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Abstract 

There are generally many ways to translite-
rate a name from one language script into 
another. The resulting ambiguity can make it 
very difficult to “untransliterate” a name by 
reverse engineering the process. In this paper, 
we present a highly successful cross-script 
name matching system that was developed by 
combining the creativity of human intuition 
with the power of machine learning. Our sys-
tem correctly determines whether a name in 
Chinese script and a name in Roman script 
match with an F-score of 96%. In addition, 
for name pairs that satisfy a computational 
test, the F-score is 98%. 

1 Introduction 

There are generally many ways to transliterate a 
person’s name from one language script into 
another. For example, the Arabic name, , 
has been transliterated into Roman characters in 
at least 13 ways, such as Al Choukri, Ash-shukri, 
and al-Schoukri. This ambiguity can make it very 
difficult to “untransliterate” a name by reverse 
engineering the process. 

In this work, we have focused on the task of 
determining whether a name part in Chinese 
(Mandarin) script matches a name part in Roman 
script,0F

1 where a Uname partU is a single “word” in a 
person’s name (such as a middle name or a sur-
name), and two names UmatchU if one is a translite-
ration of the other.1F

2  This problem, which is 

                                                 
1 In this paper, we often use the word “Chinese” to refer to 

“Chinese script”, and “Roman script” is usually abbre-
viated as “Roman”. 

2 A third script might separate the Roman and Chinese ver-
sions of the name. For example, a Roman name might be 
transliterated into Arabic, which is then transliterated into 
Chinese, or an Arabic name could be transliterated into 
Roman and Chinese independently. However, we believe 

called Ucross-script name matchingU, has many ap-
plications, such as identity matching, improving 
search engines, and aligning parallel corpora. 

Our system was developed by combining 1) 
the creative power of human intuition, which can 
come up with clever ideas and 2) the computa-
tional power of machine learning, which can ana-
lyze large quantities of data. Wan and Verspoor 
(1998) designed an algorithm that divides names 
into pieces that are just the right size for Roman-
Chinese name matching. These “subsyllable 
units” are discussed in Section 2.2. And, armed 
with Wan and Verspoor’s algorithm, a machine 
learning approach determines the relationships 
between Chinese characters and subsyllable 
units. The details can be found in Section 3. 

Our experimental results, are in Section 4.3. 
The system correctly determines whether a Chi-
nese name and a Roman name match with F = 
96.5%.2F

3  And, for name pairs that satisfy the 
“Perfect Alignment” hypothesis condition, which 
will be presented in Section 2.2, F = 97.6%. 

2 Related Work 

2.1 Chinese-English Name Matching 

The challenges of matching names across Chi-
nese and Roman scripts are discussed by Condon 
et al. (2006). Also, in Section 6 of their paper, 
they offer an overview of several papers related 
to Roman-Chinese name matching. (Cohen et al., 
2003; Gao et al., 2004;  Goto et al., 2003; Jung et 
al., 2000; Kang and Choi, 2000; Knight and 
Graehl, 1997; Kondrak, 2000; Kondrak and 
Dorr, 2004; Li et al., 2004; Meng et al., 2001; Oh 
and Choi, 2006; Virga and Khudanpur, 2003; 
Wellner et al., 2005; Winkler, 2002) 

                                                                          
that there are very few, if any, examples in our test data 
that passed through a third script. 

3 F stands for F-score, which is a popular evaluation metric. 
(Andrade et al., 2009) 
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The Levenshtein algorithm is an efficient way 
to compute string edit distance (Levenshtein, 
1966), which can quantify the similarity between 
two names. However, to apply this algorithm to 
cross-script name matching, the names must be 
transformed from different scripts into a common 
format. Freeman et al. (2006) developed an strat-
egy for Arabic-Roman string matching that used 
equivalence classes of characters to normalize 
the names so that Levenshtein’s method could be 
used.  Mani et al. (2006) modified their system 
for Chinese and extended the Levenshtein ap-
proach, attaining F = 85.2%. Then when they 
trained a machine learning algorithm on that sys-
tem’s output, it improved to F = 93.1% 

By applying a phonological alignment system 
(Kondrak, 2000) to the Roman-Chinese name 
matching task, Mani et al. reported F = 91.2%. 
However, when they trained a machine learning 
approach on that system’s output, the result was 
only F = 90.6%.  

2.2 Subsyllable Units 

When Chinese names are transliterated into Ro-
man names and vice versa, it is usually based on 
the way the names are pronounced.4 However, it 
is not possible to derive a character-to-character 
mapping between the two versions of a name. 
This is because each character in a Roman name 
generally corresponds to a single phoneme, while 
a Chinese character (CC) generally corresponds 
to a subsyllable unit (SSU). A phoneme is the 
smallest meaningful unit of sound, and a subsyl-
lable unit

(1) There is exactly one vowel phoneme.

 as a sequence of one to three phonemes 
that conform to the following three constraints. 
(Wan and Verspoor, 1998) 

5

                                                 
4  Of course, there are exceptions. For example, when a 

name happens to be a word, sometimes that name is trans-
lated (rather than transliterated) into the other language. 
However, our experimental results suggest that the excep-
tions are quite rare. 

 

5 The phoneme /ər/, as in Alb ertson, is treated as a single 
vowel phoneme. 

(2) The vowel phoneme may be preceded by, at 
most, one consonant phoneme. 

(3) The vowel phoneme may be followed by, at 
most, one nasal phoneme.6

Consider the example in 
 

Table 1. The name “Al-
bertson” consists of eight phonemes in three syl-
lables. 7

Table 1

 The last syllable, SAHN, satisfies the 
requirements of an SSU, but the other two need 
to be broken into smaller pieces, resulting in five 
SSUs. There are also five CCs in the Chinese 
transliteration, 阿尔贝特松 , and the second and 
sixth rows in  show similarities in their 
pronunciations. For example, the first SSU, AE, 
sounds like the first CC, /a/. And, although the 
sounds are not always identical, such as BER and 
/pei/, we hypothesize that these SSU-CC corres-
pondences can be generalized in the following 
way: 

If a Roman name corresponds to a sequence of n 
SSUs, S1, S2, ..., Sn, and the Chinese form of that 
name is a sequence of n CCs, C1, C2, ..., Cn, then 
Ci matches Si for all 1 ≤ i ≤ n. 

Perfect Alignment (PA) hypothesis 

In Section 4.3, we show that the PA hypothesis 
works very well when its antecedent is true. 
However, it is not uncommon to have more 
SSUs than CCs in a matching name pair. Often 
this can be explained by an SSU being left out of 
the Chinese transliteration, perhaps because it is 
a sound that is not common to Chinese. For ex-
ample, “Carlberg” (KAA,R,L,BER,G) may be 
transliterated as 卡尔贝里. The SSU, R, does 
not correspond to any of the CCs. We gene-
ralize this phenomenon with another hypo-
thesis.  

If a Roman name corresponds to a sequence of 
n+k  SSUs (k>0), S1, S2, ..., Sn+k, and the Chinese 
form of that name is a sequence of n CCs, C1, C2, 
..., Cn, then, for some set of k Si’s, if those SSUs 
are removed from the sequence of SSUs, then the 
PA hypothesis holds. 

SSUs Deletion (SSUD) hypothesis 

And in the case where the number of CCs is 
greater than the number of SSUs, we have the 
corresponding hypothesis. 

If a Roman name corresponds to a sequence of n 
CCs Deletion (CCD) hypothesis 

                                                 
6 The nasal phonemes are /n/ and /ŋ/, as in “nothing”. 
7 To represent phonemes, we use two different standards, 

The sounds between slashes (like /ər/) are in IPA format 
(International Phonetic Association, 1999), and the pho-
nemes in all capital letters (like ER) are in ARPABET 
format. (Klatt, 1990) 

Roman Characters: Albertson 
Roman Phonemes: AE,L,B,ER,T,S,AH,N 

Syllables: AEL,BERT,SAHN 
Subsyllable Units: AE,L,BER,T,SAHN 

Chinese: 阿尔贝特松 
Chinese Phonemes: /a/,/ər/,/pei/,/thə/,/suŋ/ 

Table 1: Subsyllable Units 
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SSUs, S1, S2, ..., Sn, and the Chinese form of that 
name is a sequence of n+k CCs (k>0), C1, C2, ..., 
Cn+k, then, for some set of k Ci’s, if those CCs are 
removed from the sequence of CCs, then the PA 
hypothesis holds. 

We will show how we utilize these hypotheses 
in Section 3. 

 

3 Machine Learning 

Our group took a machine learning approach to 
generate a mapping between SSUs and CCs. We 
will first show how our system can do Roman-
Chinese name matching, and then we will 
present the training procedure. 

3.1 The Application Phase 

Given a Roman-Chinese name pair, our system 
computes a match score

Figure 1

, which is a number be-
tween 0 and 1 that is meant to represent the like-
lihood that the Chinese name matches the Roman 
name.  This is accomplished via the process pre-
sented in . 

Given a Roman-Chinese name pair, the system 
determines how the Roman name should be pro-
nounced by running it through the Festival sys-
tem. (Black et al., 1999) Next, Wan and Vers-
poor’s algorithms join the phonemes to form syl-
lables and divide the syllables into SSUs. If the 
number of SSUs is equal to the number of cha-
racters in the Chinese name, the PA hypothesis 
applied to align each SSU with a CC. The match 
score is computed using a data structure called 
the SSU-CC matrix

Table 2

 (subsyllable unit – Chinese 
character matrix), which has a value for each 
SSU-CC pair, and this value is supposed to 
represent the strength of the correspondence be-
tween the SSU and the CC. 

 shows an example of an SSU-CC ma-
trix. With this matrix, we would expect the name 
pair <Albert, 阿尔贝特> to have a relatively high 
match score,  because the SSU form of Albert is 
AE,L,BER,T, and the scores in the SSU-CC ma-
trix for <AE,阿>, <L,尔>, <BER,贝> and <T,特> 
are 2, 2, 3, and 2, respectively. 8

                                                 
8 Lack of space prevents us from discussing the equation we 

used to compute a match score from these four values. 

 Alternatively, 
<Albert, 尔贝特阿> should be assigned a very low 
match score, because the values of <AE,尔>, <L,
贝>, <BER,格>, and <T,阿> are all 0. 

 A
E 

B
E
R 

E
H G 

K
A
A L 

L
A
H
N 

L
I
Y 

N
A
H R 

S
A
H
N T 

伦 0 0 0 0 0 0 1 0 0 0 0 0 

利 0 0 0 0 0 0 0 1 0 0 0 0 

卡 0 0 0 0 1 0 0 0 0 0 0 0 

叶 0 0 1 0 0 0 0 0 0 0 0 0 

埃 0 0 1 0 0 0 0 0 0 0 0 0 

娜 0 0 0 0 0 0 0 0 1 0 0 0 

尔 0 0 0 0 0 2 0 0 0 1 0 0 

松 0 0 0 0 0 0 0 0 0 0 1 0 

特 0 0 0 0 0 0 0 0 0 0 0 2 

贝 0 3 0 0 0 0 0 0 0 0 0 0 

连 0 0 0 0 0 0 1 0 0 0 0 0 

里 0 0 0 1 0 0 0 0 0 0 0 0 

阿 2 0 0 0 0 0 0 0 0 0 0 0 
Table 2: An Example SSU-CC Matrix 

3.2 Computing Match Scores 

Given an SSU-CC matrix and a Roman-Chinese 
name pair, there are multiple options for compu-
ting a match score for the name pair. Consider 
the case where there are the same number of CCs 
and SSUs. A simple approach is to use Formula 
(1), where S1, S2, …, Sn are the SSUs that corres-
pond to the Chinese name with characters C1, C2, 
..., Cn, m(X,Y) is the value of the entry for the 
SSU, X, and the CC, Y, in the SSU-CC matrix, 
and MS is the resulting match score.  

(1) 
1

MS m( , )
n

i i
i

S C
=

= ∏  

 
Figure 1: Application Mode  
Figure 2: Training Mode 
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With the SSU-CC matrix in Table 2, the name 
pair, <Albert, 阿尔贝特> has a score of 2x2x3x2 = 
24. 

It is usually desirable for a metric's values to 
range from 0 to 1. One way to do this is to design 
a formula that estimates the probability that the 
Roman name is paired with the Chinese name: 

(2) [ ] [ ]1 1Pr( & )n nS S C C… …  
Making the simplifying assumption that context 
is irrelevant, we get: 

(3) 
1

Pr( & )
n

i i
i

S C
=
∏ . 

Since this is a product of n probabilities, it is rea-
sonable to take the nth root of it in order to pro-
duce a match score that is comparable in magni-
tude to any of the other match scores. (Other-
wise, there would be a bias in favor of shorter 
names.) The result is: 

(4) 
1

Pr( & )
n

n i i
i

S C
=
∏  

We can estimate9

(5) 

 the probabilities from values in 
the matrix: 

m( , )
Pr( & )

m( , )
i i

i i

S C

S C
S C

S C
≈
∑ ∑

 

So, the result is: 

(6) 
1

m( , )
MS

m( , )

n
i i

n
i

S C

S C
S C=

= ∏ ∑ ∑
 

With this formula and the SSU-CC matrix in 
Table 2, <Albert, 阿尔贝特 > gets a score of 

. 

As an alternative, instead of basing the formu-
la on Pr(Si&Ci), it might be reasonable to esti-
mate Pr(Si|Ci) or Pr(Ci|Si). Actually, since it is 
unclear which of those two choices are better 
(they both seem to be reasonable options), we 
might consider multiplying them together or add-
ing them together. (The details of these four op-
tions have been omitted for lack of space.) 

                                                 
9 This estimate becomes more accurate with more data. As 
the number of examples approaches infinity, this approxi-
mation (≈) approaches equality (=). 

3.3 The Training Phase 

To generate an SSU-CC matrix, our system 
trained on a large corpus of Roman-Chinese 
name pairs that was obtained through the Lin-
guistic Data Consortium (Huang, 2005). The part 
of this corpus we used has 406,860 personal 
name pairs drawn from a database of the Xinhua 
news agency. Since all of these pairs are human-
attested cross-script name matches, they can be 
used as positive examples (true matches) to train 
and evaluate an automated system. 

Figure 2 shows a diagram of the training sys-
tem. The procedure for transforming the Roman 
name to a sequence of SSUs is identical the that 
presented in Section 3.1. Then, if the number of 
SSUs is the same as the number of CCs, the PA 
hypothesis is applied to pair the SSUs with the 
CCs. For example, the third name pair in Table 3 
has three SSU-CC pairs: 

KAA ↔ 卡 
R ↔ 尔 

LIY ↔ 利 
So the SSU-CC matrix is modified by adding 

1 to each cell that corresponds to one of these 
SSU-CC pairs. Training on the five name pairs in 
Table 3 produces the SSU-CC matrix in Table 2. 

3.4 Imperfect Alignment 

The system makes two passes through the train-
ing data. In the first pass, whenever the PA hypo-
thesis does not apply to a name pair (because the 
number of SSUs differs from the number of 
CCs), that name pair is skipped. Then, in the 
second pass, a second SSU-CC matrix is built. 
Each name pair that satisfies the PA hypothesis’s 
condition is treated exactly the same as it was in 
the first pass (Section 3.1). But the other name 
pairs are handled based on the SSUD hypothesis 
or the CCD hypothesis by deleting some SSUs or 
CCs in the following way. For a given Roman-
Chinese name pair: 

 
 1 2 3 4 5 

Roman 
Characters Albert Albertson Carly Elena Ellenberg 

Subsyllable 
Units AE,L,BER,T AE,L,BER,T,SAHN KAA,R,LIY EH,LAHN,NAH EH,LAHN,BER,G 

Chinese 
Characters 阿尔贝特 阿尔贝特松 卡尔利 叶连娜 埃伦贝里 

Table 3: Training Data 
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where D is the set of all deletion sets that make 
the PA hypothesis applicable to the name pair. 

A column named Ø and a row named Ø are in-
cluded in the second SSU-CC matrix to hold val-
ues that represent the frequency of each SSU and 
CC being deleted. 

As an example, consider adding the name pair 
<Carlberg, 卡尔贝里> to the data in Table 3. Carl-
berg has five SSUs: KAA,R,L,BER,G, but 卡尔贝
里 has only 4 CCs. So the PA hypothesis is not 
applicable, and so this name pair is ignored in the 
first pass. The first pass generates the first SSU-
CC matrix (Table 2). 

In the second pass, we must apply the SSUD 
hypothesis to <Carlberg, 卡尔贝里> by deleting 
one of the SSUs. There are five ways to do this, 
as shown in the five rows of Table 4. (For in-
stance, the last row represents the case where G 
is deleted; the SSU-CC pairs are <KAA,卡>, <R,
尔>, <L,贝>, <BER,里>, and <G,Ø>.) 

For each possibility, the name pair is eva-
luated using the values in Table 2 producing the 
scores in the second column of Table 4. Then the 
scores are scaled to sum to 1, as shown in the 
third column. These numbers are used as weights 
to determine how much impact each of the five 
options has on the second matrix. They are 
scaled to sum to 1 so that the name pair has the 
same total influence as any name pair that the PA 
hypothesis applies to. 

CCs Score Scaled Score 
Ø 卡尔贝里 0.00 0.00 

卡 Ø 尔贝里 0.90 0.54 

卡尔 Ø 贝里 0.76 0.46 

卡尔贝 Ø 里 0.00 0.00 

卡尔贝里 Ø 0.00 0.00 

Table 4: Subsyllable Unit Deletion 

Table 5 shows part of the second SSU-CC ma-
trix after the second pass has completed. This 
matrix is saved as the final trained model, which 
can be used to evaluate new name pairs in the 
application phase. In that phase, the system eva-

luates a name pair that does not satisfy the PA 
hypothesis’s condition by trying all possible de-
letions and selecting the one that produces the 
highest score. 

 
Ø 

B 
E 
R G 

K 
A 
A L R ... 

Ø  0.00 0.00 0.00 0.46 0.54  

卡 0.00 0.00 0.00 2.00 0.00 0.00  

尔 0.00 0.00 0.00 0.00 2.54 1.46  

贝 0.00 4.00 0.00 0.00 0.00 0.00  

里 0.00 0.00 2.00 0.00 0.00 0.00  

...        

Table 5: Second-Pass SSU-CC Matrix 

3.5 Considering Context 

It might be easier to estimate the likelihood that 
an SSU-CC pair is a match if information found 
in surrounding SSU-CC pairs (such as the SSU 
that follows a given SSU-CC pair) is taken into 
account. This can be done by increasing the 
number of columns in the SSU-CC matrix to 
separate examples based on the surrounding con-
text. For example, in Table 2, we cannot deter-
mine whether LAHN should map to 伦 or 连. But 
if the SSU that follows a given SSU-CC pair is 
considered, the ambiguity is cleared up, because 
when LAHN is followed by BER, it maps to  伦, 
but when NAH follows, it is mapped to 连. Table 
6 displays a portion of the SSU-CC matrix that 
accounts for the contextual information provided 
by the next SSU. 

 BER 
(G) 

BER 
(T) 

LAHN 
(BER) 

LAHN 
(NAH) 

伦 0 0 1 0 

贝 1 2 0 0 

连 0 0 0 1 
Table 6: Considering Context 

3.6 The Threshold 

Given an SSU-CC a name pair, the system pro-
duces a number between 0 and 1. But in order to 
evaluate the system in terms of precision, recall, 
and F-score, we needed the system to return a 
yes (a match) or no (not a match) response. So 
we used a threshold value to separate the two 
responses.  

The threshold can be manually selected, but it 
may be difficult for a person to come up with a 
good threshold value. So we developed an auto-
mated approach to choose the threshold. After 

For every d in D: 
Temporarily make the deletions in d. 
Evaluate the resulting name pair with matrix #1. 

Scale the evaluation scores of the d’s to sum to 1. 
For every d in D: 

Temporarily make the deletions in d. 
For every SSU-CC pair, ssu-cc, in the result: 

Add d’s scaled score to cell [ssu,cc] in matrix #2. 

© The MITRE Corporation. All rights reserved. 



the training phase has finished developing the 
final SSU-CC matrix, the training data10

3.1

 is run 
through the system again, but this time it is not 
being used for learning. Instead, it is running in 
application mode (Section ). All of the train-
ing examples are ordered by their match scores, 
and the system considers all possible ways to 
separate the yes and no responses with a thre-
shold. The selected threshold is the one that pro-
duces the highest F-score.11

4 Evaluation of the System 

 

We ran several experiments to test our system 
under a variety of different conditions. After de-
scribing the data that we used and our experi-
mental methods, we will present some of the 
most interesting experimental results. 

4.1 The Data 

We ran experiments on a set of 471,621 Roman-
Chinese name pairs that match (positive exam-
ples), which was collected from Xinhua News 
Agency newswire texts. (Huang, 2005) We also 
had a set of 451,358 negative examples (name 
pairs that do not match). Table 7 shows how 
many positive and negative examples we had for 
various alignments. Note that the PA hypothesis 
applies to more than 60% of the positive exam-
ples. 

Alignment 
Positive 

Examples 
Negative 
Examples 

#SSUs - #CCs ≥ 3 7,653 34,266 
#SSUs - #CCs = 2 31,433 57,384 
#SSUs - #CCs = 1 94,338 97,420 
#SSUs - #CCs = 0 285,779 130,150 
#SSUs - #CCs = -1 49,431 76,372 
#SSUs - #CCs = -2 2,886 37,249 
#SSUs - #CCs ≤ -3 101 18,517 

Table 7: Statistics of the Data 

4.2 Experimental Design 

To evaluate the system, we used the popular 
10-fold cross validation approach12

                                                 
10 We tried selecting the threshold with data that was not 

used in training, and we found no statistically significant 
difference in the results. 

 to obtain ten 
different evaluation scores for each experiment. 

11 This procedure requires negative examples. Our method 
for obtaining negative examples is presented in Section 
5.2. 

12 In this experimental method, the data is divided into ten 
subsets of approximately the same size, testing the system 
on each subset when trained on the other nine. 

We present the averages of these scores and use 
the homoscedastic t-test (“Student’s”, 2009) to 
decide whether the difference between two re-
sults is statistically significant. 

4.3 Experiments 

Our system’s evaluation results were: P = 
98.19%, R = 94.83%, and F = 96.48%. These 
results are much better than we originally ex-
pected to see for the challenging task of Roman-
Chinese name matching.  

Table 9 shows P, R, and F for separate subsets 
of the test data based on numbers of SSUs and 
CCs in the name pairs. The difference between 
scores in adjacent rows of each column are statis-
tically significant. Perfectly aligned name pairs 
(#SSUs = #CCs) proved to be the easiest, with F 
= 97.55%, but the system was also successful 
when the number of SSUs and the number of 
CCs differ by 1 (F = 96.08% and F = 97.37%). 
These three cases account for 91% of the positive 
examples in our data set. 

 
Alignment P R F 

#SSUs - #CCs ≥ 3 72.38% 94.02% 81.79% 
#SSUs - #CCs = 2 95.26% 92.67% 93.95% 
#SSUs - #CCs = 1 99.07% 93.27% 96.08% 

#SSUs = #CCs 99.87% 95.33% 97.55% 
#SSUs - #CCs = -1 98.33% 96.42% 97.37% 
#SSUs - #CCs = -2 73.80% 94.98% 83.04% 
#SSUs - #CCs ≤ -3 7.54% 78.04% 13.71% 

Table 9: Varying Alignment of Name Pairs 

We ran tests to determine whether the second 
pass through the training data (in which the 
SSUD and CCD hypotheses are applied) im-
proved the results. 

Deletion Hypotheses 

Table 10 shows the results, 
and all of the differences are statistically signifi-
cant. The first row of the table presents F when 
we only used perfectly aligned examples in train-
ing. For the second row, examples with more 
SSUs than CCs were ignored, and the CCD hy-
pothesis was applied for examples with more 

# 
Contextual 

Information F 
1 Left Border 96.48% 
2 No Context 96.25% 
3 Both Borders 96.24% 
4 Right Border 96.19% 
5 Next SSU 87.53% 
6 Previous SSU 85.89% 
7 Both SSUs 47.89% 

Table 8: Evaluation with Context 
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CCs than SSUs. For the third row, the SSUD 
hypothesis was applied, and examples with more 
CCs than SSUs were ignored. And the last row 
represents the case where all of the training ex-
amples were used. From these results, it is clear 
that both of the deletion hypotheses are useful. 

Hypotheses F 
PA 75.25% 

PA & CCD 83.74% 
PA & SSUD 92.86% 

PA & CCD & SSUD 96.48% 
Table 10: Deletion Strategies During Training 

In Section 
Context 

3.5, we hypothesized that contextual 
information might be useful. So we ran some 
tests, and the results are presented in Table 8. For 
the 2nd row, we used no contextual information. 
Row 6 shows the results when we gave the sys-
tem access to the SSU immediately preceding the 
SSU-CC pair that is being analyzed. In row 5’s 
experiment, we used the SSU immediately fol-
lowing the SSU-CC pair under consideration. 
And for row 7, both contextual SSUs were con-
sidered.13

We also considered simplifying the contextual 
information to boolean values that specify 
whether or not a name boundary exists on each 
side of the SSU-CC pair being analyzed. The 
results of these experiments are shown in rows 1, 
3, and 4 of 

 

Table 8. All differences in the table 
are statistically significant, except for those be-
tween rows 2, 3, and 4. These results suggests 
that the right boundary provides no useful infor-
mation, even if the left boundary is also consi-
dered. However, when the left boundary alone is 
considered, the scores go up significantly. But 
we were surprised to find that providing more 
information in the form of SSUs actually made 
the scores go down. We will now provide an ex-
planation for these unexpected results. 
 

We were surprised that the surrounding SSUs 
should make the results worse, However, since 
the contextual information makes the matrix 
larger, most of the numbers in the matrix are 
lower. This means that we are more susceptible 
to a sparse data problem. 

Sparse Data 

 A sparse data problem

                                                 
13 We did not experiment with context that was not adjacent 

to the SSU-CC under consideration or with contextual in-
formation that included CCs. 

 is a situation where 
there are not enough training examples to distin-

guish correct answers from incorrect answers, 
and so incorrect answers can appear to be correct 
simply by random chance. There are two factors 
that can contribute to a sparse data problem. One, 
of course, is the quantity of training data; as the 
quantity of training data increases, the sparse 
data problem becomes less severe. The other fac-
tor is the complexity of the learned model. As the 
model becomes more complex, the sparse data 
problem increases. 

Our system’s learned model is the SSU-CC 
matrix, and a reasonable measure of the matrix's 
complexity is the number of entries in it. In the 
experiment reported here, the number of cells in 
the matrix are given in the second column of Ta-
ble 11. These numbers are huge, suggesting that 
there is a sparse data problem. Even without us-
ing any context, there are 8 cells for each name 
pair in the training set.14

Contextual 
Information 

 (These matrices were 
built using all 471,621 name pairs.) But it might 
also be reasonable to discount the cells that had 
very low values, since we could assume that 
these are SSU-CC pairs that do not exist in reali-
ty. The third column shows how many cells have 
values above 10-7 in the matrix. These numbers 
look better, as the ratio of cells to training exam-
ples is 1:4 when no context is used. However, 
when using the previous SSU, there are more 
cells than training examples.  

#Cells #Cells > 10-7 

No Context 3,699,528 108,695 
Right Border 6,644,120 136,138 

Left Border 6,787,592 137,067 
Both Borders 11,688,150 151,873 

Next SSU 266,330,650 419,438 
Previous SSU 390,944,120 605,170 

                                                 
14  It’s true that a name pair can have multiple SSU-CC 

pairs, but even if the average number of SSU-CC pairs per 
name pair was as high as 8 (which it’s not), one training 
example per cell in the model is sparse. 

 
Figure 3: Testing for Sparse Data 
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Both SSUs even more even more 
Table 11: Model Complexity 

It is possible to test for sparse data with the 
following experiment. We compared the results 
for different amounts of training data. As more 
training data is used, we can expect the scores to 
increase, until there is so much training data that 
the scores are at the highest possible value. Note 
that this value may not be 100%, as there are 
other factors that can make perfection difficult to 
achieve, such as errors in the data and name pairs 
that do not conform to our hypotheses in Section 
2.2. 

Figure 3 shows the results of all of the context 
experiments that we ran. The t-test tells us that 
all of these curves are still increasing at the right 
end, except for “No Context”. However, if the 
name boundaries is the only contextual informa-
tion used, the matrix is much smaller than if any 
SSU can be considered, so the sparse data prob-
lem is not as serious for boundaries. 

In every case, we can clearly see that we have 
passed the bend of the curve, which is the point 
where the slope is exactly 1. The “80-20 rule” 
states that 80% of the job can be achieved with 
20% of the work, but the remaining 80% of the 
work is required to get the other 20% of the job 
completed. So, because of diminishing returns, 
we can conclude the results are nearly as high as 
they’re ever going to be. 

Therefore, based on this analysis, we can ex-
plain the results in Table 8. Row 7 has the most 
serious sparse data problem, so that is why its 
scores are the lowest. For the same reason, rows 
5 and 6 are worse than the other rows. And al-
though we may conclude that the previous SSU 
provides less benefit than the next SSU, Figure 3 
suggests that the previous SSU and the next SSU 
have sparse data problems of about the same de-
gree (though we can’t be sure of that), so that, 
given enough training data, row 6 might become 
better than row 5. 

The left boundary gets the highest score, sug-
gesting that it truly is the best, and even though 
there is a sparse data problem for the left boun-
dary, it appears that it is not serious enough to 
counter the benefits. 

 

In Section 
The Evaluation Formula 

3.2, we explained that we could not 
decide what formula should be used for evaluat-
ing name pairs. We presented 5 reasonable alter-
natives, each of which produces a score from 0 to 
1 for each name pair, where higher numbers 

represent increased likelihood that the name pair 
is a match. However, as we were unable to de-
rive any theoretical conclusions about which 
formula(s) would be the most effective, we de-
cided to settle this matter experimentally. Table 
12 shows the results for each formula. Statistical-
ly significant differences are separated by solid 
lines. P(SSU & CC) is the worst, followed by 
P(CC | SSU), and then P(SSU | CC). The best 
scores were produced using the most complex of 
the formulas, the sum and product of P(SSU | 
CC) and P(CC | SSU). The results did not show a 
preference for one of these over the other, so the 
decision to use the product instead of the sum 
was more or less arbitrary. 

Formula P R F 
P(SSU|CC) 

+ P(CC|SSU) 98.34% 94.81% 96.54% 

P(SSU|CC) 
× P(CC|SSU) 98.19% 94.83% 96.48% 

P(SSU|CC) 98.03% 94.71% 96.38% 
P(CC|SSU) 96.96% 93.19% 95.04% 

P(SSU & CC) 94.75% 91.14% 92.91% 
Table 12: Evaluation Formulas 

5 Discussion 

5.1 Past Work 

We designed a system that achieved an F-score 
of 96.48%, which is higher than results previous-
ly reported on the Roman-Chinese name match-
ing task. And F = 97.55% on the 60.61% of the 
data that satisfied the PA hypothesis’s condition.  

We ran several experiments that, due to space 
constraints, we were unable to present: 
1) We experimentally compared six equations 

for computing match scores and found that 
the best was an arithmetic or geometric aver-
age of Prob(SSU|CC) and Prob(CC|SSU).  

2) Our system automatically selects a threshold 
value to determine how high a match score 
must be to declare that a name pair matches, 
and we discovered that using the training da-
ta for this purpose is as effective as using a 
held-out tune set.  

3) We analyzed the effectiveness of including 
contextual information in the SSU-CC ma-
trix discovering that it caused a sparse data 
problem, but performance still improved 
when the system considered whether or not 
each SSU-CC pair was found at the begin-
ning of a name.  

4) We discovered that the second pass of train-
ing significantly improves the system’s per-
formance. 
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5) We attempted to make use of two simple 
handcrafted rules, but they caused the sys-
tem’s performance to drop significantly. 

6) We compared two approaches for automati-
cally computing the pronunciation of a Ro-
man name and found that using the Festival 
system (Black et al., 1999) alone was just as 
effective as using the CMU Pronunciation 
Dictionary (CMUdict, 1997) supplemented 
by Festival. 

7) We began an investigation into modifying 
our system to do the task of transliteration 
and showed some promising preliminary re-
sults. 

5.2 Future Work 

There are many things that we still want to do, 
including 1) using our system for the task of 
transliteration, 2) developing a methodology for 
creating negative examples, 3) running fair com-
parisons between our system and other cross-
script name matching systems, 4) attempting to 
apply our methodology to other languages, such 
as Korean and Japanese, 5) utilizing graphemic 
information, 6) converting phonemes into feature 
vectors (Aberdeen, 2006), 7) combining our sys-
tem with other systems in a voting structure (Van 
Halteren, Zavrel, and Daelemans, 1998), and 8) 
manually creating rules based on information in 
the SSU-CC matrix. The first two ideas are dis-
cussed below. 
 

Our system can be modified to transliterate a 
given Roman name into Chinese in the following 
way.The SSUs are computed following the pro-
cedure presented in Section 

1) Transliteration 

3.1. Then a match 
score is produced for every possible sequence of 
CCs with the same length as the sequence of 
SSUs. Finally, any of the CC sequences with a 
match score below a predetermined threshold are 
dropped. 

For example, in a preliminary experiment, 
given the Roman name Ellen the matcher pro-
duced the transliterations 15

 

 below, assigning a 
match score to each transliteration. 

 埃 伦 = 0.32 

(9) 埃 兰 = 0.14  

 埃 隆 = 0.11  

                                                 
15 A threshold of 0.05 was used in this experiment. 

 埃 朗 = 0.05 
Based on our data, the first and fourth results 

are true transliterations of Ellen, and the only 
true transliteration that failed to make the list is 
埃连. 

 

In our experiments, the data included 451,358 
name pairs that do not match. These negative 
examples were generated by taking the positive 
examples in the test data and randomly moving 
the Chinese names around so that no Chinese 
name was paired with the correct Roman name.

2) Negative Examples 

16

When deciding which name pairs should be 
used as negative examples, it is best to consider 
the type of data that the system is being designed 
to evaluate. If the target application would have 
the system comparing many name pairs that are 
very different, then the same type of data should 
be used in evaluating the system. Alternatively, 
if the system is going to be asked to make very 
fine distinctions between names, then the test 
data should be selected accordingly. 

 
Mani et al. (2006) suggested that this might not 
be a good way to generate negative examples, 
since the names in nearly all of these name pairs 
are very different. So it is quite easy for the sys-
tem to label them correctly, which inflates the 
statistical results. Mani et al. used a special tech-
nique to filter out the easiest negative name pairs 
by estimating their similarity using another algo-
rithm. It might be reasonable to have our system 
select negative test examples in the same man-
ner. Another option is to test with the same data 
that Mani et al. used, to make a direct compari-
son between the systems. Alternatively, it might 
also be useful to pair every Roman name with 
every Chinese name (except for the ones that it 
matches), as then the most difficult examples 
would be included in the test data. 

5.3 Conclusions 

There was a time when computational linguistics 
research rarely used statistical machine learning 
approaches. Researchers would develop pro-
grams and then show how they could successful-
ly handle a few examples, but their programs 
were unable to generalize much further. Then the 
language community became aware of the ad-

                                                 
16 We also required that each Chinese name in the negative 

examples was paired with Roman names with the same 
number of SSUs as a Roman name that the Chinese name 
corresponded to in a positive example. 
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vantages of machine learning, and statistical sys-
tems almost completely took over the field. The 
power of the computer to process huge corpora 
of data was shown to effectively solve all kinds 
of problems. But eventually, these purely statis-
tical systems will reach their limits. We expect 
that the most successful systems in the future 
will be those that are developed by people and 
machines working in cooperation. Such systems 
solve problems by combining the computer’s 
ability to apply statistical approaches to massive 
quantities of data with a human’s ability to intui-
tively generate new ideas. 

Our system is a success story of human-
computer cooperation. The computer tirelessly 
processes hundreds of thousands of training ex-
amples to generate the SSU-CC matrix. But it 
would never be as effective as it is without the 
algorithms created by Wan and Verspoor. And 
together, they can generate a system that is suc-
cessful more than 96% of the time. 
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