
Characterization Framework and Design Patterns for the Disadvantaged User 
 
 

Dr. Fatma Dandashi, Aaron Griggs, Jeffrey Higginson, James Hughes, Wilson Narvaez. Dr. 
Marwan Sabbouh, Salim Semy, Dr. Beth Yost 

The MITRE Corporation 
Dandashi, agriggs, higginso, jdhughes, wnarvaez, ms, ssemy, bethyost@mitre.org 

 
 

Abstract 
Many Service Oriented Architecture (SOA) 

approaches in use today presume the consistent 
availability of reliable networks and limitless 
resources. For some Department of Defense (DoD) 
and other Government users, operating at the tactical 
edge, who may be disadvantaged in terms of network 
and resource availability, the current methods of 
development may not provide them with reliable 
capability. In this paper, we propose a method for 
capturing design patterns for the disadvantaged user 
using the common vocabulary of a characterization 
framework. We also provide a set of design patterns 
that minimize technical constraints, and derive the 
infrastructure requirements needed to implement a 
selected design pattern.  

 
 

1. Introduction 
 
Many Service Oriented Architecture (SOA) 

approaches in use today presume the consistent 
availability of reliable networks and limitless 
resources. This is often not the case for a Department 
of Defense (DoD) or other Government user operating 
at the tactical edge who may be disadvantaged in terms 
of network and resource availability. For such a user 
(e.g., a soldier at the battlefield, or an emergency first 
responder), current methods of SOA development may 
not provide reliable capability. The challenge then lies 
in determining how to implement service-based 
solutions for the disadvantaged user.  

In this paper, we propose a method for addressing 
SOA implementations within the tactical edge 
environment. To do this, we propose a characterization 
framework and common vocabulary to describe 
various environments, and capture design patterns 
using the common vocabulary. We apply this 
characterization framework to a particular use case, 
identifying a set of design patterns that minimize 
technical constraints associated with the use case. This 

application serves as a reference implementation for 
the characterization framework. Finally, we highlight 
how design patterns can be used to derive 
infrastructure requirements, and conclude with a brief 
discussion of the implications of this work, its 
applicability to any disadvantaged user, and describe 
possible future work. 

 
2. Characterization Framework and 

Common Vocabulary 
 
The Characterization Framework is aimed at 

defining the technical constraints in providing service-
based capabilities to a disadvantaged user. To define 
the framework and help identify design patterns, we 
began by gathering use cases, identifying common 
characteristics of various environments, and then 
focusing on defining a common vocabulary to describe 
those environments. Four environments were 
identified: fixed center, mobile center, mobile swarm, 
and dismounted. Each environment was then 
characterized by four dimensions:  

 
1. The availability and robustness of a network 
2. The availability of resources to execute a 

particular function   
3. Information Assurance (IA) 
4. User Interface (UI). 

 
These four dimensions were further quantified using 

a set of attributes and a range of possible values for 
each attribute. The network dimension was 
characterized by the attributes: connectivity, 
bandwidth, and latency, where both latency and 
bandwidth (i.e., speed and capacity) of the network 
define the throughput of the network. The resource 
dimension was characterized by the attributes: 
processing capacity, storage capacity, power, total 
system space, and total system weight.  The IA 
dimension was characterized by the attributes: fixed 
network topologies, network defenses, host defenses, 

Approved for Public Release; Distribution Unlimited. Case Number: 07-0961 
Copyright ©2007, IEEE, Inc. All rights reserved 

SBORG
Text Box
Approved for Public Release; Distribution UnlimitedCase # 07-0961



perimeter defenses, policies & procedures, and data 
defenses. The last dimension, UI, was characterized by 
the attributes: content, standard user interface, system 
training, receptiveness, decision time, lighting, 
environment, display, output, and input. 

Figure 1 illustrates how the four environments of 
fixed center, mobile center, mobile swarm, and 
dismounted were characterized for each dimension. 
Values defined for each attribute appear in cells as 
detailed below. The classes shown in Figure 1 serve as 
the representational set of environments for which 
design patterns can be specified. There is nothing DoD 
unique about these environments or their attributes as 
defined by this characterization framework. It is 
therefore possible to apply and use the framework and 
the common vocabulary to address the needs of non-
governmental users. 

 
3. Design Patterns 

 
Design patterns occur in many different disciplines. 

The concept of design patterns is summarized by the 
architect Christopher Alexander as a manner to 
“Describe a problem which occurs over and over again 
in our environment, and then describe the core of the 
solution to that problem, in such a way that you can use 
this solution a million times over, without ever doing it 
the same way twice.” [1] The computer science 
discipline later adopted Alexander’s idea and 
summarized design patterns as “a description of 
communicating objects and classes that are customized 
to solve a general design problem in a particular 
context.” [2]  

 
3.1 Design Pattern Definition Template 

 
Each design pattern was defined using a standard 

template. This template was intended to provide the 
minimally complete set of information necessary to 
support the use of the design pattern by information 
services developers (and the supporting test and 
evaluation communities, users, etc.). As defined here, 
each pattern starts with a unique name and description, 
followed by the context and problem statement, an 
application example, a description of the pattern’s 
trade-offs, and an illustration. We note that no 
document could contain a complete set of possible 
design patterns, and any such attempt would certainly 
end in failure (after an exhausting search effort). 
Rather, this paper contains a representative set of 
patterns for each of the main dimensions of the 
environments and a template that can be used to 
capture, enable reuse, and refine evolving patterns. 
Over time, some of the patterns we recognize as useful 

today may become unnecessary or obsolete, replaced 
by more efficient approaches enabled by advancing 
technology, infrastructure improvements, or changes in 
operational constraints. 

Some patterns may be most useful when applied in 
composition with other patterns, in order to provide an 
adequate solution for a particular problem. In such 
cases, the problem definition is divided into a set of 
sub-problems and specific design patterns are defined, 
where applicable, for each sub-problem. In this 
manner, the composition of the identified patterns 
provides the solution to the overall problem.  

 
3.2 Types of Design Patterns 

 
This section lists example design patterns that are 

categorized into four sets, based on their use.  
 

1. The first set consists of patterns that alleviate 
resource and network constraints: 
• Messaging Bridge (MB) [3]: The data source 

service sends the message to the MB Source 
and the MB Source performs the actual 
transmission. Similarly, there is an MB 
Destination that receives a message and 
delivers it to the destination. 

• Notification [4]: Availability of new content is 
broadcast to all interested consumers that 
subscribed to it. 

• Personalized Delivery [4]: Intermediate 
service provides a customized data and 
interface to the end service requestor, based 
on a user profile. 

2. The second set consists of patterns that alleviate 
resource constraints: 
• Reliable Asynchronous Messaging [4]: 

Messages produced by the service provider in 
response to the request are queued until the 
service requestor asks for the messages. 

• Store and Forward [5]: Network of nodes 
receive data, store data until connectivity is re-
established, then forward data to other nodes. 

• Caching [6]: Replicate and synchronize data 
within local data stores to facilitate data 
retrieval. 

• Compression [7]: Compress the data for 
optimal use of bandwidth during transmission. 

• Publish and Subscribe [4]: Data consumers 
register subscriptions. When the data is 
available, it is automatically published by data 
providers to consumers. 

Approved for Public Release; Distribution Unlimited. Case Number: 07-0961 
Copyright ©2007, IEEE, Inc. All rights reserved 



3. The third set consists of patterns used for IA 
purposes. The following example design patterns 
have been excerpted from [8]  
• Simple Firewall Configuration: A firewall 

inspects and filters incoming and outgoing 
network traffic based on the protocol, port 
number, and the type of application service to 
be accessed or type of application service 
requesting access. 

• Demilitarized Zone: A Demilitarized Zone 
(DMZ) permits different protection roles to 
systems on the DMZ than internal systems. 
Typically, systems on the DMZ require less 
protection than internal systems, as they can 
be accessed from the World Wide Web. 

• Multilevel Security: In some environments, 
data and documents may have critical value 
and their disclosure could result in serious 
problems. This pattern describes how to 
categorize sensitive information and prevent 
its disclosure. It discusses how to assign 
classifications (clearances) to users and 
classifications (sensitivity levels) to data, and 
how to separate different organizational units 
into categories. Access of users to data is 
based on policies, while changes to the 
classifications are performed by trusted 
processes that are allowed to violate the 
policies. 

4. The fourth set consists of patterns for the design of 
the UI. Examples are: 
• Canned Messages: Users can choose from a 

list of predetermined messages, rather than 
having to enter text. 

• Flattened Navigation: Users can select an 
option with a single click, rather than 
navigating through a series of cascading 
menus. 

 
4. Reference Implementation 

 
There is a long list of design patterns available in 

the literature [2,3,9,10,11]. However, our challenge 
was to identify particular design patterns that alleviate 
the technical constraints associated with the 
disadvantaged user. The purpose is to demonstrate the 
use of the common vocabulary to describe design 
patterns for a particular use case. In this section, we 
apply the identified design patterns to a use case 
example and describe a composite design pattern in 
terms of its name and description, context, problem, 
proposed solution, Trade-offs, and some illustrations of 
the use case solution. 

 
4.1 Data Dissemination  

 
Name: Data Dissemination (Pattern Composition) 
Description:  Move messages and data across 

environments (i.e., from the mobile center to the 
mobile swarm to the dismounted environments).  

Use Case Description:  A Tactical Operations 
Center (TOC), classified as a Mobile Center 
environment, sends various messages, e.g., Operations 
Orders to a multimedia High Mobility Multipurpose 
Wheeled Vehicle (HMMW-V), also known as a 
humvee or hummer, base station. The HMMW-V, 
classified as a mobile swarm environment, is employed 
to support dismounted squad operations using 
heterogeneous (multiple disparate) communications 
media. The HMMW-V acts as a Combat Vehicle 
Heterogeneous Cell site (CVHC). Dismounts are 
typically equipped with small commercial off-the-shelf 
handheld radios and readily available devices that 
enable their operations to be conducted unconstrained 
by utilizing the CVHC parked in their vicinity. The 
important aspect of this is the assumption that 
dismounts typically operate within line-of-site 
communications range of their supporting CVHC for 
most operations, which enables en-route coordination 
and planning. In these circumstances, dismounts may 
partition from the global network connecting the TOC 
to the CVHC, while remaining connected to the vehicle 
on another local network. Dismounts can still be 
provided with messages and order updates delivered 
directly to their handhelds. Such order updates may 
include a picture of a known terrorist or his last 
reported location. Similarly, a dismount may send a 
picture of a detained person up to the vehicle, which in 
turn may relay it to the TOC for identification against a 
watch list database. 

Context: Mobile Center – Mobile Swarm –
Dismounted 

Problem:  
• Connectivity: Well Connected – Intermittently 

Connected – Mostly Disconnected 
• Bandwidth: High – Medium/Low 
• Processing Power: Servers/Multiple 

Workstations – Single Workstation/ Handhelds  
• Storage: Large Data Storage Devices – Single 

Hard Drives/Memory 
• Display: Multiple Displays – Single Display 
Application Example:  A Data Dissemination 

Service (DDS) implementing a Publish and Subscribe 
mechanism is employed with the Messaging Bridge 
design pattern to alleviate problems associated with the 
tactical edge. 

Approved for Public Release; Distribution Unlimited. Case Number: 07-0961 
Copyright ©2007, IEEE, Inc. All rights reserved 



Trade-offs: 
• Benefits: DDS uses standard Web protocols to 

transfer the content. As such, DDS requires 
high throughput networks and full connectivity 
for its operations. Since that is not available for 
the use case described above, we identified and 
employed the Messaging Bridge design pattern 
to alleviate the technical constraints imposed at 
the tactical edge. The Messaging Bridge pattern 
shields the DDS from intermittent connectivity 
and low bandwidth associated with the tactical 
edge. The Messaging Bridge pattern 
accomplishes this by implementing connection 
pooling. The Messaging Bridge pattern also 
implements queuing and compression to 
address intermittent connectivity and low 
bandwidth. The Messaging Bridge pattern can 
also cache data, provide a specified quality of 
service, and more optimally continue with 
sending a message from the point of the 
network disruption in the case of a large 
message. 

• Limitations: The addition of the Messaging 
Bridge to the DDS results in the significant 
increase of the DDS footprint, making it more 
difficult to deploy DDS in storage and 
processing challenged environments. 

Illustration: Figure 2 illustrates the DDS with 
Messaging Bridge architecture. In a typical publish and 
subscribe paradigm, content providers publish their 
content to the data dissemination server, while 
consumers receive certain content by first registering 
their interest with the data dissemination server. With 
the insertion of the Messaging Bridge, the DDS server 
disseminates content through the DDS client proxy, 
which is typically co-located with it (the server). 
Similarly, the DDS client registers its interest in a 
particular content through the DDS server proxy, 
which is co-located with it (the client). Both DDS 
server and client Messaging Bridge are implemented as 
Mule [12] servers. The Mule Enterprise Service Bus 
(ESB) provides support for connection reestablishment 
after a dropped connection, and facilities for 
compression and queuing. 

 
4.2 Infrastructure Requirements for Design 

Patterns 
 
For the use case described above, a number of 

infrastructure components are required to implement 
the solution. These components include an information 
exchange infrastructure to work across constrained 
networks, as well as client-side applications supporting 
offline mode. 

To handle network disruptions, a proxy service is an 
important infrastructure component. In our solution, 
the proxy’s implementation is facilitated by the open-
source Mule ESB [12]. This implementation is well 
suited for message-oriented information exchange. The 
Mule ESB also provides a platform to integrate 
additional patterns, such as compression. In some 
cases, dealing effectively with network disruptions at 
the tactical edge cannot be solved at the application 
layer alone, but requires architectures spanning the 
messaging layer, middleware layer, application server, 
and browser. An example of such an architecture is the 
Disruption Tolerant Network [13] being developed at 
the Defense Advanced Research Projects Agency 
(DARPA), which makes use of store and forward 
techniques, routing models, and persistence to 
overcome disruption in a network. 

On the client side, supporting an offline mode for 
client applications is an important aspect in dealing 
with intermittent networks. Lately, we have witnessed 
new developments concerning the interactions between 
application servers and browsers. In particular, the 
Google Gears Toolkit and Dojo allow Web developers 
to program applications to support an offline mode of 
operations in addition to the online mode. These 
solutions work by implementing a local server on the 
browser side where resources are cached. Updates from 
the server are retrieved when resources are requested. 
Follow on work may include testing and incorporating 
these new solutions. 

 
5. Conclusion 

 
In this paper, we proposed a method for capturing 

design patterns for the tactical edge using the common 
vocabulary of the characterization framework. We 
provided a set of design patterns that minimize 
technical constraints associated with the disadvantaged 
user and derived the infrastructure requirements needed 
to implement a design pattern. This implementation 
serves as a reference, geared toward demonstrating the 
use of the characterization framework and validating 
the design patterns. 

The characterization framework and the use of 
design patterns as proposed in this paper provides a 
number of benefits: 

• The common vocabulary can be used to 
describe various environments such that one 
can look across multiple use cases and identify 
commonality in the type of constraints 
introduced in each use case. Subsequently, this 
allows for sharing of design patterns and 
implementation solutions across these use 
cases. 

Approved for Public Release; Distribution Unlimited. Case Number: 07-0961 
Copyright ©2007, IEEE, Inc. All rights reserved 



• The framework provides the basis for a process 
to assess the readiness of a particular existing 
system for the tactical edge, comparing the 
implementation against appropriate design 
patterns and infrastructure requirements for 
particular classes of environments. 

• The use of design patterns particular to 
disadvantaged environments provides an ability 
to make investment decisions on infrastructure 
requirements as part of infrastructure upgrades 
and resource prioritizations. 

Next steps for the characterization framework 
include applying the framework to additional use cases 
to validate the classes of environments and associated 
attributes. Follow-on activities may focus on 
identifying non-DoD use cases to validate the adoption 
of this approach for non-disadvantaged users as well. 

 
6. References 
 
[1] Alexander, C., S. Ishikawa, M. Silverstein, 1977, 
“A Pattern Language: Towns/Buildings/Construction,” New 
York: Oxford University Press. ISBN 0-19-501919-9. 

[2] Gamma,E., R. Helm, R. Johnson, and J. Vlissides, 
1995, “Design Patterns: Elements of Reusable Object-
Oriented Software,” Boston, MA: Addison-Wesley.  

[3] Hohpe, G., B. Woolfe, 2004, “Enterprise 
Integration Patterns, Designing, Building, and Deploying 
Messaging Solutions,” Boston, MA: Addison-Wesley. 

[4] “ws-Notification, ws-pubsub, & personalized 
delivery standards,” Contributors: IBM, Akamai 
Technologies, Computer Associates International, SAP AG, 
Fujitsu Laboratories of Europe, Globus, Hewlett-Packard, 
Sonic Software, TIBCO Software, 
http://www.ibm.com/developerworks/library/specification/ws
-notification/, 
http://www.ibm.com/developerworks/patterns/portal/access-
personalized-runtime.html, 

http://www.ibm.com/developerworks/library/specification/ws
-rm/, 
http://www.ibm.com/developerworks/library/specification/ws
-pubsub/,  

[5] Chappell, D., 2004, “Enterprise Service Bus,” 
Cambridge, MA: O’Reilly.  

[6] Srinivasan, H., J. Conallen, E. Lane, “Building 
SOA Applications With Reusable Assets, Part 4: The 
Requester-Side Caching Pattern,” http://www-
128.ibm.com/developerworks/library/ws-soa-
reuse4/index.html 

[7] ISO/IEC 24824-1, “Information Technology -- 
Generic applications of ASN.1: Fast Infoset,” March 30, 
2007, http://www.iso.org/ Schumacher, M. et al., 2005, 
“Security Patterns: Integrating Security and Systems 
Engineering,” Indianapolis, IN: John Wiley & Sons. 

[8] Schumacher, M. et al., 2005, “Security Patterns: 
Integrating Security and Systems Engineering,” Indianapolis, 
IN: John Wiley & Sons. 

[9] Adams, J., S. Koushik, G. Vasudeva, G. Galambos, 
2004, “Patterns for e-business, A Strategy for Reuse,” IBM 
Corporation, http://www-
128.ibm.com/developerworks/patterns/ 

[10] Endrei, M., et al., 2004, “Patterns: Service-Oriented 
Architectures and Web Services, IBM RedBooks, IBM. 
http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg24630
3.html?Open 

[11] Fowler, M., August 2006, “Writing Software 
Patterns,” 
http://www.martinfowler.com/articles/writingPatterns.html 

[12] Open Source Mule ESB (Enterprise Service Bus) 
http://mule.codehaus.org/display/MULE/Home 

[13] DARPA, “Disruption Tolerant Network,” 
http://www.mitre.org/news/events/tech05/briefings/2184.pdf.

Approved for Public Release; Distribution Unlimited. Case Number: 07-0961 
Copyright ©2007, IEEE, Inc. All rights reserved 

http://www.ibm.com/developerworks/library/specification/ws-notification/
http://www.ibm.com/developerworks/library/specification/ws-notification/
http://www.ibm.com/developerworks/patterns/portal/access-personalized-runtime.html
http://www.ibm.com/developerworks/patterns/portal/access-personalized-runtime.html
http://www.ibm.com/developerworks/library/specification/ws-rm/
http://www.ibm.com/developerworks/library/specification/ws-rm/
http://www.ibm.com/developerworks/library/specification/ws-pubsub/
http://www.ibm.com/developerworks/library/specification/ws-pubsub/
http://www-128.ibm.com/developerworks/patterns/
http://www-128.ibm.com/developerworks/patterns/
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246303.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246303.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246303.html?Open
http://www.martinfowler.com/articles/writingPatterns.html
http://mule.codehaus.org/display/MULE/Home
http://www.mitre.org/news/events/tech05/briefings/2184.pdf


 

 

Figure 1. Summary of Environments’ Characterization 

 

 
 

Figure 2. Illustration of DDS ith Messaging Bridge 

System
Weight

L
o
ca

l
G

lo
b

a
l

N
e
tw

o
rk

R
e
s
o
u

rc
e
s

Connectivity

Bandwidth

Latency

Connectivity

Bandwidth

Latency

Processing

Storage

Power

System Size

Well Connected Intermittent Mostly Disconnected

High Medium Low

Low Low Medium

Well Connected Mostly Connected Disconnected

High Medium Medium Low None

Low Low Medium Extremely High

Servers Workstations Single Workstations Handhelds

Large Data Storage Devices Single Hard Drives

Unlimited 10 sq ft 10 sq ft < 1 sq ft

Unlimited 100 lbs 100 lbs < 10 lbs

Grid Generator Batteries Batteries

Fixed Center   Mobile Center    Mobile Swarm    Dismounted

Intermittent

System
Weight

L
o
ca

l
G

lo
b

a
l

N
e
tw

o
rk

R
e
s
o
u

rc
e
s

Connectivity

Bandwidth

Latency

Connectivity

Bandwidth

Latency

Processing

Storage

Power

System Size

Well Connected Intermittent Mostly Disconnected

High Medium Low

Low Low Medium

Well Connected Mostly Connected Disconnected

High Medium Medium Low None

Low Low Medium Extremely High

Servers Workstations Single Workstations Handhelds

Large Data Storage Devices Single Hard Drives

Unlimited 10 sq ft 10 sq ft < 1 sq ft

Unlimited 100 lbs 100 lbs < 10 lbs

Grid Generator Batteries Batteries

Fixed Center   Mobile Center    Mobile Swarm    Dismounted

Intermittent

 

DDS Publisher

HTTP / SOAP

Raw TCP / XML

HTTP / SOAP

Email
Server

Mail
Client

DDS
Subscriber SMTP POP3

HTTP 
/ 

SOAP

DDS Client Proxy
(using Mule ESB)

DDS Server Proxy
(using Mule ESB)

Mobile Center

Mobile Swarm

Dismounted

DDS Server

Mail
Client

DDS Publisher

HTTP / SOAP

Raw TCP / XML

HTTP / SOAP

Email
Server

Mail
Client

DDS
Subscriber SMTP POP3

HTTP 
/ 

SOAP

DDS Client Proxy
(using Mule ESB)

DDS Server Proxy
(using Mule ESB)

Mobile Center

Mobile Swarm

Dismounted

DDS Server

Mail
Client

w

Approved for Public Release; Distribution Unlimited. Case Number: 07-0961 
Copyright ©2007, IEEE, Inc. All rights reserved 


	1. Introduction
	2. Characterization Framework and Common Vocabulary
	3. Design Patterns
	3.1 Design Pattern Definition Template
	3.2 Types of Design Patterns

	4. Reference Implementation
	4.1 Data Dissemination 
	4.2 Infrastructure Requirements for Design Patterns

	5. Conclusion
	6. References



