
SERVICE-ORIENTED ARCHITECTURE (SOA) SERIES
Systems Engineering at MITRE

Leveraging Federal
IT Investment
Using SOA
Executive Version

Geoffrey Raines

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 08-1643

 Leveraging Federal IT Investment Using SOA—Executive Version 3

Leveraging Federal IT Investment
Using SOA

Executive Version

Geoffrey Raines

THE BIG PICTURE: Service-Oriented Architecture (SOA) builds on computer engineering approaches of
the past to offer an architectural approach for enterprise systems oriented around the offering of services
on a network of consumers. SOA, as implemented through the common Web Services standards, gives
Federal senior leadership teams a path forward, allowing for incremental and focused improvement of
their IT support systems.

Introduction

Similar to the nation’s Fortune 500 leadership,
today’s Federal leadership teams oft en fi nd them-
selves facing signifi cant IT investment and port-
folio challenges. Th ey have inherited a computing
infrastructure that is oft en not uniform, and whose
technologies span the recent history of computing.
Th e IT infrastructures tend to have the following
characteristics:

• Diverse environments: Mainframe systems,
client/server systems, and multi-tier Web-based
systems sit side by side, demanding operations
and maintenance resources from a technology
marketplace in which the cost of niche legacy
technical skills continues to rise. Th e portfolio
of systems is generally written in a number of
diff erent soft ware development languages such
as COBOL, Java, assembly, and C, requiring
heterogeneous staff skill sets and experience
in a variety of commercial products, some of
which are so old that they no longer off er support
licenses.

• Complex business logic: Th e systems oft en
conform to a set of complex business logic that
has developed over a number of years in response
to evolving legal requirements, Congressional

reporting mandates, changes in contractor
teams, and refi nement of business processes.
While some systems are new and robust, many
are brittle and hard to modify, relying on techni-
cal skills not common in the marketplace that
become increasingly more expensive. Th e main-
tenance tail on these systems is surprisingly high
and competes for resources with required new
functionality.

• Inconsistent interfaces: Interfaces between
systems have grown up spontaneously with-
out enterprise planning, over many years. Th e
interfaces are the result of one-off negotiations
between various parts of the organization and
have been designed using many varied technolo-
gies during the organization’s IT history, follow-
ing no consistent design pattern. Recent enter-
prise architecture eff orts have documented the
enterprise interfaces in diagrams that resemble a
Rorschach inkblot test.

• Limited sustainment budgets: Even without the
continuous downward pressure on IT budgets
brought by competing national requirements and
the view that IT should be increasingly viewed
as a commodity, there are not enough budget
resources or human resources to recast the
portfolio of systems to be modern and robust in
one action. David Longworth writes, “According

4 Service-Oriented Architecture

to analysts at Forrester Research, there are some
200 billion lines of COBOL, the most popular
legacy programming language, still in use. Nor
is it going away: maintenance and modifi ca-
tions to installed soft ware increase that num-
ber by fi ve billion lines a year. IBM meanwhile
claims its CICS mainframe transaction soft ware
handles more than 30 billion transactions per
day, processes $1 trillion in transaction values,
and is used by 30 million people.” 1 Given budget
constraints, an incremental approach seems to be
required.

A Path Forward

SOA, as implemented through the common Web
Services standards, off ers Federal senior leadership
teams a path forward, given the diverse and com-
plex IT portfolio that they have inherited, allowing
for incremental and focused improvement of their
IT support systems. With thoughtful engineering
and an enterprise point of view, SOA off ers positive
benefi ts.

Language neutral integration—Web-enabling
applications with a common browser interface
became a powerful tool during the 1990s. In the
same way that HTML defi ned a simple user browser
interface that almost all soft ware applications
could create, Web Services defi ne a programming
interface available in almost all environments. Th e
HTML interface at the presentation layer became
ubiquitous because it was easy to create, being
composed of text characters. Similarly, the founda-
tional contemporary Web Services standards use
eXtensible Markup Language (XML), which again
is focused on the creation and consumption of
delimited text. Th e bottom line is that regardless of
the development language your systems use, your
systems can off er and invoke services through a
common mechanism.

Component reuse—Given current Web Service
technology, once an organization has built a soft -
ware component and off ered it as a service, the rest
of the organization can then utilize that service.
Given proper service governance, including items
such as service provider trust, service security, and
reliability, Web Services off er the potential for aid-
ing the more eff ective management of an enterprise
portfolio, allowing a capability to be built well once
and shared, in contrast to sustaining redundant

systems with many of the same capabilities (e.g.,
multiple payroll, trouble ticket, or mapping systems
in one organization). Reuse, through the imple-
mentation of enterprise service off erings, is further
discussed below.

Organizational agility—SOA defi nes building
blocks of soft ware capability in terms of off ered ser-
vices that meet some portion of the organization’s
requirements. Th ese building blocks, once defi ned
and reliably operated, can be recombined and inte-
grated rapidly. Peter Fingar stated, “Classes, systems,
or subsystems can be designed as reusable pieces.
Th ese pieces can then be assembled to create vari-
ous new applications.” 2 Agility, the ability to more
rapidly adapt a Federal organization’s tools to meet
their current requirements, can be enhanced by hav-
ing well-documented and understood interfaces and
enterprise accessible soft ware capabilities.

Leveraging existing systems—One common use of
SOA is to encapsulate elements or functions of exist-
ing application systems and make them available
to the enterprise in a standard agreed-upon way,
leveraging the substantial investment already made.
Th e most compelling business case for SOA is oft en
made regarding leveraging this legacy investment,
enabling integration between new and old systems
components. When new capabilities are built, they
are also designed to work within the chosen com-
ponent model. Given the size and complexity of
the installed Federal application system base, being
able to get more value from these systems is a key
driver for SOA adoption. David Litwack writes,
“Th e movement toward Web Services will be rooted
not in the invention of radical new technology, but
rather in the Internet-enabling and re-purposing of
the cumulative technology of more than 40 years.
Organizations will continue to use Java, mainframe
and midrange systems, and Microsoft technologies
as a foundation for solutions of the future.” 3

Of course, SOA as a concept has existed for many
years, and communications between service con-
sumers and providers have been implemented with
a number of protocols and approaches before Web
Services. Web Services standards have brought
renewed contemporary interest in SOA because of
their use of textual XML and its ability to be gener-
ated and consumed in diverse computing platforms.

Th e benefi ts mentioned above, however, accrue only
as the result of comprehensive engineering and a

 Leveraging Federal IT Investment Using SOA—Executive Version 5

meaningful architecture at the enterprise level. SOA
as a service concept in no way eliminates the need
for strong soft ware development practices, require-
ments-based lifecycles, and an eff ective enterprise
architecture. While SOA done right off ers valuable
benefi ts, SOA without structured processes and
governance will lead to traditional soft ware system
problems.

Increasing Span of Integration

SOA and its implementing standards, such as the
Web Services standards, come to us at a particu-
lar point in computing history. While several key
improvements, such as language neutrality, dif-
ferentiate today’s Web Service technologies, there
has been a long history of integrating technologies
with qualities analogous to Web Services, includ-
ing a fi eld of study oft en referred to Enterprise
Application Integration (EAI). One of the key trends
driving the adoption of Web Services is the increas-
ing span of integration being attempted in organiza-
tions today. Systems integration is increasing both in
complexity within organizations and across external
organizations. We can expect this trend to continue
as we combine greater numbers of data sources to
provide higher value information. Ronan Bradley
writes, “CIOs oft en have diffi culty in justifying the
substantial costs associated with integration, but,
nevertheless, in order to deliver compelling solu-
tions to customers or improve operational effi ciency,
sooner or later an organization is faced with an
integration challenge.” 4

Drawing Parallels—“Past Is Prologue” 5

During the 1970s electronics engineers experienced
an architectural and design revolution with the
introduction of practical, inexpensive, and ubiqui-
tous integrated circuits (ICs). Th is revolution in the
design of complex hardware systems is informa-
tive for contemporary soft ware professionals now
charged with building enterprise soft ware systems
using the latest technologies of Web Services in the
context of SOAs.

Like SOA, the IC revolution was fundamentally a
distributed, multi-team, component-based approach
to building larger systems. Th rough the commercial
marketplace, corporations built components for

use by engineering teams distributed around the
world. Teams of engineers created building blocks
in the form of IC components that could then be
described, procured, and reused.

Like soft ware services, every IC chip has a defi ned
interface. Th e IC interface is described in several
ways. First, the chip has a defi ned function—a
predictable behavior that can be described and
provides some value for the consumer. Next the
physical dimensions of the chip are enumerated. For
example, the number and shape of pins is specifi ed.
Further, the electronic signaling, timing, and volt-
ages across the pins are specifi ed. All these charac-
teristics make up the total interface defi nition for
the IC. Of course, soft ware services do not have an
identical physical defi nition, but an analogous con-
cept of a comprehensive interface defi nition is still
viable. Eff ective soft ware components also possess a
predictable and defi nable behavior.

Introducing and using ICs included the following
considerations:

• Who pays? Building an IC chip the fi rst time
requires a large expenditure of resources and
capital. Th e team who builds the IC spends
considerable resources. Th e teams who reuse an
IC, instead of rebuilding it, save considerable
time and expense. A chip might take $500K to
build the fi rst time and might be available for
reuse in a commercial catalog for $3.99. Th e
creation of the chip the fi rst time involves many
time-consuming steps, including requirements
analysis, behavior defi nition, design layout, pho-
tolithography, testing, packaging, manufactur-
ing, and marketing.6 Th e team who gets to reuse
the chip instead of rebuilding it saves both time
and dollars. At the time, designs of over 100,000
transistors were reported as requiring hundreds
of staff -years to produce manually.7

• Generic or specialty components? Given the
amount of investment required to build a chip,
designs were purposely scoped to be generic or
specifi c, with particular market segments and
consumer audiences in mind. Some chips only
worked for very specifi c problem domains, such
as audio analysis. Some were very generic and
intended to be used broadly, like a logic multi-
plexer. Th e bigger the market, and the greater the
potential for reuse, the easier it was for a manu-
facturer to amortize costs against a broader base,
resulting in lower costs per instance.

6 Service-Oriented Architecture

• Increased potential design scope: By combining
existing chips into larger assemblies, an engineer
could quickly leverage the power of hundreds of
thousands of transistors. In this way, IC reuse
expanded the reach of the average engineer, allow-
ing the engineer to leverage resources and dollars
spent far in excess of the local project budget.

• Design granularity: Th e designer of an IC had
to decide how much logic to place in a chip to
make the chip most eff ective on the market-
place. Should the designer create many smaller
function chips, or fewer larger function chips?
Families of chips were oft en built with the inten-
tion of their functions being used as a set, not
unlike a library of soft ware functions. Oft en
these families of chips had similar interface
designs, such as consistent signal voltages.

• Speed of integration: As designers became
familiar with the details of component off erings,
and by leveraging pre-built functions, the speed
at which an “integrated” product, built of many
components, could come to market was substan-
tially increased.

• Catalogs: When the collection of potential ICs
off ered became large, catalogs of components
were then created, and classifi cation systems for
components were established. Catalogs oft en had
a combination of sales and defi nitive technical
information. Th e catalogs oft en had to point to
more detailed resources for the technical audi-
ences that they sold components to.

• Testing: Technical documents defi ned the
expected behavior of ICs. Components were
tested by both the manufacturer and the market-
place. Anomalous behavior by ICs became noted
in errata in technical specifi cations.

• Engineering support: IC vendors off ered
advanced technical labor support to customers
in the form of Application Engineers and other
technical staff . Helping customers use the prod-
ucts fundamentally supported product sales.

• Value chains: Value chains consume raw com-
ponents and produce more complex, value-added
off erings. ICs enabled value chains to be created
as collections of chips became circuit boards, and
collections of circuit boards became products.

• Innovation: ICs were put together in ways not
anticipated by their designers. Teams that designed
chips could not foretell all the possible uses of the
chips over the years. Componentized logic allowed

engineers to create innovative solutions beyond the
original vision of component builders.

One might ask, “Were electrical engineers suc-
cessful with this component-based approach?”
Certainly the marketplace was populated by a very
large number of off erings based in some part on
ICs. Certainly many fortunes and value chains were
created. Th e cost eff ectiveness of the reuse approach
was validated by the fact that it became the predom-
inant approach of the electronics industry. In short,
electronic off erings of the time could not be built to
market prices if each chip, specifi cation, module, or
component had to be re-fabricated on each project.
Reuse, through component-based methods, enabled
by new technologies, led this revolution. Yet, the
transformation took a decade to occur.

An SOA Analogy

In many ways the IC chip revolution described
above is analogous to the eff ort underway with
Web Services today. Clearly Web Service compo-
nents have analogous interfaces defi nitions, and
defi ned and documented behaviors that provide
some benefi t to a potential consumer. One can also
reasonably expect that the team producing the
Web Service will incur substantial expenses that
consumers of the service will not. For example,
high reliability requirements for the operation of a
service and its server and network infrastructure
can be a new cost driver for the provider. To con-
tinue the analogy, collections of service off erings
are becoming suffi ciently large to require some
librarian function to organize, catalog, and describe
the components. While many SOA projects use
Universal Description, Discovery, and Integration
(UDDI) for this purpose, other reasonable options
exist. Enterprise integration engineers are realizing
the ability to more rapidly combine network-based
service off erings and a new paradigm, sometimes
referred to a “mashup,” is demonstrating the speed
at which integration can now occur.8 Value chains of
data integration are already occurring in the mar-
ketplace. A data integrator can ingest the product of
multiple services and produce a service with cor-
related data of greater value. Finally, it is also safe to
say that service providers may be surprised at how
their services get integrated over time, and they
may be part of larger integration that they could not

 Leveraging Federal IT Investment Using SOA—Executive Version 7

have foreseen during the original design. (Also note
that this same component-based approach is now
being examined for genetics work as well. Th e same
interface defi nition, behavior, cataloging, and reuse
discussions are currently occurring, creating a new
genetic sub-fi eld known as synthetic genetics.)9 In
summary, many aspects of the current SOA eff orts
follow similar component-based patterns, and many
of the benefi ts realized historically by the IC revolu-
tion will be potentially realized by SOA eff orts.

Reuse

Historic source code reuse—During the 1980s
many organizations, including the Department
of Defense (DoD), attempted to reuse source code
modules with little success. For example, during the
DoD’s focus on the Ada language, programs were
established to reuse Ada language functions and
procedures across projects.10 Th e basic reuse premise
outlines a process where a producer of a source code
module would post the source code to a common
shared area along with a description of its purpose
and its input and output data.11 At that point, staff
from another project would fi nd the code module,
download it, and decide to invoke it locally in their
source code, and actually compile it into their local
libraries and system executables. As an example, the
Ada Quality and Style Guide states that, “One of the
design goals of Ada was to facilitate the creation and
use of reusable parts to improve productivity. To this
end, Ada provides features to develop reusable parts
and to adapt them once they are available.” 12 For
example, Project A might create a high-quality sort-
ing function, and Project B could then compile that
function into their own soft ware application.

Th ough well intentioned, the actual discovery and
reuse of the source code modules did not happen on
a large scale in practice. Reasons given for the lack
of reuse at the time included lack of trust of mission-
central requirements to an external producer of the
source code, failure to show a benefi t to the con-
tractor “reuser” implementing later systems, inad-
equate descriptions of the behavior of a module to
be reused, and inadequate testing of all the possible
outcomes of the module to be reused.13 All in all, the
barriers to reuse were high.

Service reuse—Th e danger in describing the use
of services as “reuse” is that the reader will assume
we mean the source code reuse model of the 1980s

described above. In fact, the nature of service reuse
is closer to the model of the reuse of ICs by electrical
engineers described above, though still having com-
mon issues of trust, defi ned behavior, and expected
performance. In plain terms, reuse in the service
context means not rebuilding a service, but rather
the using again, or invoking, of a service built by
someone else.

Th e enterprise as a whole saves resources every time
a project decides to reuse a current soft ware service,
rather than creating redundant services based on
similar underlying requirements, and adding to an
agency’s maintenance portfolio. Since a system’s
maintenance costs oft en exceed the cost to build
them, over their lifetime, the enterprise saves not
only in the development and establishment cost of
a new service but also in the 20-plus-year main-
tenance cost over the service’s lifecycle. One web
vendor stated, “Web Services reuse is everything: on
top of the major cost savings …, reuse means there
are fewer services to maintain and triage. So reuse
generates savings—and frequency of use drives
value in the organization.” 14 However, we should
not assume a straight-line savings, where running
one service is exactly half as costly as running two
services, because the cost of running a service is
also impacted by the number of service consumers.
Consolidation can make the remaining service more
popular, with a greater demand on resources.

Reuse of a service diff ers from source code reuse
in that the external service is called from across
the network and is not compiled into local system
libraries or local executables. Th e provider of the
service continues to operate, monitor, and upgrade
the service as appropriate. Th anks to the benefi ts
of contemporary Web Service technologies, the
external reused service can be in another soft ware
language, use a completely foreign multi-tiered or
single-tiered machine architecture, be updated at
any time with a logic or patch modifi cation by the
service provider, represent fi ve lines of Java or fi ve
million lines of COBOL, or be mostly composed of
a legacy system written 20 years ago. In these ways
service reuse is very diff erent from source code reuse
of the past.

Some aspects of reuse remain unchanged. Th e
consumer of the service still needs to trust the reli-
ability and correctness of the producer’s service. Th e
consumer must be able to fi nd the service and have
adequate documentation accurately describing the

8 Service-Oriented Architecture

behavior and interface of the service. Performance
of the service is still key. ZDnet stated, “Converging
trends and business necessity—above and beyond
the SOA “vision” itself—may help drive, or even
force, reuse. SOA is not springing from a vacuum,
or even from the minds of starry-eyed idealists. It’s
becoming a necessary way of doing business, of
dispersing technology solutions as cost eff ectively as
possible. And, ultimately, providing businesses new
avenues for agility, freeing up processes from rigid
systems.” 15

Mature SOAs should measure reuse as part of
a periodic portfolio management assessment.16

Actional wrote, “Reuse is not only a key benefi t of
SOA, but also something that you can quantify. You
can measure how many times a service is being used
and how many processes it is supporting, thus the
number of items being reused. Th is enables you to
measure the value of the service.” 17 Th e assessment
of reuse can be eff ectively integrated into the infor-
mation repository used for service discovery in the
organization, the enterprise catalog.

SOA as an Enterprise Integration Technology

Enterprise Application Integration (EAI) is a fi eld of
study in computer science that focuses on the inte-
gration of “systems of systems” and enterprise appli-
cations. With the span of attempted systems inte-
gration and data sharing continually increasing in
large organizations, the EAI engineering discipline
has become increasingly central to senior leadership
teams managing portfolios of applications.

Th e fundamental EAI tenets are based on traditional
soft ware engineering methods, though the scale is
oft en considerably larger. While the traditional soft -
ware coder focused on the parameters that would be
sent to, and received from, a function or procedure,
the EAI engineer focuses on the parameters that are
exchanged with an entire system. Th e traditional
coder might have been writing 100 source lines of
code (SLOC) for a function, while the EAI engineer
might be invoking a system with a million SLOC and
several tiers of hardware for operational implementa-
tion. However, the overall request/response pattern
is the same, and the logic issues like error recovery
must still be handled gracefully in either case.

SOA can be considered another important step
in a 30-year history of EAI technologies. “SOA

eliminates the traditional ‘spaghetti’ architecture
that requires many interconnected systems to solve
a single problem.” 18 SOA’s ability to run logic and
functions from across a network is not new. Recent
examples include Enterprise JavaBeans (EJB) by Sun
Microsystems Inc., Common Object Request Broker
Architecture (CORBA) by the Object Management
Group, and Component Object Model (COM),
Distributed Component Object Model (DCOM),
and .NET from the Microsoft Corporation. Th e
various methods have diff ered in the ease with
which integration could occur from a programmer’s
point of view, the methods for conveying runtime
errors, ports required to be open on a network, the
quantity of enterprise equipment to operate, and
general design approaches to fault tolerance when
failures occur.

Like owners of many other systems-of-systems
environments, decision makers for command and
control systems and intelligence systems have an
opportunity to leverage SOA to better enable more
rapid integration and reconnection of system com-
ponents. Services can be developed from legacy data
sources and existing investment in procedural logic.
Aggregation and correlation services can combine
the output of more fundamental services to add
value for consumers. Finally, registries can detail
the ensemble of IT services that an organization will
maintain as a portfolio.

Conclusion

SOA off ers Federal leadership teams a means to eff ec-
tively leverage decades of IT investment, while provid-
ing a growth path for new capabilities. SOA provides
a technical underpinning for structuring portfolios
as a collection of discrete services, each with a defi n-
able customer base, acquisition strategy, performance
levels, and a measurable operational cost.

A key current challenge for many Federal organiza-
tions is the structuring of their IT portfolio around
a component-based service model and enforcing
suffi cient standards within their own organizational
boundaries, which can be quite large. As the span
of attempted integration continues to grow, the
challenge of the next ten years will be enabling that
integration model to bridge multiple external orga-
nizations that undoubtedly will be using disparate
standards and tools.

 Leveraging Federal IT Investment Using SOA—Executive Version 9

References
1 Loosely Coupled, David Longworth, “Service reuse unlocks hidden value”

http://www.looselycoupled.com/stories/2003/reuse-ca0929.html 29 Sept. 2003

2 Peter Fingar et al., “Next Generation Computing: Distributed Objects for Business”, SIGS Books & Multimedia, New York., 1996

3 Internet World Magazine, David Litwack, “Web Services Has the Biggest Hype Machine Behind it of any Technology Today. Here is
Why You Should Be Excited Anyway”
http://iw.com/magazine.php?inc=060102/06.01.02ebusiness1.html 1 June 2002

4 GDS InfoCentre, Ronan Bradley, “Agile Infrastructures”
http://gdsinternational.com/infocentre/artsum.asp?mag=184&iss=150&art=25901&lang=en 28 March 2008

5 William Shakespeare, Th e Tempest

6 Intel, “How Chips Are Made”
http://www.intel.com/education/makingchips/preparation.htm 28 March 2008

7 Design World, Electronic Design, C. Panasuk, “Silicon Compilers Make Sweeping Changes in the VLSI”, Sep 20 1984, pp. 67-74.

8 Programmable Web, “Mashup Dashboard”
http://www.programmableweb.com/mashups 28 March 2008

9 International Genetically Engineered Machine Competition (IGEM), “Registry of Standard Biological Parts”
http://parts.mit.edu/registry/index.php/Main_Page 28 March 2008

10 Department of Defense, Ada Joint Program Offi ce, “Ada 95 Quality and Style Guide”
http://www.adaic.com/docs/95style/html/sec_8/ 28 March 2008

11 B. W. Boehm, et al., “An environment for improving soft ware productivity.” Computer, June 1984.

12 Ada Joint Program Offi ce

13 Will Traez, “Soft ware Reuse: Motivators and lnhibitors.” Proceedings of COMPCON S’87, 1987.

14 Progress Actional, “Web Services and Reuse”
http://www.actional.com/resources/whitepapers/SOA-Worst-Practices-Vol-I/Web-Services-Reuse.html 28 March 2008

15 ZDnet, Joe McKendrick, “Pouring cold water on SOA ‘reuse’ mantra”
http://blogs.zdnet.com/service-oriented/?p=699 30 August 2006

16 Eric Roch, “SOA Service Reuse”
http://blogs.ittoolbox.com/eai/business/archives/SOA-Service-Reuse—14699 28 March 2008

17 Progress Actional, “Web Services and Reuse”
http://www.actional.com/resources/whitepapers/SOA-Worst-Practices-Vol-I/Web-Services-Reuse.html 28 March 2008

18 Ebiz, Dr. Chris Harding, “Achieving Business Agility through Model-Driven SOA”
http://www.ebizq.net/topics/soa/features/6639.html 29 January 2006

MITRE
www.mitre.org

©2009 Th e MITRE Corporation
All Rights Reserved

Approved for Public Release
Distribution Unlimited
Case Number: 08-1643

