
Name Matching Between Roman and Chinese Scripts

Ken Samuel, Alan Rubenstein, Sherri Condon, and Alex Yeh
The MITRE Corporation; M/S H305; 7515 Colshire Drive; McLean, Virginia 22102-7508
samuel@mitre.org, rubenstein@mitre.org, scondon@mitre.org, and asy@mitre.org

Abstract

There are generally many ways to translite-
rate a name from one language script into
another. The resulting ambiguity can make it
very difficult to “untransliterate” a name by
reverse engineering the process. In this paper,
we present a highly successful cross-script
name matching system that was developed by
combining the creativity of human intuition
with the power of machine learning. Our sys-
tem correctly determines whether a name in
Chinese script and a name in Roman script
match with an F-score of 96%. In addition,
for name pairs that satisfy a computational
test, the F-score is 98%.

1 Introduction

There are generally many ways to transliterate a
person’s name from one language script into
another. For example, the Arabic name, ,
has been transliterated into Roman characters in
at least 13 ways, such as Al Choukri, Ash-shukri,
and al-Schoukri. This ambiguity can make it very
difficult to “untransliterate” a name by reverse
engineering the process.

In this work, we have focused on the task of
determining whether a name part in Chinese
(Mandarin) script matches a name part in Roman
script,0F

1 where a Uname partU is a single “word” in a
person’s name (such as a middle name or a sur-
name), and two names UmatchU if one is a translite-
ration of the other.1F

2 This problem, which is

1 In this paper, we often use the word “Chinese” to refer to

“Chinese script”, and “Roman script” is usually abbre-
viated as “Roman”.

2 A third script might separate the Roman and Chinese ver-
sions of the name. For example, a Roman name might be
transliterated into Arabic, which is then transliterated into
Chinese, or an Arabic name could be transliterated into
Roman and Chinese independently. However, we believe

called Ucross-script name matchingU, has many ap-
plications, such as identity matching, improving
search engines, and aligning parallel corpora.

Our system was developed by combining 1)
the creative power of human intuition, which can
come up with clever ideas and 2) the computa-
tional power of machine learning, which can ana-
lyze large quantities of data. Wan and Verspoor
(1998) designed an algorithm that divides names
into pieces that are just the right size for Roman-
Chinese name matching. These “subsyllable
units” are discussed in Section 2.2. And, armed
with Wan and Verspoor’s algorithm, a machine
learning approach determines the relationships
between Chinese characters and subsyllable
units. The details can be found in Section 3.

Our experimental results, are in Section 4.3.
The system correctly determines whether a Chi-
nese name and a Roman name match with F =
96.5%.2F

3 And, for name pairs that satisfy the
“Perfect Alignment” hypothesis condition, which
will be presented in Section 2.2, F = 97.6%.

2 Related Work

2.1 Chinese-English Name Matching

The challenges of matching names across Chi-
nese and Roman scripts are discussed by Condon
et al. (2006). Also, in Section 6 of their paper,
they offer an overview of several papers related
to Roman-Chinese name matching. (Cohen et al.,
2003; Gao et al., 2004; Goto et al., 2003; Jung et
al., 2000; Kang and Choi, 2000; Knight and
Graehl, 1997; Kondrak, 2000; Kondrak and
Dorr, 2004; Li et al., 2004; Meng et al., 2001; Oh
and Choi, 2006; Virga and Khudanpur, 2003;
Wellner et al., 2005; Winkler, 2002)

that there are very few, if any, examples in our test data
that passed through a third script.

3 F stands for F-score, which is a popular evaluation metric.
(Andrade et al., 2009)

© The MITRE Corporation. All rights reserved.

mailto:samuel@mitre.org�
mailto:rubenstein@mitre.org�
mailto:scondon@mitre.org�
mailto:asy@mitre.org�
mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 09-1559

The Levenshtein algorithm is an efficient way
to compute string edit distance (Levenshtein,
1966), which can quantify the similarity between
two names. However, to apply this algorithm to
cross-script name matching, the names must be
transformed from different scripts into a common
format. Freeman et al. (2006) developed an strat-
egy for Arabic-Roman string matching that used
equivalence classes of characters to normalize
the names so that Levenshtein’s method could be
used. Mani et al. (2006) modified their system
for Chinese and extended the Levenshtein ap-
proach, attaining F = 85.2%. Then when they
trained a machine learning algorithm on that sys-
tem’s output, it improved to F = 93.1%

By applying a phonological alignment system
(Kondrak, 2000) to the Roman-Chinese name
matching task, Mani et al. reported F = 91.2%.
However, when they trained a machine learning
approach on that system’s output, the result was
only F = 90.6%.

2.2 Subsyllable Units

When Chinese names are transliterated into Ro-
man names and vice versa, it is usually based on
the way the names are pronounced.4 However, it
is not possible to derive a character-to-character
mapping between the two versions of a name.
This is because each character in a Roman name
generally corresponds to a single phoneme, while
a Chinese character (CC) generally corresponds
to a subsyllable unit (SSU). A phoneme is the
smallest meaningful unit of sound, and a subsyl-
lable unit

(1) There is exactly one vowel phoneme.

 as a sequence of one to three phonemes
that conform to the following three constraints.
(Wan and Verspoor, 1998)

5

4 Of course, there are exceptions. For example, when a

name happens to be a word, sometimes that name is trans-
lated (rather than transliterated) into the other language.
However, our experimental results suggest that the excep-
tions are quite rare.

5 The phoneme /ər/, as in Alb ertson, is treated as a single
vowel phoneme.

(2) The vowel phoneme may be preceded by, at
most, one consonant phoneme.

(3) The vowel phoneme may be followed by, at
most, one nasal phoneme.6

Consider the example in

Table 1. The name “Al-
bertson” consists of eight phonemes in three syl-
lables. 7

Table 1

 The last syllable, SAHN, satisfies the
requirements of an SSU, but the other two need
to be broken into smaller pieces, resulting in five
SSUs. There are also five CCs in the Chinese
transliteration, 阿尔贝特松 , and the second and
sixth rows in show similarities in their
pronunciations. For example, the first SSU, AE,
sounds like the first CC, /a/. And, although the
sounds are not always identical, such as BER and
/pei/, we hypothesize that these SSU-CC corres-
pondences can be generalized in the following
way:

If a Roman name corresponds to a sequence of n
SSUs, S1, S2, ..., Sn, and the Chinese form of that
name is a sequence of n CCs, C1, C2, ..., Cn, then
Ci matches Si for all 1 ≤ i ≤ n.

Perfect Alignment (PA) hypothesis

In Section 4.3, we show that the PA hypothesis
works very well when its antecedent is true.
However, it is not uncommon to have more
SSUs than CCs in a matching name pair. Often
this can be explained by an SSU being left out of
the Chinese transliteration, perhaps because it is
a sound that is not common to Chinese. For ex-
ample, “Carlberg” (KAA,R,L,BER,G) may be
transliterated as 卡尔贝里. The SSU, R, does
not correspond to any of the CCs. We gene-
ralize this phenomenon with another hypo-
thesis.

If a Roman name corresponds to a sequence of
n+k SSUs (k>0), S1, S2, ..., Sn+k, and the Chinese
form of that name is a sequence of n CCs, C1, C2,
..., Cn, then, for some set of k Si’s, if those SSUs
are removed from the sequence of SSUs, then the
PA hypothesis holds.

SSUs Deletion (SSUD) hypothesis

And in the case where the number of CCs is
greater than the number of SSUs, we have the
corresponding hypothesis.

If a Roman name corresponds to a sequence of n
CCs Deletion (CCD) hypothesis

6 The nasal phonemes are /n/ and /ŋ/, as in “nothing”.
7 To represent phonemes, we use two different standards,

The sounds between slashes (like /ər/) are in IPA format
(International Phonetic Association, 1999), and the pho-
nemes in all capital letters (like ER) are in ARPABET
format. (Klatt, 1990)

Roman Characters: Albertson
Roman Phonemes: AE,L,B,ER,T,S,AH,N

Syllables: AEL,BERT,SAHN
Subsyllable Units: AE,L,BER,T,SAHN

Chinese: 阿尔贝特松
Chinese Phonemes: /a/,/ər/,/pei/,/thə/,/suŋ/

Table 1: Subsyllable Units

© The MITRE Corporation. All rights reserved.

SSUs, S1, S2, ..., Sn, and the Chinese form of that
name is a sequence of n+k CCs (k>0), C1, C2, ...,
Cn+k, then, for some set of k Ci’s, if those CCs are
removed from the sequence of CCs, then the PA
hypothesis holds.

We will show how we utilize these hypotheses
in Section 3.

3 Machine Learning

Our group took a machine learning approach to
generate a mapping between SSUs and CCs. We
will first show how our system can do Roman-
Chinese name matching, and then we will
present the training procedure.

3.1 The Application Phase

Given a Roman-Chinese name pair, our system
computes a match score

Figure 1

, which is a number be-
tween 0 and 1 that is meant to represent the like-
lihood that the Chinese name matches the Roman
name. This is accomplished via the process pre-
sented in .

Given a Roman-Chinese name pair, the system
determines how the Roman name should be pro-
nounced by running it through the Festival sys-
tem. (Black et al., 1999) Next, Wan and Vers-
poor’s algorithms join the phonemes to form syl-
lables and divide the syllables into SSUs. If the
number of SSUs is equal to the number of cha-
racters in the Chinese name, the PA hypothesis
applied to align each SSU with a CC. The match
score is computed using a data structure called
the SSU-CC matrix

Table 2

 (subsyllable unit – Chinese
character matrix), which has a value for each
SSU-CC pair, and this value is supposed to
represent the strength of the correspondence be-
tween the SSU and the CC.

 shows an example of an SSU-CC ma-
trix. With this matrix, we would expect the name
pair <Albert, 阿尔贝特> to have a relatively high
match score, because the SSU form of Albert is
AE,L,BER,T, and the scores in the SSU-CC ma-
trix for <AE,阿>, <L,尔>, <BER,贝> and <T,特>
are 2, 2, 3, and 2, respectively. 8

8 Lack of space prevents us from discussing the equation we

used to compute a match score from these four values.

 Alternatively,
<Albert, 尔贝特阿> should be assigned a very low
match score, because the values of <AE,尔>, <L,
贝>, <BER,格>, and <T,阿> are all 0.

 A
E

B
E
R

E
H G

K
A
A L

L
A
H
N

L
I
Y

N
A
H R

S
A
H
N T

伦 0 0 0 0 0 0 1 0 0 0 0 0

利 0 0 0 0 0 0 0 1 0 0 0 0

卡 0 0 0 0 1 0 0 0 0 0 0 0

叶 0 0 1 0 0 0 0 0 0 0 0 0

埃 0 0 1 0 0 0 0 0 0 0 0 0

娜 0 0 0 0 0 0 0 0 1 0 0 0

尔 0 0 0 0 0 2 0 0 0 1 0 0

松 0 0 0 0 0 0 0 0 0 0 1 0

特 0 0 0 0 0 0 0 0 0 0 0 2

贝 0 3 0 0 0 0 0 0 0 0 0 0

连 0 0 0 0 0 0 1 0 0 0 0 0

里 0 0 0 1 0 0 0 0 0 0 0 0

阿 2 0 0 0 0 0 0 0 0 0 0 0
Table 2: An Example SSU-CC Matrix

3.2 Computing Match Scores

Given an SSU-CC matrix and a Roman-Chinese
name pair, there are multiple options for compu-
ting a match score for the name pair. Consider
the case where there are the same number of CCs
and SSUs. A simple approach is to use Formula
(1), where S1, S2, …, Sn are the SSUs that corres-
pond to the Chinese name with characters C1, C2,
..., Cn, m(X,Y) is the value of the entry for the
SSU, X, and the CC, Y, in the SSU-CC matrix,
and MS is the resulting match score.

(1)
1

MS m(,)
n

i i
i

S C
=

= ∏

Figure 1: Application Mode
Figure 2: Training Mode

© The MITRE Corporation. All rights reserved.

With the SSU-CC matrix in Table 2, the name
pair, <Albert, 阿尔贝特> has a score of 2x2x3x2 =
24.

It is usually desirable for a metric's values to
range from 0 to 1. One way to do this is to design
a formula that estimates the probability that the
Roman name is paired with the Chinese name:

(2) [] []1 1Pr(&)n nS S C C… …
Making the simplifying assumption that context
is irrelevant, we get:

(3)
1

Pr(&)
n

i i
i

S C
=
∏ .

Since this is a product of n probabilities, it is rea-
sonable to take the nth root of it in order to pro-
duce a match score that is comparable in magni-
tude to any of the other match scores. (Other-
wise, there would be a bias in favor of shorter
names.) The result is:

(4)
1

Pr(&)
n

n i i
i

S C
=
∏

We can estimate9

(5)

 the probabilities from values in
the matrix:

m(,)
Pr(&)

m(,)
i i

i i

S C

S C
S C

S C
≈
∑ ∑

So, the result is:

(6)
1

m(,)
MS

m(,)

n
i i

n
i

S C

S C
S C=

= ∏ ∑ ∑

With this formula and the SSU-CC matrix in
Table 2, <Albert, 阿尔贝特 > gets a score of

.

As an alternative, instead of basing the formu-
la on Pr(Si&Ci), it might be reasonable to esti-
mate Pr(Si|Ci) or Pr(Ci|Si). Actually, since it is
unclear which of those two choices are better
(they both seem to be reasonable options), we
might consider multiplying them together or add-
ing them together. (The details of these four op-
tions have been omitted for lack of space.)

9 This estimate becomes more accurate with more data. As
the number of examples approaches infinity, this approxi-
mation (≈) approaches equality (=).

3.3 The Training Phase

To generate an SSU-CC matrix, our system
trained on a large corpus of Roman-Chinese
name pairs that was obtained through the Lin-
guistic Data Consortium (Huang, 2005). The part
of this corpus we used has 406,860 personal
name pairs drawn from a database of the Xinhua
news agency. Since all of these pairs are human-
attested cross-script name matches, they can be
used as positive examples (true matches) to train
and evaluate an automated system.

Figure 2 shows a diagram of the training sys-
tem. The procedure for transforming the Roman
name to a sequence of SSUs is identical the that
presented in Section 3.1. Then, if the number of
SSUs is the same as the number of CCs, the PA
hypothesis is applied to pair the SSUs with the
CCs. For example, the third name pair in Table 3
has three SSU-CC pairs:

KAA ↔ 卡
R ↔ 尔

LIY ↔ 利
So the SSU-CC matrix is modified by adding

1 to each cell that corresponds to one of these
SSU-CC pairs. Training on the five name pairs in
Table 3 produces the SSU-CC matrix in Table 2.

3.4 Imperfect Alignment

The system makes two passes through the train-
ing data. In the first pass, whenever the PA hypo-
thesis does not apply to a name pair (because the
number of SSUs differs from the number of
CCs), that name pair is skipped. Then, in the
second pass, a second SSU-CC matrix is built.
Each name pair that satisfies the PA hypothesis’s
condition is treated exactly the same as it was in
the first pass (Section 3.1). But the other name
pairs are handled based on the SSUD hypothesis
or the CCD hypothesis by deleting some SSUs or
CCs in the following way. For a given Roman-
Chinese name pair:

 1 2 3 4 5

Roman
Characters Albert Albertson Carly Elena Ellenberg

Subsyllable
Units AE,L,BER,T AE,L,BER,T,SAHN KAA,R,LIY EH,LAHN,NAH EH,LAHN,BER,G

Chinese
Characters 阿尔贝特 阿尔贝特松 卡尔利 叶连娜 埃伦贝里

Table 3: Training Data

© The MITRE Corporation. All rights reserved.

where D is the set of all deletion sets that make
the PA hypothesis applicable to the name pair.

A column named Ø and a row named Ø are in-
cluded in the second SSU-CC matrix to hold val-
ues that represent the frequency of each SSU and
CC being deleted.

As an example, consider adding the name pair
<Carlberg, 卡尔贝里> to the data in Table 3. Carl-
berg has five SSUs: KAA,R,L,BER,G, but 卡尔贝
里 has only 4 CCs. So the PA hypothesis is not
applicable, and so this name pair is ignored in the
first pass. The first pass generates the first SSU-
CC matrix (Table 2).

In the second pass, we must apply the SSUD
hypothesis to <Carlberg, 卡尔贝里> by deleting
one of the SSUs. There are five ways to do this,
as shown in the five rows of Table 4. (For in-
stance, the last row represents the case where G
is deleted; the SSU-CC pairs are <KAA,卡>, <R,
尔>, <L,贝>, <BER,里>, and <G,Ø>.)

For each possibility, the name pair is eva-
luated using the values in Table 2 producing the
scores in the second column of Table 4. Then the
scores are scaled to sum to 1, as shown in the
third column. These numbers are used as weights
to determine how much impact each of the five
options has on the second matrix. They are
scaled to sum to 1 so that the name pair has the
same total influence as any name pair that the PA
hypothesis applies to.

CCs Score Scaled Score
Ø 卡尔贝里 0.00 0.00

卡 Ø 尔贝里 0.90 0.54

卡尔 Ø 贝里 0.76 0.46

卡尔贝 Ø 里 0.00 0.00

卡尔贝里 Ø 0.00 0.00

Table 4: Subsyllable Unit Deletion

Table 5 shows part of the second SSU-CC ma-
trix after the second pass has completed. This
matrix is saved as the final trained model, which
can be used to evaluate new name pairs in the
application phase. In that phase, the system eva-

luates a name pair that does not satisfy the PA
hypothesis’s condition by trying all possible de-
letions and selecting the one that produces the
highest score.

Ø

B
E
R G

K
A
A L R ...

Ø 0.00 0.00 0.00 0.46 0.54

卡 0.00 0.00 0.00 2.00 0.00 0.00

尔 0.00 0.00 0.00 0.00 2.54 1.46

贝 0.00 4.00 0.00 0.00 0.00 0.00

里 0.00 0.00 2.00 0.00 0.00 0.00

...

Table 5: Second-Pass SSU-CC Matrix

3.5 Considering Context

It might be easier to estimate the likelihood that
an SSU-CC pair is a match if information found
in surrounding SSU-CC pairs (such as the SSU
that follows a given SSU-CC pair) is taken into
account. This can be done by increasing the
number of columns in the SSU-CC matrix to
separate examples based on the surrounding con-
text. For example, in Table 2, we cannot deter-
mine whether LAHN should map to 伦 or 连. But
if the SSU that follows a given SSU-CC pair is
considered, the ambiguity is cleared up, because
when LAHN is followed by BER, it maps to 伦,
but when NAH follows, it is mapped to 连. Table
6 displays a portion of the SSU-CC matrix that
accounts for the contextual information provided
by the next SSU.

 BER
(G)

BER
(T)

LAHN
(BER)

LAHN
(NAH)

伦 0 0 1 0

贝 1 2 0 0

连 0 0 0 1
Table 6: Considering Context

3.6 The Threshold

Given an SSU-CC a name pair, the system pro-
duces a number between 0 and 1. But in order to
evaluate the system in terms of precision, recall,
and F-score, we needed the system to return a
yes (a match) or no (not a match) response. So
we used a threshold value to separate the two
responses.

The threshold can be manually selected, but it
may be difficult for a person to come up with a
good threshold value. So we developed an auto-
mated approach to choose the threshold. After

For every d in D:
Temporarily make the deletions in d.
Evaluate the resulting name pair with matrix #1.

Scale the evaluation scores of the d’s to sum to 1.
For every d in D:

Temporarily make the deletions in d.
For every SSU-CC pair, ssu-cc, in the result:

Add d’s scaled score to cell [ssu,cc] in matrix #2.

© The MITRE Corporation. All rights reserved.

the training phase has finished developing the
final SSU-CC matrix, the training data10

3.1

 is run
through the system again, but this time it is not
being used for learning. Instead, it is running in
application mode (Section). All of the train-
ing examples are ordered by their match scores,
and the system considers all possible ways to
separate the yes and no responses with a thre-
shold. The selected threshold is the one that pro-
duces the highest F-score.11

4 Evaluation of the System

We ran several experiments to test our system
under a variety of different conditions. After de-
scribing the data that we used and our experi-
mental methods, we will present some of the
most interesting experimental results.

4.1 The Data

We ran experiments on a set of 471,621 Roman-
Chinese name pairs that match (positive exam-
ples), which was collected from Xinhua News
Agency newswire texts. (Huang, 2005) We also
had a set of 451,358 negative examples (name
pairs that do not match). Table 7 shows how
many positive and negative examples we had for
various alignments. Note that the PA hypothesis
applies to more than 60% of the positive exam-
ples.

Alignment
Positive

Examples
Negative
Examples

#SSUs - #CCs ≥ 3 7,653 34,266
#SSUs - #CCs = 2 31,433 57,384
#SSUs - #CCs = 1 94,338 97,420
#SSUs - #CCs = 0 285,779 130,150
#SSUs - #CCs = -1 49,431 76,372
#SSUs - #CCs = -2 2,886 37,249
#SSUs - #CCs ≤ -3 101 18,517

Table 7: Statistics of the Data

4.2 Experimental Design

To evaluate the system, we used the popular
10-fold cross validation approach12

10 We tried selecting the threshold with data that was not

used in training, and we found no statistically significant
difference in the results.

 to obtain ten
different evaluation scores for each experiment.

11 This procedure requires negative examples. Our method
for obtaining negative examples is presented in Section
5.2.

12 In this experimental method, the data is divided into ten
subsets of approximately the same size, testing the system
on each subset when trained on the other nine.

We present the averages of these scores and use
the homoscedastic t-test (“Student’s”, 2009) to
decide whether the difference between two re-
sults is statistically significant.

4.3 Experiments

Our system’s evaluation results were: P =
98.19%, R = 94.83%, and F = 96.48%. These
results are much better than we originally ex-
pected to see for the challenging task of Roman-
Chinese name matching.

Table 9 shows P, R, and F for separate subsets
of the test data based on numbers of SSUs and
CCs in the name pairs. The difference between
scores in adjacent rows of each column are statis-
tically significant. Perfectly aligned name pairs
(#SSUs = #CCs) proved to be the easiest, with F
= 97.55%, but the system was also successful
when the number of SSUs and the number of
CCs differ by 1 (F = 96.08% and F = 97.37%).
These three cases account for 91% of the positive
examples in our data set.

Alignment P R F

#SSUs - #CCs ≥ 3 72.38% 94.02% 81.79%
#SSUs - #CCs = 2 95.26% 92.67% 93.95%
#SSUs - #CCs = 1 99.07% 93.27% 96.08%

#SSUs = #CCs 99.87% 95.33% 97.55%
#SSUs - #CCs = -1 98.33% 96.42% 97.37%
#SSUs - #CCs = -2 73.80% 94.98% 83.04%
#SSUs - #CCs ≤ -3 7.54% 78.04% 13.71%

Table 9: Varying Alignment of Name Pairs

We ran tests to determine whether the second
pass through the training data (in which the
SSUD and CCD hypotheses are applied) im-
proved the results.

Deletion Hypotheses

Table 10 shows the results,
and all of the differences are statistically signifi-
cant. The first row of the table presents F when
we only used perfectly aligned examples in train-
ing. For the second row, examples with more
SSUs than CCs were ignored, and the CCD hy-
pothesis was applied for examples with more

Contextual

Information F
1 Left Border 96.48%
2 No Context 96.25%
3 Both Borders 96.24%
4 Right Border 96.19%
5 Next SSU 87.53%
6 Previous SSU 85.89%
7 Both SSUs 47.89%

Table 8: Evaluation with Context

© The MITRE Corporation. All rights reserved.

CCs than SSUs. For the third row, the SSUD
hypothesis was applied, and examples with more
CCs than SSUs were ignored. And the last row
represents the case where all of the training ex-
amples were used. From these results, it is clear
that both of the deletion hypotheses are useful.

Hypotheses F
PA 75.25%

PA & CCD 83.74%
PA & SSUD 92.86%

PA & CCD & SSUD 96.48%
Table 10: Deletion Strategies During Training

In Section
Context

3.5, we hypothesized that contextual
information might be useful. So we ran some
tests, and the results are presented in Table 8. For
the 2nd row, we used no contextual information.
Row 6 shows the results when we gave the sys-
tem access to the SSU immediately preceding the
SSU-CC pair that is being analyzed. In row 5’s
experiment, we used the SSU immediately fol-
lowing the SSU-CC pair under consideration.
And for row 7, both contextual SSUs were con-
sidered.13

We also considered simplifying the contextual
information to boolean values that specify
whether or not a name boundary exists on each
side of the SSU-CC pair being analyzed. The
results of these experiments are shown in rows 1,
3, and 4 of

Table 8. All differences in the table
are statistically significant, except for those be-
tween rows 2, 3, and 4. These results suggests
that the right boundary provides no useful infor-
mation, even if the left boundary is also consi-
dered. However, when the left boundary alone is
considered, the scores go up significantly. But
we were surprised to find that providing more
information in the form of SSUs actually made
the scores go down. We will now provide an ex-
planation for these unexpected results.

We were surprised that the surrounding SSUs
should make the results worse, However, since
the contextual information makes the matrix
larger, most of the numbers in the matrix are
lower. This means that we are more susceptible
to a sparse data problem.

Sparse Data

 A sparse data problem

13 We did not experiment with context that was not adjacent

to the SSU-CC under consideration or with contextual in-
formation that included CCs.

 is a situation where
there are not enough training examples to distin-

guish correct answers from incorrect answers,
and so incorrect answers can appear to be correct
simply by random chance. There are two factors
that can contribute to a sparse data problem. One,
of course, is the quantity of training data; as the
quantity of training data increases, the sparse
data problem becomes less severe. The other fac-
tor is the complexity of the learned model. As the
model becomes more complex, the sparse data
problem increases.

Our system’s learned model is the SSU-CC
matrix, and a reasonable measure of the matrix's
complexity is the number of entries in it. In the
experiment reported here, the number of cells in
the matrix are given in the second column of Ta-
ble 11. These numbers are huge, suggesting that
there is a sparse data problem. Even without us-
ing any context, there are 8 cells for each name
pair in the training set.14

Contextual
Information

 (These matrices were
built using all 471,621 name pairs.) But it might
also be reasonable to discount the cells that had
very low values, since we could assume that
these are SSU-CC pairs that do not exist in reali-
ty. The third column shows how many cells have
values above 10-7 in the matrix. These numbers
look better, as the ratio of cells to training exam-
ples is 1:4 when no context is used. However,
when using the previous SSU, there are more
cells than training examples.

#Cells #Cells > 10-7

No Context 3,699,528 108,695
Right Border 6,644,120 136,138

Left Border 6,787,592 137,067
Both Borders 11,688,150 151,873

Next SSU 266,330,650 419,438
Previous SSU 390,944,120 605,170

14 It’s true that a name pair can have multiple SSU-CC

pairs, but even if the average number of SSU-CC pairs per
name pair was as high as 8 (which it’s not), one training
example per cell in the model is sparse.

Figure 3: Testing for Sparse Data

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90%

F-
Sc

or
e

Training Set Size (% of available data)

Left Border Next SSU
No Context Previous SSU
Right Border Both SSUs
Both Borders

© The MITRE Corporation. All rights reserved.

Both SSUs even more even more
Table 11: Model Complexity

It is possible to test for sparse data with the
following experiment. We compared the results
for different amounts of training data. As more
training data is used, we can expect the scores to
increase, until there is so much training data that
the scores are at the highest possible value. Note
that this value may not be 100%, as there are
other factors that can make perfection difficult to
achieve, such as errors in the data and name pairs
that do not conform to our hypotheses in Section
2.2.

Figure 3 shows the results of all of the context
experiments that we ran. The t-test tells us that
all of these curves are still increasing at the right
end, except for “No Context”. However, if the
name boundaries is the only contextual informa-
tion used, the matrix is much smaller than if any
SSU can be considered, so the sparse data prob-
lem is not as serious for boundaries.

In every case, we can clearly see that we have
passed the bend of the curve, which is the point
where the slope is exactly 1. The “80-20 rule”
states that 80% of the job can be achieved with
20% of the work, but the remaining 80% of the
work is required to get the other 20% of the job
completed. So, because of diminishing returns,
we can conclude the results are nearly as high as
they’re ever going to be.

Therefore, based on this analysis, we can ex-
plain the results in Table 8. Row 7 has the most
serious sparse data problem, so that is why its
scores are the lowest. For the same reason, rows
5 and 6 are worse than the other rows. And al-
though we may conclude that the previous SSU
provides less benefit than the next SSU, Figure 3
suggests that the previous SSU and the next SSU
have sparse data problems of about the same de-
gree (though we can’t be sure of that), so that,
given enough training data, row 6 might become
better than row 5.

The left boundary gets the highest score, sug-
gesting that it truly is the best, and even though
there is a sparse data problem for the left boun-
dary, it appears that it is not serious enough to
counter the benefits.

In Section
The Evaluation Formula

3.2, we explained that we could not
decide what formula should be used for evaluat-
ing name pairs. We presented 5 reasonable alter-
natives, each of which produces a score from 0 to
1 for each name pair, where higher numbers

represent increased likelihood that the name pair
is a match. However, as we were unable to de-
rive any theoretical conclusions about which
formula(s) would be the most effective, we de-
cided to settle this matter experimentally. Table
12 shows the results for each formula. Statistical-
ly significant differences are separated by solid
lines. P(SSU & CC) is the worst, followed by
P(CC | SSU), and then P(SSU | CC). The best
scores were produced using the most complex of
the formulas, the sum and product of P(SSU |
CC) and P(CC | SSU). The results did not show a
preference for one of these over the other, so the
decision to use the product instead of the sum
was more or less arbitrary.

Formula P R F
P(SSU|CC)

+ P(CC|SSU) 98.34% 94.81% 96.54%

P(SSU|CC)
× P(CC|SSU) 98.19% 94.83% 96.48%

P(SSU|CC) 98.03% 94.71% 96.38%
P(CC|SSU) 96.96% 93.19% 95.04%

P(SSU & CC) 94.75% 91.14% 92.91%
Table 12: Evaluation Formulas

5 Discussion

5.1 Past Work

We designed a system that achieved an F-score
of 96.48%, which is higher than results previous-
ly reported on the Roman-Chinese name match-
ing task. And F = 97.55% on the 60.61% of the
data that satisfied the PA hypothesis’s condition.

We ran several experiments that, due to space
constraints, we were unable to present:
1) We experimentally compared six equations

for computing match scores and found that
the best was an arithmetic or geometric aver-
age of Prob(SSU|CC) and Prob(CC|SSU).

2) Our system automatically selects a threshold
value to determine how high a match score
must be to declare that a name pair matches,
and we discovered that using the training da-
ta for this purpose is as effective as using a
held-out tune set.

3) We analyzed the effectiveness of including
contextual information in the SSU-CC ma-
trix discovering that it caused a sparse data
problem, but performance still improved
when the system considered whether or not
each SSU-CC pair was found at the begin-
ning of a name.

4) We discovered that the second pass of train-
ing significantly improves the system’s per-
formance.

© The MITRE Corporation. All rights reserved.

5) We attempted to make use of two simple
handcrafted rules, but they caused the sys-
tem’s performance to drop significantly.

6) We compared two approaches for automati-
cally computing the pronunciation of a Ro-
man name and found that using the Festival
system (Black et al., 1999) alone was just as
effective as using the CMU Pronunciation
Dictionary (CMUdict, 1997) supplemented
by Festival.

7) We began an investigation into modifying
our system to do the task of transliteration
and showed some promising preliminary re-
sults.

5.2 Future Work

There are many things that we still want to do,
including 1) using our system for the task of
transliteration, 2) developing a methodology for
creating negative examples, 3) running fair com-
parisons between our system and other cross-
script name matching systems, 4) attempting to
apply our methodology to other languages, such
as Korean and Japanese, 5) utilizing graphemic
information, 6) converting phonemes into feature
vectors (Aberdeen, 2006), 7) combining our sys-
tem with other systems in a voting structure (Van
Halteren, Zavrel, and Daelemans, 1998), and 8)
manually creating rules based on information in
the SSU-CC matrix. The first two ideas are dis-
cussed below.

Our system can be modified to transliterate a
given Roman name into Chinese in the following
way.The SSUs are computed following the pro-
cedure presented in Section

1) Transliteration

3.1. Then a match
score is produced for every possible sequence of
CCs with the same length as the sequence of
SSUs. Finally, any of the CC sequences with a
match score below a predetermined threshold are
dropped.

For example, in a preliminary experiment,
given the Roman name Ellen the matcher pro-
duced the transliterations 15

 below, assigning a
match score to each transliteration.

 埃 伦 = 0.32

(9) 埃 兰 = 0.14

 埃 隆 = 0.11

15 A threshold of 0.05 was used in this experiment.

 埃 朗 = 0.05
Based on our data, the first and fourth results

are true transliterations of Ellen, and the only
true transliteration that failed to make the list is
埃连.

In our experiments, the data included 451,358
name pairs that do not match. These negative
examples were generated by taking the positive
examples in the test data and randomly moving
the Chinese names around so that no Chinese
name was paired with the correct Roman name.

2) Negative Examples

16

When deciding which name pairs should be
used as negative examples, it is best to consider
the type of data that the system is being designed
to evaluate. If the target application would have
the system comparing many name pairs that are
very different, then the same type of data should
be used in evaluating the system. Alternatively,
if the system is going to be asked to make very
fine distinctions between names, then the test
data should be selected accordingly.

Mani et al. (2006) suggested that this might not
be a good way to generate negative examples,
since the names in nearly all of these name pairs
are very different. So it is quite easy for the sys-
tem to label them correctly, which inflates the
statistical results. Mani et al. used a special tech-
nique to filter out the easiest negative name pairs
by estimating their similarity using another algo-
rithm. It might be reasonable to have our system
select negative test examples in the same man-
ner. Another option is to test with the same data
that Mani et al. used, to make a direct compari-
son between the systems. Alternatively, it might
also be useful to pair every Roman name with
every Chinese name (except for the ones that it
matches), as then the most difficult examples
would be included in the test data.

5.3 Conclusions

There was a time when computational linguistics
research rarely used statistical machine learning
approaches. Researchers would develop pro-
grams and then show how they could successful-
ly handle a few examples, but their programs
were unable to generalize much further. Then the
language community became aware of the ad-

16 We also required that each Chinese name in the negative

examples was paired with Roman names with the same
number of SSUs as a Roman name that the Chinese name
corresponded to in a positive example.

© The MITRE Corporation. All rights reserved.

vantages of machine learning, and statistical sys-
tems almost completely took over the field. The
power of the computer to process huge corpora
of data was shown to effectively solve all kinds
of problems. But eventually, these purely statis-
tical systems will reach their limits. We expect
that the most successful systems in the future
will be those that are developed by people and
machines working in cooperation. Such systems
solve problems by combining the computer’s
ability to apply statistical approaches to massive
quantities of data with a human’s ability to intui-
tively generate new ideas.

Our system is a success story of human-
computer cooperation. The computer tirelessly
processes hundreds of thousands of training ex-
amples to generate the SSU-CC matrix. But it
would never be as effective as it is without the
algorithms created by Wan and Verspoor. And
together, they can generate a system that is suc-
cessful more than 96% of the time.

References
Aberdeen, J. (2006) “geometric-featurechart-jsa-

20060616.xls”. Unpublished.

Andrade, Miguel. Smith, S. Paul. Cowlisha, Mike F.
Gantner, Zeno. O’Brien, Philip. Farmbrough, Rich.
et al. “F1 Score.” (2009) Wikipedia: The Free En-
cyclopedia. http://en.wikipedia.org/wiki/F-score.

Black, Alan W. Taylor, Paul. Caley, Richard. (1999)
The Festival Speech Synthesis System: System Do-
cumentation. Centre for Speech Technology Re-
search (CSTR). The University of
burgh. http://www.cstr.ed.ac.uk/projects/festival/m
anual

CMUdict. (1997) The CMU Pronouncing Dictionary.
v0.6. The Carnegie Mellon Speech
Group. http://www.speech.cs.cmu.edu/cgi-
bin/cmudict.

Cohen, W. Ravikumar, P. Fienberg, S. (2003) “A
Comparison of String Distance Metrics for Name-
Matching Tasks.” Proceedings of the IJCAI-03
Workshop on Information Integration on the Web.
Eds. Kambhampati, S. Knoblock, C. 73-78.

Condon, Sherri. Aberdeen, John. Albin, Matthew.
Freeman, Andy. Mani, Inderjeet. Rubenstein, Alan.
Sarver, Keri. Sexton, Mike. Yeh, Alex. (2006)
“Multilingual Name Matching Mid-Year Status
Report.”

Condon, S. Freeman, A. Rubenstein, A. Yeh, A.
(2006) “Strategies for Chinese Name Matching.”

Freeman, A. Condon, S. Ackermann, C. (2006)
"Cross Linguistic Name Matching in English and
Arabic: A ‘One to Many Mapping’ Extension of

the Levenshtein Edit Distance Algorithm." Pro-
ceedings of NAACL/HLT.

Gao, W. Wong, K. Lam, W. (2004) “Phoneme-Based
Transliteration of Foreing Names for OOV Prob-
lem.” Proceedings of the First International Joint
Conference on Natural Language Processing.

Goto, I. Kato, N. Uratani, N. Ehara, T. (2003) “Trans-
literation Considering Context Information Based
on the Maximum Entropy Method.” Proceedings
of MT-Summit IX.

Huang, Shudong. (2005) “LDC2005T34: Chinese <->
English Named Entity Lists v 1.0.” Linguistics Da-
ta Consortium. Philadelphia, Pennsylvania. ISBN
#1-58563-368-2. http://www.ldc.upenn.edu/Cata
log/CatalogEntry.jsp?catalogId=LDC2005T34.

International Phonetic Association. (1999) Handbook
of the International Phonetic Association : a guide
to the use of the International Phonetic Alphabet.
Cambridge University Press, UK. ISBN
0521652367. http://www.cambridge.org/uk/cata-
logue/catalogue.asp?isbn=0521652367. Jung, S.
Hong, S. Paek, E. (2000) “An English to Korean
Transliteration Model of Extended Markov Win-
dow.” Proceedings of COLING.

Kang, B.J. Choi, K.S. (2000) “Automatic Translitera-
tion and Back-Transliteration by Decision Tree
Learning.” Proceedings of the 2nd International
Conference on Language Resources and Evalua-
tion.

Klatt, D.H. (1990) “Review of the ARPA Speech Un-
derstanding Project.” Readings in Speech Recogni-
tion. Morgan Kaufmann Publishers Inc. San Fran-
cisco, CA. 554-575. ISBN 1-55860-124-4.

Knight, K. Graehl, J. (1997) “Machine Translitera-
tion.” Proceedings of the Conference of the Asso-
ciation for Computational Linguistics (ACL).

Kondrak, G. (2000) “A New Algorithm for the
Alignment of Phonetic Sequences.” Proceedings of
the First Meeting of the North American Chapter
of the Association for Computational Linguistics
(NAACL). Seattle, Washington. 288-295.

Kondrak, G. Dorr, B. (2004) “Identification of Con-
fusable Drug Names: A New Approach and Evalu-
ation Methodology.” Proceedings of the Twentieth
International Conference on Computational Lin-
guistics (COLING). 952-958.

 Levenshtein, V.I. (1966) “Binary Codes Capable of
Correcting Deletions, Insertions and Reversals.”
Sov. Phys. Dokl. 6. 707-710.

Li, H. Zhang, M. Su, J. (2004) “A Joint Source-
Channel Model for Machine Transliteration.” Pro-
ceedings of ACL 2004.

© The MITRE Corporation. All rights reserved.

http://en.wikipedia.org/wiki/F-score�
http://www.cstr.ed.ac.uk/projects/festival/manual�
http://www.cstr.ed.ac.uk/projects/festival/manual�
http://www.speech.cs.cmu.edu/cgi-bin/cmudict�
http://www.speech.cs.cmu.edu/cgi-bin/cmudict�
http://www.ldc.upenn.edu/Cata%20log/CatalogEntry.jsp?catalogId=LDC2005T34�
http://www.ldc.upenn.edu/Cata%20log/CatalogEntry.jsp?catalogId=LDC2005T34�
http://www.cambridge.org/uk/cata-logue/catalogue.asp?isbn=0521652367�
http://www.cambridge.org/uk/cata-logue/catalogue.asp?isbn=0521652367�

Mani, Inderjeet. Yeh, Alexander. Condon, Sherri.
(2006) "Machine Learning from String Edit Dis-
tance and Phonological Similarity."

Meng, H. Lo, W. Chen, B. Tang, T. (2001) “Generat-
ing Phonetic Cognates to Handle Named Entities in
English-Chinese Cross-Language Spoken Docu-
ment Retrieval.” Proceedings of ASRU.

Oh, Jong-Hoon. Choi, Key-Sun. (2006) “An Ensem-
ble of Transliteration Models for Information Re-
trieval.” Information Processing & Management.
42(4). 980-1002.

 “Student’s t Test.” (2009) Wikipedia: The Free En-
cyclopedia. http://en.wikipedia.org/wiki/T_test#
Equal_sample_sizes.2C_equal_variance.

Van Halteren, H., Zavrel, J. Daelemans, W. (1998)
”Improving Data Driven Word-Class Tagging by
System Combination.” Proceedings of the 36th
Annual Meeting of the Association for Computa-
tional Linguistics and the 17th International Con-
ference on Computational Linguistics. Montréal,
Québec, Canada. 491-497.

Virga, P. Khudanpur, S. (2003) “Transliteration of
Proper Names in Cross-Lingual Information Re-
trieval.” Proceedings of the ACL Workshop on
Multi-Lingual Named Entity Recognition.

Wan, Stephen. Verspoor, Cornelia Maria. (1998).
"Automatic English-Chinese Name Transliteration
for Development of Multilingual Resources." Pro-
ceedings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics. Montréal,
Québec, Canada.

Wellner, B. Castano, J. Pustejovsky, J. (2005) “Adap-
tive String Similarity Metrics for Biomedical Ref-
erence Resolution.” Proceedings of the ACL-ISMB
Workshop on Linking Biological Literature, Ontol-
ogies, and Databases: Mining Biological Seman-
tics. 9-16. http://www.cs.brandeis.edu/~wellner/
pubs/Wellner-StringSim-BioLINK.pdf.

Winkler, W. “Methods for Record Linkage and
Bayersian Networks.” (2002) Proceedings of the
Section on Survey Research Methods, American
Statistical Association. http://www.census.gov/srd/
www/byyear.html.

.

© The MITRE Corporation. All rights reserved.

http://en.wikipedia.org/wiki/T_test# Equal_sample_sizes.2C_equal_variance�
http://en.wikipedia.org/wiki/T_test# Equal_sample_sizes.2C_equal_variance�
http://www.cs.brandeis.edu/~wellner/%20pubs/Wellner-StringSim-BioLINK.pdf�
http://www.cs.brandeis.edu/~wellner/%20pubs/Wellner-StringSim-BioLINK.pdf�
http://www.census.gov/srd/%20www/byyear.html�
http://www.census.gov/srd/%20www/byyear.html�

