
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Pipelined Fast Fourier Transform (FFT)

architectures, which are efficient for long instances (32k points
and greater), are critical for modern digital communication and
radar systems. For long instances, Single-Path Delay-Feedback
(SDF) FFT architectures minimize required memory, which can
dominate circuit area and power dissipation. This paper presents
a parallel Radix-22 SDF architecture capable of significantly
increased pipelined throughput at no cost to required memory or
operating frequency. A corresponding parallel coefficient
generator is also presented. Resource utilization results and
analysis are presented targeted for a 45nm silicon-on-insulator
(SOI) application-specific integrated circuit (ASIC) process.

Index Terms— FFT, high throughput, low-power, parallel,
Radix-22, Single-Path Delay-Feedback

I. INTRODUCTION

HE Fast Fourier Transform (FFT) is an efficient
algorithm for computing the Discrete Fourier Transform

(DFT) [1]. The FFT is a common digital signal processing
function used across a multitude of application domains.
Modern communication systems such as Orthogonal
Frequency Division Multiplexing (OFDM) rely on the high-
speed computation of the FFT. Radar systems also employ the
FFT for matched filtering and Doppler processing.

Pipelined FFT processors compose a sub-class of
architectures that are computationally efficient in hardware.
These processors are capable of processing an uninterrupted
stream of input data samples while producing a stream of
output data samples at a matching rate. A variety of
architectures for pipelined FFT processing have been proposed
[5-9]. The desire for more precision, longer FFTs and
increased power efficiency has motivated architectural
innovations aimed at hardware reuse and the overall reduction
in the number of adders, multipliers and words of memory
required to implement FFT algorithms.

As a function of the number of stages in pipelined FFT
architectures, the lower bound for butterfly and twiddle
modules grows linearly while the lower bound for the number

This work was supported in part by The MITRE Corporation MSR Project:
Emerging Technologies for VLSI Application (51MSR666-AA). Approved
for Public Release; Distribution Unlimited. 13-3317

B. W. Dickson is with The MITRE Corporation, 202 Burlington Road,
Bedford, MA 01730-1420 (phone: 781-271-2821; fax: 781-271-8915; e-mail:
bdickson@mitre.org)

A. A. Conti is with Cognitive Electronics Inc., 201 South Street, Boston,
MA 02111 (phone: 617-607-7199; fax: 888-209; e-mail: al@cognitive-
electronics.com)

©2014-The MITRE Corporation. All rights reserved.

of words of memory grows exponentially [6]. For this reason,
long FFTs can be dominated by memory with respect to
resource utilization and power dissipation. Power dissipation
can be further compounded when implementing in advanced
silicon technology nodes. Excessive power dissipation will
occur if the memory has not been optimized for leakage
current since the active silicon area for the memory is
proportional to its size. For these reasons, optimizing long
FFT instances usually involves focusing on the minimization
of required memory.

Single-Path Delay-Feedback FFT architectures have the
most efficient memory utilization for pipelined FFT
processors [4]. Due to the exponential growth of the number
of memory words required with respect to the number of FFT
stages (or the logarithmic growth of butterfly and twiddle
modules required with respect to the number of FFT points),
there will always be a point at which memory dominates
circuit area and power dissipation. For this reason SDF FFT
architectures are always optimal for long FFT instances [10,
11].

In this paper, we propose parallel extensions to the SDF
FFT architecture [9] to significantly improve throughput
without incurring an increase in memory or operating
frequency. While many of these techniques are equally
applicable to other SDF FFT architectures such as Radix-2
SDF [6] and Radix-4 SDF [7], discussion is focused on the
challenges and tradeoffs associated with the Radix-22 SDF
processing and twiddle generation.

The parallel extensions presented in this paper increase the
number of butterflies and twiddle modules proportional to the
parallelization while maintaining memory size of the FFT.
This results in highly efficient throughput rates with a minimal
increase in area and power for large FFTs.

This paper will present results demonstrating the area and
power savings achieved by parallel extensions using a 45nm
SOI process. The benefits in terms of area and energy
efficiency become more apparent as the number of points in
the FFT grows.

Applying the parallel extensions outlined in this paper allow
for lower clock frequencies (inversely proportional to
parallelization) and in the case of ASIC implementations,
more leakage-efficient memories can be leveraged while
maintaining pipelined throughput performance. Results will
show that lowering the clock rate and increasing parallelism
by the same factor does not change the throughput of the FFT
processor and has a negligible impact to area for large FFTs.

Parallel Extensions to Single-Path
 Delay-Feedback FFT Architectures

Brett W. Dickson, and Albert A. Conti

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

The remainder of this paper is structured as follows: in
Section II the Radix-22 SDF FFT architecture is reviewed;
Section III describes the proposed parallel architectural
extensions to the SDF FFT; in Section IV the proposed
architectural extensions are compared to previous approaches;
finally Section V presents performance and utilization results
targeted for a 45nm SOI ASIC. Final conclusions are drawn in
Section VI.

II. RADIX -22
 SDF FFT ARCHITECTURE

SDF FFT architectures make use of delay-lines
implemented using memory and shift registers to reorder data
at each butterfly stage. Delay-lines of length 2� are required
for all � from 0 to log��	
 − 1 where 	 is the number of
FFT points the SDF FFT processor is capable of computing.
This requirement is due to the data shuffling intrinsic to the
decimate-in-time (DIT) and decimate-in-frequency (DIF)
algorithms.

The Radix-22 SDF architecture is a hybrid of Radix-2 SDF
and Radix-4 SDF designs [9]. The simplicity of the Radix-2
two-point butterfly structure is maintained while only needing log�	
 − 2 twiddle multiplies as is the case in Radix-4
architectures. This flexibility is achieved by using a second
type of butterfly structure that performs ±� multiplications
through sign inversion and real-imaginary sample swapping.
This simplification eliminates half of the complex multipliers
required for Radix-2 SDF implementations.

Fig. 1 shows Radix-22 SDF pipelines for both DIF and DIT
implementations. DIF SDF architectures require a natural-
ordered input stream to generate a bit-reversed output stream.
Contrarily, DIT implementations expect bit-reversed input
samples and produce natural-ordered output samples. This
symmetry is often exploited in systems that transform data,
perform processing in the frequency domain, and then apply
an inverse transform. For large block sizes, incorporating
additional memory buffers for data reordering are costly in
area and power.

Fig. 1. (a) Radix-22 DIF SDF Pipeline, (b) Radix-22 DIT SDF Pipeline

A. Delay-Lines

From Fig. 1, where � corresponds to the butterfly index
and � corresponds to the twiddle generator index, it can be
seen the memory requirements at each butterfly stage differ
between DIT and DIF implementations. The depth of a delay-

line at a given butterfly stage is 2� for DIT architectures and 2���� ����� for DIF architectures. The width of the memories
is dependent on the bit width of the I and Q input samples and
any internal bit growth maintained through the pipeline.

It should be noted that the total memory requirements may
differ between the two algorithms even when computing the
same number of FFT points with equivalent data widths. SDF
FFT architectures may allow bit growth to occur at butterfly
additions which requires growth in the widths of the delay-line
memories through the pipeline. For DIF architectures, data
widths increase linearly as delay-line memory depths decrease
exponentially. This means that restraining bit growth in DIF
FFT processors results in minimal savings as compared to the
potential impacts of quantization. On the other hand, internal
bit growth can have a significant effect for DIT FFT
processors. In DIT implementations, delay-line memory bit
widths will increase linearly while depths increase
exponentially. If possible, samples should be quantized after
butterfly additions to minimize memory in DIT pipelines.

Memories used to implement delay-lines for SDF FFT
processors do not require random access. A straightforward
sequential access scheme in which read and write pointers are
simultaneously incremented for each pair of complex data
samples requires a delay-line with a single dual-port static
random-access memory (SRAM). For SRAMs with a single
address port, two memories, each with one-half the number of
required words, can be used with a similar scheme. Read and
write address pointers will alternate between one memory
instance and the other as they increment allowing memories to
be written to and read from in ping-pong fashion. Some
additional silicon overhead is involved when a single instance
of memory is replaced by two of half the size, but this is
minimal for large instances of memory. Fig. 2 depicts delay-
lines implemented using both dual-port (a), and single-port (b)
SRAMs.

Fig. 2. (a) Delay-line implemented as dual-port RAM, (b) Delay-line
implemented as two single-port ping-pong RAMs

B. Butterflies

Butterfly circuitry at each stage combines data which are �/2 samples apart where � is equal to 2� for DIT and 2���� ����� for DIF architectures, and � is the incrementing
butterfly stage number. What is important to note in the
context of subsequent discussions is that contiguous data
samples are not combined through processing until � equals 1.
This remains true for butterfly circuitry with any radix. While

. . .

BF1 BF1BF2 BF2

4
8

N/2

N/4

BF1 BF2

12

. . .

BF1 BF1BF2 BF2 BF1 BF2

N/2

N/4
N/8

N/421

� � � � � � � � �� !"− # � � �� !"− $% � � % � �� #" −! � � �� !"− ! � � �� !" −�

Twiddle

Gen

Twiddle

Gen

Twiddle

Gen

Twiddle

Gen

� � � � � � � � �� ! "− # � � �� !" − $% � � % � �� #"− ! � � �� !"− ! � � �� !"− �

(a)

(b)

wr_data

wr_en

wr_addr

rd_data

rd_en

wr_data

wr_en

address

wr_data

wr_en

address

rd_data

rd_data

(a) (b)

rd_addr
counter

counter

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

butterflies with radices beyond two need to combine data
samples from multiple delay-lines, this is restricted to non-
contiguous data samples for all � greater than one.

In the Radix-22 SDF architecture, two unique types of
butterfly structures are used (BF1 and BF2). The BF1
butterfly, which is identical to those used in Radix-2 SDF
pipelines, computes a 2-point DFT. As previously stated, the
depth of the delay-line (&) is a function of the number of
points in the transform () and the stage number (�). Fig. 3
shows the BF1 structure from the proposed design where the
EN_BF1_SUM level signal is negated every & cycles. During
the first & samples when EN_BF1_SUM is low, multiplexors
direct the input data to the feedback registers. On the next &
cycles after EN_BF1_SUM is asserted high, the multiplexors
are switched and the butterfly addition is performed between
the input data and feedback output. This periodic process is
continued until 	 samples have been processed.

Fig. 3. Butterfly 1 (BF1) Architecture

 The BF2 structure, shown in Fig. 4, has some added logic to
perform a ±� multiplication without the need of a multiplier.
Like the BF1 function, the BF2 directs the input to the
feedback line for the first & cycles while EN_BF1_SUM and
EN_BF2_SUM are both low. For the next &/2 samples,
EN_BF1_SUM is active while EN_BF2_SUM remains zero.
The result is the same as the summing state of the BF1
operation. For the final &/2 cycles, both EN_BF1_SUM and
EN_BF2_SUM are high which causes in I and Q input
samples to be swapped and the I sample to be negated (a
multiply-by-j operation). Finally, EN_BF1_SUM and
EN_BF2_SUM are both negated to return to the initial state.
This routine is repeated until a full block of data (N samples)
has been processed.

Fig. 4. Butterfly 2 (BF2) Architecture

C. Twiddle Generation

In the Radix-22 SDF architecture, a twiddle multiplication
stage is implemented after every two butterfly stages. At every
twiddle stage, a complex hardware multiplier is used to
multiply each data sample by a corresponding complex
twiddle coefficient of unit magnitude. The product is then
truncated down to the bit width of the data stream before
entering the subsequent butterfly stage. The algorithm used to
generate the twiddle coefficients is as follows [12]. The
twiddle factors at stage � where 0 ≤ � ≤ log 	 − 2 is given
by the set)* �	 ,)�-. where:

)�- � /01�234 ; 5 � 0, 1, …	 , ���8 − 1; 9 � 0, 1, 2, 3

; � <	0,																																									0 ≤ 5 < >	?� ∗ �5 − >
,																			> ≤ 5 < 2>	?� ∗ �5 − 2>
,														2> ≤ 5 < 3>?A ∗ �5 − 3>
,														3> ≤ 5 < 4> (1)

?C � <	0									2 ∗ 4*	1 ∗ 4*3 ∗ 4* (2)

and

 > � ���D�8 (3)

The equation shows that for any twiddle stage (�), there are

four different states (�) which use a unique step size (?E) to
rotate the unit circle. The step size for each state is constant
resulting in a linear progression around the unit circle. IFFT
implementations use the same step sizes as forward
transforms, however the coefficients traverse the unit circle in
the opposite direction which requires a negation of the step
size or phase increment.

The combination of simple butterfly processing and

EN_BF1_SUM

Delay Line

FG
FH

FH
FG

EN_BF1_SUM

Delay Line

EN_BF2_SUM

FH
FG

FH
FG

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

sequential access memories provides opportunities to exploit
additional parallel processing per stage to increase overall
throughput performance. The following sections outline
methods for increasing performance through parallel hardware
as well as the challenges and trade-offs associated with doing
so.

III. PARALLEL RADIX -22
 SDF

This section will present novel modifications to the Radix-
22 SDF pipeline (outlined in Section II) which allow for
complex samples to be processed in parallel to increase the
overall throughput of the processor. The extensions discussed
for the proposed design presume that the parallelization factor
(P), which corresponds to the number of data samples to be
processed concurrently, will always be a power of two.
Assuming a constant clock rate, the throughput of the FFT
pipeline is directly proportional the number of parallel
samples processed per second. Likewise, the latency required
to process a full FFT block is inversely proportional to the
parallelism.

Parallelization does not affect the critical path of the circuit;
hence increasing P does not impact the maximum achievable
clock frequency. Additionally, the memory requirements of
the delay-lines in a SDF architecture are independent of
parallelization. Because the control logic for each parallel
butterfly is identical, the feedback outputs can be concatenated
and written to one SRAM in a single transaction. As P grows,
the depth of the delay-lines is reduced while the width is
increased by the same factor. While the shape of the memories
will change, changing P does not alter the aggregate number
of bits that must be stored per delay-line.

One of the advantages of a parallel SDF FFT architecture is
the ability to trade additional arithmetic hardware for lower
operating frequencies or higher throughput. It provides system
architects a larger design space and the power to tailor an FFT
processor to best fit underlying implementation technology.
This does not come without cost. There are many tradeoffs to
consider. For example, all non-delay-line logic including
butterflies, twiddle generators and complex multipliers must
be duplicated for each additional sample to be processed in
parallel. The remainder of this section will discuss the
considerations that need to be taken into account when
increasing the parallelization factor of the Radix-22 SDF
pipeline.

A. No-Feedback Butterfly

To account for parallelization, the depth of each delay-line
is decreased by a factor of I. For any I greater than one, there
comes a point in the pipeline where the depth of the delay-line
is less than one which indicates a traditional Radix-2 butterfly
is no longer necessary. In this case, a third type of butterfly
architecture is required. In this no-feedback butterfly (BF_NF)
shown in Fig. 5, the delay-line of the conventional butterfly is
abandoned. Instead of using a delay-line to align the operands
of the adders, the BF_NF accepts two time delayed samples on
the same clock period and generates two output samples. For
inclusion in the Radix-22 SDF pipeline, the BF_NF must be

able to mimic the operation of both the BF_1 and BF_2.
Because there is no feedback state, the BF1 operation is
performed when EN_BF2_SUM is low and the BF2 operation
is executed once it is asserted.

Fig. 5. No-Feedback Butterfly (BF_NF) Architecture

This new butterfly architecture is required when samples

that are delayed in time are processed on the same clock edge.
For a given parallelism, the number of non-feedback stages
(butterfly stages that implement BF_NF) required in the
pipeline is equal to log� I. For DIF implementations, the non-
feedback stages appear at the end of the pipeline whereas they
show up at the beginning stages of DIT designs. Because each
BF_NF processes two samples per clock, the number of
BF_NF required per non-feedback stage is I/2.
 Fig. 6 depicts a parallel-by-2 Radix-22 SDF DIF pipeline
with the BF_NF butterfly at the final stage. For parallel
implementations, the input data stream is broken up into I
parallel streams each of which is defined by a unique identifier I*JK between 0 and I − 1. Each parallel data stream (5L8MN) is
indexed using this identifier. In the case of Fig. 6, the upper
half of the pipeline which processes the 5O stream has a I*JK
of 0, whereas the lower half a I*JK of 1. This paper will follow
the convention that a lower I*JK value corresponds to an
earlier sample in time.

Fig. 6. Radix-22 SDF DIF Parallel-by-2 Architecture

B. Data Reordering

In parallel FFT architectures, it is necessary to reorder the
data streams in the non-feedback butterfly stages. Since there
are only I/2	BF_NF instances per non-feedback stage, a
second identifier (�P*JK) is used to distinguish the index of a
given non-feedback butterfly (BF_NFEU8MN). Because multiple

EN_BF2_SUM

F�H
F�GF�H
F�G

F�H
F�G
F�H
F�G

. . .

BF1 BF1BF2 BF2

24

N/4

N/8

BF1

BF_NF

. . .

BF1 BF1BF2 BF2 BF1

1

Twiddle

Gen

Twiddle

Gen

Twiddle

Gen

Twiddle

Gen

(BF2)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

time-delayed samples are processed in the same pipeline stage,
the processor must supply each BF_NF instance with the
appropriate data streams to match the delay offset for that
stage. The proposed design achieves this by indexing the data
streams to the inputs of each BF_NF using the following
formulas. For a given butterfly stage � where � is
incremented from 0 to log�	 − 1, the indices of the two input
data streams (I*JKV and I*JKW) for a given �P*JK is as follows:

 � � Xlog� 	 −�							for a DIF pipeline�																									for a DIT pipeline
 (4)

 &	 � 	2E (5)
 I*JKV � X�P*JK 																																																						if �P*JK < &�2 ∗ �P*JK
 − �Y&��P*JK , &
 if �P*JK ≥ & (6)

 I*JKW � X�P*JK + &																																															if �P*JK < &�2 ∗ �P*JK
 − �Y&��P*JK , &
 + &				if �P*JK ≥ & (7)

 Though other methods may exist for indexing the data
streams, the important feature of (4)-(7) is that the inputs to
each BF_NF are always offset	& samples in time. Fig. 7 shows
the last four stages of a parallel-by-8 Radix-22 DIF pipeline
where the last three stages are implemented as non-feedback
stages. Conversely, a DIT implementation would require the
BF_NF instances at the beginning of the pipeline. The twiddle
generators for the parallel pipeline, which are discussed in the
following section, are not shown in Fig. 7.

Fig. 7. Data Reordering for Radix-22 SDF DIF Parallel-by-8 configuration

As P increases, more and more of the Radix-22 stages will

consist of BF_NF butterflies. It is interesting to note that in
addition to duplicating hardware at each stage to support the
processing of multiple samples per cycle, the architecture
proposed also relies on a fusion of SDF and the more
traditional signal flow graph (SFG) style FFT processing. The
inclusion of the SFG processing stages is represented in Fig. 7.

C. Parallel Twiddle Generation

The formulas presented in (1)-(3) produce the sequential

twiddle coefficients at a given twiddle stage. For a parallel
implementation, each twiddle stage demands multiple
coefficients per clock cycle. In the proposed design, I
coefficient generators are required per twiddle stage, each of
which produce a subset of the necessary twiddle factors at that
stage. The following set of equations define the twiddle
factors required at a given I*JK. The twiddle factors for the I*JK data stream at stage � where 0 ≤ � ≤ log 	 − 2 is given
by the set)* �	 ,)�-. where:

)�- � /01�234 ; 5 � 0, 1, …	 , �L∗��8 − 1; 9 � 0, 1, 2, 3

; � \]̂
	0,																																																																			0 ≤ 5 < >	?� ∗ �5 − >
 +	�I*JK ∗ ?�
,																			> ≤ 5 < 2>	?� ∗ �5 − 2>
 +	�I*JK ∗ ?�
,														2> ≤ 5 < 3>?A ∗ �5 − 3>
 +	�I*JK ∗ ?A
,														3> ≤ 5 < 4> (8)

?C � <	0																2 ∗ I ∗ 4*	1 ∗ I ∗ 4*3 ∗ I ∗ 4* (9)

and
 > � �L∗��D�8 (10)

For parallel twiddle generation, the number of twiddle

factors produced per generator (5) is decremented by a factor
of I while the step size (?E) grows by the same factor.
Additionally, an offset based on I*JK must be applied at each
twiddle generator which corresponds to the �I*JK ∗ ?_
 term
when calculating ;.

For pipelined FFT architectures, there are a variety of
methods that can be used to generate the twiddle factors
including ROM-based lookup tables, CORDIC functions and
recursive multiplication. Similar to the memory requirements
for the butterfly delay-lines, the number of twiddle factors
required per stage grows exponentially as the number FFT
points is increased. In efforts to reduce the memory
requirements of long FFTs, the recursive multiplication
approach was applied since the size of the circuit is
independent of the number of twiddle factors that need to be
generated. The recursive multiplier architecture implemented
in the proposed design is shown in Fig. 8.

X

X

X

X

X

X

X

X

BF1

BF1

BF1

BF1

BF1

BF1

BF1

BF1

BF_NF0

(BF2)

Delay Line

5O

5�

5�
5A
5
5`
5a
5b

5O 5O 5O 5O

5� 5�

5� 5�

5�

5�

5� 5�

5A

5A 5A 5A

5

5 5 5

5`

5`

5` 5`5a 5a

5a 5a
5b 5b 5b 5b

� � 2, & � 4 � � 1, & � 2 � � 0, & � 1
BF_NF0

(BF1)

BF_NF0

(BF2)

BF_NF1

(BF2)

BF_NF1

(BF1)

BF_NF1

(BF2)

BF_NF2

(BF2)

BF_NF2

(BF1)

BF_NF2

(BF2)

BF_NF3

(BF2)

BF_NF3

(BF1)

BF_NF3

(BF2)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Fig. 8. Recursive twiddle generation architecture for parallel implementations

 To implement recursive twiddle generation for a Radix-22
SDF architecture, a minimum of eight complex values must be
calculated and stored. Each twiddle generator requires the
offset ()�L8MN∗cd) and step size ()�cd) for all four of the step
size states, which correspond to 9 from (8)-(10). When the
generator is started, the switch is connected to the output of
the offset mux, and the offset is read out directly. The initial
offset is also fed as an operand to a complex multiplier which
multiplies the offset by the step size. After the first cycle, the
switch is connected to the output of the complex multiplier
which outputs the second twiddle coefficient. This result is
then fed back to the multiplier to generate the next twiddle
value. This process continues until >, from (10), coefficients
are generated, after which MUX_COUNT is incremented and
the process starts over for the next step size state.

In efforts to limit quantization error, the pre-computed
offset and step sizes contain additional error bits which are
carried throughout the computation and subsequently
truncated at the output of the twiddle generator. The number
of additional bits is a function of the maximum number of
consecutive multiplies at a given twiddle stage. The rounding
module used to truncate the output is not shown in Fig. 8.
Alternative designs which account for pipelining of the
multiplier are feasible; however additional offsets and step
sizes must be pre-computed and stored.

IV. PRIOR WORK

Parallel processing is inherent to pipelined FFT
implementations. The ideas presented here focus on data-
parallel processing on a per stage basis with the benefit of
increasing throughput performance while sustaining optimal
memory requirements.

Li and Meijs proposed a data-parallel SDF FFT architecture
[3] which restructures the signal flow graph into even and odd
sections. By separating data and then recombining in the final
stage, the processing clock frequency can by reduced by a
factor of two while maintaining throughput performance. This
method increases control complexity and is not scalable
beyond a factor of two without additional re-order buffers
which would increase the required memory beyond the

optimal level for pipelined implementations.
Ayinala, Brown, and Parhi proposed a data-parallel SDF

architecture [2] which restructures the signal flow graph to
reuse hardware based on the assumption that the input signal
contains only real data. The architecture proposed is capable
of processing two real data samples per clock cycle thus
doubling the throughput performance but not the data rate or
processing rate as compared to standard SDF FFT
architectures.

The main distinction between the proposed design and prior
work is the proposed design is scalable to any level of
parallelism assuming sufficient resource availability. Each of
the reviewed designs does not extend parallelism beyond a
factor of two. The proposed design also offers a great deal of
configuration flexibility. For example, the FFT length,
transform type (FFT vs. IFFT), algorithm (DIF vs. DIT), data
type (real vs. complex) and scheduling of internal bit growth
are all programmable parameters that can be used to tailor the
design to a desired application space and hardware platform.

V. RESULTS

Numerous parallel configurations of the Radix-22 SDF DIT
pipeline were synthesized to observe the effects of parallelism
on the throughput, area and power dissipation of the circuit.
The design was targeted for IBM’s 45nm silicon-on-insulator
(SOI) ASIC process using a standard voltage threshold (SVT)
cell library from ARM. The synthesis runs were completed
using Design Compiler version E-2010.12-SP1 from
Synopsys.

The various delay-line memories were provided by IBM as
hard IP. In the proposed design, the delay-lines were
architected as two single-port memories accessed in a ping-
pong fashion as discussed in Section II.A. The IBM part
numbers used in the proposed implementation were RF1CSN
and SRAM1DCSN.

In many cases, the word length required by the delay-line
exceeded the maximum allowable width of the IBM memories
which was 288 bits. In such instances, multiple memories of
equal depth were instantiated allowing the data word to span
several memories at equivalent addresses.

As mentioned in Section III, as parallelism increases, the
shapes of the delay-lines change but the number of bits do not.
If one assumes the area per bit and power per bit to be
constant, it would be expected that the power and area
consumed by the delay-lines should remain constant for a
given FFT configuration across multiple parallel
implementations. However, this is not the case in an actual
ASIC implementation. Arbitrarily sized memories are not
always an option. Often, memories conforming to a subset of
viable dimensions must be chosen from an IP vendor. In cases
where the word width exceeds this threshold, multiple
memory instances are required. In addition to the data array,
each memory instance also contains control and decode logic
that is replicated per instance. This can lead to higher power
and area utilization for the same number of bits. This is
especially apparent for larger values of I, where the memories

REG

MUX_COUNT

)�cV)�cW)�c�)�ce

)�L8MN∗cV)�L8MN∗cW)�L8MN∗c�)�L8MN∗ce

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

are growing width-wise and shrinking depth-wise. Such oddly
shaped memories require the concatenation of multiple
conforming SRAM macros.

The remainder of this section will discuss how area and
power are affected by changing the parallelism (and thus the
throughput) of the pipeline. The experiments focused on larger
FFTs where the delay-line memories dominate resource
utilization.

A. Area

Even when accounting for different memory instance
requirements for different parallel implementations, it is clear
that the circuit area penalty for increasing parallelism is
dominated by the FFT logic and not the delay-line memories.
Fig. 9 shows a 64k-point DIT FFT synthesized at 250 MHz for
five different values of I. The FFT maintains precision by
growing a single bit at each butterfly. The chosen input data
width is 18 bits resulting in a 34 bit output word. The “FFT
Logic Area” refers to all circuit components that are not delay-
lines including butterflies, complex multipliers, twiddle
generators, counters and other control. “FFT Memory Area”
includes all delay-line memory instances and their associated
control.

Fig. 9. Area (um2) vs. Parallelism for 64k-point DIT FFT, 18 bit input, 34 bit
output

What is obvious from Fig. 9 is that as I increases, the

growth in FFT logic area is exponential. On the other hand,
the increase in memory area as a result of concatenating
memory instances is much less severe since the total number
of memory bits has not changed as P�I
. For the I � 1 case,
the throughput of the FFT processor is 250 Mega-Samples per
second (MSps) while for I � 16, the throughput is 4 GSps.
Alternatively, the area of the I � 16 circuit is only 2.9X
(times) greater than that of I � 1. These results show that for
the proposed parallelization techniques, a 16X increase in
throughput only requires a 2.9X increase in area for this given
FFT configuration.

To observe how parallelism affects different FFT sizes,
synthesis experiments were conducted sweeping I across
different FFT lengths. The circuit area was then divided by the

throughput of the FFT to indicate a measure of area efficiency.
The results can be seen in Fig. 10.

Fig. 10. Area Efficiency expressed in um2/MSps as a function of Parallelism
for various FFT lengths

While all of the FFTs improve area efficiency through

parallelization, what is obvious from the curves is how larger
FFTs improve their area efficiency at a much greater rate than
smaller FFTs. This is due to the fact that for smaller FFTs,
logic dominates area while memories dominate area in larger
FFTs. For example, at I � 1, the 1k FFT requires 808 um2 of
silicon to process 1 MSps. However, when I is increased to
16, the area requirement to process 1 MSps drops to 392 um2
resulting in a 2X improvement in area efficiency. The
efficiency gain through parallelism is even greater for the
256k FFT. The I � 1 configuration requires roughly 36,000
um2 of silicon to process 1 MSps while that number drops to
just 3,700 um2 at I � 16. In this case, the improvement in
area efficiency is close to 10X.

The results from Fig. 10 show that in general, the area
efficiency of the Radix-22 SDF pipeline increases as
parallelism increases. It is evident that this characteristic is
more pronounced for longer FFTs where delay-line memory
requirements dominate area utilization.

B. Power

The synthesis experiments also provided insight into how
power dissipation is distributed within the Radix-22 SDF
pipeline and how that distribution is affected by parallelism.
Fig. 11 shows the power dissipation of a 64k-point DIT FFT
with full bit growth (18 bit input, 34 bit output). To attain
dynamic power numbers, a global toggle rate of 53.2% was
applied during synthesis. The toggle rate was determined by
generating a Switching Activity Interchange Format (SAIF)
file from actual simulation results which used random input
data as stimulus to simulate a worst-case scenario for dynamic
power. In all cases, a clock rate of 250 MHz was used.

The results show that the main driver of power dissipation
in a Radix-22 SDF FFT is dynamic power from the FFT logic
portion of the pipeline. For I � 1, the dynamic power
dissipation from the FFT logic accounts for about half of the

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

P=1 P=2 P=4 P=8 P=16

A
re

a
 (

u
m

2
)

Parallelism

FFT Logic Area

FFT Memory Area

1k FFT

4k FFT

16k FFT

64k FFT

256k FFT

0

5000

10000

15000

20000

25000

30000

35000

40000

P=1 P=2 P=4 P=8 P=16

A
re

a
 E

ff
ic

ie
n

cy
 (

u
m

2
/

M
S

p
s)

Parallelism

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

total power. However, this percentage grows as I increases.
This is because the power dissipated by the FFT logic roughly
doubles each time I doubles while the memory power
increases at a slower rate since the number of memory bits
remains constant.

Fig. 11. Power (mW) vs. Parallelism for 64k-point DIT FFT, 18 bit input, 34
bit output at 250 MHz

Similar to the area analysis, energy efficiency was anlazyed
across various FFT lengths to observe how power dissipation
is affected by parallelism. To do this, different FFT sizes were
synthesized at 250 MHz and power dissipation was recorded.
Though increasing parallelism will increase the total power
dissipated, higher parallelizations process samples at a higher
rate. For example, at I � 1, the throughput will be 250 MSps
while at I � 16 it will be 4 GSps. To calculate energy
efficiency (J per sample), the power disspation (Watts) was
divided by the FFT throughput (MSps) to determine how
much energy is required to process each sample.

The energy efficiency curves are shown in Fig. 12.
Naturally, larger FFTs will dissipate more power than smaller
FFTs on a per sample basis since the hardware structure is
much larger. On the other hand, energy efficiency can be
improved through parallelism, and this behavior is more
apparent in larger FFTs. For example, in the 1k FFT case, the I � 1 structure requires .35 J/MSample while the I � 16
structure requires only .2 J/MSample. This suggests that the
engergy used to process each sample can be reduced by about
43% when going from I � 1 to I � 16. For the 256k FFT,
increasing parallelism from I � 1 to I � 16 results in close
to a 65% reduction in the amount energy used per sample. The
improvement in energy efficiency can be attributed to the fact
that larger FFTs are dominated by memory, and the power
dissipated in the memories grows at a slower rate than does
throughput as parallelism increases.

Fig. 12. Energy Efficiency (Joules per Mega-Sample) as a function of
Parallelism for various FFT lengths at 250 MHz

C. Core Clock Frequency

An alternative application of parallelism is clock reduction
to decrease dynamic power dissipation. If I is increased, the
core clock frequency can be reduced by the same factor while
maintaining the overall throughput of the system. However,
there are area vs. power tradeoffs to consider when increasing
the parallelization factor and reducing the clock rate.

For example, a 64k-point DIT FFT with 18 bit input and 34
bit output was synthesized at 400 MHz with I � 1 and also at
200 MHz with I � 2. Both configurations have equivalent
throughputs of 400 MSps. In the I � 1 case, the resulting
circuit required 2.30 mm2 of area and dissipated 448 mW of
power. On the other hand, the I � 2 configuration was 2.66
mm2 and consumed 401 mW. In this case, doubling I and
halving the clock frequency leads to a 15.5% area increase,
however the total power dissipation decreased by 10.5%. The
comparison of the two FFT instances used in this experiment
can be seen in Table I.

If targeting a low-power design, it may make sense to incur
the area penalty to save power by increasing parallelism. The
power savings that can be achieved by increasing I and
reducing the clock rate are more apparent at higher
frequencies where the dynamic power dominates total power
dissipation.

TABLE I: AREA AND POWER COMPARISON OF 400MSPS FFT CONFIGURATIONS
Parallelism 1 2
Clock Rate (MHz) 400 200
Throughput (MSps) 400 400
Area (mm2)

Logic Area
Memory Area

2.3 2.66
0.31 0.55
1.99 2.11

Total Power (mW)
Logic Dynamic
Logic Leakage
Memory Dynamic
Memory Leakage

448 401
230 211
13 23
129 89
76 78

D. ASIC Implementation

Two versions of the proposed design were recently
implemented as part of a pulse-compression radar application.

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

P=1 P=2 P=4 P=8 P=16

P
o

w
e

r
(m

W
)

Parallelism

FFT Memory Leakage Power

FFT Memory Dynamic Power

FFT Logic Leakage Power

FFT Logic Dynamic Power

1k FFT

4k FFT

16k FFT

64k FFT

256k FFT

0

0.5

1

1.5

2

2.5

3

P=1 P=2 P=4 P=8 P=16

P
o

w
e

r
E

ff
ic

ie
n

cy
 (

J/
M

e
g

a
-S

a
m

p
le

)

Parallelism

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Both a 64k FFT and 64k IFFT, each with I � 2, were
integrated as part of a signal processing chip targeted for
IBM’s 45nm SOI ASIC process. The FFT was computed
using the DIF algorithm and maintained precision by allowing
full bit growth. The IFFT used the DIT algorithm and
contained some internal scaling logic in efforts to limit bit
growth. The IC was sent for fabrication in August of 2011 and
completed testing in 2012 at MITRE’s VLSI Laboratory and
IC test facility. Implementation details of the two FFT
instances can be seen in Table II.

TABLE II: CONFIGURATION DETAILS OF FFT AND IFFT FOR 45 NM ASIC

IMPLEMENTATION
 64k FFT 64k IFFT
Number of FFT points 65536 65536
Algorithm DIF DIT
Parallelism 2 2
Input Word Width (bits) 10 18
Output Word Width (bits) 26 30
Operating Frequency (MHz) 200 200
Maximum Throughput (MSps) 400 400
Power (mW) 192 365
Area (mm2) 1.3 2.4

VI. CONCLUSION

This paper has proposed a set of extensions that can be used
to apply parallelism to the Radix-22 SDF FFT pipeline. The
proposed methods are flexible and allow for 	-point FFT and
IFFT computation such that 	 is a power of two. Additionally,
both the DIF and the DIT algorithms are supported. Although
the stated extensions apply specifically to the Radix-22 SDF
algorithm, similar techniques could be used for all pipelined
SDF FFT implementations. The proposed extensions impose
no restrictions on the overall throughput of the FFT circuit
given adequate resource availability.

Synthesis experiments were conducted to analyze how
parallelization of the pipeline affects the size, throughput and
power of the circuit. It was determined that there are
significant benefits in terms of both area efficiency and energy
efficiency when increasing the parallelism of the FFT. These
benefits can be attributed to the fact that the memory
requirements of the delay-lines remain approximately constant
regardless of the parallelization factor.

REFERENCES
[1] J.W. Cooley and J. Tukey, “An algorithm for machine calculation of

complex fourier series,” Math. Comput., vol. 19, pp. 297-301, Apr.
1965.

[2] M. Ayinala, Michael Brown, and K.K. Parhi, "Parallel - pipelined radix-
22 FFT architecture for real valued signals," Signals, Systems and
Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth.
Asilomar Conference on , vol., no., pp.1274-1278, 7-10 Nov. 2010.

[3] Nuo Li and N.P. van der Meijs, "A radix 22 based parallel pipeline FFT
processor for MB-OFDM UWB system," SOC Conference, 2009. SOCC
2009. IEEE International , vol., no., pp.383-386, 9-11 Sept. 2009.

[4] He Shousheng and M. Torkelson, "Designing pipeline FFT processor for
OFDM (de)modulation," Signals, Systems, and Electronics, 1998. ISSSE
98. 1998 URSI International Symposium on , vol., no., pp.257-262, 29
Sep-2 Oct 1998.

[5] L.R. Rabiner, B. Gold, and C.K. Yuen, "Theory and application of
digital signal processing," IEEE Trans. on Systems, Man and
Cybernetics, vol.8, no.2, pp.146, Feb. 1978.

[6] E.H. Wold and A.M. Despain, "Pipeline and parallel-pipeline FFT
processors for VLSI implementations," IEEE Trans. on Computers,
vol.C-33, no.5, pp.414-426, May 1984.

[7] A.M. Despain,"Fourier transform computers using CORDIC
iterations," IEEE Trans. on Computers, vol.C-23, no.10, pp. 993- 1001,
Oct. 1974.

[8] G. Bi and E.V. Jones, "A pipelined FFT processor for word-sequential
data," IEEE Trans. on Acoustics, Speech and Signal Processing, vol.37,
no.12, pp.1982-1985, Dec 1989.

[9] He Shousheng and M. Torkelson, "A new approach to pipeline FFT
processor," Parallel Processing Symposium, 1996., Proceedings of IPPS
'96, The 10th International , vol., no., pp.766-770, 15-19 Apr 1996.

[10] E.E. Swartzlander, W.K.W Young, and S.J. Joseph, "A radix 4 delay
commutator for fast Fourier transform processor implementation," IEEE
Journal of Solid-State Circuits, vol.19, no.5, pp. 702- 709, Oct 1984.

[11] E. Bidet, D. Castelain, C. Joanblanq, and Senn, P, "A fast single-chip
implementation of 8192 complex point FFT," IEEE Journal of Solid-
State Circuits, vol.30, no.3, pp.300-305, Mar 1995.

[12] A. Saeed, M. Elbably, G. Abdelfadeel and M. Eladawy. “FPGA
implementation of Radix-22 Pipelined FFT Processor,” Proceedings of
the 3rd international symposium on Wavelets theory and applications in
applied mathematics, signal processing & modern science, Istanbul,
Turkey, 2009.

[13] E. Bidet, D. Castelain, C. Joanblanq, and Senn, P, "A fast single-chip
implementation of 8192 complex point FFT," IEEE Journal of Solid-
State Circuits, vol.30, no.3, pp.300-305, Mar 1995.

Brett W. Dickson received the B.S. and M.S.
degrees in Electrical and Computer Engineering from
Worcester Polytechnic Institute (WPI), Worcester,
MA, in 2006 and 2008 respectively.
 In 2006, he joined the Ultrasound Research
Laboratory at WPI where he worked on the system
level integration of a voice-controlled mobile
ultrasound system. In 2008, he was hired as a
Verification Engineer at SiCortex, Maynard, MA,
where he helped verify the memory management unit

of a multi-core MIPS64 processor. In 2009, he joined the MITRE
Corporation, Bedford, MA, as a Senior Integrated Electronics Engineer. He is
currently involved in the design and verification of digital signal processing
systems targeted for both FPGA and ASIC platforms.

Albert A. Conti received the B.S. degree in
Computer Systems Engineering from Boston
University, Boston, MA, in 2004 and the M.S. degree
in Electrical Engineering from Northeastern
University, Boston, MA, in 2007.

In 2003, he joined the CAAD Lab at Boston
University where his research focus was hardware
acceleration of computational biology and
bioinformatics applications. In 2004, he joined the
Reconfigurable Computing Lab at Northeastern

University where his research was aimed at digital signal processing
acceleration with massively parallel systems. In 2007, he joined the MITRE
Corporation, Bedford, MA, where he later became the principle investigator
for the Emerging Technologies for VLSI Applications research program. In
2012, Al joined Cognitive Electronics Inc., Boston, MA, where he is currently
developing an in-memory, massively parallel processor for Big Data
applications.

	INTRODUCTION
	Radix-22 SDF FFT Architecture
	Delay-Lines
	Butterflies
	Twiddle Generation

	Parallel Radix-22 SDF
	No-Feedback Butterfly
	Data Reordering
	Parallel Twiddle Generation

	Prior Work
	Results
	Area
	Power
	Core Clock Frequency
	ASIC Implementation

	Conclusion

