently produces high quality solutions 
under multiple objective functions. 

© The MITRE Corporation. All rights reserved. 
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B. Combined Prioritization Criteria 
Given the resulting probability distributions for the original score functions examined under each of the 

prioritization criteria, new score functions were defined that vary the weighting of the two prioritization criteria 
together when developing the sorted lists.  The new score functions considered are:  

 
 

                                                 (8) 
 

 
where is the time to CRA and  is the time spent in the CRA.  These six score functions were chosen out of the 
many potential combinations of the two prioritization criteria to provide a variety of different probability 
distributions.  Figure 9 provides the probability distributions for the new score functions.  Examining Figure 9 

 
Figure 7.  Probability Distributions of Score Functions for Time to CRA 

 
Figure 8.  Probability Distributions of Score Functions for Time Spent in CRA 
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shows how the score functions produce significantly different distributions, but are related to the distributions shown 
in Figure 7 and Figure 8. 

The six new score functions were implemented in GRASP for the single-metric objectives of minimum delay, 
congestion, and inequity.  The results are compared to the metric values produced by employing the original 
prioritization criteria using the original score functions.   Again, the results presented are the averaged results for 25 
runs of 100 iterations each.  For clarity, future references to prioritization and score functions will be used as 
follows.  “Time to CRA” refers to using the prioritization criterion of time to CRA with the original 5 score 
functions.  “Time spent in CRA” refers to using the prioritization criterion of time spent in the CRA with the 
prioritization criteria using the original score functions.   “Combined Prioritization” refers to using both the “time to 
CRA” and the “time spent in CRA” as the prioritization criteria in the six new score functions.   

For the objective of minimum delay, Figure 10 shows the impact on each of the three metrics.  Although only 
delay is minimized, all metrics are evaluated.  Examining Figure 10 shows that the “combined prioritization” 
provides the lowest delay and the median valuation point for congestion and inequity of the three prioritization 
criteria.  This improves upon the previous findings where “time spent in CRA” provided lower delay but much 
higher congestion and inequity than “time to CRA”.  Thus, for minimum delay, the combined prioritization may 

 

 
Figure 9.  Probability Distribution for Combined Prioritization Criteria 

 
Figure 10.  Prioritization Criteria Comparison for Minimum Delay 
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provide an improved prioritization criterion. 
For the objective of minimum congestion, Figure 11 shows the impact on each of the three metrics from 

implementing the three prioritization criteria.  Examining Figure 11 shows that the “combined prioritization” 
provides the same minimum congestion as the other two prioritization criteria.  Additionally, it provides the median 
valuation in the other two metrics.  Unlike the minimum delay condition, here “time spent in CRA” produces the 
minimum congestion and the lowest delay and inequity, thereby decreasing the necessity of finding an alternative 
prioritization criterion for this objective function. 

For the objective of minimum inequity, Figure 12 shows that all three prioritization criteria provide an extremely 
low inequity value, with “time to CRA” providing the lowest value.  “Time to CRA” also provides the lowest 
congestion but the highest delay.  The lowest delay comes from “time spent in CRA”.  The “combined 
prioritization” provides either the median or high value in each metric, and therefore may not be a desirable criterion 
for this objective. 

The “combined prioritization” achieved a compromise between “time to CRA” and “time spent in CRA” for the 
single metric objective results.  In two cases it produces the lowest metric value and in one case the highest metric 

 
Figure 11.  Prioritization Criteria Comparison for Minimum Congestion 

 
Figure 12.  Prioritization Criteria Comparison for Minimum Inequity 
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value and in all other cases, the median metric value.  Therefore it provides a more reliable prioritization criterion 
overall; however it does not necessarily improve the solution quality over the original prioritization criteria.  Further 
investigations into alternative prioritization criteria would be necessary to identify a prioritization criterion and score 
function pair that consistently produces better solutions for all metrics.    

V.  Multi-Metric Optimization 
The previous section shows the impact of the three prioritization criteria when each metric is considered in turn 

as a single metric objective.  In reality, however, achieving balance between multiple objectives is of premium 
importance.  Therefore, in this section we examine the impact of the different prioritization criteria on multi-metric 
objectives. 

A. Congestion versus Delay 
The metrics of delay and congestion are often competing objectives in congestion resolution.  In this analysis, we 

examine how the prioritization criteria respond to changes in the relative weightings between these two metrics.  
The multi-term objective considered is  

 
                                                                             (9) 

 
where and  are the weighting factors for delay and congestion, respectively, and   and  are the delay and 
congestion metrics defined in Section III.C.  To provide meaningful relationships between the weighting factors, the 
metric values are in units of hours of delay and fraction over minimum congestion.  

Table 1 shows the various weighting parameters used in the above multi-term objective function to evaluate the 
impact of varying importance of delay and congestion using the different prioritization criteria. 

Figure 13 shows the trend of increasing delay and decreasing congestion shown from left to right, corresponding 
to the different weightings from delay only to congestion only.  For all three prioritization criteria, the “delay only” 
solutions provide a small variation in delay (as was shown in Figure 10) and a large variation in the resulting 
congestion.  For the “congestion only” solutions, all prioritization criteria have the same congestion (as is shown in 
Figure 11) and there is only a small variation in delay.   

 
Table 1.  Relative Weighting Factors Cases for Multi-Metric Optimization 

Delay Only  
Heavily Emphasized Delay  
Moderately Emphasized Delay  
Equal Delay and Congestion  
Moderately Emphasized Congestion  
Heavily Emphasized Congestion  
Congestion Only  
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Figure 13 shows the trend of increasing delay and decreasing congestion shown from left to right, corresponding 
to the different weightings from delay only to congestion only.  For all three prioritization criteria, the “delay only” 
solutions provide a small variation in delay (as was shown in Figure 10) and a large variation in the resulting 
congestion.  For the “congestion only” solutions, all prioritization criteria have the same congestion (as is shown in 
Figure 11) and there is only a small variation in delay. 

Moving from the “delay only” solutions to the “delay heavily emphasized” solutions shows small increases in 
delay for large decreases in congestion.  Similarly, moving from the “congestion only” solutions to the “congestion 
heavily emphasized” solutions shows almost no increase in congestion for significant improvements in delay. 

When delay and congestion are equally weighted, the three prioritization criteria provide similar congestion and 

 
Figure 13.  Congestion versus Delay 

 
Figure 14.  Prioritization Criteria Comparison for "Equal Delay and Congestion" 
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delay values, which is shown more clearly in Figure 14.  Examining Figure 14 shows that for the “equal delay and 
congestion” case, “time spent in CRA” provides the lowest delay and highest congestion.  The “time to CRA” 
provides the highest delay of the three prioritization criteria, but with the lowest congestion.  The “combined 
prioritization” provides the balance between the two, as intended.  Interestingly, the “combined prioritization” 
provides the lowest inequity of all three prioritization criteria, which depending on priorities might promote this 
prioritization over the alternatives. 

B.  Impact of Inequity 
Understanding the trade-offs between delay and congestion is only part of the challenge in congestion 

management.  Additionally, the delays assigned should not unduly impact any given NAS customer.  The inequity 
metric defined in Section III.C provides one method for measuring the balance of delay distribution.  This section 
investigates the impact of considering inequity directly within the multi-term objective by redefining the objective 
function as 

    

 

 
where the new components of the objective function are , the relative weighting of the inequity component of 

the objective;  , the inequity metric; and , the scale factor of the inequity metric.   
Figure 15 shows the minimization of the objective function using the same relationships (and naming 

conventions) for  and  as described in Table 1, and  is set to be 0.1 or a tenth as important as the combination 
of delay and congestion.   

Examining Figure 15 reveals that considering inequity, even with a small relative weighting to delay and 
congestion, changes the overall shape of the delay-congestion trade-off.   As before, the same pattern emerges where 
heavily weighted delay provides a decrease in congestion with only a moderate increase in delay, as compared to the 
delay-only weighting (with the exception of the prioritization of time spent in the CRA, which actually decreases 
delay as well).  Similarly, the heavily weighted congestion does not increase the congestion but does provide a 
decrease in delay over the congestion only solutions, albeit not as drastic as in the solutions where inequity is not 

 
Figure 15.  Congestion versus Delay with Inequity 
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considered.  Finally, when considering the case where delay and congestion are equally weighted, we see a change 
in the relative trade-offs, where the combined prioritization provides the lowest delay, but the prioritization of time 
to CRA provides the lowest congestion. 

To examine how the different objective function weighting factor combinations and prioritization criteria impact 
inequity in the solution, a more detailed view of the “delay only” with inequity, “congestion only” with inequity, and 
“equal delay and congestion” with inequity cases are presented.  For the “delay only” with inequity case, Figure 16 
reveals that the lowest delay is produced by the “combined prioritization” and the lowest congestion is produced by 
the “time to CRA”.  The “time spent in CRA” produces a slightly higher delay and congestion than the other two 
prioritization criteria, but significantly reduces the inequity. Decreases in inequity can be achieved through increases 
in delay as the additional delay can be evenly distributed to reduce inequity; however, the large decrease in inequity 
is disproportionate to the small increase in delay here, which suggests that the set of flights receiving delays was 
more equitable. 

For the “congestion only” with inequity case, Figure 17 reveals that the “time to CRA” produces the minimum 
congestion, the lowest delay, and the lowest inequity.  However, unlike the “delay only” with inequity case shown in 
Figure 16, the differences in metric values among the three prioritization criteria are very small for both delay and 
inequity. 

 
Figure 16.  Prioritization Criteria Comparison for "Delay Only" with Inequity 

 
Figure 17.  Prioritization Criteria Comparison for "Congestion Only" with Inequity 
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When congestion and delay are equally weighted and inequity is included, Figure 18 shows that the “combined 
prioritization” provides the lowest delay and the lowest inequity, although the highest congestion.  Here, instead of 
increasing the delay to decrease inequity, the congestion is increased, which describes a situation where a reduction 
in delay, and therefore a reduction in overall inequity, is achieved at the expense of more closely matching 
congestion targets. 

In order to more clearly visualize the impact of inequity on metric values, the percent change in metric values 
from inequity not considered to inequity considered in the objective function are computed for each prioritization 
criteria and each weighting factor combination.  Figure 19 shows the percent change in metric values for “time to 
CRA”.  A negative change shows improvement in the metric value when inequity is considered.  Moving from left 
to right, Figure 19 also shows how these changes evolve as congestion is more heavily weighted.  Examining Figure 
19 reveals that considering inequity in the objective function always produces significant decreases in the inequity 
metric and that these reductions become larger as the emphasis of congestion is increased.  The reduction of inequity 

 
Figure 18.  Prioritization Criteria Comparison for "Equal Delay and Congestion" with Inequity 

 
Figure 19.  Percent Change from Including Inequity for "Time to CRA" 
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is also paired with an increase in delay for every weighting factor except the “congestion only” case.  The impact of 
inequity on congestion varies as congestion is more heavily weighted, in some cases causing an increase, in others a 
decrease.  What is important to note is the magnitude of the changes in the metrics.  Considering inequity in the 
objective decreases inequity between 34% and 95%, while providing maximum increases in delay and congestion of 
less than 8% and 5%, respectively. 

Figure 20 shows the impact of inequity on metric values for the “time spent in CRA”.  Again, we see a 
significant decrease in inequity; however the trend in decrease varies as congestion is emphasized.  An increase in 
delay results from the consideration of inequity in every case, except for the “congestion only” case.  And again, the 
impact on congestion varies.  The decrease in inequity ranges between 37% and 93%, while the maximum increases 
in delay and congestion are less than 15% and 9%, respectively. 

Figure 21 shows the impact of inequity on metric values for the "combined prioritization”.  Again, significant 
decreases in inequity are shown, and the pattern of greater decreases in inequity as congestion is more heavily 
weighted emerges, like those shown in Figure 19 for “time to CRA”.  Moving from left to right we see an increase 
in the change in delay, with the exception of the “congestion only” case.  The impact on congestion from inequity 
varies.  The decrease in inequity ranges between 41% and 93%, while the maximum increases in delay and 
congestion are less than 12% and 10%, respectively.   

 
Figure 20.  Percent Change from Including Inequity for "Time Spent in CRA" 
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VI. Conclusions 
In this research, the implementation of GRASP, a stochastic heuristic search procedure, was investigated for its 

merits in generating improved solutions for airspace congestion problems.  Previous research15 showed improved 
solution quality, as compared to results provided by a deterministic greedy heuristic, when optimizing single metric 
objectives within the congestion resolution framework.  This research extended previous research by developing 
alternative prioritization criteria that provide heuristic for producing good solutions.  Furthermore, the new and old 
criteria were used to generate solutions under a multi-metric objective, to analyze both the quality of the 
prioritization criteria and trade-offs in the relative priorities of different metrics as they impact airspace congestion 
resolution performance. 

The choice of prioritization criteria, in combination with the selected score functions, defined the relative 
probability of a flight being selected.  By defining the new set of score functions which used the combined 
prioritization criteria, new distributions were identified that provided a compromise between the individual criteria.  
The “combined prioritization” almost always provided the median metric value of the three prioritization criteria.  
Unlike “time to CRA” and “time spent in CRA” which would provide the best or worst metric values depending on 
the specific case, the “combined prioritization” could be consistently employed, regardless of objective function 
choice, to obtain reasonably good solutions.  However, there were cases where the combined prioritization criteria 
did not perform as well.  This suggests further research is needed to identify an alternate criterion or another factor 
to be included in the combined prioritization criteria that will improve solution quality in all cases identified. 

This research considered the delay-congestion trade-off in depth, examining multiple relative weightings of 
delay and congestion using the prioritization criteria selected.  The results show that considering heavily emphasized 
objectives provided almost the same performance of the prioritized metric and significantly improved results for the 
other metric.  This point was further emphasized in the results where inequity was considered.  Although, 
considering inequity in the objective sometimes yielded an increase in delay and congestion for the given weighting, 
a significant reduction in inequity was obtained.  Strikingly, the consideration of inequity in the “congestion only” 
case produced a reduction even in delay, further illustrating both the inherent connection of these metrics and the 
need to evaluate solutions using a multi-metric objective.  Further research analyzing alternative weightings of 
inequity may reveal that a lower weighting on inequity can provide almost identical congestion and delay results 
while still providing a reduction in inequity. 

The analysis and conclusions presented in this research are based on a sample problem that is small in size by 
design to permit an in-depth analysis of the problem.  However, further research into the impacts of GRASP on 

 
Figure 21.  Percent Change from Including Inequity for "Combined Prioritization" 
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solution quality using larger, more complex problems is desirable.  As the design space increases, the differences in 
solution quality from different prioritization criteria could become much larger, providing a more clear selection in 
the choice of heuristic and relative metric weightings. 
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