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ABSTRACT 
While temporal reasoning is a key component of situational 
awareness, most visualization and HCI research focuses on 
time-series rather than time-sequence datasets. This paper 
outlines the unique challenges in sequence visualization and 
defines the gap in existing visualization and workflow 
techniques. 
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INTRODUCTION 
Timestamps are a ubiquitous component of datasets. When 
linked together, these individual timestamps provide critical 
sequencing and trend information that is otherwise 
invisible.   Sequencing information is used to facilitate 
planning, to compare courses of action, track dynamic 
situations and provide forensic analysis.  

Temporal reasoning is a critical factor in maintaining 
situational awareness and making optimal decisions. 
Temporal sequencing improves user comprehension and 
projection [6] by allowing users to extend their 
understanding of the current situation into the past (How 
did we get to this point?) and into the future (Where are we 
headed?). 

UNDERSTANDING THE TWO TYPES OF TIME DATA 
Temporal data is grouped into two major categories: series 

and sequence. Time series data is continuous, tracking 
changes in particular value over time (e.g., a person’s heart 
rate, or a company stock price). Sequences depict the 
ordering of events, with durations of time in between (e.g., 
a schedule of meetings for the day). In terms of 
visualization, time series data is simpler to visualize, 
because the set of actors is constant (i.e., the stock price for 
a particular company), and we can reasonably assume a 
numerical value exists for every timestep (i.e., the value of 
the stock). There are many advances for time-series data, to 
address high volumes of data [8, 11, 13], outline new 
visualizations [1, 5, 18] or improve the analysis workflow 
[2, 9, 15, 16].  

Few of these innovations, however, translate to non-
continuous temporal datasets like sequences. Time 
sequences, because they are discrete, are much more 
difficult to visualize. For example, a police investigation is 
an example of a sequence problem. Different actors are 
involved at different times, from the initial officers who 
respond, to the crime-scene investigators who later examine 
the scene, to the detectives who interview suspects days or 
weeks later.  Subsequences for each actor start and end at 
different times, the relevant list of actors is dynamic and the 
“values” are categorical rather than numeric. A visual 
representation of the actors and their tasks could be useful 
in a court case to define the steps and timing of the overall 
investigation. 

There has been significant work in characterizing temporal 
data [4] and categorizing temporal-analysis tasks (i.e., 
identifying correlations or comparing dimensions) [17, 19]. 
Sequence visualization, however, is often through a simple 
Gantt chart, showing a line for each actor and duration for 
each singular event. This framework is used in both 
experimental systems [3, 12, 14] and commercial systems 
[20, 21]. 

As operational datasets grow in detail complexity, they 
quickly outpace the existing visualization techniques for 
sequences. Certainly, the current techniques are adequate 
for a small problem set [4] or an exploration task [14]. 
Larger datasets or more complex tasks, however, quickly 
become intractable with the current tools. Managing an 
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airline fleet is a clear example of detail complexity, where 
hundreds of planes must be scheduled, serviced and tracked 
through a battery of different tasks. While Butler [3] 
addressed the schedule complexity with an automation 
solution, there was no refinement of the visualization for 
decision-makers.  

Just as there have been minimal advances in visualizing 
sequences, there are limited efforts at improving the 
sequence-analysis workflow. Current sequence analysis is 
often completed via “hunt-and-peck” methods, where users 
must explore the dataset, identify patterns and synthesize 
data manually. This one-by-one method quickly becomes 
intractable for datasets with a high level of detail 
complexity or dynamic complexity. Analysis and decision-
making are reliant on the operator’s ability to “select, sort, 
and organize [the available] information,” [10] but the 
available organizing mechanism is inadequate for complex 
temporal sequences. 

DEFINING THE GAP 
Improved sequence visualization will have an immediate 
impact on complex situations. Problems like tracking a 
shipping fleet, managing a swarm of unmanned vehicles, or 
analyzing a corpus of intrusion events requires better 
sequence visualization than what is currently available. 
Three complexity challenges that sequences visualizations 
must address are: 

(1) Shift the focus to sequences rather events. Current 
tools depict the temporal sequences as a series of singular 
events, without aggregation, clustering or highlighting 
techniques to depict higher-level patterns. For example, in 
this type of framework, a truck-delivery route from the 
warehouse to five delivery points and back again, would be 
plotted as seven distinct events, each with a start time, end 
time and duration. Visualization and encoding frameworks 
must be defined for showing the data of the overall 
sequence (e.g. the truck), in addition to the individual event 
level (e.g., the delivery events). Sequence visualization 
could help managers identify follow-on effects or 
unexpected consequences at the actor rather than the event 
level. 

(2) Depict meaningful aggregates and sub-aggregates.   
Currently, only two types of aggregates are available: 
simple roll-up aggregates (akin to a Gantt chart in MS 
Project) that provide the start and end time for the 
subordinate sequences, and volume aggregates that show a 
level of activity (i.e., there are more deliveries today than 
yesterday). These are often shown as a summary histogram.  
 
Visualizations are needed that can provide a crisp depiction 
of both the individual actor (i.e., the schedule for an 
individual truck) and relevant sub-aggregates and 
aggregates (i.e., schedule constraints for fleet of trucks that 

share a few shipping bays). The key characteristics of each 
aggregate will be context-sensitive, but may include: 
detailed items (i.e, route duration for each truck), summary 
data (i.e., the number of trucks enroute route at a specific 
time), statistical summaries from quartiles or averages (i.e., 
percentage of trucks on schedule). Developing and 
visualizing these aggregates, at multiple levels, will help 
operators make sense of the detail complexity. 

(3) Require less exploration and synthesis. Although 
visualizations can ingest larger datasets technically, their 
workflow continues to rely solely on operator-exploration 
for the analysis and synthesis, as noted earlier. The current 
tools assume a workflow where each individual item can be 
explored and the scope of the overall problem can be easily 
grasped visually. Users don’t have the time to “visually 
[inspect] an extremely high-resolution dataset”[7]. 
Additional tools are needed to highlight key areas or scope 
the exploration. While the overload problem isn’t unique to 
the temporal visualization, it is particularly vexing for 
visualizations outside the common mapping plane.  

CONCLUSIONS 
More research on sequence visualization is needed, to 
identify key sequence features and define an initial 
framework for visualizing complex sequences and their 
aggregates. Solutions may require revising techniques from 
related domains, like time-series or geographic 
visualization, to increase the volume of data that can be 
understood without increasing operator workload. 
Similarly, representative tasks and datasets must be defined 
for a realistic level of operational complexity. These 
complex tasks and high-scale data must be tested to ensure 
the usefulness and scalability of the proposed techniques. 
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