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Quantum error correction requires the measurement of error syndromes to properly locate and
identify errors. Here we compare three syndrome measurement strategies for the [[7,1,3]] quantum
error correction code: Shor states, Steane states, and one ancilla qubit. The first two of these
strategies are fault tolerant while the third is not. For each strategy we compare the fidelities of
applying 50 logical gates with quantum error correction applied at different intervals. We then
compare the fidelities for the different syndrome measurement strategies. Our simulations show
that the optimal syndrome measurment strategy depends on the details of the error environment.
The simulations thus allow a quantum computer programmer to weigh computational accuracy
versus resource consumption for a particular error environment. In addition, we show that applying
syndrome measurment that are unnecessary from the standpoint of quantum fault tolerance may be
helpful in achieving better accuracy or in lowering resource consumption. Finally, our simulations
show that the non-fault tolerant syndrome measurement strategy gives comparable accuracy results
with those that are fault tolerant.

PACS numbers: 03.67.Pp, 03.67.-a, 03.67.Lx

I. INTRODUCTION

Quantum error correction (QEC) codes can be used
to make quantum information robust against errors [1–
3]. This is done by encoding some number of logical
qubits into a larger number of physical qubits. Syn-
drome measurements, parity measurements between mul-
tiple qubits, are then used to determine the presence and
location of an error and a recovery operation may be ap-
plied to correct the error.

A paradigmatic example of a QEC code is the Steane
[[7,1,3]] code [4] in which one logical qubit is encoded
into 7 physical qubits. The encoding is robust against all
single (physical) qubit errors. In the initial formulation
of the code 6 syndrome measurements were needed to
detect and identify an error: 3 for bit-flip errors, and 3
for phase-flip errors each requiring one ancilla qubit as
shown in Fig. 1.

QEC thus allows for the storage of quantum informa-
tion. However, for successful quantum computation stor-
age alone is insufficient. Quantum information must be
manipulated so as to perform quantum operations such
as gates and measurements. These processes must be
performed in such a way so as keep the quantum infor-

FIG. 1: Non-fault tolerant circuit for syndrome measurements
for the [[7,1,3]] QEC code using single qubit ancilla.

mation protected from error. In addition, we would like
to ensure that if an error does occur to a (physial) qubit
it cannot spread to multiple additional qubits. All of this
can be done by following the strictures of quantum fault
tolerance (QFT) [5–8]. QFT allows for successful quan-
tum computation despite the possibility of error in the
basic quantum operations.

Through the lens of QFT, the syndrome measurement
scheme of Fig. 1 is flawed because errors on one qubit can
spread uncontrollably throughout the circuit. For exam-
ple, an error to one of the ancilla qubits used for the
syndrome measurement can easily effect the four ‘data’
qubits it interacts with and from there spread to even
more qubits. To make syndrome measurment adhere to
the rules of QFT any ancilla qubit should interact with
only one data qubit. There are a number of schemes
that allow this to be done for the [[7,1,3]] QEC code.
In this paper we will look at two of those schemes and
compare, via fidelity, their performance to the non-fault
tolerant scheme in which only one qubit is used for each
syndrome measurement. This will be done via numerical
simulations of a sequence of 50 encoded quantum gates.
In addition, we will apply QEC at different intervals dur-
ing the 50 gates to determine how often QEC should be
applied for the different syndrome measurement schemes.
All of the simulations will be done in a noisy environment.

One method of performing the [[7,1,3]] code syndrome
measurements in a fault tolerant fashion is to substitute
each single qubit of Fig. 1 with a four-qubit Shor state
[6]. Shor states are GHZ states with Hadamard gates
appended to each qubit. The Shor state construction
is made fault tolerant by applying appropriate verifica-
tions [30]. The parity of the measurements of the Shor
state qubits is the outcome of the syndrome measure-
ment. This process is shown in Fig. 2. To ensure there
are no errors during the syndrome measurement a single
application of fault tolerant QEC requires that the entire
set of syndrome measurements should be repeated until
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FIG. 2: Fault tolerant circuit for syndrome measurements for
the [[7,1,3]] QEC code using Shor states. To ensure fault tol-
erance each set of bit-flip and phase-flip syndromes is repeated
until the same syndrome is read out twice in a row.

FIG. 3: Fault tolerant circuit for syndrome measurements
for the [[7,1,3]] QEC code using Steane ancilla. Each line
represents seven physical qubits. The circuit shows that each
ancilla is verified to check for errors that may have occurred
during non-fault tolerant construction.

the same syndrome is read out twice.
A second method of performing [[7,1,3]] code syndrome

measurements in a fault tolerant fashion is via the use of
Steane ancilla [4] as shown in Fig. 3. A Steane ancilla is
a seven qubit system in the logical |0〉 or |+〉 state of the
[[7,1,3]] QEC code for phase-flip and bit-flip syndrome
measurements, respectively. To identify a bit- (phase-)
flip error a logical controlled-NOT (CNOT) gate is ap-
plied between the data qubits and ancilla qubits with the
data qubits (ancilla qubits) as the control. The ancilla
qubits are measured to determine the syndrome. To con-
struct the ancilla in a fault tolerant fashion, two copies
of the logical |0〉 or |+〉 state are made following the
non-fault tolerant gate sequence of Ref. [4]. A logical
CNOT gate is applied between the two copies and one
is measured to check for possible construction errors in
the other. Unlike the Shor state method, syndrome mea-
surement using Steane states need only be applied once
per QEC application to fulfill the requirements of QFT
[8]. Nevertheless, we will find that, at times, better re-
sults will emerge if we apply the syndrome measurements
twice per QEC application.
In this paper we explore [[7,1,3]] QEC code error cor-

rection with each of these syndrome measurement meth-
ods by simulating the implementation of 50 gates on a
logical qubit in different error environments. For each

syndrome measurement method we implement QEC af-
ter different numbers of gates to determine how often it
is best to apply QEC. We then compare the fidelity of
the three syndrome measurement methods.
Within the QFT framework the only proper gate op-

erations are those which will keep quantum information
protected at all times and are designed in such a way as
to stem any possible spread of errors. An appropriate
choice of universal gate set for many QEC codes, includ-
ing the [[7,1,3]] code, are Clifford gates plus the T -gate,
a single-qubit π/4 phase rotation. For Calderbank-Shor-
Steane (CSS) codes, Clifford gates can be implemented
bit-wise while the T -gate requires a specially prepared
ancilla state and a series of controlled-NOT gates. Such
a restrictive gate set means that many gates must be ap-
plied to accomplish what may superficially appear to be a
straightforward task. For example, much work has been
done to determine optimal gate sequences for implement-
ing an arbitrary single-qubit rotation (within prescribed
accuracy ǫ) using only the gates Clifford plse T . [9–17].
The goal of these works has been to find as short a gate
sequence as possible with the fewest number of resource-
consuming T -gates. Recent results allow, for example, a
σz rotation by 0.1 to be implemented within an accuracy
of 10−5 by using 56 [17] T -gates, interspersed by one or
two Hadamard, H , and Phase, P , gates. Thus, a fault
tolerant implementation of this rotation would require
more than 100 gates. Applying QEC after each gate, as
is assumed for fault tolerant quantum computation, thus
costs thousands of qubits and hundreds of time steps just
to implement a single rotation.

II. SIMULATION MODEL

Recent work has begun to analyze different approaches
to the implementation of various quantum computing
protocols with the goal of optimizing fidelity and resource
consumption [18–22, 30]. Specifically, the suggestion of
applying QEC less often so as to save valuable resources
has been explored in [23–25]. These works show that ap-
plying QEC after every gate will not necessarily optimize
the accuracy of the algorithm being implemented. Here,
we extend previous work by exploring multiple syndrome
measurement methods.
Every step of our simulations, except for the initial

state encoding, is performed in a nonequiprobable Pauli
operator error environment [26] with non-correlated er-
rors. As in [27], this error model is a stochastic version of
a biased noise model that can be formulated in terms of
Hamiltonians coupling the system to an environment. In
our simulations different error types arise with different
probabilities. Individual qubits undergo σj

x errors with
probability px, σ

j
y errors with probability py, and σ

j
z er-

rors with probability pz, where σj
i , i = x, y, z are the

Pauli spin operators on qubit j. Only qubits taking part
in a gate operation, initialization, or measurement will be
subject to error while other qubits are perfectly stored.
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Qubits taking part in a two-qubit gate will undergo er-
rors independently. The idealized assumption that idle
qubits are not subject to error is partially justified in that
it is expected such qubits will be less likely to undergo
error (see for example [28]).
We assume a single qubit state |ψ〉 = cosα|0〉 +

eiβ sinα|1〉, perfectly encoded into the [[7,1,3]] error cor-
rection code. A series of (necessarily noisy) logical gates,
U50...U2U1, is implemented in the nonequiprobable er-
ror environment with (noisy) error correction applied at
varying intervals leading to a final state, ρf , of the 7
qubits. To determine the accuracy of the simulated im-
plementations with perfectly applied gates, ρi, we uti-
lize the state fidelity F (ρi, ρf ) = Tr[ρiρf ]. In addition
we will find it useful to utilize the infidelity I(ρi, ρf ) =
1− F (ρi, ρf ).
The composite gates A = HPT and B = HT are

basic building blocks for gate sequences that implement
arbitrary single qubit rotations from the gate set Clifford
plus T . For our simulations we implement 20 randomly
chosen composite gates (comprising 50 total gates):

U = ABBBAAAABBABABABBBAA, (1)

with all gates and associated ancilla construction imple-
mented in the non-equiprobable error environment. We
simulate 7 QEC application schemes: applying QEC af-
ter every gate, (q = 50, where q is the number of QEC ap-
plications), after every composite gate A and B (q = 20),
after every two composite gates (q = 10), after every five
composite gates (q = 4), after each half of the sequence
U (q = 2), after the entire sequence (q = 1), and not
applying QEC at all (q = 0). Every physical gate of
the QEC implementation, including syndrome measure-
ment construction, is done in the nonequiprobable error
environment. Each scheme is simulated for error envi-
ronments of different values of px, py and pz. Our initial
state is the basis state |0〉. Other initial states and gate
sequences were explored and give similar results.
To implement a logical Clifford gate, C, within the

[[7,1,3]] QEC code one implements the gate C† on each
of the 7 physical qubits. To implement a logical T -gate on
the [[7,1,3]] QEC code requires constructing the ancilla
state |Θ〉 = 1√

2
(|0L〉+ ei

π

4 |1L〉), where |0L〉 and |1L〉 are

the logical basis states of the [[7,1,3]] QEC code. Bit-wise
CNOT gates are then applied between the state |Θ〉 and
the encoded state with the |Θ〉 state qubits as control.
A measurement outcome of zero on the encoded state
projects the qubits of the |Θ〉 state into the state T acting
on the encoded state. Our simulations are done in a fault
tolerant fashion following [20] and every step is done in
the nonequiprobable error environment.
Simulations were performed for four error environ-

ments: depolarization, p = px = py = pz, and when one
of the error probabilities, pi is dominant and the other
two pj = pk = 10−10. Results for the Shor state syn-
drome measurement method were reported in [24]. Here
we recall those results, report on results for the other
two syndrome measurement methods, and compare and

TABLE I: Second line: infidelity of final state after 50 noisy
gates with noisy QEC using Shor states for syndrome mea-
surements applied after each gate as a function of depolariza-
tion strength p. Lower lines: fractional change of infidelity,
D(I50, Iq), for different QEC application schemes.

q p = 10−6 p = 10−5 p = 10−4 p = 10−3

50 4.50× 10−5 4.54× 10−4 4.90× 10−3 8.27 × 10−2

20 7.54× 10−6 7.55× 10−5 7.62× 10−4 7.85 × 10−3

10 2.76× 10−6 2.80× 10−5 3.13× 10−4 4.97 × 10−3

4 −1.94× 10−6 −1.89× 10−5 −1.39× 10−4 1.52 × 10−3

2 −2.71× 10−6 −2.65× 10−5 −2.12× 10−4 9.88 × 10−4

1 −3.38× 10−6 −3.31× 10−5 −2.76× 10−4 5.12 × 10−4

0 −1.02 −1.01 −.941 −.544

contrast the results of the three syndrome measurement
methods.
We present our results via a series of Tables aug-

mented by Figures found in the Appendix which will
allow us to determine the optimum syndrome measure-
ment method as a function of both fidelity and resources
consumed. Each table looks at a single syndrome mea-
surement method and compares the fidelity of the output
state after 50 gates for the different values of q, the num-
ber of times QEC is applied. The first line in each Table
shows the error probability pi. The second line gives the
infidelity of the output state after the 50 gates when QEC
is applied after every gate, I50. The remaining lines show
the fractional change, D, of the infidelity when using the
other QEC application schemes:

D(I50, Iq) =
I50 − Iq
I50

(2)

for q = 20, 10, 4, 2, 1, 0. A positive fractional change
means a higher fidelity when using less QEC. Negative
fractional change means the fidelity is higher when ap-
plying QEC after every gate. However, it is important to
note applying QEC after every gate is the most resource
intensive. Thus, even if it gives the highest fidelity, it may
not be the optimal choice of QEC application schemes.

III. DEPOLARIZATION ENVIRONMENT

Our first set of tables look at the infidelity of the out-
put states after application of 50 gates and q QEC ap-
plications in a depolarizing environment. The five ta-
bles correspond to five different syndrome measurement
methods: the Shor state method, during which syndrome
measurements are applied twice per QEC application,
the Steane method, during which the syndrome measure-
ments are implemented once and twice per QEC appli-
cation, and the single qubit ancilla method, where the
syndrome measurements are implemented once and twice
per QEC application.
When implementing QEC with Shor states in a depo-

larizing environment the best strategy for extremely low
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TABLE II: Second line: infidelity of final state after 50 noisy
gates with noisy QEC using single ancilla qubits for syndrome
measurements applied after each gate as a function of depo-
larization strength p = px = py = pz. Each QEC application
consists of one set of syndrome measurements. Lower lines:
fractional change of infidelity, D(I50, Iq), for different QEC
application schemes.

q p = 10−6 p = 10−5 p = 10−4 p = 10−3

50 4.20 × 10−5 4.24 × 10−4 4.62 × 10−3 8.08 × 10−2

20 1.53 × 10−5 1.51 × 10−4 1.39 × 10−3 7.41 × 10−3

10 −8.92 × 10−6 −8.84 × 10−5 −8.11 × 10−4 −4.49 × 10−3

4 −3.29 × 10−5 −3.27 × 10−4 −3.01 × 10−3 −1.67 × 10−2

2 −3.67 × 10−5 −3.64 × 10−4 −3.35 × 10−3 −1.88 × 10−2

1 −4.00 × 10−5 −3.97 × 10−4 −3.66 × 10−3 −2.06 × 10−2

0 −1.17 −1.15 −1.06 −.578

TABLE III: Second line: infidelity of final state after 50 noisy
gates with noisy QEC using single ancilla qubits for syndrome
measurements applied after each gate as a function of depo-
larization strength p = px = py = pz. Each QEC application
consists of two sets of syndrome measurements. Lower lines:
fractional change of infidelity, D(I50, Iq), for different QEC
application schemes.

q p = 10−6 p = 10−5 p = 10−4 p = 10−3

50 4.20× 10−5 4.24 × 10−4 4.60 × 10−3 7.92× 10−2

20 2.70× 10−5 2.68 × 10−4 2.48 × 10−3 1.38× 10−2

10 2.98× 10−5 2.95 × 10−4 2.73 × 10−3 1.48× 10−2

4 3.06× 10−5 3.04 × 10−4 2.79 × 10−3 1.46× 10−2

2 3.12× 10−5 3.09 × 10−4 2.84 × 10−3 1.47× 10−2

1 3.15× 10−5 3.12 × 10−4 2.86 × 10−3 1.47× 10−2

0 −1.17 −1.16 −1.07 −.611

values of p is to apply QEC after every gate (not shown).
This is hardly surprising since, at these low error proba-
bilities, the cost of fidelity in applying QEC is minimal.
As p increases the optimal choice of QEC application
scheme will be the one that best balanaces errors arising
during gate implementation and errors arising from the
QEC application. Table I shows that two QEC schemes
q = 10, 20 yield a higher fidelity than QEC after ev-
ery gate. For p ≥ 10−3 applying QEC after every gate
gives the lowest fidelity because the high fidelity cost of
applying QEC outweighs the gain in correcting gate im-
plementation errors.

The one qubit syndrome ancilla is a non-fault toler-
ant syndrome measurement method. Nevertheless, we
see that the fidelity of the output state after 50 gates ap-
plying QEC with this syndrome measurement is actually
higher than the fidelity when QEC is implemented with
Shor states. We look at two variations of this syndrome
meausurement scheme: applying the syndrome measure-
ments once per QEC application and twice per QEC ap-
plication. While the fidelity when applying QEC after
every gate is practically the same with both methods,
we see that different QEC applications schemes lead to
different results.

TABLE IV: Second line: infidelity of final state after 50 noisy
gates with noisy QEC using Steane state syndrome measure-
ments applied after each gate as a function of depolarization
strength p = px = py = pz. Each QEC application consists
of one set of syndrome measurements. Lower lines: fractional
change of infidelity, D(I50, Iq), for different QEC application
schemes.
q p = 10−6 p = 10−5 p = 10−4 p = 10−3

50 3.50× 10−5 3.55× 10−4 3.96× 10−3 7.84× 10−2

20 −1.74× 10−4 −1.72× 10−3 −1.55× 10−2 −7.65× 10−2

10 −1.78× 10−4 −1.76× 10−3 −1.58× 10−2 −7.76× 10−2

4 −2.15× 10−4 −2.12× 10−3 −1.91× 10−2 −9.36× 10−2

2 −2.14× 10−4 −2.12× 10−3 1.91× 10−2 −9.37× 10−2

1 −2.17× 10−4 −2.15× 10−3 −1.93× 10−2 −9.50× 10−2

0 −1.60 −1.58 −1.40 −.628

When the syndrome measurements are applied once
per QEC application we find that the best QEC scheme
is q = 20 followed by applying QEC after every gate as
shown in Table II. In contrast, when syndrome measure-
ments are applied twice per QEC application we find that
in general the less QEC is applied the better (as long as
it is applied), as shown in Table III. For error probabil-
ities 10−10 ≤ p ≤ 10−2 applying QEC after every gate
always gives the worst fidelity and applying QEC once
is generally the best. Only on the edges of this range,
p = 10−2.5 and 10−9.5, do we find that the best QEC
scheme is q = 10. For p = 10−2 things turn around
and applying QEC more often is better and thus apply-
ing QEC after every gate gives the highest fidelity. A
comparison of the fidelities of the best QEC application
schemes for the two single-qubit syndrome measurement
variations is shown in the top-left inset of Fig. 4. While
on the the scale of the plot the fidelities are extremely
close, the figure highlights that the best scheme for QEC
when syndrome measurements are applied once q = 20
and when syndrome measurements are applied twice it is
q = 1. Thus, applying syndrome measurements twice per
QEC leadsto a factor of 10 savings in time and resources
and, in addition, the fidelity of this scheme is slightly
higher.

Using Steane states for syndrome measurements gives
the highest fidelity amongst the syndrome measurement
methods explored here. If each QEC consists of one ap-
plication of the syndrome meausurements (which is still
fault tolerant) than the best scheme is to apply QEC
after every gate as shown in Table IV. If each QEC
encompasses two such applications q = 10 is the best
scheme and ordering of the other schemes depends on
p as shown in Table V. A comparison of the fidelities
of the best QEC application schemes for the two Steane
state syndrome measurement variations is shown in the
bottom-right inset of Fig. 4. While on the the scale of the
plot the fidelities are extremely close, the figure highlights
that the best scheme for QEC when syndrome measure-
ments are applied once is generally q = 50 and when
syndrome measurements are applied twice it is generally



5

TABLE V: Second line: infidelity of final state after 50 noisy
gates with noisy QEC using Steane state syndrome measure-
ments applied after each gate as a function of depolarization
strength p = px = py = pz. Each QEC application consists of
two sets of syndrome measurements. Lower lines: fractional
change of infidelity, D(I50, Iq), for different QEC application
schemes.
q p = 10−6 p = 10−5 p = 10−4 p = 10−3

50 3.50 × 10−5 3.54 × 10−4 3.91 × 10−3 7.35 × 10−2

20 −2.77 × 10−6 −2.77 × 10−5 −2.76 × 10−4 −2.68 × 10−3

10 5.35 × 10−6 5.27 × 10−5 4.53 × 10−4 9.64 × 10−4

4 3.69 × 10−7 3.27 × 10−6 −5.10 × 10−6 −1.83 × 10−3

2 2.56 × 10−6 2.49 × 10−5 1.91 × 10−4 −9.11 × 10−4

1 3.05 × 10−6 2.98 × 10−5 2.34 × 10−4 −7.62 × 10−4

0 −1.60 −1.58 −1.43 −.735
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FIG. 4: Infidelity versus error probability comparison of three
syndrome measurement methods: Shor state (black, chain),
single qubit with syndrome measurments twice per QEC
(light gray, dashed), and Steane state with syndrome mea-
surements twice per QEC (gray, solid). The markers show
which Shor state QEC application scheme gives the best fi-
delity for the corresponding p: q = 50 (△), q = 20 (∗), q = 10
(⋄), q = 4 (�), q = 2 (×), and q = 1 (©). The insets com-
pare the difference between applying syndrome measurements
once per QEC application (dark markers) versus twice per
QEC application (light markers) for the one-qubit syndrome
measurements (upper left) and Steane state (lower right) syn-
drome measurements.

q = 10. Thus, applying syndrome measurements twice
per QEC leads to a factor of 2.5 savings in time and re-
sources and, in addition, the fidelity of this scheme is
slightly better.

Figure 4 compares the infidelity of the best of each
of the three syndrome measurement methods. Clearly
using Steane states for syndrome measurements gives the
highest fidelity. It should be noted, however, that the
three fidelities are not that different and the single-qubit
syndrome measurements give a comparable fidelity (and
one better than the Shor state syndrome measurements)
despite the fact that it is not fault tolerant.

IV. ASYMMETRIC ERROR ENVIRONMENTS

The next set of five tables look at the infidelity of the
output states after simulation of 50 logical gates and q
QEC applications in error environments where one of
the error probabilites pi is dominant and the other er-
ror probabilities pj , pk are equal to 10−10.
The asymmetric error environment demonstrates the

effectiveness of tailoring QEC to the particular evolution
of the system. We first look at using Shor states for
syndrome measurements in Table VI. When σy errors are
dominant applying QEC after each gate is always optimal
unless py ≥ 10−5.5 in which case q = 20 gives higher
fidelity. When phase-flip errors are dominant, applying
QEC after every gate gives the worst fidelity (besides not
applying QEC at all). The other schemes are about equal
but the best fidelity is achieved for q = 4. When bit-flip
errors are dominant not applying QEC at all leads to the
highest fidelity by far [24, 30].
For syndrome measurements done via a one-qubit an-

cilla we also see a strong dependence on the error en-
vironment. If each application of QEC consists of one
set of syndrome measurements Table VII demonstrates
that q = 20 gives the best fidelity when bit-flip errors
are dominant, q = 50 gives the best fidelity when σy er-
rors are dominant, and q = 4 gives the best fidelity when
phase-flip errors are dominant.
When each QEC application consists of two sets of

syndrome measurements the situation changes as shown
in Table VII. When bit-flip errors are dominant it is best
to apply QEC only after all 50 gates, q = 1. When σy
errors dominate q = 50 gives the best fidelity for error
probabilities between 10−9 and 10−6. For higher error
probabilities, the q = 20 gives the highest fidelity. When
phase-flip errors are dominant, q = 1 again gives the
highest fidelity.
A comparison of the fidelities of the best QEC appli-

cation schemes for the two single-qubit syndrome mea-
surement variations in the different error environments
is shown in the top-left insets of Fig. 5. For a bit-flip
dominated environment when 10−8 < px < 10−4 the fi-
delity is lightly higher when syndrome measurments are
applied once per QEC than when applied twice per QEC.
Furthermore, QEC in the former case should be applied
two-and-a-half times less leading to resource saving by a
factor of 5. When σy errors are dominant we find that
applying the syndrome measurement set twice per QEC
generally gives better fidelity and also gives a slight ad-
vantage in resources. When phase-flip errors dominate
applying syndrome measurements twice per QEC gives
a slightly higher fidelity and uses only half the resources
since QEC can be applied only once.
When using Steane states for syndrome measurements

we again see different behavior. When each QEC con-
sists of one syndrome measurement there is a sharp dis-
tinction between whether bit-flip or phase-flip errors are
dominant. Table X shows that when bit-flip errors dom-
inate applying QEC after every gate is optimal. When
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TABLE VI: Second line: infidelity of final state after 50 noisy gates with noisy QEC using Shor states for syndrome measure-
ments applied after each gate as a function of pi with pj = pk = 10−10. Lower lines: fractional change of infidelity, D(I50, Iq),
for different QEC application schemes.

q px = 10−7 px = 10−5 px = 10−3 py = 10−7 py = 10−5 py = 10−3 pz = 10−7 pz = 10−5 pz = 10−3

50 3.1× 10−6 3.1× 10−4 3.2× 10−2 7.0× 10−7 7.0× 10−5 1.1× 10−2 7.0× 10−7 7.1× 10−5 1.9× 10−2

20 2.9× 10−10 1.6× 10−7 1.5× 10−3 −1.6× 10−10 6.7× 10−9 7.2× 10−5 3.9× 10−6 3.8× 10−4 1.8× 10−2

10 1.4× 10−10 2.0× 10−7 1.9× 10−3 −2.2× 10−9 −3.7× 10−8 −2.0× 10−4 3.9× 10−6 3.8× 10−4 1.9× 10−2

4 4.7× 10−10 2.4× 10−7 2.4× 10−3 −2.1× 10−9 −1.1× 10−7 −6.3× 10−4 4.0× 10−6 4.0× 10−4 1.9× 10−2

2 3.9× 10−10 2.4× 10−7 2.4× 10−3 −3.5× 10−9 −1.1× 10−7 −6.9× 10−4 3.9× 10−6 3.8× 10−4 1.9× 10−2

1 4.3× 10−10 2.5× 10−7 2.4× 10−3 −5.0× 10−9 −1.2× 10−7 −7.6× 10−4 3.8× 10−6 3.8× 10−4 1.9× 10−2

0 9.5× 10−2 9.6× 10−2 8.1× 10−2 −2.0 −2.0 −1.3 −5.0 −4.9 −1.8

TABLE VII: Second line: infidelity of final state after 50 noisy gates with noisy QEC using single ancilla qubits for syndrome
measurements applied after each gate as a function of pi with pj = pk = 10−10. Each QEC application consists of one set of
syndrome measurements. Lower lines: fractional change of infidelity, D(I50, Iq), for different QEC application schemes.

q px = 10−7 px = 10−5 px = 10−3 py = 10−7 py = 10−5 py = 10−3 pz = 10−7 pz = 10−5 pz = 10−3

50 2.8× 10−6 2.8× 10−4 2.9× 10−2 7.0× 10−7 7.0× 10−5 1.1 × 10−2 7.0× 10−7 7.1× 10−5 2.0× 10−2

20 2.7× 10−7 2.7× 10−5 2.7× 10−3 −8.1× 10−7 −8.1× 10−5 −5.4× 10−3 1.1× 10−5 1.1× 10−3 4.1× 10−2

10 6.0× 10−8 6.4× 10−6 7.2× 10−4 −2.4× 10−6 −2.4× 10−4 −1.6× 10−2 1.3× 10−5 1.2× 10−3 4.5× 10−2

4 8.3× 10−8 8.8× 10−6 1.1× 10−3 −4.2× 10−6 −4.3× 10−4 −2.9× 10−2 1.3× 10−5 1.2× 10−3 4.7× 10−2

2 4.9× 10−8 5.2× 10−6 7.1× 10−4 −4.6× 10−6 −4.6× 10−4 −3.1× 10−2 1.3× 10−5 1.3× 10−3 4.7× 10−2

1 3.5× 10−8 4.1× 10−6 5.7× 10−4 −4.9× 10−6 −4.8× 10−4 −3.2× 10−2 1.3× 10−5 1.3× 10−3 4.7× 10−2

0 −1.8× 10−3 −1.2× 10−4 −1.0× 10−2 −2.0 −2.0 −1.3 −5.0 −4.9 −1.6

phase-flip errors dominate applying QEC after all the
gates is optimal. For σy errors only q = 20 gives better
fidelity than applying QEC after every gate. When each
QEC application consists of two sets of syndrome mea-
surements it is best to apply QEC only once, q = 1, if σy
or phase-flips are the dominant error. If bit-flips are dom-
inant the best QEC method depends on the strength of
px. If px > 10−5.5 the best method is q = 4. For weaker
px the best method is either q = 50 or q = 20 depending
on the exact error strength.

A comparison of the fidelities of the best QEC appli-
cation schemes for the two Steane state syndrome mea-
surement variations in the different error environments is
shown in the bottom-right insets of Fig. 5. For a bit-flip
dominated environment the fidelity is higher when syn-
drome measurments are applied twice per QEC, though
this sometimes comes with a cost in the amount of re-
sources used. When σy errors dominate applying syn-
drome measurements twice gives a slightly higher fidelity
and will also provide up to a factor of 10 in resource
savings over applying the syndrome measurements just
once. When phase-flip errors dominate applying syn-
drome measurements twice per QEC gives a slightly
higher fidelity than applying just once per QEC. How-
ever, this increase in fidelity comes at a cost of using two
times the resources.

Figure 5 compares the infidelity of the best of each of
the three syndrome measurement methods in asymmetric
error environments. For the bit-flip and σy error domi-
nated environments the Steane state ancilla give the best
fidelity, by a wide margin for bit-flips and by only a slight

margin for σy errors. In a phase-flip dominated environ-
ment the Steane syndrome measurements give the lowest
fidelity. In all three error environments the fidelity of the
Shor state syndromes and that of the single-qubit syn-
dromes are similar, though the single qubit syndromes
give a slightly better fidelity.

V. CONCLUSION

In conclusion we have explored different syndrome
measurement techniques for the [[7,1,3]] QEC code in dif-
ferent error environments. The three syndrome measure-
ments explored are those using Shor states and Steane
states, each of which are fault tolerant, and using a sin-
gle qubit ancilla, which is not fault tolerant. We ex-
plore two variations of both the Steane state and single-
qubit syndrome measurement methods: the syndrome
measurements are applied once per QEC application and
twice per QEC application. The simulations implement
50 logical gates within the [[7,1,3]] QEC encoding with
QEC applied at various intervals using the different types
of syndrome measurements. The results demonstrate
that the optimal syndrome measurements to use will
strongly depend on the error environment. In a depolar-
izing environment and when bit-flip and σy errors dom-
inate, the best syndrome measurements to use are the
Steane states. When phase-flip errors are dominant we
see that the Steane state syndrome measurements give
the lowest fidelity. The Shor state and single-qubit syn-
drome measurements always give similar fidelities with
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TABLE VIII: Second line: infidelity of final state after 50 noisy gates with noisy QEC using single ancilla qubits for syndrome
measurements applied after each gate as a function of pi with pj = pk = 10−10. Each QEC application consists of two sets of
syndrome measurements. Lower lines: fractional change of infidelity, D(I50, Iq), for different QEC application schemes.

q px = 10−7 px = 10−5 px = 10−3 py = 10−7 py = 10−5 py = 10−3 pz = 10−7 pz = 10−5 pz = 10−3

50 2.8× 10−6 2.8× 10−4 2.9× 10−2 7.0× 10−7 7.0× 10−5 1.1× 10−2 7.0 × 10−7 7.1× 10−5 1.9× 10−2

20 1.3× 10−6 1.3× 10−4 1.3× 10−2 −6.0× 10−9 1.8× 10−8 1.2× 10−4 9.3 × 10−6 9.2× 10−4 3.5× 10−2

10 1.7× 10−6 1.7× 10−4 1.7× 10−2 −6.0× 10−9 1.7× 10−8 1.1× 10−4 1.1 × 10−5 1.1× 10−3 4.3× 10−2

4 2.3× 10−6 2.3× 10−4 2.2× 10−2 −7.7× 10−9 9.8× 10−10 7.9× 10−6 1.2 × 10−5 1.2× 10−3 4.6× 10−2

2 2.3× 10−6 2.3× 10−4 2.3× 10−2 −7.6× 10−9 −1.6× 10−9 −1.1× 10−5 1.2 × 10−5 1.2× 10−3 4.7× 10−2

1 2.4× 10−6 2.4× 10−4 2.3× 10−2 −1.0× 10−8 −4.9× 10−9 −3.3× 10−5 1.3 × 10−5 1.3× 10−3 4.8× 10−2

0 −1.7× 10−3 8.6× 10−6 2.2× 10−3 −2.0 −2.0 −1.3 −5.0 −4.9 −1.8

TABLE IX: Second line: infidelity of final state after 50 noisy gates with noisy QEC using Steane state syndrome measurements
applied after each gate as a function of pi with pj = pk = 10−10. Each QEC application consists of one set of syndrome
measurements. Lower lines: fractional change of infidelity, D(I50, Iq), for different QEC application schemes.

q px = 10−7 px = 10−5 px = 10−3 py = 10−7 py = 10−5 py = 10−3 pz = 10−7 pz = 10−5 pz = 10−3

50 7.0× 10−7 7.0× 10−5 8.1× 10−3 7.0× 10−7 7.0× 10−5 1.1× 10−2 2.1 × 10−6 2.1× 10−4 3.7× 10−2

20 −4.9× 10−6 −4.9× 10−4 −4.3× 10−2 2.8× 10−7 2.9× 10−5 1.3× 10−3 −9.8× 10−7 −9.5× 10−5 −4.5× 10−3

10 −6.8× 10−6 −6.7× 10−4 −5.9× 10−2 −2.5× 10−6 −2.5× 10−4 −1.7× 10−2 5.8 × 10−6 5.8× 10−4 3.4× 10−2

4 −7.0× 10−6 −6.9× 10−4 −6.1× 10−2 −6.6× 10−6 −6.6× 10−4 −4.4× 10−2 8.0 × 10−6 8.0× 10−4 4.5× 10−2

2 −7.2× 10−6 −7.1× 10−4 −6.2× 10−2 −7.1× 10−6 −7.0× 10−4 −4.6× 10−2 9.0 × 10−6 9.0× 10−4 5.2× 10−2

1 −7.2× 10−6 −7.2× 10−4 −6.3× 10−2 −7.6× 10−6 −7.5× 10−4 −5.0× 10−2 9.8 × 10−6 9.8× 10−4 5.6× 10−2

0 −3.0 −3.0 −2.6 −2.0 −2.0 −1.3 −1.0 −.99 −.42

TABLE X: Second line: infidelity of final state after 50 noisy gates with noisy QEC using Steane state syndrome measurements
applied after each gate as a function of pi with pj = pk = 10−10. Each QEC application consists of one set of syndrome
measurements. Lower lines: fractional change of infidelity, D(I50, Iq), for different QEC application schemes.

q px = 10−7 px = 10−5 px = 10−3 py = 10−7 py = 10−5 py = 10−3 pz = 10−7 pz = 10−5 pz = 10−3

50 7.0× 10−7 7.0× 10−5 8.0 × 10−3 7.0× 10−7 7.0× 10−5 1.1× 10−2 2.1× 10−6 2.1× 10−4 3.4× 10−2

20 −1.2× 10−8 7.8× 10−8 8.2 × 10−4 3.4× 10−6 3.4× 10−4 2.2× 10−2 2.4× 10−6 2.4× 10−4 1.4× 10−2

10 −1.5× 10−8 5.6× 10−8 6.5 × 10−4 4.9× 10−6 4.9× 10−4 3.1× 10−2 5.4× 10−6 5.3× 10−4 3.3× 10−2

4 −1.4× 10−8 8.2× 10−8 9.1 × 10−4 5.2× 10−6 5.2× 10−4 3.3× 10−2 6.2× 10−6 6.2× 10−4 3.8× 10−2

2 −1.5× 10−8 7.6× 10−8 8.5 × 10−4 5.5× 10−6 5.5× 10−4 3.5× 10−2 6.7× 10−6 6.7× 10−4 4.1× 10−2

1 −1.6× 10−8 7.5× 10−8 8.5 × 10−4 5.7× 10−6 5.7× 10−4 3.6× 10−2 7.1× 10−6 7.0× 10−4 4.3× 10−2

0 −3.0 −3.0 −2.6 −2.0 −2.0 −1.3 −1.0 −1.0 −.55
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FIG. 5: Infidelity versus error probability comparison of three syndrome measurement methods in asymmetric error models:
bit-flip (left), σy (right), and phase-flip (left). Shor state (black, chain), single qubit with syndrome measurments twice per
QEC (light gray, dashed), and Steane state with syndrome measurements twice per QEC (gray, solid). The markers show
which Shor state QEC application scheme gives the best fidelity for the corresponding p: q = 50 (△), q = 20 (∗), q = 10 (⋄),
q = 4 (�), q = 2 (×), and q = 1 (©). The insets compare the difference between applying syndrome measurements once per
QEC application (dark markers) versus twice per QEC application (light markers) for the one-qubit syndrome measurements
(upper left) and Steane state (lower right) syndrome measurements.
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the single-qubit syndrome measurement fidelity being
slightly higher.
In addition, the optimum number of times QEC should

be applied within the implementation of the 50 gates also
depends on the error environment and the choice of syn-
drome measurement method. These results allow us to
properly weigh resource consumption, time and the num-
ber of qubits, versus accuracy as measured via fidelity.
Applying QEC only once at the end of 50 gates may save
a factor of 50 is resource consumption while sacrificing
only a small amount of fidelity.
It is important to note that despite the fact that the

single-qubit syndrome measurements are not fault toler-
ant, they achieve a fidelity that is relatively close to the
other syndrome measurements, at least over 50 gates.
Whether this condition will hold over larger numbers of
gates will be explored elsewhere but it will likely depend
strongly on the details of the error environment and how
often QEC is applied. Nevertheless, these simulations
suggest that perhaps not all the strictures of QFT need
be followed to the letter to achieve the desired outcome
of a quantum compuation.

I would like to thank G. Gilbert for insightful com-
ments. This research is supported under MITRE Inno-
vation Program Grant 51MSR662. c©2014 - The MITRE
Corporation. All rights reserved. Approved for Public
Release 14-1102; Distribution Unlimited.

VI. APPENDIX

In this Appendix we provide figures that expand the
results shown in Tables by plotting D(I50, Iq)/p for a
range of error probability values. Each of the five figures,
one for each syndrome measurement strategy, consists of
four subplots, one for each of the four error environment
types. Each subplot allows for an easy comparison of the
fractional change of the output state after 50 gates com-
pared to applying QEC after every gate for the different
values of q, the number of times QEC is applied. The
plots demonstrate which schemes are better (above zero)
or worse (below zero) than applying QEC after every gate
and by how much.
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FIG. 6: Fractional change of infidelity of ρf divided by error probability, pi, for 50 gates applied to initial state |0〉 with q = 1
(©), 2 (×), 4 (�), 10 (⋄), and 20 (∗). The subplots are for QEC with Shor states (top left), one-qubit ancilla when each QEC
consists of applying syndrome measurements once (top right), one-qubit ancilla when each QEC consists of applying syndrome
measurements twice (middle left), Steane states when each QEC consists of applying syndrome measurements once (middle
right), and Steane states when each QEC consists of applying syndrome measurements twice (bottom). Within each of the
subplots the top left figure is for a depolarizing error environment (p = px = py = pz) and the remaining figures are for error
environments where pi is dominant and pj = pk = 10−10: i = x (top right), i = y (bottom right) and i = z (bottom right).


