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ABSTRACT
Data integration systems often provide a uniform interface,
called a mediated schema, to a multitude of disparate data
sources. To answer user queries posed over the mediated
schema, such systems employ a set of semantic matches be-
tween this schema and the local schemas of the data sources.
Finding such matches is well known to be difficult. Hence
much work has focused on developing semi-automatic tech-
niques to efficiently find the matches. In this paper, how-
ever, we consider the complementary problem of improving
the mediated schema, to make finding such matches easier.
Specifically, a mediated schema S will typically be matched
with many source schemas. Thus, can the developer of S
analyze and revise S in a way that preserves S’s semantics,
and yet makes it easier to match with in the future?

We describe mSeer, a solution to this problem. Given
a mediated schema S, mSeer first computes a matchabil-
ity score that quantifies how well S can be matched against.
Next, mSeer generates a matchability report that shows where
the problems in matching S come from. Finally, mSeer auto-
matically suggests changes to S (e.g., renaming an attribute,
reformatting data values, etc.) that it believes will preserve
the semantics of S and yet make it more amenable to match-
ing. The creator of S is free to accept or revise the changes
suggested by mSeer. We present extensive experiments over
several real-world domains that demonstrate the effective-
ness of our approach.

1. INTRODUCTION
Data integration has been a long-standing challenge in

the database and AI communities. The main integration
approaches (whether they employ virtual integration, data
warehouses, or information exchange via messaging) rely on
development of a neutral schema and mappings between the
neutral schema and the schemas of local data sources. In
the remainder of this paper, we call this neutral schema a
mediated schema.

To create the required mappings, a data integration sys-

.

tem uses a set of semantic matches between the mediated
schema and the source schemas. Creating such matches is
well-known to be laborious and error prone. Consequently,
many semi-automatic schema matching solutions have been
proposed. Much progress has been made (see [24, 22, 10]
for recent surveys), and today schema matching has become
a vibrant research area. No satisfactory solution however
has yet been found, and the high cost of finding the cor-
rect semantic matches continues to pose a bottleneck for
the widespread deployment of data integration systems.

To address this problem, in this paper we propose to open
another attack direction, by considering the complemen-
tary problem of revising the mediated schema to improve
its matchability. Specifically, when creating the mediated
schema S, can a developer P analyze and revise S in such a
way that preserves S’s semantics, and yet makes it easier to
match with in the future? The ability to do this can prove
quite helpful in many common integration scenarios, as the
following example illustrates.

Example 1.1. A developer P often must add new data
sources to an existing data integration system I. To do so, P
must match the schemas of the new sources with S, the me-
diated schema of I, using a matching tool M . (Typically P
must also elaborate the found matches into mappings, which
are for example full-fledged SQL expressions, using a tool
such as Clio [30]; however, this mapping-creation step is out-
side the scope of this paper.) In all cases within this example,
if P can design S to be more amenable to matching, then P
could match S with the new source schemas more accurately
and quickly.

As another example, following recent trends of provid-
ing Web-based services, many integration systems (especially
those in scientific domains) are being “opened up”, so that
members of the user community can easily add new data
sources via a GUI (e.g., [23]). To add a source T , a user U
must eventually invoke a matching tool M (provided at the
system site) to match T ’s schema with the mediated schema
S, then sift through the results to fix the incorrect matches.

As yet another example, developers often “compose” inte-
gration systems, i.e., take an integration system I, treat it as
a single source, then integrate it with a set of other sources
to build a higher-level integration system. In such cases, the
mediated schema S of I will often be matched with other
mediated schemas.

The problem of improving the matchability of mediated
schemas is therefore appealing, but also raises difficult ques-
tions. Can we make a mediated schema S “match aware”
and yet respect other traditional design goals (e.g., making
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S easy to understand and query)? Given an initial version
of S, what does it mean to analyze S with respect to match-
ing? How can we revise it? How do we know if a revision
will improve the matchability of S? How can we find such
revisions efficiently?

In this paper we provide initial answers to these questions.
Specifically, we describe mSeer (shorthand for “match seer”),
an approach to help a designer analyze and revise a medi-
ated schema to improve its matchability. As a first step,
we focus on improving 1-1 matching (e.g., location = ad-

dress) for relational mediated schemas, a common scenario
in practice [24]. Besides its conceptual simplicity, 1-1 match-
ing allows us to focus on analyzing the fundamental reasons
for matching errors and thus provides a good starting point.
We leave more complex matches and data representations
as future work.

We begin by observing that in practice, when designing a
mediated schema, developers often design multiple schemas:
an internal schema Si, serving to capture all relevant as-
pects of the integration domain, and one or several external
schemas S1

e , . . . , Sn
e , serving as user query interfaces. Thus,

our goal is to improve only the matchability of Si (against
which developers match source schemas or higher-level tar-
get schemas). This way, we can improve the accuracy of the
matching process while respecting the very different design
goals for the external schemas (e.g., being easy to under-
stand and query).

Next, we motivate and define matchability score, which
quantifies how well an internal mediated schema Si matches
future schemas. Such a score has not been proposed before.
We then show how to estimate this score, using a synthetic
workload W that approximates the set of future schemas
and is generated automatically from Si.

Using the above notion of matchability score, we then an-
alyze different types of matching mistakes, and show how to
produce a report that identifies potential matching mistakes
of Si. Given this report, a developer P can already revise
Si to address the mistakes.

Manually finding good revisions, however, is difficult and
tedious. Hence, in the final step, we show how to automat-
ically discover a good set of revisions, which we present to
P in form of a revised schema S∗

i . Developer P is free to
accept, reject, or modify further these suggested revisions.

While our main work (as described above) assumes that
Si is a relational schema, our analysis shows that the “single-
appearance” nature of relational schemas (i.e., one name and
one data format per attribute) makes it difficult to match
certain attributes. Consequently, we propose a simple multi-
appearance extension to relational schemas. We show that
if Si is designed in this extension, then we can better revise
it using mSeer, thereby significantly improving its matcha-
bility.

In summary, we make the following contributions:

• Establish that it is feasible to automatically revise a
mediated schema to make it more amenable to match-
ing.

• Define “matchability” to quantify the amenability of
a mediated schema to matching, and show how to es-
timate it.

• Provide an analysis of reasons for incorrect matching,
and a method to identify these reasons for a given me-
diated schema, using the above notion of matchability.

• Provide an algorithm that finds a set of good revisions
to a mediated schema, to improve its matchability.

• Propose a simple multi-appearance extension to the
relational representation that mSeer can exploit to sig-
nificantly increase schema matchability.

• Extensive experiments over four real-world domains
with several matching systems. The results show that
mSeer can reveal fundamental reasons for incorrect
matches and can revise mediated schemas to substan-
tially improve their matchability.

The paper is organized as follows. Sections 2-5 describe the
mSeer solution. Section 6 presents the experiments. Sec-
tion 7 discusses related work, and Section 8 concludes.

2. PROBLEM & SOLUTION OVERVIEW
We now briefly overview the problem and the proposed

solution, to provide a context for the subsequent sections.

Multiple Mediated Schemas: We begin by considering
the process of creating a mediated schema S. A developer P
often wants S to satisfy multiple design objectives [25, 21,
28]. Since S functions as a query interface, P often wants
S to be concise (i.e., containing relatively few attributes),
so that users can quickly comprehend and pose queries over
S. At the same time, P also wants S to be comprehensive,
i.e., to meet user requirements. Other design objectives for
S include “attribute names and values should be easy for
users to understand” and “the ordering of attributes should
roughly reflect the orderings at the source schemas” (see [28]
for more details).

Clearly, it is difficult to create a single schema S that sat-
isfies all these conflicting objectives. So in practice P often
creates multiple mediated schemas: an internal schema Si

and several external ones S1

e , . . . , Sn
e [25]. P designs the in-

ternal schema Si to be comprehensive, and uses it to match
with the source schemas. P designs the external schemas
S1

e , . . . , Sn
e to be user query interfaces, and often defines

them as views over the internal schema Si.

Revising the Internal Mediated Schema: In this pa-
per we will consider the above setting of multiple mediated
schemas. In this setting, since P matches source schemas
with only the internal mediated schema Si, we will con-
sider the problem of revising Si to improve its matchability.
Specifically, let M be the tool employed by developer P to
match schemas (or by the system site to match the schemas
of the sources supplied by users; see Example 1.1). Then we
will revise Si to improve its matchability with respect to M .

It is important to note that revising the internal mediated
schema Si this way would not affect other traditional design
objectives. First, it would not affect the comprehensiveness
of Si, because we do not propose to drop or add any new
attribute when revising Si (see Section 5). And second,
such revisions may necessitate revising the view definitions
of external schemas S1

e , . . . , Sn
e (over Si). But it should not

affect these schemas themselves, as well as the important
design objectives placed on them (e.g., being concise, easy
to understand, etc.).

The mSeer solution: Suppose P has created an initial
version of the internal mediated schema Si. Then to help P
revise Si, mSeer provides three services: computing a match-
ability score, generating a report of potential matching mis-
takes, and suggesting schema revisions.
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As a start, P can simply ask mSeer to compute a score
that quantifies how well Si can be matched in the future,
using M . This requires relatively little effort from P (just
supplying Si and M), and yet can already prove quite useful.
For example, if the matchability score is low, then P may
consider replacing matching tool M , or allotting more time
for matching activities (in anticipation of having to correct
more matching mistakes than initially expected).

Next, P can ask mSeer to generate a report that describes
the potential matching mistakes and makes high-level sug-
gestions for fixing them. P can then use the report to revise
Si. At the minimum, the report can alert P of “obvious
problems” (e.g., two attributes with almost identical names
and very similar data values) that are hard to spot in a large
mediated schema, thus allowing P to quickly fix them. But
it can do much more. Section 6 shows how such reports can
also identify non-obvious, yet important potential problems
for matching.

Finally, even if P recognizes potential matching problems,
it is often still far from obvious how best to revise Si, given
the large number of potential revisions, and the complex
interaction among them. To address this problem, P can
ask mSeer to suggest a revision of Si. mSeer then searches a
space of schemas judged to be semantically equivalent to Si,
to produce a schema S∗

i that has higher matchability than
Si. P can then accept, reject, or revise S∗

i .
We now describe the three mSeer services in detail.

3. SCHEMA MATCHABILITY
We now introduce schema matchability and show how to

estimate it. Henceforth, for simplicity, we will use the phrase
“schema S” to refer to the internal mediated schema Si,
whenever there is no ambiguity.

3.1 Defining Schema Matchability
Recall from Section 2 that our goal is to improve the

matchability of the internal mediated schema S with respect
to a matching tool M . A reasonable way to interpret this
notion of matchability is to say it measures on average how
well S can be matched with future schemas, using M .

Under this interpretation, if we know T = {T1, . . . , Tn},
the set of all the future schemas that will be matched against
S (of course, we often do not know T ), then we can formalize
matchability as

m(S, T , M) =
ˆ

X

Ti∈T

accuracy(S, Ti, M)
˜

/n (1)

where m(S,T , M) is the matchability score of S with re-
spect to T and M , and accuracy(S,Ti, M) is the accuracy
of matching S with Ti using M . While in principle, any
measure of matching accuracy can be used, we will use F1,
a popular measure [8, 18, 19], to define accuracy(S,Ti, M).
Specifically, suppose that applying M to schemas S and Ti

produces a set of matches O. Then the accuracy of matching
S and Ti using M is accuracy(S, Ti, M) = 2PR/(P + R),
where precision P is the fraction of matches in O that are
correct, and recall R is the fraction of correct matches that
are in O.

In addition to matchability, we also define the notion of
matching variance, denoted as v(S, T , M), to capture the

variance in the accuracy of matching S with future schemas:

v(S, T , M) =
ˆ

X

Ti∈T

(m(S,T , M) − accuracy(S, Ti, M))2
˜

/n.

Our goal will be to revise S to maximize its matchabil-
ity (breaking ties among revisions by selecting the one that
produces the lowest variance). However, computing schema
matchability and variance as defined above requires know-
ing the future schemas Ti as well as the correct matches
between these schemas and S (without which we cannot
compute precision P and recall R). This is rarely possible.
Hence, we show how to estimate schema matchability and
variance using synthetic matching scenarios.

3.2 Estimating Schema Matchability
We estimate schema matchability by adapting a technique

proposed in the recent eTuner work [26]. eTuner attacks a
very different goal, namely how to tune a matching system
to maximize accuracy. It however also faces the problem of
finding T = {T1, . . . , Tn}, the future schemas that will be
matched with S. eTuner solves this problem by applying
a set of common transformation rules to the schema and
data of S, in essence randomly “perturbing” S to generate
a collection of synthetic schemas V = {V1, . . . , Vm}.

For example, suppose that S consists of the sole table
EMPLOYEES in Figure 1.a. Then eTuner can apply the rule
“abbreviating a name to the first three letters” to change the
table name EMPLOYEES to EMP, then the rule “merging
two neighboring attributes that share a suffix, and renaming
it with their common suffix” to merge the first-name and last-

name attributes, and the rule “replacing ,000 with K” to the
data values of column salary of the table. The resulting table
is shown in Figure 1.b. The paper [26] describes an extensive
set of such rules, including those that perturb (a) the set of
tables (e.g., joining two tables, splitting a table), (b) the
structure of a table (e.g., merging two columns, removing
a column, and swapping two columns), (c) the names (e.g.,
abbreviating names, adding prefixes), and (d) the data (e.g.,
changing formats, perturbing values). We note that these
rules are created only once by eTuner, independently of any
schema S.

Since eTuner generates schemas V = {V1, . . . , Vm} from
S, clearly it can trace the generation process to infer the
correct matches Ω = {Ω1, . . . , Ωm} between these schemas
and S. Hence, the set V , together with the correct matches,
form a synthetic matching workload W = {(Vi, Ωi)}1..m that
is an approximation of the true future workload T .

The synthetic workload idea can be adapted directly to
our current context. Given a schema S, we first perturb S to
generate a synthetic workload W = {(Vi, Ωi)}1..m (see [26]
for the detailed algorithm). Next, we use M to match S with
each schema Vi in W . Since we know Ωi, the correct matches
between S and Vi, we can compute accuracy(S,Vi, M). We
then return the average of accuracy(S,Vi, M) over all schemas
in W as our estimate of the true matchability score of S. We
estimate the matching variance of S in a similar fashion.
While matchability scores estimated with synthetic work-
loads will differ from those computed with real future work-
loads, it will suffice for the matchability rankings to be sim-
ilar (see Section 6.2).

Note that the above matchability estimation process re-
quires data instances for schema S. To maximize accuracy,
schema matching systems increasingly make use of such data
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id    first-name     last-name        salary
1        Mike               Brown 42,000 
2        Jean                Laup 64,000 
3        Bill                 Jones           73,000 
4        Kevin             Bush            36,000 

EMPLOYEES

(a)

id      name                salary
1     Mike Brown       42K 
2     Jean Laup 64K
3     Bill Jones           73K 
4     Kevin Bush        36K

EMP

(b)

id    first-name     last-name        salary
1        Mike               Brown 42,000 
2        Jean                Laup 64,000 
3        Bill                 Jones           73,000 
4        Kevin             Bush            36,000 

EMPLOYEES

id    first-name     last-name        salary
1        Mike               Brown 42,000 
2        Jean                Laup 64,000 
3        Bill                 Jones           73,000 
4        Kevin             Bush            36,000 

EMPLOYEES

(a)

id      name                salary
1     Mike Brown       42K 
2     Jean Laup 64K
3     Bill Jones           73K 
4     Kevin Bush        36K

EMP

(b)

Figure 1: An example of schema perturbation

instances [9]. Hence, we want to analyze both the schema and
data of S and propose changes to both. To do so, mSeer re-
quires developer P to supply several sample data instances
for S (as a part of the input). Section 6.6 shows that mSeer

works well with only a few (3-5) instances, thus not imposing
an excessive burden on developer P .

4. ANALYZING SCHEMA MATCHABILITY
We now describe the report generator, the second mSeer

service. Given an internal mediated schema S, the generator
produces a report that lists the matchability and variance
of S and the main reasons for matching mistakes.

Figure 2 shows such a report. The report first describes
schema S and the matching system M (e.g., Product1 and
iCOMA in this case, see Section 6). Next, the report shows
that S has a matchability 0.76 and variance 0.09 (over a
synthetic workload of 20 schemas).

Next, the report tries to explain why S obtains a some-
what low matchability of 0.76. A reasonable way to explain
this is to list the attributes of S, together with their match-
ability scores (so that developer P can get a sense about
which attributes of S are difficult to match).

The matchability score of an attribute can be defined in a
similar fashion to that of a schema (see Section 3.1). Then
it can be estimated as follows. Let s be an attribute of S.
Suppose that when matching S with schemas V1, . . . , Vn of a
synthetic workload W using a matching system M we obtain
a set K of matches that involve s (i.e., matches of the form
s = t, t ∈ Vi, i ∈ [1, n]). Then s’s estimated matchability
with respect to W and M is m(s,W, M) = 2PR/(P + R),
where P is the fraction of matches in K that are correct,
and R is the fraction of correct matches involving s (and
between S and the Vi’s) found in K.

The report shows the most-difficult-to-match attributes
first. For example, the report in Figure 2 shows that at-
tribute discount is the most difficult to match, with match-
ability 0.47.

Still, just showing that discount is difficult to match is not
very informative for developer P . Hence, the report goes
one step further, trying to explain the common matching
mistakes involving discount and make suggestions on how to
fix them. In Figure 2, the report lists two reasons R1 and
R3 for discount. Reason R1 for example states that iCOMA

predicted spurious matches for discount, such as discount

= discontinued. To fix this mistake, the report suggests to
pick a more distinctive name for discount. Section 6 provides
examples of mistakes identified and suggestions made by the
report on real-world schemas.

In the rest of this section we will first identify a set of com-
mon matching mistakes. Then we describe how to generate
a report such as the above one.

4.1 Common Matching Mistakes
In what follows, we use the term appearance to refer to

Schema: Product1, Matching System: iCOMA
Product1 has matchability 0.76 and variance 0.09 (synthetic workload: 20 schemas)

(1) Attribute “discount”, data values = 0.00, 0.15, 0.20, …
Correctly matched 11 out of 20 times, matchability 0.47

Reason R1: (3 times) “discount” has no match, but iCOMA predicts a match t
Example: t = “discontinued” of schema S2, data values = 0, 1, …
Suggestion: revise the name or the data format of “discount” to move “discount”

away from “discontinued”
Reason R3: (6 times) “discount” matches t, but iCOMA predicts a match t’
Example: t = “disc_price” of schemaS3, data values = 0.00, 15.00, 20.00, …

and t’= “discontinued” of schemaS3, data values = 0, 1, …
Suggestion: revise the name or the data format of “discount” to move 

“discount” closer to “disc_price” and away from “discontinued”
(2) Attribute “ship_via”, data values = 1, 3, 7, …

Figure 2: A sample matchability report

the name and the data format of an attribute. We divide
matching systems into local and global ones, and start our
analysis with the local ones.

4.1.1 Mistakes with Local Matching Systems
A local matching system M matches two attributes s and

t by analyzing their appearances to compute a similarity
score sim(s, t), then declaring s = t, if sim(s, t) ≥ ǫ for a
pre-specified ǫ. M is local in that it decides if s matches
t based solely on sim(s, t), not on any other matches (as
global systems that we describe later do). Examples of such
systems include many of those from the COMA++ matching
library [1], the LSD basic system (without the constraint
handler) [9], and Semint [17].

Now consider applying M to schemas S and V , where V is
a synthetic schema, and consider attribute s ∈ S. Matching
mistakes involving s fall into three cases:

Case 1. Predict a Spurious Match: s = none, i.e.,
it has no match, but M predicts s = t, where t ∈ V . This
implies that sim(s, t) ≥ ǫ. The fundamental reason is that

R1: the appearances of two non-matching at-
tributes s and t are too similar.

To solve this problem, we should change the appearance of s
to “move it away” from t. This can reduce sim(s, t), thereby
reducing the chance that M matches s with t. For example,
if s has name “elec.” (shorthand for “elective”) with values
“yes” and “no”, and t has name “electricity” also with values
“yes” and “no”, then their appearances are too similar. To
address this, we can expand s’s name to “elective” and use
values “1” and “0”. As another example, if s has name
“salary” with values “53000”, “65500”, etc., it can be easily
confused with “zip code” (with values “53211”, “60500”,
etc.), if in computing similarity scores M gives data value
similarities a large weight. To address this, we can insert
into the data values of s characters that never occur in zip
codes (e.g., change “53000” into “53,000”) to “pry” these
two attributes apart.

Case 2. Miss a Match: s = t, but M predicts s = none.
This implies sim(s, t) < ǫ. The fundamental reason is that

R2: the appearances of two matching attributes
s and t are very different.

Examples include “yes/no” vs. “1/0”, and “02.07.07” vs.
“Feb 07, 2007”. This is the reverse of Case 1. To solve
this, we can change s’s appearance to “bring it closer” to t.
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In many cases, however, this will not completely solve the
problem. To see why, consider the following example.

Example 4.1. Suppose the synthetic workload W con-
tains 100 attributes that match s: 60 attributes with data
values “yes/no”, and 40 with data values “1/0”. Then no
matter how we change s’s data format, to “yes/no” or to
“1/0”, M will fail to match s in at least 40% of the cases.

Fundamentally, the problem is that in the future schemas,
the attributes that match s can appear in many different
formats. Hence if s appears in just a single format, it may
fail to match many such attributes. To address this problem,
we propose a multi-appearance representation, which we will
discuss shortly.

Case 3. Predict a Wrong Match: s = t, but M
predicts s = t′. The mistake in this case is two-fold. First,
M fails to predict the correct match s = t, which implies
sim(s, t) < ǫ. Second, M predicts instead a wrong match
s = t′, which implies sim(s, t′) ≥ ǫ. Thus the reason is that

R3: s is more similar to a non-matching attribute
t′, and less so to matching attribute t.

To avoid this, we should change the appearance of s such
that it moves “closer” to t, to increase sim(s, t), and “away”
from t′, to reduce sim(s, t′). This case thus in a sense com-
bines Case 1 and Case 2.

Changing the appearance of s is relatively easy when t and
t′ are quite different. The more similar t and t′ are, the more
difficult this task becomes. In the extreme case, when t and
t′ are “almost identical” in their appearances, such changing
may be impossible. For example, let s be “stime” (shorthand
for “start time”). Suppose t and t′ are “time1” and “time2”,
respectively, and suppose that all three attributes s, t and
t′ have very similar values (e.g., “3:05am”, “4:00pm”, etc.).
Then t and t′ are so similar that it is virtually impossible to
change s so that it would have a higher chance of matching
correctly. Fundamentally, this is because the future schema
T is ill-designed, by having two almost identical attributes.
In this case, there is not much we can do on schema S.

4.1.2 Mistakes with Global Matching Systems
A global system M matches two attributes s and t by

examining not just their appearances, but also external in-
formation, such as domain constraints [9] and special filters
[19]. M exploits such information to revise similarity scores
and match selections.

With a global system M , matching mistakes involving s
still fall into Cases 1-3 described earlier. However, the un-
derlying reason for a mistake may be quite different. Con-
sider for example Case 2: s = t, but M predicts s = none. If
M is local, then by the definition of local systems, we know
that sim(s, t) < ǫ and that this is the fundamental reason
why M misses match s = t.

s1
s2 sn-1 sn

t1
t2 t n-1 tn

1.0 0.8 0.7

. . .  . . .

. . .  . . .

0.7 0.8 0.7

0.8

Figure 3: A matching scenario in a global system

However, if M is global, the reason for missing s = t may
be rather involved. It may even be the case that sim(s, t) ≥

ǫ and yet M suppresses s = t, perhaps because t has been
matched with another attribute s′ and hence can no longer
be matched with s, due to some constraint. In general,
matches in a global system can influence one another in a
rather complex fashion, as the following example illustrates:

Example 4.2. Figure 3 shows a matching scenario with
attributes s1, . . . , sn and t1, . . . , tn of S and V , respectively.
Here an edge si − 0.7 − tj denotes that sim(si, tj) = 0.7;
there is no edge between si and tj if sim(si, tj) = 0.

Suppose that a global matching system M imposes the con-
straint that each attribute participates in at most one single
match (e.g., [19]). Suppose further that M starts by select-
ing as a match the edge with the maximum score, and hence
predicts s1 = t1. Since t1 is already involved in this match,
M has no choice for s2 but to predict s2 = t2, and so on, un-
til it predicts sn = tn. Now suppose that the correct matches
are sn = tn−1, sn−1 = tn−2, . . ., s2 = t1, and s1 = tn.
Then clearly the incorrect decision to match s1 and t1 has
caused a chain of cascading matching errors, all the way to
sn and tn.

Because of such cascading errors, pinpointing the exact rea-
sons for matching mistakes of global systems can be very
difficult. Consequently, we currently focus on identifying
some common reasons for mistakes, rather than conducting
a comprehensive mistake analysis for global systems.

Specifically, when Case 2 or Case 3 happens (i.e., s = t,
but M predicts s = none or s = t′), and sim(s, t) ≥ ǫ,
clearly Reasons R1 − R3 do not apply. In this scenario, we
have observed that a very common reason is that

R4: s is dominated by an attribute s′ ∈ S.

By “dominating”, we mean that sim(s′, t) ≥ sim(s, t) (re-
call that t is the correct matching attribute for s). In this
case, M often incorrectly matches s′ with t. Then, due to a
constraint such as “each attribute can participate in a single
match”, M can no longer match s with t. Consequently, it
either declares s = none, leading to a mistake of Case 2, or
s = t′, leading to a mistake of Case 3.

An extreme example of the domination scenario is when
s and s′ are “almost identical” (e.g., “time1” and “time2”,
with very similar data values “3:05am”, “4:00pm”, etc.). In
this case, s = t and s′ = t often have identical similarity
scores, and M ends up guessing wrong 50% of the time.

To address the domination problem, we should change the
appearances of s′ and s so that s is “moved closer” to t and
s′ is “moved away” from t.

Summary: Table 1 briefly lists the conditions, likely rea-
sons, and suggestions we have discussed so far, for both local
and global systems. The first row of this table, for exam-
ple, states that if s = none, but M predicts s = t, and
sim(s, t) ≥ ǫ, then R1 is a likely reason, and developer P
should consider changing the appearance of s to “move it
away” from t. The report generator uses this table to iden-
tify likely matching mistakes (see Section 4.2).

4.1.3 Multi-Appearance Representation
We have seen from the discussion in Case 2 that in the

future schemas the attributes that match s ∈ S can appear
in many different formats. Hence if s appears in just a single
format (as is the case today), it may fail to match many
such attributes. To address this problem, we experimented
with a multi-appearance representation (MAR) for such an
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Table 1: Conditions, reasons, and suggestions used in report generation

attribute s, by creating different relational views over s, and
enforcing the constraint that any attribute that matches one
of these views must also match s.

To illustrate, consider again Example 4.1. Suppose s is
“waterfront” with values “1/0”. Then we can create a view
v1 over s, with name waterfront1 and data values “yes/no”,
then treat v1 as another attribute of schema S. Next we
enforce the constraint that any attribute t that matches v1

must also match s, and vice versa. This ensures that no
matter whether t takes values “yes/no” or “1/0”, we can
match t with s.

Creating such views in relational schemas should incur
a moderate effort from developer P , and the views do not
have to be kept up-to-date by the minute, for matching pur-
poses. It is important to note that instead of creating views,
P can also simply record in a text document that “s can
also take “yes/no” values”. However, no matching systems
can exploit such textual information effectively today. In-
stead, virtually all of them have focused on exploiting the
schema and data of attributes. Hence, we feel that capturing
such information in views makes it more “understandable”
to matching systems.

In theory, for an attribute s, we can create as many views
as necessary, to capture all of s’s possible future appear-
ances. However, doing so can often make s “confusable”
with other attributes, and hence can quickly decrease match-
ing accuracy (e.g., by causing Case 1 or Case 3). Hence,
developer P can propose such views for s, but P should let
mSeer decide which views to keep. The experiment section
shows that the use of such views as decided by mSeer can
significantly improve matching accuracy.

4.2 Generating a Matchability Report
We are now in a position to describe the end-to-end work-

ing of report generation. Given a schema S, mSeer first
generates a synthetic workload W . Next, mSeer applies the
matching tool M to match S and schemas in W , then com-
putes S’s matchability and variance for the report.

Next, mSeer analyzes the above matching results to com-
pute matchability scores for all attributes in S, and then
displays these attributes in increasing order of their scores.
For each attribute s, mSeer then generates an analysis as
follows.

Let I be the set of all incorrect matches involving s (from
workload W ). mSeer finds the reason for each of these incor-
rect matches. Currently these reasons are R1−R4 in Table 1
(or OTHER if none applies). mSeer then groups matches
in I based on their reasons, producing at most five groups.
Next, mSeer reports each group as a triple (R, E,S): R is

the reason, E is a concrete example to illustrate the reason,
and S is a suggestion (to be described below). mSeer lists
triples (R, E, S) in decreasing order of the corresponding
group size (i.e., the number of matches in the group).

Within each group, mSeer selects as example E the incor-
rect match m that can be fixed most easily, since developer
P seems likely to attempt to fix m first. Specifically, for
group R1, mSeer picks m with the lowest similarity score.
For R2, it picks m with the highest similarity score. For
R3, where s = t, but M predicts s = t′, it picks m that
minimizes [sim(s, t′) − sim(s, t)]. For R4, where s is domi-
nated by s′, it picks m that minimizes [sim(s′, t)−sim(s, t)].
mSeer then generates suggestion S by replacing variables in
suggestion template with those in example E.

5. IMPROVING SCHEMA MATCHABILITY
Given a schema S, developer P can employ the report

generator as described earlier to identify potential match-
ing mistakes of S, then revise S to address these mistakes.
Manually finding good revisions, however, is difficult and
tedious. The revision advisor, the third mSeer service, ad-
dresses this problem. It automatically discovers a good set
of revisions, then presents them to P , in form of a revised
schema S∗. P is free to accept, reject, or modify further
these suggested revisions.

We now describe the revision advisor. Clearly, the advi-
sor can only suggest revisions that retain the semantics of
S (e.g., it cannot suggest P to drop an attribute). Hence,
we start by defining the notion of semantically equivalent
transformation rules (or SE rules for short). Later we de-
scribe how the revision advisor finds a good set of SE rules
to apply to S.

5.1 SE Transformation Rules
Let r be a transformation rule and r(S) be the schema

obtained by applying r to a schema S. Intuitively, we say
that r is a semantically equivalent (SE) rule if for any schema
S, S and r(S) are semantically equivalent, i.e., creator P can
use r(S) instead of S in his or her application.

SE rules fall into three categories: domain-independent,
special data types, and domain-dependent. Examples of do-
main-independent rules are “replacing data values “yes” with
“1” and “no” with “0””, “abbreviating a table name to its
first three letters”, and “merging two tables based on some
join path to create a new table”. Examples of rules that
cover special data types are “if s is a date attribute, then
reformat s’s values as “06/03/07””, and “if s is a price,
then insert “$” to front of data values”. Finally, an exam-
ple of domain-dependent rules is “replacing attribute name
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Converts categorical value representation (e.g., Fireplace = “yes/no”� Fireplace = “1/0”).change-category-valuesCategorical

Changes data formats of special data types (e.g., Date = “12/4”� Date = “Dec. 4”).change-data-formatSpecial-type

Converts the unit of the numbers (e.g., Price = “14,500”� Price = “14.5 K”).convert-unitNumeric

Data

Uses synonyms (e.g., PostalCode� Zip).use-synonym

Expands acronyms (e.g., SSN� SocialSecurityNumber).expand-acronym

Expands common abbreviations (e.g., Qty� Quantity).expand-abbreviation

Dictionary-based

Appends the data type of the attribute to its name (e.g., appending Phone to attribute Office).append-data-type

Adds the table name to the attribute name as prefix.prefix-table-name

Syntactic

Name

Drops the first token of the name (e.g., ContactName� Name).drop-prefix

merge-attributes

split-table

merge-two-tables

Rules

Splits a table into two, and duplicates key attributes in both tables.

Table-level

Schema-level

Sub-categories

Merges two tables based on their join path to create a new table.

Merges multiple attributes into one (e.g., merging Day, Month, Year into Date).

Structure

DescriptionsCategories
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Structure

DescriptionsCategories

Table 2: Classification of SE transformation rules

“gName” with “gene-name””.
We have created a large set E of domain-independent and

special-data-type rules, to be used in the current mSeer im-
plementation and for our experiments. Note that these rules
are created only once, when building mSeer, not once per
schema S. We omit a detailed description of E for space
reasons, but show a high-level description in Table 2. Note
that in order to use special-data-type rules, we must recog-
nize the type of an attribute (e.g., date, price, etc.). To do
so, we employ a set of type recognizers, as described in [6].
Finally, we note that new rules can easily be added to E,
including domain-dependent ones supplied by the schema
creator P .

5.2 Searching for Optimal SE Sequences
Let E = {r1, . . . , rm} be the set of SE rules fed into mSeer,

as defined above. Abusing notation slightly, we will also use
the term “rule ri” to refer to a particular application of ri

to a schema S (i.e., ri captures both the rule itself and an
instance of applying it to an attribute of S), when there is
no ambiguity.

Then given a schema S, we use seq(S) to refer to the
schema that results from sequentially applying rules seq =
(r1, . . . , rn), where ri ∈ E for i ∈ [1, n], to S. Note that
SE rules are “transitive”, in that seq(S) is also semantically
equivalent to S.

Intuitively, then, the goal of mSeer is to find a sequence
seq∗ that when applied to S yields a schema S∗ with maxi-
mum matchability. Formally, seq∗ = arg maxseq∈S m(seq(S)),
where S is the set of all sequences of SE rules in E and
m(seq(S)) is the matchability of schema seq(S). mSeer then
faces two key challenges: how to estimate m(seq(S)) and
how to find seq∗ efficiently. To address the first challenge,
mSeer employs synthetic workloads, in the spirit of comput-
ing matchability that we have described so far. To address
the second challenge, mSeer employs look-ahead heuristics
to cope with the infinite search space. The result is two al-
gorithms HC and Batch, which approximate seq∗, and which
we now describe in detail.

5.2.1 Algorithm HC
This algorithm employs hill climbing to find the best rule

at each step. First, HC generates a synthetic workload W
from S (see Section 3.2) to approximate future matching
scenarios involving S. When deriving the schemas in W ,
the workload generator also logs the applied transformation
rules RL, which will be used later (see below for details).
HC uses W to compute the matchability m(S) of S. Then

HC generates all schemas S1, . . . , Sn that can be obtained
from S by applying a single SE rule in E.

Next, for each schema Si, HC computes its matchability
m(Si). To do so, HC does not employ workload W (as we
explain below). Rather, it generates a new workload Wi

from both Si and the logged rules in RL. It generates Wi

by applying RL to Si, in the same way it generates W . After
that, HC employs Wi to compute m(Si).

The reason HC employs Wi rather than W is because W
approximates matching scenarios involving S but not Si. To
compute m(Si), we need a workload Wi of Si. Moreover, in-
stead of randomly perturbing Si to generate Wi, HC applies
the logged rules RL to Si so that Wi is closest to W . In
this way, HC compares m(Si) with m(S) based on similar
matching scenarios.

Let Sk be the new schema with the highest matchabil-
ity, i.e., m(Sk) = maxn

i=1 m(Si). If [m(Sk) − m(S)] < θ
(currently set to 0.005), then HC terminates, returning the
schema S∗ with the highest matchability it has found so
far, together with the rule sequence that creates S∗ from S.
Otherwise, HC sets S to Sk, sets S∗ to Sk, and transforms
the workload W to Wk. It then repeats the search, starting
with Sk.

5.2.2 Algorithm Batch
In each search iteration, algorithm HC finds and applies

a single SE rule. Hence, it explores the search space rather
“slowly”, and at the same time is myopic. To address both
problems, we develop algorithm Batch. This algorithm works
exactly like HC, except that in each iteration it finds and
applies a set of SE rules, instead of a single one (see the
pseudocode in Figure 4). We now describe how Batch finds
this set of rules.

Compatible Rules: Let U be a set of SE rules. The result
of applying U to S, denoted as U(S), is meaningful only if
the rules in U are compatible, in the sense that applying
them in any order still results in the same schema U(S).
We say that two SE rules are compatible if they either apply
to different attributes, or to different aspects of the same
attribute (e.g., one applies to its name, and the other applies
to its data values). Then we say that U is a compatible set
if any two rules in U are compatible.

Finding the Best Set of Compatible Rules: In each
search iteration, Batch finds and applies a compatible set U∗

of SE rules that maximizes matchability. Unlike HC which
enumerates all rules, Batch cannot enumerate and evaluate
all compatible sets, because there are often too many of
them (if there are n SE rules, there may be up to 2n such
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Input: Schema S, set of SE rules U = {r1, r2, · · · , rn}
Output: maximal set of compatible rules U∗

1. Compute the matchability m(S) of schema S;

2. For each ri in U do

2.1 Compute the matchability m(ri(S)) of schema ri(S);

2.2 If m(ri(S)) < m(S) then

Remove ri from U ;

3. Compute the matchability m(aj , S) for each attribute aj in S;

4. Let m∗(aj) = m(aj, S), for each aj in S;

5. U∗ = φ;

6. For each ri in U do

6.1 If ri is compatible with all rules in U∗ then

Compute the matchability m(aj , ri(S)) for each aj in ri(S);

gain(ri) =
P

j max{[m(aj, ri(S)) − m∗(aj)], 0};

7. k = arg maxi(gain(ri));

8. If gain(rk) > 0 then

8.1 Remove rk from U , and add rk to U∗;

8.3 m∗(aj) = max[m(aj, rk(S)), m∗(aj)], for each aj in S;

8.4 Goto Step 6;

9 Return U∗;

Figure 4: The procedure that Batch uses to find the
best set of rules in each iteration)

sets). Consequently, Batch finds U∗ greedily as follows.
Consider the first iteration, where Batch starts with S.

First, Batch applies all SE rules to S and computes the
matchability of all resulting schemas, just like HC does,
adding those rules that produce schemas with higher match-
ability than S to a set U . Next, Batch computes the gain of
each rule in U (defined below), adds the rule with maximum
gain to U∗ (which is initially empty), recomputes the gain
of each remaining rule, then adds the rule that has maxi-
mum gain and that is compatible with all rules already in
U∗, and so on. The iteration stops when U is empty or con-
tains only rules that are either incompatible with some rules
in U∗ or of zero gain. This is the set of SE rules U∗ that
Batch uses for the first iteration. Finding U∗ for subsequent
iterations is carried out in a similar fashion (see pseudocode
in Figure 4).

Computing Gain of a Rule: All that remains is to de-
scribe computing the gain of a rule r, which measures the
potential increase in matchability that applying r can bring.
At first glance, it appears that this gain can be computed as
gain(r) = m(r(S)) − m(S), that is, the increase in matcha-
bility between S and the schema r(S) obtained by applying
r to S.

However, we found that applying this gain definition is
not effective. For example, one might have two compatible
rules, r1 and r2, that apply to the same attribute a of S
(e.g., one to a’s data values and one to a’s name). Suppose
they both increase the matchability of S. Then with the
above gain definition, Batch will add both of them to U∗.
However, it may be the case that when applied together,
they cancel the effects of each other. Consider a matching
scenario where attribute a = none, but the matching system
predicts a = b (reason R1 in Table 1). Both r1 and r2 reduce
the errors in matching a by moving a away from b. In the
meantime, however, they undesirably move a closer to some
attribute c. Although applying either rule in isolation does
not incur the incorrect match a = c, applying them both
might. This suggests that Batch should select only one rule,
which gives a higher matchability.

To alleviate this problem, we explore a different gain def-

inition. Specifically, we define the gain of a rule r to be the
total increase in matchability of the attributes a1, . . . , an of
S:

gain(r) =
n

X

i=1

max {[m(ai, r(S)) − m∗(ai)], 0},

where
• m(ai, r(S)) is the matchability of attribute ai in schema

r(S) (if ai does not exist in r(S), then we set m(ai, r(S))
to 0, indicating that r does not contribute to any gain
on matchability of ai), and

• m∗(ai) is the maximal matchability that ai has achieved
so far. m∗(ai) is initially set to be m(ai, S), the match-
ability of attribute ai in S. It is set to be m(ai, r(S))
every time Batch adds a rule r to U∗ and m(ai, r(S))
is higher than m∗(ai) at that point.

Note that gain(r) is “optimistic” in the sense that whenever
m(ai, r(S)) is lower than m∗(ai), this definition does not
“punish” r; it simply sets the contribution of r to ai to 0.
Also, it is “conservative” in the sense that it “discourages”
applying multiple rules to one attribute when subsequent
changes to the attribute do not increase its matchability
further.

6. EMPIRICAL EVALUATION
We now describe experiments with mSeer. First, we ranked

a set of schemas according to matchability with (a) synthe-
sized schemas, and (b) real schemas. The rankings strongly
agree with one another. We thus conclude that for estimat-
ing matchability, synthesized schemas provide a promising
proxy for using difficult-to-obtain real schemas.

Second, we provide anecdotal evidence that matchability
reports produced by mSeer can help a schema designer iden-
tify likely matching problems.

Third, once we had revised a schema using the revisions
suggested by mSeer, we matched it again a set of real schemas,
and showed that we could improve matching accuracy by
1.3-15.2%. We also provide real-world anecdotal evidence
that such improvements can translate into weeks of labor
saving, thus suggesting that it is well worth spending a few
hours reviewing for matchability.

Finally, we showed that (a) the multi-appearance repre-
sentation could further improve matching accuracy by 7.1%
on average, (b) mSeer is robust for small changes in the size
of the synthetic workload, and (c) it requires only a few data
instances to do well. We now describe the experiments in
detail.

6.1 Experimental Setup
Domains: For research purposes, obtaining domains with
a large number of realistic schemas is well-known to be dif-
ficult1. For our experiments, we obtained publicly available
schemas in four real-world domains, as shown in Table 3.
Variants of these schemas have been used in recent schema
matching experiments [6, 9, 26]. The domains have varying
number of schemas (5-10) and diverse schema sizes (9-50
attributes per schema). “Course” contains university time
schedules. “Inventory” describes business product inven-
tories. “Real Estate” lists houses for sale, and “Product”
stores product description of groceries.

1The largest domain that we are aware of is Thalia at
www.cise.ufl.edu/research/dbintegrate/thalia. But its schemas
are in XML, hence are not suitable for the current experiments.
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Domain # # tables # attributes

schemas per schema per schema

Course 5 3 13-16
Inventory 10 4 9-11

Real Estate 5 2 26-35
Product 5 2 46-50

Table 3: Real-world domains in our experiments

Matching Systems: For experiments described in Sec-
tions 6.2-6.5, we employed a matching system call iCOMA,
which consists of a name matcher, a decision-tree matcher,
and a combiner. The name matcher compares names based
on edit distance. The decision-tree matcher compares at-
tributes based on their values, and the combiner combines
the similarity scores of the matchers by taking their aver-
age. The name matcher and the combiner are taken from
COMA++, a state-of-the-art matching library [1], and the
decision-tree matcher is added to iCOMA from LSD [9], so
that iCOMA can exploit data instances. For sensitivity anal-
ysis in Section 6.6, we also evaluated mSeer using a revised
version of iCOMA, taken from COMA++.

Experimental Methodologies: We briefly describe the
methodology employed for the main experiments (Section 6.4).
In those experiments, for each domain in Table 3, we first
randomly selected a schema to be the internal mediated
schema S, then computed its average matching accuracy
m with respect to the remaining schemas in the domain
(treated as future schemas). Next, we applied mSeer to re-
vise S into S∗. Then we computed the average matching
accuracy m∗ of S∗, again with respect to the remaining
schemas in the domain. Finally, we report the difference
m∗ − m as an estimate of the matchability improvement of
S (using mSeer) in real-world scenarios.

6.2 Utility of the Matchability Concept
We first examine what matchability scores can tell us.

Since we estimate such scores using synthetic workloads, it
is unlikely that they will be roughly the same as the true
scores (that can be computed if we know the true set of
target schemas). However, we hoped that they would help
us rank schemas, given that such ranking lies at the heart
of schema revision.

Consequently, we want to know that if we rank a set of
schemas using (a) synthetic workloads, and (b) real schemas,
how strongly would such rankings agree. Toward this end,
in each domain, say Course, we first selected a schema S,
then perturbed it using SE rules one rule at a time, to obtain
a set of schemas S = {S1, . . . , S10}.

Next, we ranked the schemas in S in decreasing order of
their matchability scores, computed using a synthetic work-
load. Since matchability scores vary depending on the par-
ticularities of a workload, we ranked a schema Si ∈ S higher
than a schema Sj ∈ S only if their scores differ by at least
ǫ (currently set to 0.005). We call the resulting ranked list
SynList.

We then created TarList, a similar ranked list of the schemas
in S , except now we computed their matchability scores us-
ing all schemas in Course other than S as a real-world target
workload.

Finally, we computed the distance between SynList and
TarList as the ratio between the number of disagreeing pairs
(with respect to their rankings) and the total number of
pairs. This is the Kendall distance, a popular IR measure

(1) iCOMA failed to match
“discount” of schema Product1 and  “discounted” of schemaProduct1_S1

iCOMA incorrectly matched
“discontinued” of schema Product1 and  “discounted” of schemaProduct1_S1

Suggestion:  revise the name or the data format of “discontinued” to move  
“discontinued” away from “discounted”

(2) iCOMA failed to match
“P_MFGR” of schemaTPCH  and  “P_MANUFACTURER_GROUP” of schemaTPCH_S1

iCOMA predicted no match for “P_MFGR” of schema TPCH
Suggestion: revise the name or the data format of “P_MFGR” to move “P_MFGR”

closer to “P_MANUFACTURER_GROUP”
(3) iCOMA incorrectly matched 

“C_COMMENT” of schema TPCH and  “P_COMMENT” of schemaTPCH_S1
iCOMA incorrectly matched 
“C_COMMENT” of schema TPCH and  “P_NOTES” of schemaTPCH_S2

Suggestion: revise the name or the data format of “C_COMMENT” to move 
“C_COMMENT” away from “P_COMMENT” and “P_NOTES”

Table 4: Compilation of report snippets generated
by mSeer

of the distance between two rankings [7], adapted to our
context.

We repeated the above process for all other schemas S in
Course, then computed the average Kendall distance. These
distances, for Course, Inventory, Real Estate, and Product,
are 0.28, 0.22, 0.19, and 0.27, respectively. For comparison
purposes, the average Kendall distance between TarList (the
ranking produced using real-world schemas) and a randomly
generated list, again for the above four domains, are 0.43,
0.44, 0.39, and 0.45, respectively, roughly twice the distances
produced using the synthetic schemas. This suggests that
matchability scores computed by mSeer are indeed useful
in helping rank schemas with respect to their matchability.
The schema revision results in Section 6.4 further quantify
this degree of “usefulness”, in showing that by using such
rankings (produced with synthetic workloads), mSeer was
able to revise schemas to improve their matchability across
all four domains.

6.3 Usefulness of Matchability Reports
We now provide anecdotal evidence that matchability re-

ports produced by mSeer can help the schema creator iden-
tify likely matching problems. Table 4 shows snippets of
matchability reports produced by mSeer (condensed and com-
piled in English, for exposition and space reasons). The re-
ports cover two schemas: Product1 comes from Product do-
main, and TPCH is the publicly available schema of the well-
known TPC-H benchmark (see www.tpc.org/tpch), which
we also experimented with to broaden our range of experi-
ence with mSeer. (We did not include TPCH in our other
experiments because we could not obtain a set of schemas
comparable to TPCH.)

Part 1 of Table 4 reports that iCOMA failed to match dis-

count and discounted, and incorrectly matched discontinued

and discounted. It is clear from examining this part that
attributes discount and discontinued of schema Product1 are
“too similar” (Case 3, see Section 4.1.1). In particular, their
names share the string “disco”, which can confuse a name
matcher (e.g., one using q-grams [1]). Given this, developer
P can change the name, e.g., from “discontinued” to “ter-
minated”, then rerun mSeer, to see if the problem has been
addressed.

Similarly, Part 2 of Table 4 reports that P MFGR failed to
match P MANUFACTURER GROUP. Here, the abbreviation
“MFGR” may have caused the names not to match. Note
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that the knowledge “MFGR” is an abbreviation of “MAN-
UFACTURER GROUP” is highly domain specific. Since
we simply cannot know if a particular matching system will
possess such domain specific knowledge, it is better to revise
the TPC-H schema to make it match aware by expanding
such abbreviations.

Part 3 of Table 4 reveals a different problem. This part
first reports that C COMMENT matched P COMMENT in-
correctly. Given that both names share “COMMENT”, this
is not surprising. But then mSeer reports that C COMMENT

also incorrectly matched P NOTES, despite the fact that
their data values are quite different (one attribute records
customer comments, the other records product comments).
A likely explanation for this is that the matching system
knows “COMMENTS” is a synonym of “NOTES”, and thus
makes the latter incorrect match. To address this prob-
lem, it is important that the strings “C” and “P” in the
names must be fully expanded (e.g., to “CUSTOMER” and
“PRODUCT”) to “push” the attributes away from each
other as much as possible.

Other likely matching problems for the TPCH schema
(that we found from the mSeer report) includes abbrevia-
tions such as “MK”, the use of very short names for ID at-
tributes (making all of them “confusable” with one another),
and the merging of words without some separation charac-
ters, such as “RETAILPRICE” (instead of “RETAIL PRICE”)
and “ORDERSTATUS”.

From working with several mSeer reports, we found that
a promising future work direction would be to produce aids
in designing easily matched mediated schemas. Some can be
“best practice” rules for humans, e.g., “avoiding short pre-
fixes that carry crucial information (such as P COMMENTS)”,
“avoiding very short names for ID attributes”, etc. A richer
direction would be to provide a library of idioms, to be used
in constructing attribute names.

6.4 Automatic Schema Revision
Next, we examine how well mSeer can revise a schema

to improve its matchability. Figure 5 shows the results for
all four domains, five schemas in each domain (Product has
10 schemas, from which we randomly selected five). Con-
sider the very first schema, Homeseekers of Real Estate (at
the topmost left corner of the figure). Here, the three bars
show the average matching accuracy of the original schema,
the schema produced by HC, and the schema produced by
Batch, respectively. This average accuracy is computed by
matching against the target workload of Homeseekers, i.e.,
the set of all remaining schemas in Real Estate. Note that
this target workload consists of real-world schemas; it ap-
proximates the true set of target schemas that Homeseekers
will be matched against in the future. We generated the
bars for other schemas similarly.

The results show that both HC and Batch were effective
in improving matching accuracy. HC was able to revise
schemas to achieve higher accuracy in 17 out of 20 cases, by
1.2-14.2%. It did not improve accuracy in two cases (on Rice
and on Product1) and reduced accuracy slightly by 0.8% in
another case (on Product5). Batch improved accuracy in 17
out of 20 cases, by 1.3-15.2%. It did not improve accuracy
in one case (on Rice), and reduced accuracy slightly in two
cases (Product2 and Product5), by 0.2-0.3%.

On average, HC and Batch improved matching accuracy
of a schema by 4.3% and 4.8%, respectively. While an 4.8%
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Figure 5: Matching accuracy of schemas produced
by mSeer vs. that of the original schemas

Domain Runtime of HC (sec) Runtime of Batch (sec)
Courses 136.6 96.0

Inventory 160.1 93.1
Real Estate 677.6 320.2

Product 1365.2 814.0

Table 5: Runtime of HC vs. Batch

improvement in accuracy may appear modest, the impact
could in fact be substantial. A recent study reported that a
large-scale integration project – roughly 2000 attributes in
each of two air traffic schemas – took 20 labor months from
experienced integration engineers at MITRE Inc., of which
an estimated 16 were spent on matching (including verifica-
tion of matches). A 4% improvement in automated accuracy
would translate into a saving of 0.64 labor months (about 14
days), with more accruing on other matches from the same
source. This suggests that it is well worth spending a few
hours reviewing for matchability, especially on a mediated
schema that may be matched with a large numbers of source
schemas.

Finally, Table 5 shows that over all four domains, on aver-
age Batch runs faster than HC, by as much as 41.2%, suggest-
ing that Batch would be a better candidate than HC if the
schema creator employs mSeer interactively. We therefore
employ Batch in the current mSeer, as well as in subsequent
experiments.

Room for Improvement: How much better could Batch

revise a schema S if Batch guided the search process using
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Figure 6: Improvement achieved vs. ceiling across
all domains
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Figure 7: Accuracy with and without multi-
appearance representation

S’s target workload, instead of a synthetic one? Figure 6
provides the answers for all four domains. In each domain,
the three bars show the accuracies of the original schema,
the schema produced by Batch (using a synthetic workload),
and the schema produced by a version of Batch that uses the
target workload, respectively. The accuracies are averaged
over all sources in the domain. The difference between the
first and the third bar is the room for improvement for Batch.
The results show that Batch has done quite well. It achieves
on average 69.7% of the improvement achievable with full
knowledge, demonstrating that its search strategy selects
SE rules effectively. By expanding its set of SE rules, Batch

is likely to make inroads into the remaining 30%; and by
pursuing an even better search strategy, Batch can make
further improvements, possibly beyond what is shown in the
third bars.

6.5 Multi-Appearance Representation
Next, we examine the utility of multi-appearance repre-

sentation (MAR) in schema revision (see Section 4.1.3). Fig-
ure 7 shows the results for the real-world schemas in Course
and Inventory (experiments on other domains show similar
results). For each schema, the two bars show the accuracy of
mSeer in single-appearance and multi-appearance settings,
respectively, measured using the real schemas as the target
workloads.

The results show that using MAR significantly improves
the matchability of schemas, increasing accuracy in 9 out of
10 cases, on average by 5% in Course, and 3% in Inventory.
MAR failed to improve accuracy in only one case (on Wash-
ington). This suggests that MAR is quite promising as a
way to revise a schema with modest effort and yet making
it more match aware.

6.6 Sensitivity Analysis
Size of Synthetic Workload: Figure 8.a shows the accu-
racy of the revised schema that mSeer produces, as we vary
the number of schemas in the synthetic workload W . In the
figure the lines show average accuracies and the vertical bars
show the maximum-minimum accuracy ranges. The results
show that as W ’s size increases from 1 to 20, W captures the
results of more transformation rules, thus better represent-
ing true target workload. Consequently, matching accuracy
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Figure 8: Change in matching accuracy with respect
to (a) size of synthetic workload, and (b) number of
data instances
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Figure 9: Matching accuracy with a new matching
system

increases and the maximum-minimum fluctuations decrease.
After size 30-35, however, all transformation rules have been
captured in W , and as the size increases further, W ’s “dis-
tance” to the real workload increases, and its performance
starts to decrease. This result is consistent with the obser-
vations in [26], for tuning matching systems. Overall, the
results suggest an optimal workload size in the range of 20-
30. The results also show no abrupt degradation of accuracy,
thus demonstrating that mSeer is robust for small changes
in the workload size.

Number of Data Instances: Figure 8.b plots the ac-
curacy averaged over all sources in Real Estate, as we vary
the number of data instances available to mSeer (i.e., to the
decision-tree matcher). We chose Real Estate because it
has the most of data instances available. The results show
that more data instances led to a slow steady climb in accu-
racy. However, the accuracy is already quite high (within 2%
of the maximum accuracy achieved) for 3-5 data instances.
This suggests that mSeer requires only a few data instances
to do well, and thus does not impose an unduly heavy bur-
den on the schema creator.

New Matching System for mSeer: Next, we examine
the performance of mSeer with respect to a different match-
ing system. Instead of using system iCOMA described earlier
(in Section 6), we employed a new system where the name
matcher compares names using TF/IDF instead of edit dis-
tance, and the combiner takes the maximum of the similarity
scores instead of the average (see COMA++ [1]).

Figure 9 summarizes the results with this new matching
system, over all four domains. The results show that HC and
Batch were able to revise schemas to improve accuracy in all
four domains. HC for instance increases the average accu-
racy in Inventory by 4%, and Batch by 5.7%. The results
thus suggest that mSeer can be effective with more than one
matching system.

7. RELATED WORK
Schema matching has received increasing attention over

the past two decades (see [24, 22, 10] for recent surveys).
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Many matching techniques have been developed, employing
hand-crafted rules and domain knowledge [20, 18, 19], ma-
chine learning [17, 9, 6], IR [4], information theory [16],
clustering [29, 18], and statistics [15]. Recent work has
also explored incremental schema matching [2], contextual
schema matching [3], semantic matching [13], indirect map-
ping [11], top-K mapping [12], self-organizing mapping [5],
and preserving mapping consistency when schemas change
[27]. Once matches have been found and verified, they are
typically elaborated into mappings [24] using a tool such as
Clio [30].

The complementary problem, first raised in [14], is to re-
vise schemas to make finding semantic matches easier. Our
work seems to be the first solution to this problem, placed in
the context of revising mediated schemas of data integration
systems. The work closest to ours is eTuner [26]. That work
however attacks a very different goal, namely, how to tune
a matching system (i.e., selecting the right matching com-
ponents to be executed and correctly adjusting their knobs)
to maximize matching accuracy. To do so, eTuner generates
and uses a set of synthetic matching scenarios. We adapt
the idea of generating synthetic matching scenarios to mSeer,
but for the novel goal of estimating the matchability score
of a schema.

8. CONCLUSION AND FUTURE WORK
To create semantic mappings for data integration systems,

current research has focused largely on developing auto-
matic solutions to match a mediated schema with the source
schemas. In this paper we have considered the complemen-
tary problem of revising the mediated schema, to make it
more amenable to matching. We have developed mSeer, an
end-to-end solution, and showed empirically that mSeer can
automatically revise mediated schemas, to significantly in-
crease their matchability by 1.3-15.2%.

For future work, we are exploring better analysis of match-
ing mistakes, better search methods, and more extensive
evaluation of mSeer. We plan to extend the current mSeer

into an interactive environment, in which a creator can ac-
cept or revise a suggested schema revision on the fly, and
can in general interact with the system in real time to re-
vise the schema. Finally, it would be interesting to explore
how the techniques developed here can be extended to other
data representations (e.g., XML) or problem contexts (e.g.,
revising schemas to facilitate record matching).
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