
 M T R 0 9 0 0 0 7
M I T R E T E C H N I C A L R E P O R T

 Recommendations for
Managing Software Reuse

 B. S. Woodward
A. E. Taub
Y. M. Perlmutter
J. A. Maurer
L. M. Rosa
23 September 2009

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 09-4119

 M T R 0 9 0 0 0 7
M I T R E T E C H N I C A L R E P O R T

 Recommendations for
Managing Software
Reuse

Sponsor: ESC/EN
Dept. No.: E523, E150, E540
Contract No.: FA8721-09-C-0002
Project No.: 03X93DB0

The views, opinions and/or
findings contained in this report
 are those of The MITRE Corporation
and should not be construed as an
official government position, policy, or
decision, unless designated by other
documentation.

Approved for Public Release: 09-4119
Distribution Unlimited.

This document contains no STINFO.

©2009 The MITRE Corporation.
All rights reserved.

B. S. Woodward
A. E. Taub
Y. M. Perlmutter
J. A. Maurer
L. M. Rosa
23 September 2009

iii

Abstract

A handbook has been developed for program office (PO) use to manage software reuse and
its associated risks. Government policies strongly encourage software reuse in the interests
of more rapid fielding, lower life cycle costs, and increased interoperability. However, this
approach to product development is fraught with risks, and must be managed properly. The
handbook provides a Software Reuse Risk Guide that lists major risk areas, associated risk
questions, and a brief tutorial to help a PO identify program risks related to software reuse.
Risk templates are included to help a PO assess these risks. The handbook also provides
sample wording for a Request for Proposal (RFP) to ensure the PO has consistent
information about the offerors’ software reuse approaches during a source selection and
appropriate levels of insight into the contractor’s software reuse approach and design
activities after contract award. The handbook includes wording, extensively vetted with
subject matter experts, for an RFP’s Statement of Objectives, Statement of Work, and
Contract Data Requirements List as well as for the Special Contract Requirements (Section
H), Representations, Certifications, and Other Statements of Offerors (Section K),
Information to Offerors and Instructions for Proposal Preparation (Section L) and Evaluation
Factors for Award (Section M). Sample wording is also included for a Request for
Information and evaluation criteria for an Award Fee Plan. In addition, the handbook
contains (1) detailed worksheets to be completed by the offeror/contractor about a software
reuse product’s applicability, availability timeline, maturity, modification, and other
attributes, (2) a spreadsheet to standardize offerors’ presentations of sizing, schedule, and
historical information for software reuse products, and (3) an approved Data Item
Description for a Reuse Management Report.

v

Executive Summary

Background
For years, the Government and contractors have eagerly attempted to reuse software in the
interests of more rapid fielding, lower life cycle costs, and increased interoperability.
Frequently, both parties have been too optimistic: they overstated the amount of code they
would be able to reuse and underestimated the effort required to reuse it. As a result, the
anticipated benefits of software reuse have been seldom realized. The contractor has had to
find an alternate source of software, or unexpectedly develop it from scratch—but with a
delayed start. These disruptions undermine program success, becoming a significant cost
and schedule driver. Reasons why software reuse can be problematic for programs include:
poor assessment of the applicability of the software to the host program, immaturity of the
software and its supporting artifacts, slip in the availability timeline, competing requirements
for software being used on multiple programs, poor quality of software, and underestimation
of the effort required to adapt/modify/integrate the existing software.

Objective
Federal Acquisition Regulation (FAR) policy states:

“Agencies shall perform acquisition planning and conduct market research for all
acquisitions in order to promote and provide for—(1) Acquisition of commercial items
or, to the extent that commercial items suitable to meet the agency’s needs are not
available, nondevelopmental items, to the maximum extent practicable.” [Federal
Acquisition Regulation, Part 7 (7.102), 10 September 2009.]

Recognizing that Government policies encourage software reuse, this handbook was
developed for the 653d Electronic Systems Group (653 ELSG), HQ Electronic Systems
Center, Air Force Materiel Command and is intended to:

1. Support program office (PO) assessment of risks associated with software reuse
2. Provide recommendations for PO management of software reuse

The handbook was developed in accordance with Air Force acquisition strategy planning
regulations as well as Defense Federal Acquisition Supplement (DFARS) requirements for
solicitations. It identifies deliverables and activities that a PO can use to manage software
reuse and its associated risks on their program. This handbook provides additional words for
the Request for Proposal (RFP) package, to ensure the PO has:

1. Consistent information about the offerors’ software reuse approaches—during source
selection

2. Appropriate levels of insight into the contractor’s software reuse approach and design
activities—after contract award

vi

Scope
This handbook will help the PO with management of the following types of reuse:

1. Software reuse, including pre-existing software products that will be reused as-is and
modified software products (pre-existing software requiring change), for which the
offeror/contractor plans to assume responsibility for the performance of the product.

2. Commercial off-the-shelf (COTS) and Government off-the-shelf (GOTS) software
products, for which the software provider, either a commercial vendor or the
Government, assumes responsibility for the performance and maintenance of the
software product. It is assumed that existing COTS/GOTS software products will be
reused as-is; COTS/GOTS products requiring modification are considered modified
software (i.e., no longer COTS/GOTS, and the responsibility of the contractor).
Reuse of COTS/GOTS products that will be modified and maintained by the software
provider is not recommended, and is not addressed in this handbook.

3. Issues unique to reuse of open source software are not addressed in the handbook.
4. Issues unique to reuse of firmware are not addressed in the handbook.
5. Issues unique to reuse of services are not addressed in the handbook.

Software reuse is defined as reuse of code. Reuse of software assets (e.g., architectures,
algorithms, designs, design patterns, test plans, test cases, interface specs, documentation)
without code is not addressed in this handbook.

It also should be noted that the handbook does not address the important topics of security
and information assurance, and how these topics affect software reuse. A subsequent version
of the handbook will include these topics.

Software Reuse Risk Guide
The Software Reuse Risk Guide, presented in Section 1, helps a PO identify and assess
program risks related to software reuse. To understand the challenges associated with
reusing software, the first step for a PO should be to identify the major risks that pertain to
their specific program. The Guide includes a list of major software reuse risks and a brief
tutorial that explains why a PO should be cautious when incorporating software reuse
products into their system’s software baseline. Risk questions are included for a PO to
answer before source selection, to evaluate during a source selection, and to address after
contract award (ACA) as the design evolves. The Guide also includes risk templates to help
the PO assess software reuse risks.

Recommended RFP Content
It is recommended that the PO use the following new deliverables/activities to manage
software reuse: software reuse management, software reuse demonstration(s), and software
quality assessment(s). Additionally, it is recommended that the PO augment their standard
program deliverables/activities with added focus on software reuse, to include: risk [and
opportunity] management, software size, Software Development Plan (SDP), software

vii

metrics, past reuse performance, Integrated Master Schedule (IMS), Integrated Master Plan
(IMP), Contract Work Breakdown Structure (CWBS), and Contract Performance Report
(CPR). Recommended RFP content is provided for these deliverables/activities in Sections 2
through 13.

This handbook provides words for the Special Contract Requirements (Section H),
Representations, Certifications, and Other Statements of Offerors (Section K), Information to
Offerors (ITO) and Instructions for Proposal Preparation (Section L) and Evaluation Factors
for Award (Section M) to elicit appropriate information in support of the Government
evaluation of software reuse during source selection. Deliverables/activities for software
reuse management ACA are ensured via the contract, including the Statement of Work
(SOW), Contract Data Requirements List (CDRL), Section H, and Section K. The use of
these deliverables/activities is at the PO discretion; they should be selected and/or modified
based on program characteristics, the expected software reuse, and the associated software
reuse risks.

The sample RFP words provided in the following sections may be tailored as needed; notes
at the beginning of each section provide additional suggestions for tailoring. Some words,
either as part of the notes or each section, are italicized and in brackets, (e.g., [example]).
The PO should insert appropriate words, consistent with their program deliverables/activities.
For ease of reference, the sample words are often presented in bulleted lists. However, the
PO must follow the applicable standards for preparation of all RFP documents.

The RFP additions address only software reuse. Although software reuse is a subset of
software engineering, systems engineering, and program management, this handbook does
not provide RFP wording for these broader areas. It is the responsibility of the PO to define
and describe these engineering and management activities, in the context of their program, in
the RFP.

The handbook also includes sample words for a Statement of Objectives (SOO) in
Section 14, a Request for Information (RFI) in Section 15, and an Award Fee Plan (AFP) in
Section 16.

The following table provides a list of the recommended activities, deliverables, and
supporting products included in the handbook. Also presented is the RFP document where
they are called out. Templates are available in Microsoft Word or Excel 2007, under
separate cover, to permit the input of data for the following products:

• Software Reuse Risk Guide
• Worksheet Questions for Reused As-is/Modified Software (Appendix A)
• Worksheet Questions for COTS/GOTS Software (Appendix B)
• Data Item Description (DID) for the Reuse Management Report (Appendix C)
• Revised Format M-1 (Appendix D)

viii

Recommended Activities, Deliverables, and Products

Sect. Activity/Deliverable/
Product

Applicable RFP
Document

Appendices

Source
Selection

ACA

2. Software Reuse
Management

H or K
L & M

H or K
SOW1
CDRL2

A. Worksheet Questions for
Reused As-is/Modified
Software3
B. Worksheet Questions for
COTS/GOTS Software3

C. Data Item Description for
Reuse Management Report4

3. Risk [and
Opportunity]
Management

L & M SOW1
CDRL2

C. Data Item Description for
Reuse Management Report4

4. Software Reuse
Demonstration(s)

L & M SOW1
CDRL2

5. Software Quality
Assessment(s)

H or K
L & M

H or K
SOW1
CDRL2

6. Software Size L & M D. Format M-1 (Revised)5
7. Software

Development Plan
L & M SOW1

CDRL2

8. Software Metrics SOW1
CDRL2

9. Past Reuse
Performance

L & M

10. Integrated Master
Schedule

L & M SOW1
CDRL2

11. Integrated Master
Plan

L & M

12. Contract Work
Breakdown Structure

L & M CDRL2

ix

Recommended Activities, Deliverables, and Products (Concluded)

13. Contract Performance
Report

 CDRL2

14. Program Objective1 SOO

15. Pre-RFP Information
Request6

RFI

16. Award Fee Plan
Criteria7

 AFP

1 If a PO is not developing a SOW as part of the RFP, a single SOO objective for software reuse is provided in
Section 15.
2 If a program has to limit their CDRL, and cannot incorporate the recommended data items, the PO should
strive to obtain from the contractor via other means the software reuse information called out in the CDRL (e.g.,
in other deliverables, on shared integrated data environment).
3 Information about product applicability, availability timeline, maturity, modification, and other attributes
should be required of the offerors/contractor using the appropriate Worksheet Questions.
4 This new data item should be used to elicit information about the status of the software reuse approach and a
description of alternative strategies. The DID for DI-SESS-81771 is available on the ASSIST database.
5 Format M-1 (Revised) should be required of the offerors to provide sizing, schedule and historical information
for all new, reused as-is, and modified software products.
6 An RFI should request information about software reuse products being considered by contractors.
7 Software reuse focus for the AFP is provided via integrated evaluation criteria for each of the Schedule,
Technical, and Program Management areas. No software reuse-specific Cost area evaluation criterion has been
generated; it is recommended that cost evaluation criteria address the total program.

Use of Handbook
The handbook provides a variety of products that can be used from program start to the end
of the contract. Examples of ways a PO can use the handbook include:

• Review the Software Reuse Risk Guide tutorial for a better understanding of the
major risk areas and reasons why a PO should be cautious when incorporating
software reuse products into their system’s software baseline

• Use the Guide’s risk questions to identify the major software reuse risk areas
applicable to the program; revisit throughout the life of the program

• Use the Guide’s risk templates to assess the level of risk; update as the program
evolves and more information becomes available

• Incorporate the sample wording into the program’s RFI to collect information about
software reuse products being considered by the contractors

x

• Incorporate pertinent Section M sample wording into the program’s RFP to ensure
the Government will use and evaluate software reuse criteria to make the best value
award decision

• Incorporate pertinent Section L sample wording into the program’s RFP to make sure
the Government will be provided with appropriate information about the offerors’
planned software reuse approaches; make certain the Government requests sufficient
information, upon which to base the evaluations of the proposals

• Include the Worksheet Questions in the RFP to gather detailed information about key
attributes for all software reuse products

• Use the revised M-1 Format to better understand the offerors’ methods for estimating
software size and obtain a concise computation of effective sizing

• Incorporate the sample words for applicable activities and deliverables into the
program’s SOW and CDRL so that a contractor’s software reuse approach can be
monitored ACA

• Use the software reuse objective for a SOO, if a SOW is not being prepared as part of
the RFP, to ensure the contractor provides a comprehensive software reuse strategy

• Use the data item of a Reuse Management Report for the contractor to provide the
current status, milestones, alternative strategies, and decision points for a the software
reuse approach

• Select relevant AFP criteria to incentivize desirable contractor behaviors pertaining to
software reuse

Points of Contact
Questions regarding this handbook, requests for subject matter expert support, and feedback
on use of these materials should be directed to:

Yvonne Perlmutter (ymp@mitre.org)
Beverly Woodward (bsw@mitre.org)
Audrey Taub (ataub@mitre.org)
John Maurer (johnm@mitre.org)
Lynda Rosa (lmrosa@mitre.org)

xi

Acknowledgments

The authors would like to thank Colonel Cordell DeLaPena and Mr. Michael Therrien of the
653 ELSG for their support and the funding to develop this handbook. We also appreciate
Mr. Jeffrey Mayer’s (ESC/EN) support in making the handbook accessible and available to
AF programs, and within the DOD community.

The authors wish to acknowledge the valuable insights provided by Ms. Susan Angell
(ESC/AQ) and Mr. Paul Commeau (ESC/AQ). We would also like to thank
Mr. Rick Andreoli (ESC/AQ), Mr. Richard Bean (ESC/JA), Ms. Carol Hoffses (ESC/AQ),
Mr. Robert Klauzinski (ESC/JA), Ms. Marla Levenson (ESC/AQ), and Mr. Richard Stillman
(ESC/AQ) for their thorough technical review of the handbook, constructive
recommendations, and comprehensive comments.

The authors are grateful to many MITRE subject matter experts, who contributed to this
document. We would like to thank Wayne Addy, C. Wayne Chitwood, Sandra Cole,
Paul Funch, Andrew King, Robert Martin, and Jim Moore for sharing their knowledge and
influencing the handbook content.

We would like to convey our appreciation to Patricia Jack for her patience, professionalism,
and extensive effort to produce the MTR.

xiii

Table of Contents
1 Software Reuse Risk Guide 1-1

2 Software Reuse Management 2-1

3 Risk [and Opportunity] Management 3-1

4 Software Reuse Demonstration(s) 4-1

5 Software Quality Assessment(s) 5-1

6 Software Size 6-1

7 Software Development Plan 7-1

8 Software Metrics 8-1

9 Past Reuse Performance 9-1

10 Integrated Master Schedule 10-1

11 Integrated Master Plan 11-1

12 Contract Work Breakdown Structure 12-1

13 Contract Performance Report 13-1

14 Statement of Objectives 14-1

15 Request for Information 15-1

16 Award Fee Plan 16-1

Appendix A Worksheet Questions for Reused As-is/Modified Software A-1

Appendix B Worksheet Questions for COTS/GOTS Software B-1

Appendix C Data Item Description for the Reuse Management Report C-1

Appendix D Format M-1 (Revised) D-1

Glossary GL-1

1-1

1 Software Reuse Risk Guide
The Software Reuse Risk Guide helps a program office (PO) identify and assess program
risks related to software reuse. The Guide includes a list of major risk areas and associated
questions to identify the risks, and risk templates to assess the risks.

The major risk areas were selected based on discussions with program managers and
software engineers, who had extensive experience with software reuse and its risks. These
risks have the potential for significant impact to a program’s performance, cost and/or
schedule. They should serve as a starting point for identification of program risks. The PO
should determine which set of risk areas are most applicable to their program and delete, add,
or modify them, as necessary. Some additional examples of software reuse risks are included
as well; these risks are more program-specific. The PO should not be constrained to select
from these lists. Note that some risks are pertinent to reused as-is/modified software, while
others are more applicable to commercial off-the-shelf/Government off-the-shelf
(COTS/GOTS) software.

The risk questions explore software reuse risks to be considered before source selection and
after contact award as the design evolves. To identify the risks during a source selection, the
Guide provides a mapping of the major risk areas to the Worksheet Questions (denoted Q. #)
that are presented in Appendices A and B. The Guide also maps the risk areas, if applicable,
to Format M-1 in Appendix D as well as to specific deliverables and activities in Section L.
This mapping helps identify where information pertaining to the risk areas may be found in
the offerors’ proposals. However, it should be noted that the Source Selection Evaluation
Team (SSET) must consider all applicable information provided by the offerors when
evaluating risks.

As shown, there are many questions that the PO should be asking about the risks of software
reuse. These questions could be answered by the PO, by the offeror/contractor, or both, as
appropriate. Although examples of questions are provided in the Guide, the PO should add
to or tailor these risk questions to reflect their program’s characteristics.

The risk templates provide criteria for assessing the major risks areas for software reuse. If
the PO wants to use the templates as part of a source selection, the PO must convey this
intent to the offerors and provide them with the specific risk criteria, against which their
software reuse products will be assessed. Alternatively, the PO may want to incorporate a
few specific risk criteria (e.g., for the product’s availability timeline or maturity) in their
Request for Proposal (RFP). These criteria could be included directly in the risk or software
development sections in the Information to Offerors and Instructions for Proposal
Preparation, and the Evaluation Factors for Award.

Criteria are provided for low, medium, and high risk; however, it is important not to confuse
these risk criteria with proposal risk during a source selection. These criteria may be used
as-is or reworded by the PO to better reflect program specifics. At the time of the risk

1-2

assessment, there may be insufficient information, upon which to form a judgment for a
particular risk area. The PO is able to indicate this lack of information in the template, and
then update the assessment, as information becomes available. Once the level of risk has
been selected, it is recommended that a brief description for the basis of assessment be
included.

The Guide includes a brief tutorial to provide a better understanding of each risk area. The
tutorial is not intended to present a highly detailed discussion of each risk, but rather include
helpful information that supplements an assessment of software reuse risks. The Excel
format of the Guide provides these descriptions as pop-up comments. The descriptions are
also included at the end of this section for easy reference.

1-3

Major Risk Areas and Risk Questions

Major Risk Areas Risk Questions for the PO to Answer
Before Source Selection

Risk Questions
As the Design Evolves

Reused As-is/
Modified Software

COTS/GOTS
Software

1. Applicability What program functional requirements can be satisfied by
software reuse? How well is the functionality of the reuse
products known or understood? What are the mismatches
or gaps, if any?

Appendix A: Q. 7-8 Appendix B: Q. 5-6 Is the software still applicable? Does the TRD requirements
flowdown support the planned use of this product? Does the
information obtained from the demos continue to support the
use of these products? Have new gaps been identified?
What are the plans to fill them?

2. Hardware/Software Platform Does your program have a hardware or software platform that
will present challenges when hosting the potential reuse
software?

Appendix A: Q.11 Appendix B: Q.9 Do the selected platforms pose any problems for the
software reuse products? If so, what are the implications of
these problems?

3. Architecture Is there a mismatch between your program architecture and
the architectures of the potential software reuse candidates?

Appendix A: Q. 10 Appendix B: Q. 8 Do you still have architectural compatibility? If not, what is
your solution?

4. Interfaces N/A Appendix A: Q. 9 Appendix B: Q. 7 Are there interface mismatches between the software reuse
product and the system? If so, what are the implications of
the mismatches?

5. Modification Do the potential software reuse candidates require
modification? If so, how much?

Appendix A: Q. 12-15 N/A Has the extent of the modifications to the software reuse
products changed? If so, how much? Will the COTS and
GOTS software products remain unmodified? If not, what is
the plan for assuming responsibility for them?

6. Maturity Are the potential software reuse candidates mature (e.g.,
formal qualification tested, system level tested, fielded)?

Appendix A: Q. 16-17,
19, & 21

Appendix B: Q. 15-16 Has the maturity profile of the software reuse products
changed?

7. Availability Timeline Are the potential software reuse candidates currently
available? If not, will they be available at contract award? If
not, when will they be available? Is the availability of the
software dependent upon another source, e.g., another
program, the Government, or a COTS vendor?

Appendix A: Q. 22-24 Appendix B: Q. 18-19 Has there been any change in the availability timeline for the
software reuse products?

8. Reuse History Have other Government programs reused as-is or modified
this software? If yes, what programs? Do you know whether
the reuse was successful?

Appendix A: Q. 20 Appendix B: Q. 17 N/A

9. Developer's Experience with
Software

N/A Appendix A: Q. 26-28 Appendix B: Q. 20-22 Does the contractor have staff who are knowledgeable about
the software reuse products? Does the contractor have
access to the originating developers of the reuse products?

10. Documentation N/A Appendix A: Q. 29-32 Appendix B: Q. 23 Is the software reuse product documented? Is the
documentation available? Has the quality of the
documentation been assessed? Does it provide the
information needed? Does the documentation contain
proprietary information?

Risk Questions to Evaluate
During Source Selection

1-4

Major Risk Areas and Risk Questions (Concluded)

Major Risk Areas Risk Questions for the PO to Answer
Before Source Selection

Risk Questions
As the Design Evolves

Reused As-is/
Modified Software

COTS/GOTS
Software

Software Quality (Section L) Software Quality (Section L)

12. Software Defects N/A Appendix A: Q. 37-38 N/A What is the current defect profile (e.g., number of
open/closed defects, closure rate, priority of defects) of the
software reuse products?

13. Relationships with Sources
of Software Reuse Products

N/A Appendix A: Q. 24 Appendix B: Q. 22 Has the contractor established a good working relationship
with the entities or sources responsible for all software reuse
products?

Appendix D
SDP (Section L)
IMS (Section L)
Offeror BOEs

Appendix D
SDP (Section L)
IMS (Section L)
Offeror BOEs

Appendix A: Q. 15
Appendix D

Offeror BOEs

Appendix B: Q.14
Appendix D

Offeror BOEs

Have the effective sizing estimates changed? What is the
impact on the program?

15. Software Reuse Sizing N/A

Are the effective sizing estimates realistic given the amount
of work to be performed?

Risk Questions to Evaluate
During Source Selection

11. Software Quality N/A What is the quality of the software? Has the contractor
conducted an assessment of the quality of the software?
What are the results of the assessment? Has the
Government SQAE been conducted? What are the results
of the SQAE?

What are the results of the Offeror's quality assessment of
the software?

14. Software Reuse Schedule N/A Are the durations of the modification (if needed), integration
and test schedules realistic given the amount of work to be
performed? Do the schedules reflect sufficient up-front tasks
and decision points to maximize the likelihood of reuse
success?

Are the durations of the modification (if needed), integration
and test schedules realistic given the amount of work to be
performed? Do the schedules reflect sufficient up-front tasks
and decision points to maximize the likelihood of reuse
success?

1-5

Program-specific Risk Areas and Risk Questions

Program-specific Risk
Areas

Questions for the PO to Answer
Before Source Selection

Risk Questions
As the Design Evolves

Reused As-is/
Modified Software

COTS/GOTS
Software

Future Releases N/A Appendix A: Q. 40 Appendix B: Q. 32 If the program is planning to incorporate future releases into
the system's software baseline, is there a plan to assess
the impacts to the system, address any changes in
performance or functionality, interoperability with other
systems, etc., and reintegrate the releases into the system?

If the program is not planning to incorporate future releases
into the system's software baseline, is there a plan to
address critical fixes and vendor support when the product
becomes obsolete?

Dead and Unused Code Could dead or unused code in potential reuse software pose
problems related to security or testing? What are the
potential problems?

Appendix A: Q. 41 N/A Does the dead or unused code in the software reuse
products pose any problems related to security or testing?
What are the problems?

Certifications and Accreditations Could the certification and accreditation (C&A) of the new
software be affected by the reuse as-is or modification of the
potential software reuse candidates? What are the potential
problems? Should NSA (or other C&A agencies) be involved
with the RFP preparation and source selection? Does the
program schedule reflect enough time for the C&A process?

Appendix A: Q. 18 Appendix B: Q. 17 How is the C&A of the new software affected by the reuse as-
is or modification of the software reuse products?

Designed for Reuse N/A Appendix A: Q. 25 N/A Has the software reuse product been designed for reuse?
Identify the attributes (e.g., standards, design patterns,
architecture paradigms) that support reuse.

Data and Software Rights Are there any potential problems with the data and software
rights for the software reuse candidates such that they are
inconsistent with the program's maintenance philosophy?

Appendix A: Q. 34-36 Appendix B: Q. 24-26 What data and software rights will the Government have to
the software reuse products? Are these rights consistent
with the program's maintenance philosophy?

Maintenance & Support Strategy Are there any potential problems with the planned
maintenance of the software reuse candidates such that
they do not fit with the maintenance philosophy for the
program?

Appendix A: Q. 39 Appendix B: Q. 30-31 How does the maintenance of the software reuse products fit
with the maintenance philosophy for the program?

Appendix D
SDP (Section L)

Appendix D
SDP (Section L)

Vendor Viability Is the long-term viability of each vendor of each software
reuse candidate sound?

N/A Appendix B: Q. 33-36 Does the long-term viability of each vendor of each software
reuse product continue to be sound?

Standards N/A Appendix A: Q. 33 N/A What development standards (e.g., IEEE/EIA Std 12207.0)
were followed during the development of the software
intended to be reused as-is/modified? Do the standards
followed during the development of this software pose any
potential problems for the software system that will be
delivered for this program? Are these standards consistent
with all standards to which the software system must
adhere?

Licensing N/A N/A Appendix B: Q. 27-29 How will the COTS/GOTS software be licensed (e.g., per
seat, per site, per host) for both development and run-time
for this program? Does the licensing arrangement pose any
potential problems during the acquisition or maintenance of
the system?

When is the reused as-is/modified software integrated into
the build plan? Does the build plan reflect early integration
activities to maximize the likelihood of reuse success?When is the reused as-is/modified software integrated into

the build plan? Does the build plan reflect early integration
activities to maximize the likelihood of reuse success?

Integration into Build Plan N/A

Risk Questions to Evaluate
During Source Selection

1-6

Risk Templates

The following conditions must be
met for a software reuse product to

be considered low risk

The following conditions result in a
software reuse product being

considered medium risk

The following conditions result in a
software reuse product being

considered high risk

Insufficient
Information Basis of Assessment

Both conditions must be met for low
risk :
1) The contractor has performed a
thorough analysis to assess the
applicability of the software reuse
product to this program. This analysis
has been discussed with and shown to
the Government.
2) The software reuse product's
functionality meets all of the applicable
requirements.

Presence of both conditions results in a
medium risk :
1) The contractor has performed at least
a marginally acceptable analysis to
assess the applicability of the software
reuse product to this program. This
analysis has been discussed with and
shown to the Government.
2) The software reuse product's
functionality meets all of the applicable
critical requirements and most of the non-
critical requirements.

Presence of any of the four conditions
results in a high risk :
1) The contractor has not performed an
acceptable analysis to assess the
applicability of the software reuse
product to this program.
2) The contractor has not shared the
analysis with the Government.
3) The software reuse product's
functionality does not meet some of the
applicable critical requirements.
4) The software reuse product's
functionality does not meet many of the
non-critical requirements.

There is insufficient
information to form a
judgment of risk.

The software reuse product has been
used on a hardware/software platform
identical to the intended platform.

Presence of either condition results in a
medium risk :
1) The software reuse product has been
used on a hardware/software platforms
similar (e.g., same operating
system/different version, standard
hardware from a different vendor) to the
intended platform.
2) The contractor has staff on their team
who has experience porting between the
specific platforms.

Presence of both conditions results in a
high risk :
1) The hardware/software platforms, on
which the software reuse product
currently resides, is dissimilar (e.g.,
different operating system or operating
system from a different vendor) from the
intended platform.
2) The contractor has no previous
experience porting between these
specific platforms.

There is insufficient
information to form a
judgment of risk.

Both conditions must be met for low
risk :
1) The architecture is consistent
throughout the system (i.e., for both
software reuse products and new
software.)
2) There are no apparent mismatches
between the architecture of the software
reuse product and the architecture of the
system. There may be a need for a
minimal amount of simple glue code.

Presence of either condition results in a
medium risk :
1) The software reuse product's
architecture is based on well-known
standards, but is not consistent with
standards of the system.
2) There are some mismatches between
the architecture of the software reuse
product and the architecture of the
system. Some glue code needs to be
developed.

Presence of either condition results in a
high risk :
1) The software reuse product's
architecture is based on immature, ad
hoc or no standards.
2) There are significant mismatches
between the architecture of the software
reuse product and the architecture of the
system. There is a need to develop
substantial glue code.

There is insufficient
information to form a
judgment of risk.

The interfaces between the software
reuse product and the system are well-
defined, well-controlled, and highly
compatible. There may be a need for a
minimal amount of simple glue code.

The interfaces between the software
reuse product and the system are well-
defined and well-controlled; however,
there are some compatibility problems.
Some glue code needs to be developed.

Presence of either condition results in a
high risk :
1) The interfaces between the software
reuse product and the system are not
well-defined or not well-controlled.
2) There are significant interface
mismatches between the software reuse
product and the system. There is a need
to develop substantial glue code.

There is insufficient
information to form a
judgment of risk.

Major Risk Areas

1. Applicability

2. Hardware/Software Platform

3. Architecture

4. Interfaces

1-7

Risk Templates (Continued)

The following conditions must be
met for a software reuse product to

be considered low risk

The following conditions result in a
software reuse product being

considered medium risk

The following conditions result in a
software reuse product being

considered high risk

Insufficient
Information Basis of Assessment

Reused As-is/
Modified

The software reuse product requires no
modification to meet the program's
requirements.

The software reuse product requires
moderate modification to meet the
program's requirements, and the
contractor has performed an analysis
and understands the required changes.

Presence of either condition results in a
high risk :
1) The software reuse product requires
substantial modification to meet the
program's requirements.
2) The software reuse product requires
moderate modification to meet the
program's requirements, but those
changes are not well understood.

There is insufficient
information to form a
judgment of risk.

COTS/GOTS

Conditions 1 & 2, or 3 must be met for
low risk :
1) The software reuse product has
successfully completed a Government-
witnessed formal qualification test on
another DoD program and is operational
in the field.
2) This maturity has been confirmed with
the DoD PO.
3) For COTS products only: The
contractor has provided information
showing the COTS product is mature,
widely used, and has marketplace
acceptance.

Presence of conditions 1 & 3, 2 & 3, or
4 results in a medium risk :
1) The software reuse product has
successfully completed a Government-
witnessed formal qualification test on
another DoD program, but is not yet
operational.
2) The software reuse product has
successfully completed a Government-
witnessed formal qualification test on
another Government (non-DoD) program
and may or may not be operational in
the field.
3) This maturity has been confirmed with
the DoD or non-DoD PO.
4) For COTS products only: The
contractor has provided information
about the COTS product's maturity,
extent of usage and marketplace
acceptance; the information indicates
limited product maturity.

For Reused As-is, Modified or GOTS
software products only: The software
reuse product has not completed a
Government-witnessed formal
qualification test.

For COTS products only: The contractor
has provided information about the COTS
product; the information indicates that
the product lacks maturity.

There is insufficient
information to form a
judgment of risk.

Both conditions must be met for low
risk :
1) The software reuse product is
currently available.
2) The availability has been confirmed
with the source.

Presence of both conditions results in a
medium risk :
1) The software reuse product is not
currently available, but is anticipated to
be available prior to contract award.
2) The contractor and the source have
provided information supporting
availability prior to contract award.

Presence of either condition results in a
high risk :
1) The software reuse product will not be
available at contract award.
2) The contractor and the source have
not provided adequate information
supporting availability prior to contract
award.

There is insufficient
information to form a
judgment of risk.

N/A (If the OTS software reuse product requires modification, it is considered to be "Reused As-is/Modified" software.)
6. Maturity

7. Availability Timeline

Major Risk Areas

5. Modification

1-8

Risk Templates (Continued)

The following conditions must be
met for a software reuse product to

be considered low risk

The following conditions result in a
software reuse product being

considered medium risk

The following conditions result in a
software reuse product being

considered high risk

Insufficient
Information Basis of Assessment

Both conditions must be met for low
risk :
1) The software reuse product has been
successfully reused as-is or modified for
another Government (DoD or non-DoD)
program and is operational in the field.
2) Successful product reuse has been
confirmed with the Government PO.

Presence of conditions 1 & 3 or 2 & 3
results in a medium risk :
1) The software reuse product has been
reused as-is or modified for another
Government (DoD or non-DoD) program
and is operational in the field, but there
were moderate technical, cost or
schedule problems with the product.
2) The software reuse product has been
reused as-is or modified for another
Government (DoD or non-DoD) program
and has successfully completed a
Government-witnessed formal
qualification test, but is not yet
operational.
3) Status of product reuse has been
confirmed with the Government PO.

Presence of either condition results in a
high risk :
1) The software reuse product has been
reused as-is or modified for another
Government (DoD or non-DoD) program,
but there were significant technical, cost
or schedule problems with the product.
2) The software reuse product has never
been reused as-is or modified for another
Government (DoD or non-DoD) program,
or is being reused as-is or modified for
another Government program, but has
not yet completed a formal qualification
test.

There is insufficient
information to form a
judgment of risk.

Both conditions must be met for low
risk :
1) The contractor has staff who have
experience developing or reusing the
software reuse product.
2) The PO has a commitment from the
contractor that the experienced staff will
be available to support this program.

Presence of both conditions results in a
medium risk :
1) The contractor has staff, who have
experience developing or reusing a
similar software reuse product.
2) The PO has a commitment from the
contractor that the experienced staff will
be available to support this program.

The contractor does not have staff who
have experience developing or reusing
this or a similar software reuse product.

There is insufficient
information to form a
judgment of risk.

There exists sufficient, up-to-date
documentation for the software reuse
product to support developers, end
users, and maintainers.

There exists sufficient documentation for
the software reuse product to support
developers, end users, and maintainers;
however, it is not up-to-date.

Documentation for the software reuse
product to support developers, end
users, and maintainers is limited.

There is insufficient
information to form a
judgment of risk.

The contractor and/or PO has conducted
an assessment of the quality of the
software reuse product. There are no
concerns about the quality of the
software.

The contractor and/or the PO has
conducted an assessment of the quality
of the software reuse product. There are
moderate concerns about the quality of
the software and there is a strategy for
mitigating them.

Presence of either condition results in a
high risk :
1) Neither the contractor nor the PO
have conducted an assessment of the
quality of the software reuse product;
therefore, there is no insight into the
quality attributes for the software.
2) The contractor and/or the PO has
conducted an assessment of the quality
of the software reuse product and there
are major concerns about the quality of
the software.

There is insufficient
information to form a
judgment of risk.

11. Software Quality

8. Reuse History

9. Developer's Experience with
Software

10. Documentation

Major Risk Areas

1-9

Risk Templates (Concluded)

The following conditions must be
met for a software reuse product to

be considered low risk

The following conditions result in a
software reuse product being

considered medium risk

The following conditions result in a
software reuse product being

considered high risk

Insufficient
Information Basis of Assessment

Reused As-
is/Modified

The high priority defects for the software
reuse product have been fixed and there
are no known problems that should
affect the reuse of the product.

The high priority defects for the software
reuse product have been fixed; however
there are remaining defects that must be
fixed prior to its fielding. There is a
credible plan to repair these defects.

Presence of either condition results in a
high risk :
1) The software reuse product has open,
high priority defects or has a significant
number of other open defects that must
be fixed prior to its fielding.
2) The software has not been fully tested
so that the number of defects in the
code is not yet known.

There is insufficient
information to form a
judgment of risk.

COTS/GOTS N/A N/A N/A N/A
Both conditions must be met for low
risk :
1) The contractor has, in the past,
successfully established working
relationships with the source of the
software reuse product.
2) The contractor has developed a
comprehensive approach to manage
cross program relationships, and how to
stay informed about the evolving software
functionality.

The contractor has no past working
relationship with the source of the
software reuse product, but has
developed a comprehensive approach to
manage cross program relationships,
and how to stay informed about the
evolving software functionality.

The contractor has not developed an
adequate approach for managing cross
program relationships, and staying
informed about the evolving software
functionality.

There is insufficient
information to form a
judgment of risk.

Both conditions must be met for low
risk :
1) The contractor has identified the
schedule for the software reuse product,
including up-front tasks and alternative
strategy decision points.
2) The schedule duration is reasonable.

Presence of either condition results in a
medium risk :
1) The contractor has identified the
schedule for the software reuse product,
but the schedule does not include
sufficient up-front tasks and/or alternative
strategy decision points.
2) The schedule duration is highly
optimistic.

Presence of either condition results in a
high risk :
1) The schedule for the software reuse
product is not clearly identifiable within
the overall program schedule.
2) The schedule duration is not
reasonable.

There is insufficient
information to form a
judgment of risk.

The effective sizing estimate for the
software reuse product is reasonable,
and reflects sufficient estimation
uncertainty and growth.

The effective sizing estimate for the
software reuse product is highly
optimistic.

The effective sizing estimate for the
software reuse product is not
reasonable.

There is insufficient
information to form a
judgment of risk.

12. Software
Defects

13. Relationships with Sources
of Software Reuse Products

14. Software Reuse Schedule

15. Software Reuse Sizing

Major Risk Areas

1-10

Tutorial for Major Risk Areas
The purported cost and schedule benefits of reusing pre-existing software (as-is), modifying
pre-existing software, or using off-the-shelf (OTS) software products may be outweighed by
the risks of these acquisition approaches. The following discussion is intended to highlight
major risk areas and reasons why a PO should be cautious when incorporating software reuse
products into their system’s software baseline. The PO needs to understand the risks of a
contractor’s reuse approach and then determine whether they are willing to accept those
risks. If so, the PO must closely monitor the status and progress of the software reuse
activities after contract award (ACA).

The following descriptions provide a brief tutorial for the major risk areas. The following
tutorial is not intended to provide an all-inclusive list nor a highly detailed discussion of each
risk area, but rather helpful information that supplements an assessment of software reuse
risks.

1. Applicability
The software that is intended to be reused as-is, including COTS/GOTS, or modified may or
may not closely match the requirements of a particular program. It is therefore necessary to
understand the specific mismatches. The Worksheet Questions, which will be completed and
submitted by an offeror as part of their proposal, ask the offeror to list the functions that each
software product will provide and cross-reference these functions to the Technical
Requirements Document (TRD). ACA, the contractor will be required to show functional
and performance requirements cross-referenced to the TRD. The updated Worksheet
Questions will be delivered to the Government as an appendix to the Reuse Management
Report.

Both during a source selection and ACA, mismatches in functions/ requirements between the
TRD and the reuse product must be clearly identified so that the Government can understand
where there are disconnects and assess whether these disconnects can be resolved. In some
cases, the software may need minor modification. However, if the mismatches require
significant modification of the pre-existing software, the PO should be wary of the planned
reuse approach.

The importance of a comprehensive applicability analysis cannot be overstated. Too often,
the contractor has not performed a thorough analysis of the software reuse product and thus,
the software neither meets critical requirements nor has an architecture or interfaces that are
compatible with the new system. An explanation of the evaluation methodology and any
criteria used to distinguish between alternative software products should be provided in the
proposal. The contractor must have adhered to a formal process for the evaluation. Be
skeptical of the depth and breadth of an applicability analysis. Ask to see the analysis.

The analysis results are not necessarily valid without the contractor having performed some
sort of internal, hands-on demonstration and testing of the software. Even for OTS software,

1-11

both the contractor and the Government should explore vendor claims of the product’s
capabilities. Additionally, an applicability analysis for a rapidly changing OTS product may
be valid for only a short period of time. Therefore, the Government needs to be proactive in
understanding changes to these products and the potential impacts to their programs.

2. Hardware/Software Platform
It is important to understand if the software reuse product has been used on a hardware
and/or software platform similar to the one proposed for this system. Software development
and integration engineers seem to consistently misjudge the effort and time to rehost
software onto a new platform. It is easy to convince oneself that high level similarity
between computing environments (e.g., between two POSIX compliant operating systems)
will necessarily eliminate porting risk. Often problems arise from the details of a particular
implementation. If feasible, it would be useful to consult someone with experience porting
software between the computing environments identified in the proposal. Even if the
contractor, who originally developed the software, or the vendor, who supplies the OTS
product, state they have hosted the software on a compatible platform, plan to contact a
Government program manager to verify and learn from that program’s experiences.

3. Architecture
Any reused software component will be designed and implemented in accordance with
certain assumptions concerning the environment in which it will operate. To be a bit more
specific, these assumptions might involve such things as compliance to standards, functional
partitioning among components, data and control interfaces, and patterns of interaction with
other system components. Collectively, these assumptions can be referred to as
characteristics of the architecture. The reused software components will, either explicitly or
implicitly, be designed with the particular assumptions concerning the architecture in which
they will operate.

The software system that will be created by the contractor will also be designed and
implemented according to particular architectural assumptions. When assumptions inherent
in the reusable software components are not compatible with the overall system architecture,
one can expect problems to appear with performance, integration, test, and (ultimately)
maintenance and sustainment. Depending on the compatibility of the particular architecture
choices, these problems may be minimal, they may be substantial, or they may be nearly
insurmountable. Consequently, it is important to evaluate the architecture early in the
program.

Fortunately, there are some well-known ad hoc standards for packaging software as reusable
components. Examples of such approaches include Microsoft’s evolving component
architecture (OLE, COM, DCOM, .Net), J2EE’s JavaBeans, and OMG’s CORBA
Component Model (CCM). Each of these imposes a set of architectural restrictions and
packaging requirements for the reusable software. In return, the software components can be
relatively easily integrated into a compatible framework. Furthermore, while these various

1-12

approaches are not 100 percent compatible, there is a body of experience in integrating these
somewhat related approaches. Once an offeror has proposed particular architecture choices,
the PO should seek an experienced consultant to identify potential pitfalls and risks.

Some architecture approaches can facilitate software reuse even though they have not been
developed to the extent that the “well-known” ad hoc component architectures have. Such
approaches might include the use of a software application framework, a plug-in architecture,
or using “design patterns.” Such approaches, when used well, can decrease the risk of
integrating reusable software into the system. However, such approaches are much less
rigorously defined and it is easy for a developer to deviate from the optimal approach—
sometimes in subtle ways.

The application of design patterns provides a cautionary example. A “design pattern” is a
template for a software design that is well documented, is intended to address a particular set
of design issues or goals, and is well understood in terms of how effectively it addresses
those issues and goals. (Ease of software component reuse is an example of a goal.
Scalability, portability, fault tolerance, and security are other examples.) There has been
substantial research and practical application of design patterns. Consequently, there is a
substantial body of knowledge with respect to various well-known design patterns—
including their strengths, weaknesses, and applicability. Unfortunately, it is difficult to
enforce the rigorous application of design patterns. Sometimes a contractor will assert that
they are using a well-known and well-regarded design pattern when, in fact, they have
deviated from the design pattern in ways that negate potential benefits. (This can happen
below the radar screen if the technical management for the contractor’s development team is
not on top of the design and implementation). Other times, a contractor may identify a
design pattern, but it is not a well-known or well-understood design pattern. Unfortunately,
while design patterns provide an excellent mechanism for reusing “best of breed” design
techniques, it is equally easy to employ mediocre or inferior design patterns.

Even seemingly low-level, detailed assumptions concerning the execution environment can
have architectural implications. For example, a contractor was developing software that
needed to complete extensive mathematical computations (matrix operations, etc.) within
tight real-time constraints. To accomplish this requirement, the contractor planned to reuse a
well-known, open source package which provided “high performance mathematical library
routines.” The contractor’s system relied on a highly parallel software design.
Unfortunately, the open source package that they planned to reuse was not thread-safe—in
other words, it could not be reused as-is in the contractor’s design. Although it was not
particularly difficult to modify the package to make it thread safe, it was not possible to
make the package both thread-safe and, at the same time, retain the required performance
characteristics.

The program manager should insist that reusable software components be analyzed for
architectural incompatibilities as early as practical in the program. Too often a contractor
will select particular software reuse products without considering potential architecture

1-13

conflicts. Once these product choices have been made, the contractor may not revisit these
decisions and may not begin investigating potential “integration issues” until very late in the
program. This delayed investigation can result in substantial rework and a significant
schedule impact.

4. Interfaces
Interfaces are a feature of the chosen architecture. However, the developer should pay
particular attention to the interfaces between the developed software and the reused software
components.

First, the contractor should understand the data interface requirements. What data does the
reuse software component provide? Does this data satisfy the requirements of the system
being built? In order to operate, what data does the reuse software component require from
other parts of the system? Is this data available to pass to the reuse software component?
What other parts of the system will be responsible for providing this data? Are the data
interactions clearly understood?

Secondly, the interfaces need to be understood from a control point of view. How are the
reuse software components invoked? Are they called as a procedure or subroutine? Do they
need to poll for data?

Thirdly, the chosen component architecture may impose additional requirements on the reuse
software component. For example, is the reuse component responsible for signaling some
other part of the system when its output data is available? Does it need to signal based on
some other event? Are there “events” (mouse clicks, dialog pop-ups, interrupts) that the
software reuse product must react to? Are there events that the reuse product must ignore?
Is the software reuse product responsible for passing event notification on to some other part
of the system?

Finally, if the architecture compatibility between the system and the reuse software
components is not clean, then there may be a need for “wrapper code” to isolate the software
reuse component and manage the architecture incompatibilities. Has this “wrapper code”
been properly addressed in the software size and effort estimates? Has the impact of this
“wrapper code” been adequately addressed from a system functionality or performance
perspective?

The PO should insist that an evaluation of the interfaces between the developed software and
the software reuse products be included as part of the analysis of the software architecture.

1-14

5. Modification
To provide a given functionality, when should a contractor attempt to modify pre-existing
software versus decide from a program’s start to develop the software from scratch?
Unfortunately, we often know the answer to this question only in hindsight. A contractor
will propose software reuse, but later discover at some point during the contract that the
mismatches in requirements, architecture and/or interfaces are more complex than originally
thought. The contractor then needs to modify more code than had been intended to make the
required changes or needs to write new code simply because they cannot modify as much
pre-existing software as planned.

Modifying software can be challenging. It takes time and effort for the software engineer to
understand the code intended for reuse and the developer of the pre-existing software is often
not available to answer any questions. The complexity of the modification and/or the extent
of modification may be significant. Therefore, it may be easier to start from scratch. There
are no hard and fast rules as to when a contractor should pursue a software modification or
development approach, but the PO should be wary of moderate to high percentages for the
amount of code that will need to be changed.

“Research studies at … the NASA-Goddard Software Engineering Laboratory
have shown that if you have to change more than 15 to 20 percent of a
component to make it work in your program, it is more economical to build
the component from scratch. And few components meet that 15-to-20 percent
threshold.” [Glass, Robert L., What’s Wrong with Software Reuse?
<http://www.stickyminds.com/sitewide.asp?ObjectId=2731&Function=edetail
&ObjectType=COL>, 13 August 2001.]

Some rules of thumb are not as pessimistic, but generally they recommend that recoding not
exceed 25 to 35 percent. Independent of the exact threshold, it is apparent that in order for
software reuse to be cost effective, the percent of the code to be changed should be relatively
low.

Software engineers typically do not recommend modifying a COTS product. The problems
introduced outweigh the benefits of a product tailored to a specific program, even if the
vendor is willing to make the modifications. A PO should avoid having a one-of-a-kind
product; it becomes exceedingly difficult for it to keep pace with the changes that are
released in the commercially available version, thus negating some of the advantages of
pursuing a COTS solution in the first place. In addition, maintenance of a unique product by
the vendor may be quite costly.

6. Maturity
Software maturity often turns out to be a significant problem for a PO. Time after time, a PO
misjudges or is misinformed about the maturity of the software reuse product. Typically, the
problem is that the software has not been fully tested. In one undesirable scenario, the

1-15

software needs additional testing and is therefore not available when promised to the
program. The program’s schedule slips since the contractor either is forced to wait longer for
the code or decides to develop the functionality themselves. Alternatively, the PO may need
to perform more testing on the immature software than had originally been planned. In
another undesirable scenario, perhaps equally bad, the supplier (or offeror) will overstate the
comprehensiveness and rigor of the testing that has been completed. In this case, a greater
number of undiscovered defects may exist in the software which will then complicate later
integration and test activities.

The PO should be careful to understand what levels of testing have been completed for the
software. Contractors propose to reuse software that is at various stages of completion;
therefore the PO must understand the applicable technology readiness levels (TRLs) and the
resulting performance, cost, and schedule risks to the program. Since a Department of
Defense (DoD) goal is to stop launching acquisition programs before the technologies are
mature, the DoD now requires that the technology in Major Defense Acquisition Programs
be demonstrated in a relevant environment (TRL 6 or greater) before Milestone B approval.
TRL 6 for a software-intensive system means that the modules and/or subsystems have been
validated in a relevant end-to-end environment. Certainly if the software has been qualified
through test or demonstration in an operational environment (TRL 8) or the software has
been fielded (TRL 9), the PO should be more confident that the software is mature, the
software defects have been identified and corrected, and the software will be available as
scheduled.

Although the PO might assume that a COTS product would be fully tested, this is not always
the case. Commercial vendors are pressured to rush their products to market and therefore
may forego comprehensive testing. Fast-changing COTS products with frequent releases
may be immature. Therefore it is necessary that the contractor plan for sufficient testing of
the COTS products to not only demonstrate the capabilities, but also validate the vendor’s
claims that the software is working correctly.

7. Availability Timeline
The availability timeline for a software reuse product is a major factor that could contribute
to a program schedule slip. Availability should be considered a high risk if the software
product is not available, in a usable state, at contract award, even if the contractor insists it
will be available in time to meet their modification/integration schedules. The contractor
should have the software reuse products to support up-front applicability analyses, internal
hands-on demonstrations, and demonstrations to the Government.

Most often, the software reuse product’s availability timeline is dependent on another source.
The source, whether another contractor, a division within the same contractor’s organization,
a commercial vendor, or a Government entity, is responsible for the product’s delivery
schedule. Both the contractor and PO should be guarded about the source’s claims related to
the availability timeline as well as the product itself when it is delivered. Will the software

1-16

be available at contract award? When delivered, will the software be at the maturity level the
contractor is anticipating? Has the contractor been able to gain an in-depth understanding of
the software and the requirements that the software was originally developed, or is being
developed, to meet? Are the requirements for this software changing? It is imperative that
the contractor stay informed about the status of the software reuse product; the contractor
must be knowledgeable about changes related to applicability, availability timeline, maturity,
etc. Therefore, the contractor must develop a plan as to how cross program (and contractor
to contractor) relationships will be established and managed.

Unfortunately, when a contractor is dependent on another source for a software reuse
product, it becomes more difficult for the contractor to manage and mitigate the risks
because the risks are not within their control. Even so, it is important that the contractor take
a more proactive approach to software reuse. Rather than let the program’s schedule slip for
each month that the software reuse product’s delivery is delayed, the contractor must develop
alternative approaches, including the cost and schedule impacts of pursuing these
approaches. The contractor needs to identify in their program schedule when these
approaches are to be assessed and decisions made.

8. Reuse History
Reuse history is another factor to consider when evaluating the risks of software reuse.
Studies in the commercial sector show that the amount of code that can be successfully
reused increases with each sequential reuse attempt. Have other Government programs
reused as-is or modified the software product? Was the reuse successful? A PO can be more
optimistic about successful reuse on their program if the product had been reused in similar
applications and environments. However, the PO should contact the program managers for
these Government programs or the program managers currently responsible for the software
reuse products for lessons learned. The PO may be able to gain insights from past
experience that would streamline the reuse activity and further minimize the risks of
integrating the product into the new software system.

9. Developer’s Experience with Software
It is desirable that the contractor has experience with the code that is intended to be reused
as-is or modified. Preferably the software engineers, who will be modifying and/or
integrating the code, were part of the original development and integration teams. If not, it is
advantageous for the software developers or integrators to have familiarity with the code and
thus have reused, modified, or integrated it for another program. The effort and time to learn
code, with which one is unfamiliar, is often underestimated. This learning activity is
complicated when no software engineers, who developed the code, are available to answer
questions. In fact, even if the new contractor and the original contractor are the same entity,
there still may be no one available to field the questions and explain the code. Software is
less reusable, or at least more time-consuming to understand, when created by different

1-17

teams. The intricacies of the design and the subtleties of the documentation may require that
the two groups communicate, even informally.

Likewise, it is helpful for a contractor to have previous experience integrating the specific
OTS software product. It is always a challenge to integrate different software entities and
make them play together, so prior experience with the software typically makes integration
easier.

10. Documentation
The importance of clear, complete, and up-to-date documentation of the software to be
reused and/or modified cannot be overstated. The contractor should not be proposing
software reuse without good documentation to support the modification, maintenance, and
enhancement activities that occur throughout the life cycle. The time and effort to learn,
modify, integrate, test, maintain, and enhance code that was poorly documented could easily
be far greater than developing the code from scratch.

Documentation refers to both the internal (source code resident) and external (printed)
documentation. The internal documentation must be able to provide sufficient and concise
insight into the functioning of the code. MITRE’s Software Quality Assessment Exercise
(SQAE) states the following for the quality factor of self-descriptiveness:

“Modules should have standard formatted prologue sections. These sections
should contain module name, version number, author, date, purpose, inputs,
outputs, function, assumptions, limitations and restrictions, accuracy
requirements, error recovery procedures, commercial software dependencies,
references, and side effects. White space and naming conventions should be
used to help the legibility and comprehensibility of the code. The judicious
use of comments to highlight special features and to clarify the codes
functionality is also desired.” [Martin, R. A., S. A. Morrison, 1994,
Managing Software Quality Throughout the LifeCycle, p. 7.]

For the quality factor of external documentation, the SQAE states that:

“Both high level functional descriptions and characterizations of the system as
well as low level design details are needed to support the maintainer’s need to
understand the system’s functionality as well as identify where to make
changes and corrections.” [Martin, R. A., 1994]

11. Software Quality
Software quality is a term used to describe how well a software product has been designed
and implemented. A “high quality” software product will be easier (and less expensive) to
own and maintain. It will be more flexible in accommodating new requirements and easier
to move to new computing environments in the future. If needed, the adaptation of high
quality software to new situations would be more straightforward. In the context of software

1-18

reuse, it would be easier (and less expensive) to integrate “high quality” software reuse
components into a system than it would be integrate “low quality” components.

At a summary level, people feel that they understand the concept of software quality but may
have difficulty articulating what it means to them. (“I will recognize quality when I see it.”)
In a more rigorous sense, software quality is often described in terms of software quality
attributes, such as: reliability, usability, efficiency, portability, evolvability, maintainability,
descriptiveness, understandability, consistency, testability, and security. While the concept
of “software quality” may be vague, a more tractable exercise would be to determine
objective assessment criteria against each of the quality attributes.

MITRE has developed the SQAE, a structured and repeatable methodology, for assessing
software quality based on analysis of the software’s physical artifacts (source code,
documentation, etc.). This methodology has been applied to approximately a hundred
Electronic Systems Center (ESC) programs. Other organizations may offer similar services
or quality evaluation methods.

The contractor or offeror should evaluate any candidate software reuse products in terms of
the software quality. It is in their best interest to do so, since the software quality of the
reuse products has a direct bearing on the level of effort entailed in integration and test.
However, software quality has an even greater impact on “cost of ownership” issues, such as
maintenance, reliability, flexibility, adapting to new situations, etc. Consequently, it is the
customer who has an even larger stake in ensuring that an adequate software quality
evaluation is performed. The PO should insist that a comprehensive and thorough evaluation
be accomplished.

12. Software Defects
More often than not, when an offeror proposes software to be reused or modified, little
information is provided to the Government regarding the number of defects or severity of the
defects in this software. Obviously the PO does not want to integrate defect-laden software
into their system, so it is necessary to understand the nature and severity of the defects, when
these defects are planned to be fixed, and by whom. Without significant knowledge about
these defects, the offeror cannot develop a realistic schedule or effort estimate for their
software development and test activities. Additionally, without this knowledge, the PO
cannot evaluate, with any confidence, the offeror’s schedule or effort estimates.

Depending upon the maturity of the software reuse product, the defects may not have even
been discovered yet. Thus the defect information provided to the PO may not provide
adequate insight. Since software defects are detected as the software progresses through
integration and test, it is necessary to evaluate the defect information in the context of
software maturity.

One might expect COTS products to be defect-free, but this is seldom the case. COTS
vendors rush products to market, so testing is often not as thorough as needed.

1-19

13. Relationships with Sources of Software Reuse Products
As previously mentioned, when a contractor is dependent on another source for a software
reuse product, there is increased uncertainty about that product’s availability timeline,
functionality, quality, maturity, etc. To manage and mitigate the risks of that dependency, it
is imperative that the contractor establish and maintain a good working relationship with the
reuse product’s source. The contractor should provide a plan to the PO as to how cross
program (and contractor to contractor) relationships will be managed. The contractor should
collaborate with these sources (or ideally have personnel embedded within these
organizations) so that the contractor stays knowledgeable about product changes and
potential slips in availability.

It is equally important to establish good working relationships with COTS vendors. The
contractor and PO should stay informed about planned changes to the COTS product, long-
term strategic visions for product changes, schedules for product releases, and changes in
licensing and/or maintenance strategies.

Even if the contractor has established good relationships with the sources of the software
reuse products, the PO should not rely on information solely provided by the contractor
about these products. The PO should contact directly the sources to verify updated product
information. The PO should be proactive about anticipating problems that will in turn affect
their program’s performance, cost, and/or schedule.

14. Software Reuse Schedule
The PO must often make a subjective judgment of the reasonableness of the contractor’s
planned schedule. Whether early in the acquisition process, during source selection, or
ACA, the PO must assess the realism of the software reuse schedule since it is often a
schedule driver. Actual data for analogous software developments are most often not readily
available, and the schedule impact of reusing as-is or modifying software complicates any
comparisons. So the PO must assess the schedule based on their understanding of the
requirements and the scope of the work to be completed, the sizing associated with the
reused as-is and/or modified software, and the productivity rate. Given the information
provided, do the durations for the development, integration, and test schedules appear to be
realistic? Do these schedules reflect up-front tasking so that problems can be detected early
and resolved? Have decision points for the alternative strategies been clearly identified?

15. Software Reuse Sizing

The PO must also make a subjective judgment of the reasonableness of the contractor’s
sizing estimates. Similar to schedule, the PO must assess sizing based on their understanding
of the requirements and the scope of the work to be completed. Does the effective sizing
estimate seem realistic given the work to be performed? Does the sizing estimate reflect
appropriate assessments for the percent redesign, reimplementation (i.e., recode) and retest?

2-1

2 Software Reuse Management
Notes:

1. The words below provide new software reuse-specific sections in the PO RFP
documents.

2. The words for Section H or K must be added to the licensing clauses in the contract.
3. Worksheet Questions are to be filled out for every software reuse product, and are

part of the plan for software reuse management. The PO may choose to exempt the
completion of the worksheets for small, low risk COTS products.

4. Worksheet Questions should be first provided by the offerors as part of their
proposal; worksheets should be exempt from the proposal page count limits.
Worksheets will be updated ACA as part of the Reuse Management Report (ReMR).

5. The Worksheet Questions for Reused As-is/Modified Software is provided in
Appendix A; the Worksheet Questions for COTS/GOTS Software is provided in
Appendix B.

6. The data item description (DID) for the ReMR is provided in Appendix C.
7. The SOW requires the contractor to inform the Government immediately of all

substantial changes to the information contained in the worksheets. The PO should
define “substantial” in the context of their program and include this clarification in
the SOW.

Section H or K
In addition to the licensing clauses under DFARS 227.72, the following terms and
conditions shall apply for any and all third party commercial off-the-shelf (COTS)
software obtained by the Contractor and intended to be transferred to the U.S.
Government during performance of the present Government contract (Contract No.
___________). The Government will not accept or execute a DD Form 250 for the
software deliverables under the present contract until the Contractor obtains agreement to
the terms described below from any and all third party COTS software suppliers and/or
vendors for which the Contractor has licensed software for incorporation into
deliverables to the Government:

1. Any license shall be perpetual in nature and may not be unilaterally terminated by
the Licensor. The Licensor may, however, seek other remedies at law.

2. The Licensee shall not be restricted from copying or embedding elements of
accessible code into other applications (e.g., nesting code, derivative works).

3. The Licensor shall not include any indemnification clauses.
4. The Licensor shall not use the fact that the Licensee is using the Licensor’s

products in any notification to the public (e.g., no publicity rights permitted).
5. The Licensee is a Federal entity governed by Federal Statutes, Case Law, and

Federal Regulations. Therefore, the Licensor shall remove any references to

2-2

binding the Licensee through any laws of any municipality, state, or foreign
country.

6. The Licensor shall not include any clauses indicating a right to enter the premise
of the Licensee for the purpose of auditing the use of any license, as the Licensee
cannot allow an auditor physical access to the Licensee’s facility due to security
concerns. The Licensor may submit to the Licensee written notice indicating a
substantiated belief that the Licensee is not using the software within the terms
described in the license and the Licensee may consider conducting its own
internal audit and providing a certified statement of its findings to the Licensor.

7. The Licensor shall not use any integration clauses.
8. The Licensor shall not use any injunctive relief clauses as the Licensor cannot

prevent the Licensee from performing mission operations. The Licensor may
seek other remedies at law (e.g., monetary damages).

9. The Licensor shall include the following clause (and no other) for disputes:
“Since the Licensee is a Government entity, any dispute arising from or in
connection with this agreement shall be subject to resolution by the Disputes
Clause included in the basic contract and/or the Government may also consider
resolving any disputes using an appropriate Alternate Dispute Resolution (ADR)
remedy.”

10. If the Licensor will not agree to the terms and conditions cited herein and/or as
contained in DFARS 227.72, the Licensor shall retain the current license on
behalf of the U.S. Government.

11. The Licensor shall add the clause described below to all third party COTS
software licenses intended to be transferred to the Government:

The Government agrees to the provisions of the present Software License, as set
forth above, to the extent that the provisions of the Software License are
consistent with Federal procurement law(s) and satisfies the Government’s needs,
as prescribed at least by the Defense Federal Acquisition Regulation Supplement
(DFARS) Section 227.7202-1. In the event that any of the provisions of the
present Software License are determined to be inconsistent with Federal
procurement law(s) and/or do not otherwise satisfy the Government’s needs, the
parties to the present Software License hereby agree that such provisions shall be
null and void.”

Section L

Mission Capability and Proposal Risk Volume

The Offeror shall:

• Provide the technical approach for each software reuse product, including its
proposed use within the system, approach to integration, challenges to
integration, user interface integration, and usability.

2-3

Integrated Program Management and Systems Engineering Processes Volume

The Offeror shall provide a draft Reuse Management Report to include:

• An executive summary that identifies and briefly describes all software products
that will be reused as-is, including COTS/GOTS, or modified (existing software
requiring change).

• Populated Worksheet Questions for each reused as-is/modified and COTS/GOTS
software product, in accordance with the embedded instructions.

In accordance with DFARS 227.70, DFARS 227.71, DFARS 227.72, the Offeror shall:

• Provide the license agreement information for all commercial software licenses
(as known at the time of the proposal) to be obtained on behalf of or transferred to
the U.S. Government under this contract.

Section M
The Government will evaluate the technical soundness, applicability, and achievability of
the proposed software reuse.

The Government will evaluate the achievability in terms of effort and schedule of the
proposed approach for software reuse. This evaluation will include the approach for
assessing, acquiring, documenting, and maintaining reused as-is/modified and
COTS/GOTS software products.

The Government will evaluate the acceptability of the licensing agreement information
for all commercial software licenses (as known at the time of the proposal) to be obtained
on behalf of or transferred to the U.S. Government under this contract.

SOW
 Program Management

 Software Reuse Management

The Contractor shall:

• Execute and manage software reuse activities, in accordance with the Integrated
Master Schedule (IMS) and the software reuse plan provided in the Software
Development Plan (SDP), and report on the status of these activities.

• Inform the Government immediately if a decision is made to implement an
alternative approach, if any reuse cannot be accomplished as planned.

• Inform the Government immediately of all substantial changes to the information
contained in the worksheets (especially in the areas of applicability and
requirements traceability to the TRD; extent of modification and effective size;
product maturity; status of the availability timeline; dependencies on other
programs and the current status of these programs; availability of software

2-4

documentation; vendor viability; and updated status of critical defects) for all the
software reuse products.

• Prepare, update and provide a Reuse Management Report (DI-MGMT-81650, DI-
IPSC-81427A/T, DI-SESS-81771).

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Integrated Master Schedule

Block 4. AUTHORITY (Data Acquisition Document No.): DI-MGMT-81650

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Software Development Plan

Block 4. AUTHORITY (Data Acquisition Document No.): DI-IPSC-81427A/T

Block 16. REMARKS

 Block 4 tailored as follows:

 Contractor format acceptable

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Reuse Management Report

 Block 4. AUTHORITY (Data Acquisition Document No.): DI-SESS-81771

3-1

3 Risk [and Opportunity] Management
Notes:

1. It is the decision of the PO whether to require a Risk Management Plan (RMP) or
Risk and Opportunity Management Plan (ROMP).

2. The words below provide software reuse-specific additions to the risk [and
opportunity] management sections in the PO RFP documents.

3. The PO should require the offeror to specifically address software reuse risks [in the
RMP, ROMP, or in the body of the proposal].

Section L
 The Offeror shall:

• Identify the technical, cost, and schedule risks associated with the specific reused
as-is/modified and COTS/GOTS software products.

• [Identify any software reuse opportunities that might offer future benefit to the
program from a technical, cost or schedule standpoint.]

• Discuss risk mitigation strategies for any software reuse risks identified.
• Describe alternative approaches for any reused as-is/modified and COTS/GOTS

software products that are considered high or moderate risk.
• Describe alternative approaches for any reused as-is/modified and COTS/GOTS

software products that are not available (fully documented and tested) at the time
of the proposal.

• Estimate the technical and programmatic (i.e., effort and schedule) impacts of
implementing alternative approaches.

• Identify in the IMS when each alternative approach would have to be
implemented in the event that the planned software reuse products are not
available in time to preserve the program schedule.

Section M

 The Government will evaluate the risks of the planned software reuse activities, the risk
mitigation strategies, and the potential technical and programmatic impacts that would
result from not being able to reuse the software as planned. The Government will
evaluate alternative approaches for any reused as-is/modified and COTS/GOTS software
products that are considered high or moderate risk. The Government will evaluate
alternative approaches identified for any reused as-is/modified and COTS/GOTS
software product that is not available (fully documented and tested) at contract award.
The efficacy of the proposed decision points for implementing alternative approaches
will also be evaluated.

3-2

SOW
 Program Management

 Risk [and Opportunity] Management

The Contractor shall:

• Identify, track, manage, mitigate and report the technical, cost and schedule risks
associated with software reuse.

• [Identify any software reuse opportunities that might offer future benefit to the
program from a technical, cost, or schedule standpoint.]

• Identify and monitor risk mitigation strategies associated with the specific reused
as-is/modified and COTS/GOTS software products.

• Monitor the status and viability of alternative approaches identified for software
reuse and modify approaches to minimize the impact to the program.

• Update the decision points in the IMS, as needed. (DI-SESS-81771, DI-MGMT-
81650).

CDRL (Form 1423)
 Block 2. TITLE OF DATA ITEM: Reuse Management Report

 Block 4. AUTHORITY (Data Acquisition Document No.): DI-SESS-81771

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Integrated Master Schedule

Block 4. AUTHORITY (Data Acquisition Document No.): DI-MGMT-81650

4-1

4 Software Reuse Demonstration(s)
Notes:

1. The words below provide new software reuse-specific sections in the PO RFP
documents.

2. The PO can choose to conduct a Software Reuse Demonstration either during source
selection, or ACA, or both. The purpose of the source selection demonstration is to
provide the source selection team with an assessment of the maturity of and
availability timeline for the proposed software reuse products. The purpose of the
ACA demonstration is to provide the PO early insight into the maturity, functionality,
and performance of the software reuse products. The PO can decide to have more
than one ACA demonstration.

3. The PO’s decision to conduct a demonstration during source selection should depend
on the expected maturity of the offerors’ proposed software to be reused as-
is/modified.

4. Demonstration(s) should be required for any significant reused as-is/modified or
COTS/GOTS software product. The PO may choose to exempt small, low risk COTS
products from the demonstrations.

5. Offerors should be required to provide demonstrations during source selection if they
are bidding software reuse; if an offeror has no software reuse, no demo is required
and the absence of a demo cannot be held against them. To ensure full and fair
assessment during source selection, the PO must fully evaluate the overall software
approach, including all new software development, bid by the offerors.

6. In addition to witnessing the demonstrations, the Government should obtain
information about each software reuse product by contacting the program manager,
who is currently responsible for the reused as-is/modified or COTS/GOTS software
product, or the responsible entity or source of the software, if the Government is not
responsible for it.

Section L
The Offeror shall demonstrate to the Government the proposed software reuse products
and include in the demonstration:

• Both (1) the products that are proposed to be reused as-is and (2) the products that
are proposed to be modified (the demonstration will show the capabilities of these
products prior to their modification).

• Execution in a computing environment that is as similar as practical to the
intended target environment.

• Illustrations of key functions that the software reuse products are planned to
provide for the delivered system.

• Highlights of specific features or characteristics that were factors in their choice
of the product as a reuse candidate.

4-2

In addition, the Offeror shall:

• Identify the demonstrated products by name, supplier, and version. Include
definition of the specific configuration of the computing environment that
supports the demonstration.

• Identify any proposed software reuse products that are not part of the Software
Reuse Demonstration, with specific rationale explaining why such products have
not been included.

Section M
The Government will observe and evaluate the demonstration in terms of the availability
of the proposed products and appropriateness of the proposed products for their intended
use. Lack of demonstration of a proposed software reuse product will be considered as
part of the Government assessment of risk of that reuse.

SOW
Software Engineering

 Software Reuse Demonstration(s)

The Contractor shall demonstrate the software reuse products to the Government to
include:

• Both (1) the products that will be reused as-is and (2) the products that will be
modified (the demonstration(s) will show the capabilities of these products prior
to their modification).

• Demonstration of the maturity, functionality, and performance of the software
reuse products.

• Illustration of all functions that these products will provide for the delivered
system.

• Execution in a computing environment that is as similar as practical (e.g.,
operationally representative) to the intended target environment.

In addition, the Contractor shall:

• Identify in the IMS the schedule for the Software Reuse Demonstration(s), which
should be conducted prior to the Preliminary Design Review (PDR).

• Have the Software Quality Assurance (SQA) organization document and certify
as correct the software and hardware configuration of the Software Reuse
Demonstration(s) and witness the Software Reuse Demonstration(s).

• Provide an agenda for the Software Reuse Demonstration(s) identifying
objectives for the demonstration(s).

• Provide a report documenting the minutes of the Software Reuse
Demonstration(s) that includes an identification of the products and functions that
were demonstrated; the software and hardware configurations; a description of the

4-3

demonstration(s) as conducted, including a description of inputs and resulting
outputs; all non-conformances, deviations, anomalies and notable observations
that occurred in the demonstration(s); and all presentation material. (DI-MGMT-
81650, DI-ADMN-81249A/T, DI-ADMN-81505/T)

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Integrated Master Schedule

Block 4. AUTHORITY (Data Acquisition Document No.): DI-MGMT-81650

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Conference Agenda

Block 3. SUBTITLE: Software Reuse Demonstration(s) Agenda

Block 4. AUTHORITY (Data Acquisition Document No.): DI-ADMN-81249A/T

Block 16. REMARKS

Block 4 tailored as follows:

Only paragraphs 10.2 a, b, c, i and l apply

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Report, Record of Meetings/Minutes

Block 3. SUBTITLE: Software Reuse Demonstration(s) Report

Block 4. AUTHORITY (Data Acquisition Document No.): DI-ADMN-81505/T

Block 16. REMARKS

Block 4 tailored as follows:

Delete paragraph 10.2.1.3 b

5-1

5 Software Quality Assessment(s)
Notes:

1. The words below provide new software reuse-specific sections in the PO RFP
documents.

2. It is recommended that the PO conduct a Software Quality Assessment Exercise
(SQAE) ACA to gain insight into the potential risks associated with the software
reuse products. Additional information about the SQAE may be found at
http://www.mitre.org/work/tech_transfer/technologies/sqae.html.

3. It is especially recommended that an SQAE be conducted for any software products
not developed in accordance with known development standards (e.g., code
developed for experimentation, internal research and development (IR&D)).

4. If an SQAE is to be conducted ACA, words for Section H or K should be added to the
contract.

Section H or K
At its sole discretion, the Government will conduct one SQAE per reused as-is/modified
software product. The Government will provide the Contractor with 30 days notice of an
SQAE.

Section L
The Offeror shall:

• Describe their assessment of software quality for the software products that are
proposed as a basis for reuse (either reused as-is/modified or COTS/GOTS
software products).

• Describe the processes and tools used in the assessment and the results of the
assessment.

Section M
The Government will evaluate the Offeror’s choice of software products that are
proposed for reuse based on the following software quality attributes: reliability,
usability, efficiency, portability, evolvability, maintainability, descriptiveness,
understandability, consistency, testability, and software security/vulnerability.

SOW
 Software Engineering

Software Quality Assessment Exercise

The Government will conduct SQAE(s) for all reused as-is/modified software products.
The purpose of an SQAE is to assess the status of the software for consistency,

5-2

independence, modularity, documentation, self descriptiveness, anomaly control, and
design simplicity. The Contractor shall support this Government SQAE as follows:

• Submit all relevant source code and current documentation for the reused as-
is/modified software products, for which an SQAE will be conducted.

• Provide current information on the status of each system under assessment, as
follows:

- Application domain (e.g., C2, Financial Management, Simulation)
- Product type (e.g., database management system, graphical user interface

(GUI), client/server)
- Estimated software size
- Software languages and tools used in development
- Target hardware and operating system
- Applicable standards
- Host development system
- Classification, proprietary, or source selection sensitive (unclassified

desirable)
• Provide access to the Government to any software applications necessary to

access (read) the documentation for the duration of the SQAE.
• Support a meeting per each reused as-is/modified product to discuss the conduct

of the SQAE and the information needed by the Government to perform the
assessment.

• Respond to any Government questions about the software and information
provided. (DI-IPSC-81488/T)

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Computer Software Product

Block 3. SUBTITLE: Software Quality Assessment Exercise

Block 4. AUTHORITY (Data Acquisition Document No.): DI-IPSC-81488/T

Block 16. REMARKS

 Block 4 tailored as follows:

The completeness of the information provided has a direct bearing on how well the
SQAE process may be conducted. Information to support the SQAE shall be
submitted as follows:

• The complete source code will be delivered exclusively in electronic form and
consist solely of ASCII (ANSI X3.4-1986) or Unicode (ISO/IEC 10646:2003)
source files. All unclassified source code, package specifications/header files,
makefiles, shell scripts, templates, readme files, etc., should be included in the
delivery. Additionally, where system libraries, third party bindings,
commercial off-the-shelf (COTS) application program intefaces (APIs), etc.,

5-3

have been utilized, the ASCII/Unicode header files and specification (but not
the actual binary archives) should be included. All items in the delivery must
be referenced via relative path names.

• Software source code in this context should include any and all human-
generated and/or modified machine-generated source code (including scripts,
files, templates, macro source, package specifications/header files, makefiles,
etc.). Machine-generated source code should be delivered only if such code is
intended (wholly or in part) to be modified or otherwise maintained through
human inspection and modification (requiring a human to be able to read and
reasonably comprehend) it. Inputs to the machine-generation of GUI code
should also be delivered in appropriate form, if that input is to be used as the
point of maintenance. Machine-generated source need not be delivered if that
code that will only be processed by tools in the development environment,
and will not be subject to any modification or processing by humans.

• As complete a set of the current documentation, as possible, will be delivered.
Several of the Exercise questions are concerned with how well the system is
documented for future maintainability, so it is important that the
documentation be available, including all change pages in effect, as well as a
thorough bibliography of every relevant document and reference, whether
available or not. Any missing documentation should have a brief description
of its essence and relevancy. The types of documentation to be provided are:
- All the design, implementation, and release documents, such as plans,

function allocations, specifications (above the implementation level,
unless specifying coding standards)

- Design documents
- Interface (internal, external, user, hardware, and software) definitions

(above the detailed level)
- Style guides (programming, as well as user interface)
- User manuals (sometimes contain useful design information)
- Data and control flow diagrams (above the procedure level)
- COTS manuals (of products that the code is heavily dependent on)
- Code generation (e.g., GUI Builders) documentation, and
- Code libraries descriptions (if utilized)

• If available, the following system documentation, which supplies insight into
the following areas, should be delivered:
- Coding standards, input/output (I/O) and exception handling policies,

naming conventions, and documentation standards
- High level description of the project’s architecture, functional summaries

of the system’s major tasking threads, the system's control flow and data
flows

5-4

- Documentation that includes plain language descriptions and justifications
of any complex algorithms, self-modifying code, recursive code, or other
non-standard programming practices

• In the case of other systems which may be running on platforms with the
capability to support parallel processing, any additional documentation and
software which would emphasize and otherwise explain any differences from
uni-processing operations and help the assessment processes will be delivered.

• The physical media must be accompanied by a hard copy listing detailing the
contents of the archive, the particular archive format used, restoration/
installation instructions and any assumptions made about the host
configuration.

Note that implementation-based, detailed documentation such as PDL, procedure
(or lower) level flow charts, and set-use diagrams are not required or desired.
Object (executable) code is neither necessary nor wanted for the assessment.

Delete paragraphs 10.4.3, 10.4.4 and 10.5.

Software and related information provided via CDs, DVDs, zip files or web access, or
other format as mutually agreed upon.

6-1

6 Software Size
Notes:

1. In order to better understand the sizing associated with the reused as-is/modified and
COTS/GOTS software products, it is necessary to assess the size of these software
products in the context of the size of all software (new, modified and reused) being
proposed. Format M-1 (Revised) not only provides insight into the sizing of the new
software, but it importantly includes the needed detail into the factors associated with
reuse as-is and/or modification.

2. Format M-1 (Revised) and the instructions for filling out the format are provided in
Appendix D.

Section L
The Offeror shall:

• Present estimates of software size in either source lines of code (SLOC) or
unadjusted function points, for each Computer Software Configuration Item
(CSCI) or, if known, for each Computer Software Component (CSC). If the
Offeror does not use SLOC or function points as measures of software size, an
equivalent table using the applicable measure to describe size should be
provided.

• Describe their method for estimating software size (e.g., developer/expert
opinion, previous development experience, analysis of required functions,
interfaces, code blocks, other method, or a combination of methods). The
description should identify the information that is collected as a basis for the
estimate, and how that information is analyzed in the development of the
estimate.

• Complete Format M-1 (Revised) based on the instructions included with the
sample format. The instructions provide standard definitions for software size,
nature of the code (new, existing, deleted, modified, reused as-is/lifted, etc.),
productivity, schedule phase, etc. Any non-standard definitions used in the
estimating process should be included.

• Provide the tables electronically in Excel such that all formulas are able to be
audited by the Government.

Section M
 The technical soundness of the Offeror’s estimating methodologies and sizing estimates,

including new, reused as-is, and modified code, will be evaluated.

7-1

7 Software Development Plan
Notes:

1. The words below provide software reuse-specific additions to the Software
Development Plan (SDP) sections in the PO RFP documents.

2. The current versions of any required standards should be listed in the RFP.
3. It is recommended that the PO require the contractor to adhere to IEEE Std 1517

(IEEE Standard for Information Technology-Software Life Cycle Processes-Reuse
Processes) if the software is being developed in accordance with IEEE/EIA Std
12207.0 (International Standard ISO/IEC 12207:2008 Systems and software
engineering—Software life-cycle processes).

Section L
In a draft SDP, the Offeror shall:

• Provide a well thought-out software reuse approach identifying specific
engineering and management tasks, and a corresponding schedule of these tasks
for each software reuse product. Completion of these tasks should be linked to
program milestones, such as program and design reviews.

• Describe when and how the reused as-is/modified and COTS/GOTS software
products will be introduced into the build plan.

• Reference the software development standards to which the Contractor will
adhere, including standards for reuse processes.

• Describe the software development processes that have been tailored for reuse as
well as any new reuse processes that have been implemented. In particular, the
Offeror should discuss how the software products will be evaluated for
applicability for this program and how the Offeror plans to collaborate with the
sources of the software products to stay informed about the products’
applicability, maturity, availability timeline, etc.

• Identify metrics that will status and track the reused as-is/modified and
COTS/GOTS software products during the performance of the contract. The
proposed metrics, which should be reflective of the Offeror’s overall approach to
software reuse, should report planned versus actual performance, including
trigger points for when alternative approaches should be implemented. Quality
metrics should also be included. Metrics should also include the types of
measures required for the Software Metrics Report. Brief descriptions and
notional examples of each metric should be provided as part of the proposal.

Section M

The Government will evaluate the proposed software reuse approach, and the associated
software development standards, software development processes, and software metrics
as they pertain to reused as-is/modified and COTS/GOTS software products.

7-2

SOW
 Software Engineering

 Software Development Plan

The Contractor shall:

• Update, as needed, the draft SDP submitted with the proposal.
• Implement and manage an SDP.
• Implement development processes for all software (new, modified, and reused

as-is) in accordance with [the standards specified by the PO and/or contractor-
identified standards, and] standard organizational practices.

• Ensure all reuse software (e.g., other programs, IR&D, demo) with the exception
of COTS/GOTS (reused as-is), is in accordance with the standards [specified by
the PO and/or identified by the contractor].

In the SDP, the Contractor shall:

• Provide the software reuse management approach, including a plan of detailed
engineering and management tasks for each software reuse product and a
corresponding schedule of these tasks.

• Identify and describe the software metrics that will be reported during the
performance of the contract in the Software Metrics Report, with particular
attention paid to metrics pertaining to software reuse.

• Describe the software development processes that have been tailored for reuse as
well as any new reuse processes that have been implemented, with particular
attention paid to how the software products are evaluated for applicability for this
program and how the Contractor plans to collaborate with the sources of the
software products to stay informed about the products’ applicability, maturity,
availability, timeline, etc.

• Reference any software development standards to which the Contractor will
adhere. (DI-IPSC-81427A/T)

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Software Development Plan

Block 4. AUTHORITY (Data Acquisition Document No.): DI-IPSC-81427A/T

Block 16. REMARKS

 Block 4 tailored as follows:

 Contractor format acceptable

8-1

8 Software Metrics
Notes:

1. The words below provide software reuse-specific additions to the software metrics
sections in the PO RFP documents.

SOW
 Systems Engineering

 Systems Engineering Processes

The Contractor shall:

• Track and report metrics pertaining to software reuse.
• Provide metrics for the reused as-is/modified and COTS/GOTS software

products, including, but not be limited to, sizing, effective sizing, effort by phase,
progress by phase, staffing, requirements assigned to reuse, requirements
stability, product stability, components integrated, defect discovery and repair
rates, and interface definition and implementation as well as any other metric
identified by the Contractor in the Software Development Plan. (DI-MGMT-
80227/T)

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Contractor’s Progress, Status and Management
Report

Block 3. SUBTITLE: Software Metrics Report

Block 4. AUTHORITY (Data Acquisition Document No.): DI-MGMT-80227/T

Block 16. REMARKS

Block 4 tailored as follows:

 Only paragraphs 10.3 a, b, c, o, and p apply

9-1

9 Past Reuse Performance
Notes:

1. The words below provide software reuse-specific additions to the past performance
sections in the PO RFP documents.

2. Relevancy criteria need to be tailored by the Performance Confidence Assessment
Group (PCAG) to reflect the expected type of software reuse [e.g., software reuse as-
is, modification of pre-existing software, use of COTS/GOTS software].

3. The PCAG will determine what constitutes significant past contracts and how
relevant these past efforts are.

Section L
Past Performance Questionnaire

(#) Did the Contractor reuse as-is/modify software developed for other programs or from
other sources?

- If yes, how well did the Contractor assess the applicability of the performance and
functions of the reused as-is/modified software products?

- Did the Contractor’s final software baseline use the software products that were
originally proposed?

- Did any problems encountered with software reuse result in code growth? How
much?

- How well did the Contractor manage the risks associated software reuse?
- Were there any software reuse risks that required Government involvement?

(#) Add the following relevancy criteria:

a. Past contracts with significant [e.g., software reuse as-is, modification of pre-
existing software, use of COTS/GOTS software]

Section M
Past Performance Factor

Add the following relevancy criteria:

a. Past contracts with significant [e.g., software reuse as-is, modification of pre-existing
software, use of COTS/GOTS software]

10-1

10 Integrated Master Schedule
Notes:

1. The words below provide software reuse-specific additions to the Integrated Master
Schedule (IMS) sections in the PO RFP documents.

Section L
In the IMS, the Offeror shall:

• Schedule key engineering and management tasks that are associated with the
reused as-is/modified and COTS/GOTS software products.

• Identify all interactions with the source organization for each software reuse
product, including intermediate and final deliveries for the product and its
supporting artifacts (e.g., design specifications).

• Identify tasks that provide the Government with sufficient insight into a credible
plan for accomplishing the software reuse activities.

• Describe how the software reuse tasks fit into the program schedule and link the
completion of these tasks to program milestones, such as design and program
reviews.

• Provide all critical dates pertaining to software reuse that could affect program
success, including, but not limited to, the delivery schedules for the reused as-
is/modified and COTS/GOTS software products, the Contractor demonstration(s)
for the reused as-is/modified and COTS/GOTS software products, and decision
points for when alternative approaches need to be implemented.

Section M
The Government will evaluate the comprehensiveness and reasonableness of the
scheduling of the tasks associated with all reused as-is/modified and COTS/GOTS
software products.

SOW
 Program Management
 Integrated Master Schedule

In the IMS, the Contractor shall:
• Provide key engineering and management tasks associated with the reused as-

is/modified and COTS/GOTS software products, and link the completion of these
tasks to program milestones, such as design and program reviews.

• Identify all critical dates pertaining to software reuse, including, but not limited
to, the delivery schedules for the reused as-is/modified and COTS/GOTS
software products, all interactions with the source organization for each software
reuse product, the Contractor’s demonstration for the reused as-is/modified and

10-2

COTS/GOTS software products, and all decision points for when alternative
strategies need to be implemented. (DI-MGMT-81650)

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Integrated Master Schedule

a. Block 4. AUTHORITY (Data Acquisition Document No.): DI-MGMT-81650

11-1

11 Integrated Master Plan
Notes:

1. The words below provide software reuse-specific additions to the Integrated Master
Plan (IMP) sections in the PO RFP documents.

2. If Integrated Product Teams (IPTs) will be used, it is recommended that the PO
extend the communications approach to include a description of formal and informal
methods of communications within and across the IPTs.

Section L
In the IMP, the Offeror shall:

• Develop a communications approach to facilitate the timely exchange of
management, technical, and risk information related to the reused as-is/modified
and COTS/GOTS software products.

• Describe all formal and informal methods of communications with all internal
and external stakeholders [as well as within and across the IPTs].

Section M
The Government will evaluate the comprehensiveness of the communications approach
and its ability to facilitate the timely exchange of management, technical, and risk
information related to the reused as-is/modified and COTS/GOTS software products.

12-1

12 Contract Work Breakdown Structure
Notes:

1. The words below provide software reuse-specific additions to the Contract Work
Breakdown Structure (CWBS) sections in the PO RFP documents.

2. The DID for DI-MGMT-81334C/T states that routine reporting shall be at CWBS
level 3 for prime contractors. Extensions of the CWBS can be tailored to the specific
program, but will be consistent with MIL-HDBK-881, current edition. More detailed
reporting of the CWBS will be required only for those elements that address high-
risk, high-value, or high-technical-interest areas of a program.

Section L
The Offeror shall extend the CWBS to include detailed engineering and management
activities associated with all reused as-is/modified and COTS/GOTS software products.

Section M
The Government will evaluate the comprehensiveness of the engineering and
management activities identified in the CWBS for all reused as-is/modified and
COTS/GOTS software products.

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Contract Work Breakdown Structure

Block 4. AUTHORITY (Data Acquisition Document No.): DI-MGMT-81334C/T

Block 16. REMARKS

 Block 4 tailored as follows:

Report the CWBS at level 3, except for report the CWBS to the lowest level of tasks that
will provide the Government with visibility into the engineering and management
activities associated with all reused as-is/modified and COTS/GOTS software products.

13-1

13 Contract Performance Report
Notes:

1. The words below provide software reuse-specific additions to the Contract
Performance Report (CPR) sections in the PO RFP documents.

2. The level of detail to be reported in Format 1 normally will be at level 3 of the
CWBS, but lower levels may be specified for high risk or high cost items. The words
below ask for detailed reporting against all software reuse products; however, it is
recommended that the PO identify specific high risk or high cost products for which
detailed reporting is required.

CDRL (Form 1423)
Block 2. TITLE OF DATA ITEM: Contract Performance Report

Block 4. AUTHORITY (Data Acquisition Document No.): DI-MGMT-81466A/T

Block 16. REMARKS

 Block 4 tailored as follows:

 Report data on Format 1 to level 3 of the CWBS, except for report to the lowest level
of tasks that will provide the Government with visibility into the engineering and
management activities associated with all reused as-is/modified and COTS/GOTS
software products.

14-1

14 Statement of Objectives
Notes:

1. If a PO is not developing a Statement of Work (SOW) as part of the RFP, the PO
should incorporate the following objective for software reuse in the Statement of
Objectives (SOO).

2. The PO should also attempt to incorporate as many of the SOW requirements from
sections 2 through 13 as possible, into other program products/deliverables (e.g.,
IMP, SDP, System Engineering Management Plan (SEMP), IMS, CPR).

For any software reuse, it is a Government objective to have a comprehensive reuse strategy
that identifies, tracks, manages, mitigates, and reports the technical, cost, and schedule risks
associated with such reuse, providing early visibility into the availability timeline, maturity,
quality, functionality, and performance of the reuse products. The strategy must include
alternative approaches to be implemented in the event that software reuse cannot be
implemented as planned. The Contractor will be expected to assume responsibility for the
technical performance of all reused as-is/modified software products, except for
COTS/GOTS software products that will be reused as-is and supported by the
vendor/Government.

15-1

15 Request for Information
Notes:

1. The words below provide software reuse-specific additions to a Request for
Information (RFI).

2. High level information about potential software reuse products should be gathered
when conducting market research.

[The USAF] invites industry to respond with information about any software reuse product
being considered [for the program], including the source, applicability, extent of
modification (if any), availability timeline, maturity, and reuse history.

16-1

16 Award Fee Plan
Notes:

1. An AFPEO/C2&CS Memorandum states that:
“Award Fee type contracts should only be used when it is neither feasible nor
effective to devise predetermined objective incentive targets applicable to cost,
technical, performance or schedule. … Our priority must be to utilize objective
incentive criteria, whenever possible, across all programs in the AFPEO/C2&CS
portfolio.” [AFPEO/C2&CS, “AFPEO/C2&CS Award Fee Contracting Policy,”
12 October 2007.]

2. Objective incentive criteria, in general, are not easily defined for software reuse
products. However, POs may be able to define objective incentive criteria for their
specific program.

3. If subjective Award Fee Plan (AFP) criteria are used, the PO should select a few of
the following software reuse criteria most appropriate to the program circumstances.

4. These criteria may also be considered for use by an on-going program that uses
AFPs.

5. The AFP criteria vary with each phase of the program and serve to incentivize
desirable contractor behaviors in the areas of highest risk. The criteria cover a wide
range of possible behaviors to be incentivized over the various periods of
performance.

6. The criteria for the satisfactory category must demonstrate that the contractor has
met the basic (minimum essential) requirements of the SOO, SOW, and other contract
documents.

7. Software reuse focus for the AFP is provided for the Schedule, Technical, and
Program Management areas. No software reuse-specific Cost area evaluation
criterion has been generated; it is recommended that cost evaluation criteria address
the total program.

16-2

Schedule
Outstanding Excellent Good Satisfactory Unsatisfactory
The contractor has
incorporated into the IMS
all tasks associated with all
software reuse products.
These tasks are scheduled
to start as soon as software
reuse products and their
artifacts (e.g., design
specifications) are
available to support them.

The contractor has
incorporated into the IMS
all major tasks associated
with all software reuse
products.

The contractor has
incorporated into the IMS
most major tasks
associated with all
significant software reuse
products.

The contractor has
incorporated into the IMS
some major tasks
associated with all
significant software reuse
products.

The contractor has
incorporated into the IMS
few tasks associated with
the significant software
reuse products.

The contractor has clearly
identified when each
software reuse product and
its supporting artifacts
(e.g., design specifications)
will be obtained from its
source and how they feed
into the program activities.
Intermediate and final
deliveries have been
identified. The schedule
identifies all interactions
with the source
organization for each
software reuse product.
The schedule includes
activities to accelerate the
availability timeline of the
software products and their
artifacts.

The contractor has clearly
identified when each
software reuse product and
its supporting artifacts
(e.g., design specifications)
will be obtained from its
source and how they feed
into the program activities.
Intermediate and final
deliveries have been
identified. The schedule
identifies all interactions
with the source
organization for each
software reuse product.

The contractor has
identified when each
software reuse product and
its supporting artifacts
(e.g., design specifications)
will be obtained from its
source and how they feed
into the program activities.
Intermediate and final
deliveries have been
identified. The schedule
identifies all critical
interactions with the
source organization for
each software reuse
product.

The contractor has
identified when most
software reuse products
and their supporting
artifacts (e.g., design
specifications) will be
obtained from their source
and how they feed into the
program activities.
Intermediate and final
deliveries have been
identified. The schedule
identifies most critical
interactions with the
source organization for
each software reuse
product.

The contractor has
identified when some of
the software reuse products
and their supporting
artifacts (e.g., design
specifications) will be
obtained from their source
and how they feed into the
program activities.
Intermediate and final
deliveries have been
identified. The schedule
identifies few critical
interactions with the
source organization for
each software reuse
product.

16-3

Demonstrations of
software reuse products are
scheduled to provide the
Government with visibility
into the maturity,
functionality, and
performance of the
products significantly
earlier than required by the
contract (i.e., prior to
PDR). Demonstrations are
scheduled so as to provide
results/data in support of
the TRD requirements
trace to the software reuse
products.

Demonstrations of
software reuse products are
scheduled to provide the
Government with visibility
into the maturity,
functionality, and
performance of the
products significantly
earlier than required by the
contract (i.e., prior to
PDR).

Demonstrations of
software reuse products are
scheduled to provide the
Government with visibility
into the maturity,
functionality, and
performance of the
products earlier than
required by the contract
(i.e., prior to PDR).

Demonstrations of
software reuse products are
scheduled to provide the
Government with visibility
into the maturity,
functionality, and
performance of the
products IAW the schedule
constraint required by the
contract (i.e., prior to
PDR).

Demonstrations of only
some software reuse
products are scheduled as
required by the contract.

The IMS shows all
decision points for
implementing alternative
approaches (to be used if
the software cannot be
reused as originally
planned). These decision
points provide sufficient
time to pursue the
alternative approaches
without negative impact to
the program schedule. The
contractor has scheduled
activities to reduce the
risks of the alternative
approaches prior to their
decision points.

The IMS shows all
decision points for
implementing alternative
approaches (to be used if
the software cannot be
reused as originally
planned). These decision
points provide sufficient
time to pursue the
alternative approaches
without negative impact to
the program schedule.

The IMS shows key
decision points for
implementing alternative
approaches (to be used if
the software cannot be
reused as originally
planned). These decision
points provide sufficient
time to pursue the
alternative approaches
without negative impact to
the program schedule.

The IMS shows key
decision points for
implementing alternative
approaches (to be used if
the software cannot be
reused as originally
planned). These decision
points provide sufficient
time to pursue the
alternative approaches
without major negative
impact to the program
schedule.

The IMS shows few key
decision points for
implementing alternative
approaches (to be used if
the software cannot be
reused as originally
planned). These decision
points provide insufficient
time to pursue the
alternative approaches
without major negative
impact to the program
schedule.

16-4

The contractor has
executed as scheduled all
major tasks associated with
all software reuse
products. Some tasks were
executed ahead of
schedule. The contractor
has conducted additional
proactive activities (i.e.,
beyond those contained in
their plan) to obtain early
insight into the content,
performance, and
applicability of the
software reuse products.

The contractor has
executed as scheduled all
major tasks associated with
all software reuse
products. Some tasks were
executed ahead of
schedule.

The contractor has
executed as scheduled all
major tasks associated with
all significant software
reuse products.

The contractor has
executed as scheduled
most major tasks
associated with all
significant software reuse
products.

The contractor has
executed as scheduled only
a few tasks associated with
the significant software
reuse products.

The contractor has
obtained as scheduled each
software reuse product and
its supporting artifacts
(e.g., design specifications)
from their source. The
contractor has executed as
scheduled all interactions
with the source
organization for each
software reuse product.
Proactive activities
conducted by the
contractor have accelerated
the availability timeline for
the software products and
their artifacts.

The contractor has
obtained as scheduled each
software reuse product and
its supporting artifacts
(e.g., design specifications)
from their source. The
contractor has executed as
scheduled all interactions
with the source
organization for each
software reuse product.

The contractor has
obtained as scheduled each
software reuse product and
its supporting artifacts
(e.g., design specifications)
from their source. The
contractor has executed as
scheduled all critical
interactions with the
source organization for
each software reuse
product.

The contractor has
obtained as scheduled all
significant software reuse
products and their
supporting artifacts (e.g.,
design specifications) from
their source. The
contractor has executed as
scheduled most critical
interactions with the
source organization for
each software reuse
product.

The contractor has
obtained as scheduled only
some of the software reuse
products and their
supporting artifacts (e.g.,
design specifications) from
their source. The
contractor has executed as
scheduled only some
critical interactions with
the source organization for
each software reuse
product.

16-5

The contractor’s Software
Reuse Demonstration(s)
was successfully
concluded significantly
earlier than required by the
contract (i.e., prior to
PDR). Results/data from
the demonstrations were
available to support the
TRD requirements trace to
the software reuse
products.

The contractor’s Software
Reuse Demonstration(s)
was successfully
concluded significantly
earlier than required by the
contract (i.e., prior to
PDR).

The contractor’s Software
Reuse Demonstration(s)
was successfully
concluded earlier than
required by the contract
(i.e., prior to PDR).

The contractor’s Software
Reuse Demonstration(s)
was successfully
concluded IAW the
schedule constraint
required by the contract
(i.e., prior to PDR).

The contractor’s Software
Reuse Demonstration(s)
was concluded later than
required by the contract
(i.e., prior to PDR).

16-6

Technical
Outstanding Excellent Good Satisfactory Unsatisfactory
TRD requirements have
been clearly derived/
allocated to all software
reuse products and the
products meet or exceed
these requirements.
Requirements allocation is
supported by data from
analyses, demonstrations,
and test/certification
activities by other agencies
resulting in a high level of
confidence in the
applicability of the
products.

The contractor’s Software
Reuse Demonstration(s)
provided the Government
with excellent insight into
the maturity, functionality
and performance of all
software reuse products.
The demonstration(s)
included all key TRD
requirements that were
allocated to each product,
and showed conclusively
that the contractor’s choice
of software reuse products
is sound.

TRD requirements have
been clearly derived/
allocated to all software
reuse products and the
products meet or exceed
these requirements.

The contractor’s Software
Reuse Demonstration(s)
provided the Government
with excellent insight into
the maturity, functionality
and performance of all
software reuse products.
The demonstration(s)
included all functions that
were allocated to each
product, and showed
conclusively that the
contractor’s choice of
software reuse products is
sound.

TRD requirements have
been clearly derived/
allocated to all software
reuse products and the
products meet these
requirements.

The contractor’s Software
Reuse Demonstration(s)
provided the Government
with good insight into the
maturity, functionality and
performance of all
significant software reuse
products. The
demonstration(s) included
all significant functions
that were allocated to each
product, and showed that
the contractor’s choice of
the products is sound.

TRD requirements have been
derived/allocated to all
software reuse products and
the products meet most
requirements. There is a
mitigation plan for those
requirements not being met by
the software reuse products.

The contractor’s Software
Reuse Demonstration(s)
provided the Government
with adequate insight into the
maturity, functionality and
performance of most
significant software reuse
products. The
demonstration(s) included
most significant functions that
were allocated to each
product, and showed that the
contractor’s choice of
software reuse products is
basically sound, although
technical issues may exist

TRD requirements have
not been clearly and
completely derived/
allocated to software reuse
products. Some products
do not meet these
requirements.

The contractor’s Software
Reuse Demonstration(s)
provided the Government
with poor insight into the
maturity, functionality and
performance of the
software reuse products.
The demonstration(s) did
not support the
contractor’s choice of
software reuse products.

16-7

Program Management
Outstanding Excellent Good Satisfactory Unsatisfactory
The contractor updates the
Reuse Management Report
for all software reuse
products. The contractor
immediately informed the
Government of all major
changes to the Worksheet
Questions, and solicited
the Government point of
view on key decisions
regarding software reuse.

The contractor has
reported the status of all
software reuse activities
and changes to the reuse
plans, including the
potential impact of these
changes on technical
performance, cost and
schedule, at the design and
management reviews. The
contractor has shared their
performance/cost/schedule
trade analyses in support
of any changes/decisions
on software reuse.

The contractor has
personnel embedded
within the organizations of
the entities or sources

The contractor updates the
Reuse Management Report
for all software reuse
products. The contractor
immediately informed the
Government of all major
changes to the Worksheet
Questions.

The contractor has
reported the status of all
software reuse activities
and changes to the reuse
plans, including the
potential impact of these
changes on technical
performance, cost and
schedule, at the design and
management reviews.

The contractor regularly
collaborates with the
entities or sources

The contractor updates the
Reuse Management Report
for all software reuse
products. The contractor
immediately informed the
Government of all major
changes to the Worksheet
Questions.

The contractor has
reported the status of the
software reuse activities
and changes to the reuse
plans, including the
potential impact of these
changes on technical
performance, cost and
schedule, at the design and
management reviews.

The contractor regularly
collaborates with the
entities or sources

The contractor updates the
Reuse Management Report
for the significant software
reuse products. The
contractor informed the
Government of most major
changes to the Worksheet
Questions.

The contractor has reported
the status of key software
reuse activities and key
changes to the reuse plans,
including the potential impact
of these changes on technical
performance, cost and
schedule, at the design and
management reviews.

The contractor occasionally
collaborates with the entities
or sources responsible for the

The contractor does not
update, as required, the
Reuse Management
Report. The contractor
does not keep the
Government informed of
major changes to the
Worksheet Questions.

The contractor
inconsistently reports the
status of the software reuse
activities and changes to
the reuse plans at the
design and management
reviews.

The contractor seldom
collaborates with the
entities or sources

16-8

responsible for all software
reuse products and is very
knowledgeable about the
software’s applicability,
availability timeline,
maturity, and other
attributes.

The contractor has
implemented a
comprehensive set of
metrics that are used to
pro-actively manage the
software reuse activities as
well as provide the
Government with excellent
insight into the status of
these activities.

The contractor has
monitored the status and
viability of all alternative
approaches for software
reuse, modified all
approaches to minimize
the impact to the program,
and updated decision
points for implementation.
The contractor has
continued to explore new
alternative approaches to
minimize program risks.

Prior to reaching all

responsible for all software
reuse products and stays
informed about the
software’s applicability,
availability timeline,
maturity, and other
attributes.

The contractor has
implemented a
comprehensive set of
metrics that are used to
manage the software reuse
activities as well as
provide the Government
with excellent insight into
the status of these
activities.

The contractor has
monitored the status and
viability of all alternative
approaches for software
reuse, modified all
approaches to minimize
the impact to the program,
and updated decision
points for implementation.

responsible for the key
software reuse products
and stays informed about
the software’s
applicability, availability
timeline, maturity, and
other attributes.

The contractor has
implemented a
comprehensive set of
metrics that are used to
manage the software reuse
activities as well as
provide the Government
with insight into the status
of these activities.

The contractor has
monitored the status and
viability of key alternative
approaches for software
reuse, modified key
approaches to minimize
the impact to the program,
and updated decision
points for implementation.

key software reuse products
and maintains awareness of
the software’s applicability,
availability timeline, and
maturity.

The contractor has
implemented a set of metrics
and often uses these metrics to
manage the software reuse
activities. The metrics
provide the Government with
some insight into the status of
these activities.

The contractor has monitored
the status and viability of key
alternative approaches for
software reuse and updated
decision points for
implementation.

responsible for the key
reuse software products.

The contractor has
implemented limited
metrics and seldom uses
these metrics to manage
the software reuse
activities. The metrics
provide the Government
with only limited insight
into the status of these
activities.

The contractor has
minimally monitored the
status and viability of
alternative approaches for
software reuse.

16-9

decision point(s) for
implementing the
alternative approaches, the
contractor has thoroughly
analyzed the options (i.e.,
alternative approaches
versus current plan),
presented them in detail to
the Government, and
selected an approach that
minimizes the impact to
the cost, schedule and
performance of the
program. When decision
points were reached, the
contractor promptly
selected the course of
action and immediately
proceeded to execute.

Prior to reaching all
decision point(s) for
implementing the
alternative approaches, the
contractor has thoroughly
analyzed the options (i.e.,
alternative approaches
versus current plan),
presented them in detail to
the Government, and
selected an approach that
minimizes the impact to
the cost, schedule and
performance of the
program.

Prior to reaching the key
decision point(s) for
implementing the
alternative approaches, the
contractor has analyzed the
options (i.e., alternative
approaches versus current
plan), presented them to
the Government, and
selected an approach that
minimizes the impact to
the cost, schedule and
performance of the
program.

Prior to reaching the key
decision point(s) for
implementing the alternative
approaches, the contractor has
reviewed the options (i.e.,
alternative approaches versus
current plan), presented them
to the Government, and
selected an approach that
minimizes the impact to the
cost, schedule and
performance of the program.

The contractor has
minimally reviewed the
options (i.e., alternative
approaches versus current
plan) at key decision
points. It is unclear if the
selected approach will
minimize the impact to the
cost, schedule or
performance of the
program.

A-1

Appendix A Worksheet Questions for Reused As-is/Modified
Software

The questions below should be answered in the corresponding worksheet format for each
software product for which the Offeror plans to assume responsibility for the performance of the
product. Software products may be reused as-is or modified. Information about the commercial
off-the-shelf (COTS) or Government off-the-shelf (GOTS) software products that will be reused
as-is should be provided in the worksheet format titled “Worksheet Questions for COTS/GOTS
Software.”

Product and Contact Information

1. What is the name of the software product to be reused as-is or modified?

2. What is the version number and date of release for the software product that is being reused
as-is/modified?

3. What are the programming language(s) of this software?

4. For which system/program was the software originally developed?

5. Provide contact information, including the contact’s name, the office symbol (if applicable),
phone number and address for the:

- Program manager currently responsible for the reused as-is/modified software

- Responsible entity or source of the software, if the Government is not responsible for
the software

Applicability

6. To which Computer Software Configuration Item (CSCI) (and Computer Software
Component (CSC), if known) is this reused as-is/modified software product assigned?

7. What functions/requirements will the software provide? (Attach a separate sheet that shows
functions cross referenced to the Technical Requirements Document (TRD). Identify any
mismatches in functionality between the TRD and the reused as-is/modified software product.)

8. Has the Offeror conducted an internal demonstration(s) to evaluate the applicability of this
software product for this system/program?

 - If yes, provide additional information

9. Have the software product’s interfaces that provide access to the functionality been
evaluated?

 - If yes, provide additional information

10. Has the software product’s architecture been evaluated for compatibility with the system
architecture?

- If yes, provide additional information

A-2

11. Has the software product been used on a hardware/software platform similar to the one
proposed for this system/program?

- If yes, provide additional information

Extent of Modification

12. Briefly describe the tasks (e.g., modification, integration, test) required to make the reused
as-is/modified software functional within this system.

13. What organization will perform the modifications to this software product?

14. What organization will integrate the reused as-is/modified software with the system’s
software?

15. What is the effective size of the reused as-is/modified software product and extent of the
modification, if applicable? Complete this table, in an Excel workbook, according to the
definitions and instructions attached.

Maturity

16. What is the extent of testing of the software that is to be reused as-is/modified (e.g.,
completed unit tests, completed CSC tests, completed CSCI tests)?

17. Has formal qualification has been conducted?

 - If yes, provide additional information

18. Has the software been certified and accredited?

 - If yes, provide additional information (e.g., specific certifications and
accreditations)

19. Has the software been fielded in an operational environment?

 - If yes, provide additional information

20. Has the software been fielded in an operational environment?

 - If yes, provide additional information (e.g., which systems/programs, whether
these systems/programs have fielded the software)

A B C D E F G H I J
Total Delivery
or Delivered

Build

ID Number of
CSCI

Contained In

Name of CSCI
Contained In CSC Name

Module or
Class Level

Development
Contractor/

Subcontractor

Sizing
Method

New
Software

Total Pre-
existing
Software

Deleted
 Software

K L M N O P Q R

Modified
Software

Redesign
Required

(%)

Reimple-
mentation

Required (%)

Retest
 Required

(%)

Weight for
Design Phase

(%)

Weight for
Implementation

Phase (%)

Weight for
Test Phase

 (%)

Effective Size
for Modified

Software

S T U V W X

Reused As-
is/Lifted
Software

Reuse As-
is/Lift Factor
Required (%)

Effective Size
for Reused As-

is/Lifted
Software

Total Effective
Size

Effective Size
Representing

Software
Growth

Total Size

A-3

21. Is the software in long-term maintenance?

 - If yes, provide additional information (e.g., organization maintaining the software)

Availability

22. How does the Offeror have access to the software to be reused as-is/modified (e.g.,
developed the software in-house, has or will acquire the software from another
contractor/vendor, or requesting the software be provided by the Government)?

23. Is the software currently available?

 - If not, describe the software delivery schedule, including all critical dates that
could affect program success

24. Is the Offeror’s solution dependent on another Government program for this software?

 - If yes, briefly discuss if cross program (and contractor to contractor) relationships
have been established, how they will be managed, and how the Offeror plans to stay informed
about the evolving software functionality

Other Attributes

Designed for Reuse

25. Identify any attributes (e.g., standards, design patterns, architecture paradigms) of the reused
as-is/modified software that support reuse.

Offeror’s Experience with Software

26. Will the Offeror have any access to the software developers, who were part of the original
software development team?

 - If yes, provide additional information

27. Has the organization (that will be performing the modifications to this software product for
this program) reused as-is or modified (e.g., altered the design, made changes to the code) the
software previously?

 - If yes, provide additional information (e.g., for what systems/programs, how many
of the software developers have modified this software product before)

28. Has the organization (that will be integrating this software product for this program)
integrated the software previously?

 - If yes, provide additional information (e.g., for what systems/programs, how many
of the software integration engineers have integrated this software product before)

Documentation

29. What supporting engineering and management documentation for the reused as-is/modified
software is available for the software developers?

30. What supporting documentation for the reused as-is/modified software is available for the
end users?

A-4

31. What documentation (both development and end user) will be delivered to the Government?

32. Describe the test procedures that will support the conduct of the comprehensive regression
testing for the reused as-is/modified software?

 - Do these procedures exist or do they need to be created?

Standards

33. What development standards (e.g., IEEE/EIA Std 12207.0-2008) were followed during the
development of the software intended to be reused as-is/modified?

Data and Software Rights

34. What rights will the Government have to the data and software? Identify what data and
software rights are being provided to the Government using the relevant Defense Federal
Acquisition Regulation Supplement (DFARS) clause definitions (DFARS 227.7103-3 and
227.7203-3.1). What is the name of the COTS/GOTS software product to be reused as-is?

35. Does the reused as-is/modified software require the Government to purchase any COTS
software licenses?

 - If yes, provide the commercial software licenses for review

36. Do you intend to transfer any COTS software licenses to the Government?

 - If yes, provide the commercial software licenses for review

Defect Reports

37. How many Defect Reports (DRs) are currently open for the software?

38. Provide a listing of all (open and closed) DRs by category/priority, date when opened,
description of problem and planned/actual date of closure.

Maintenance and Support Strategy

39. What organization is expected to maintain the modified software?

Releases/Updates

40. Will the Offeror incorporate future releases of the reused as-is/modified product into the
system’s software baseline?

 - If yes, how will these releases be incorporated?

Dead and Unused Code

41. Identify any dead code (i.e., unreachable, unnecessary, and/or inoperative code that is not
required for any purpose) and/or unused code (i.e., code used in applications other than this
program) from the reused as-is and/or modified software products. Discuss how dead and/or
unused code will be handled, how it will be tested, and whether it presents any risks to the
program.

A-5

Worksheet Questions for Reused As-is/Modified Software
Instructions for Completing Question 15

Total Delivery or Delivered Build (Col. A): If there are multiple delivered builds (blocks, increments, etc.), enter
the build identifier for the sizing information provided. Enter “Total” if the sizing information represents the total
delivery. A separate table should be completed for each delivered build as well as the total delivery.

ID Number of CSCI Contained In (Col. B): Enter the identification numbers for the Computer Software
Configuration Item (CSCI), in which the reused as-is/modified software product is contained.

Name of CSCI Contained In (Col. C): Enter the name of the CSCI, in which the reused as-is/modified software
product is contained.

CSC (Col. D): Enter the names of the CSCs, if known. A separate row should be completed for each CSC.

Module or Class Level (Col. E): Enter the software module or class level, if known. A separate row should be
completed for each software module or class level.

Development Contractor/Subcontractor (Col. F): Enter the name of the contractor or subcontractor responsible for
the development of each CSCI.

Sizing Method (Col. G): Enter either source lines of code (SLOC) or function points (FP). Standard definitions for
SLOC and FPs are provided below. Any non-standard definition should be fully explained on a separate sheet. If
an alternative sizing measure is used, the counting method should be described in detail. This table can be adapted
to accommodate an alternative measure, but the type of information requested in these instructions must be included.

 Lines of Code: Non-Comment lines of source code for the computer program. Source lines to include are:
All executable source lines such as (1) Control, (2) Mathematical, (3) Conditional, (4) Deliverable Job
Control, (5) Data Declaration Statements, and (6) Data Typing and Equivalence; and input/output/format.
Source lines to exclude are: debug statements, continuation of single statement to multiple lines,
machine/library generated statement, and non-deliverable test statements.

 Function Points: Unadjusted function points, IFPUG compatible. Use this only if your size methods are
function based rather than line based.

New Software (Col. H): Enter the new non-comment lines of source code or the new number of unadjusted function
points, IFPUG compatible for the computer program. New code is software developed from scratch and is not
modified or reused as-is in any way from any pre-existing design or code.

Total Pre-existing Software (Col. I): Enter the number of lines of code or functions in a pre-existing software
package (before reuse as-is/modification/deletion), including lines of code or functions that may not be pertinent to
this program/system.

Deleted Software (Col. J): Enter the number of lines of code or functions which will be deleted from the pre-
existing software package (Col. I). The deletion will be accomplished by physical omission or commenting out.

Modified Software (Col. K): Enter the total number of lines of code or functions that will be modified from a pre-
existing software package through re-design and/or re-implementation, and then integrated and tested in the new
software product baseline. If there are multiple delivered builds, this number should represent the code developed in
previous builds that may need to be modified and/or re-tested with the code being developed for the current build.

Redesign Required (Col. L): Enter the percentage of the pre-existing software to be modified (Col. K) that requires
redesign to make this software functional within the new environment.

Reimplementation Required (Col. M): Enter the percentage of the pre-existing software to be modified (Col. K) that
requires reimplementation (i.e., code and unit test) to make this software functional within the new environment.

Retest Required (Col. N): Enter the percentage of the pre-existing software to be modified (Col. K) that requires
retesting (i.e., CSC integration/test and CSCI integration/test, but excluding CSCI-to-CSCI integration/test) to
ensure this software functions within performance, reliability, and other criteria after the modifications.

Weight for Design Phase (Col. O): Enter the percentage of the software development effort (i.e., design,
implementation and test) attributed to the design phase. The weights (Col. O-Q) represent the phase distribution of

A-6

effort, i.e., the distribution typically observed for each phase. Note that the sum of the weights for the design,
implementation and test phases must equal 100 percent.

Weight for Implementation Phase (Col. P): Enter the percentage of the software development effort (i.e., design,
implementation and test) attributed to the implementation phase.

Weight for Test Phase (Col. Q): Enter the percentage of the software development effort (i.e., design,
implementation and test) attributed to the test phase.

Effective Size for Modified Software (Col. R): Enter the number of lines of code or functions that represent the pre-
existing lines or functions that will be modified (Col. K) and are adjusted based on the applicable percentages (Col.
L-N) and weights (Col. O-Q). Effective size represents the software size equivalent to developing the code from
scratch. The formula, in this spreadsheet, used for calculating Effective Size for the Modified Software is:

Col. R = Col. K * ((Col. L * Col. O) + (Col. M * Col. P) + (Col. N * Col. Q))

The Offeror shall explain the method used for calculating effective size if it differs from the formula in this table.

Reused As-is/Lifted Software (Col. S): Enter the number of lines of code or functions that will be reused as-is or
lifted, with no modification of design or code, from a pre-existing software package.

Reuse As-is/Lift Factor Required (Col. T): Enter the percentage that is applied to the pre-existing software to be
reused as-is/lifted (Col. S) to estimate effective size. This percentage is similar in concept to the percentages for
redesign required, reimplementation required, and retest required, but is a composite factor applied to the software
that will be reused as-is/lifted. Reused as-is/lifted code, by definition, will not require modification.

Reused as-is software products may require new code, such as glue code, wrappers, or plug-ins, or parameterization,
but the software product itself will remain unchanged. The new lines of source code or functions associated with the
software (e.g., glue code, integration code) should be included as New Software (Col H). The effort required to
understand the product and its interfaces, integrate the product as part of a CSC and/or CSCI, and perform testing
should be reflected in the percentage in order to estimate effective size.

Effective Size for Reused As-is/Lifted Software (Col. U): Enter the number of lines of code or functions that
represent the pre-existing lines or functions that will be reused as-is/lifted (Col. 18) and are adjusted based on the
applicable percentage (Col. 19). Effective size represents the software size equivalent to developing the code from
scratch. The formula, in this spreadsheet, used for calculating Effective Size for the Reused As-is/Lifted Software
is:

Col. U = Col. S * Col. T

The Offeror shall explain the method used for calculating effective size if it differs from the formula in this table.

Total Effective Size (Col. V): Enter the number of lines of code or functions that represent all new lines or
functions (Col. H) as well as the pre-existing lines or functions that are modified (Col. K) or reused as-is/lifted (Col.
S) and are adjusted based on the applicable percentages (Col. N-N, T) and weights (Col. O-Q). Effective size
represents the software size equivalent to developing the code from scratch. The formula, in this spreadsheet, used
for calculating Total Effective Size is:

Col. V = Col. H + Col. R + Col. U

Effective Size Representing Software Growth (Col. W): Enter the number of effective lines or functions that are
included in the effective size estimate (Col. V) to capture software growth. The Offeror shall provide the definition
of software growth used for the sizing estimate and the method used to estimate software growth.

Total Size (Col. X): Enter the number of new (Col. H) and pre-existing (Col. K and S) lines of code or functions.
Total size represents the total amount of new software that would need to be developed for the new software
baseline, if no code were to be reused as-is and/or modified. Note that Total Size does not include the pre-existing
software that will be deleted.

B-1

Appendix B Worksheet Questions for COTS/GOTS Software
The questions below should be answered in the corresponding worksheet format for each
commercial off-the-shelf (COTS) or Government off-the-shelf (GOTS) software product that will
be reused as-is. COTS/GOTS software include the products, for which the software provider,
either a commercial vendor or the Government, assumes responsibility for the performance of
the software product. The source code is not necessarily provided to the Offeror. The
COTS/GOTS software products may require new code, such as glue code, wrappers, or plug-ins,
or parameterization, but the COTS/GOTS product itself will remain unchanged.

Product and Contact Information

1. What is the name of the COTS/GOTS software product to be reused as-is?

2. What is the version number and date of release for the COTS/GOTS software product that is
being reused as-is?

3. Provide contact information, including the contact’s name, the office symbol (if applicable),
phone number and address for the:

 - COTS/GOTS software provider

 - Government program manager currently responsible for a program, if any, that uses
the COTS/GOTS software product

Applicability

4. To which Computer Software Configuration Item (CSCI) (and Computer Software
Component (CSC), if known) is this software product assigned?

5. What functions/requirements will the software provide? (Attach a separate sheet that shows
functions cross referenced to the Technical Requirements Document (TRD). Identify any
mismatches in functionality between the TRD and the COTS/GOTS product.)

6. Has the Offeror conducted an internal demonstration(s) to evaluate the applicability and
usability of this product for this system/program?

 - If yes, provide additional information

7. Have the COTS/GOTS product’s interfaces that provide access to the functionality been
evaluated?

 - If yes, provide additional information

8. Has the software product’s architecture been evaluated for compatibility with the system
architecture?

 - If yes, provide additional information

9. Are the COTS/GOTS product’s development and target hardware/software platforms similar
to the ones proposed for this system/program?

 - If yes, provide additional information

B-2

Approach to Integration/Test

10. Briefly describe the tasks (e.g., development of glue code, integration, test) required to make
the COTS/GOTS software functional within this system.

11. What organization will be responsible for developing any new code (e.g., glue code,
integration code) needed?

12. What organization will integrate this COTS/GOTS product with the system’s software?

13. Does the Offeror need access to the source code?

 - If yes, does the Offeror have access to the source code?

14. What is the effective software size associated with the COTS/GOTS software product?
Complete this table, in an Excel workbook, according to the definitions and instructions attached.

Maturity

15. When was the COTS/GOTS product first released?

16. How many versions (both major and minor updates) have subsequently been released?

17. Has this COTS/GOTS product been successfully used on any Government program?

 - Has it been system-level tested?

 - Has it been certified and accredited?

 - Has it been fielded?

 - If yes, provide additional information (e.g., for what Government program, when,
Government agency witnessing test, specific accreditations and certifications).

Availability

18. Is the COTS/GOTS software currently available?

 - If not, describe the software delivery schedule, including all critical dates that could
affect program success

A B C D E F G
Total Delivery
or Delivered

Build

ID Number of
CSCI

Contained In

Name of CSCI
Contained In CSC Name

Development
Contractor/

Subcontractor

Sizing
Method

New
Software

H I J K L M

Reused As-is/
Lifted

Software

Reuse As-
is/Lift Factor
Required (%)

Effective Size
for Reused
As-is/Lifted

Software

Total Effective
Size

Effective Size
Representing

Software
Growth

Total Size

B-3

19. Is the Offeror’s solution dependent on another Government program for this software?

 - If yes, discuss if cross program (and contractor to contractor) relationships have
been established, how they will be managed, and how the Offeror plans to stay informed about
the evolving functionality of the COTS/GOTS software

Other Attributes

Offeror’s Experience with COTS/GOTS Product

20. Does the Offeror have experience using the proposed COTS/GOTS software?

 - If yes, for what systems/programs?

21. Does the Offeror have experience integrating the proposed COTS/GOTS software?

 - If yes, for what systems/programs?

22. Has the Offeror worked with the vendor of the COTS software product before?

 - If yes, on which program or in what capacity?

Documentation

23. What documentation will be provided to the Government?

Data and Software Rights

24. What rights will the Government have to the data and COTS/GOTS software? Identify what
data and software rights are being provided to the Government using the relevant Defense
Federal Acquisition Regulation Supplement (DFARS) clause definitions (DFARS 227.7103-3
and 227.7203-3).

25. Does the reused COTS/GOTS software require the Government to purchase any COTS
software licenses?

 - If yes, provide the commercial software licenses for review

26. Do you intend to transfer any COTS software licenses to the Government?

 - If yes, provide the commercial software licenses for review

Licensing

27. How will the COTS/GOTS software be licensed (e.g., per seat, per site, per host) for both
development and run-time for this program?

28. Will the Government be expected to keep track of run-time licenses?

29. Will there be any automated enforcement mechanisms (e.g., license managers, activation)?

Maintenance and Support Strategy

30. What organization is expected to maintain the COTS/GOTS software?

31. For what time frame, will the COTS/GOTS software be maintained?

B-4

Releases/Updates

32. Will the Offeror incorporate future releases of the COTS/GOTS product into the system’s
software baseline?

 - If yes, how will these releases be incorporated?

COTS Vendor Viability

33. How long has the COTS vendor been in business?

34. How many of the vendor’s employees are dedicated to the implementation of the product
and to the product’s support?

35. What was the funding source for the development of this product?

36. What is the vendor’s customer base (e.g., commercial, Government defense, or Government
nondefense)?

B-5

Worksheet Questions for COTS/GOTS Software

Instructions for Completing Question 14
Total Delivery or Delivered Build (Col. A): If there are multiple delivered builds (blocks, increments, etc.), enter
the build identifier for the sizing information provided. Enter “Total” if the sizing information represents the total
delivery. A separate table should be completed for each delivered build as well as the total delivery.

ID Number of CSCI Contained In (Col. B): Enter the identification numbers for the Computer Software
Configuration Item (CSCI), in which the COTS/GOTS software product is contained.

Name of CSCI Contained In (Col. C): Enter the name of the CSCI, in which the COTS/GOTS software product is
contained.

CSC (Col. D): Enter the names of the CSCs, if known. A separate row should be completed for each CSC.

Development Contractor/Subcontractor (Col. E): Enter the name of the contractor or subcontractor responsible for
the development of each CSCI.

Sizing Method (Col. F): Enter either source lines of code (SLOC) or function points (FP). Standard definitions for
SLOC and FPs are provided below. Any non-standard definition should be fully explained on a separate sheet. If
an alternative sizing measure is used, the counting method should be described in detail. This table can be adapted
to accommodate an alternative measure, but the type of information requested in these instructions must be included.

 Lines of Code: Non-Comment lines of source code for the computer program. Source lines to include are:
All executable source lines such as (1) Control, (2) Mathematical, (3) Conditional, (4) Deliverable Job
Control, (5) Data Declaration Statements, and (6) Data Typing and Equivalence; and input/output/format.
Source lines to exclude are: debug statements, continuation of single statement to multiple lines,
machine/library generated statement, and non-deliverable test statements.

 Function Points: Unadjusted function points, IFPUG compatible. Use this only if your size methods are
function based rather than line based.

New Software (Col. G): Enter the new non-comment lines of source code or the new number of unadjusted function
points, IFPUG compatible for the computer program. New code is software developed from scratch and is not
modified or reused as-is in any way from any pre-existing design or code. The new lines of source code or functions
associated with reusing as-is any COTS/GOTS software (e.g., glue code, integration code) should be included in this
column.

Reused As-is/Lifted Software (Col. H): Enter the number of lines of code or functions that will be reused as-is or
lifted, with no modification of design or code, from a pre-existing COTS/GOTS software package. If COTS/GOTS
software size is not encompassed in the Offeror’s overall sizing methodology, the Offeror shall attach a separate
sheet to explain the estimating methodology and fully discuss all efforts associated with the COTS/GOTS products
in the Basis of Estimates (BOEs).

Reuse As-is/Lift Factor Required (Col. I): Enter the percentage that is applied to the pre-existing COTS/GOTS
software to be reused as-is/lifted (Col. H) to estimate effective size.

Reused as-is software products may require new code, such as glue code, wrappers, or plug-ins, or parameterization,
but the software product itself will remain unchanged. The new lines of source code or functions associated with the
software (e.g., glue code, integration code) should be included as New Software (Col G). The effort required to
understand the product and its interfaces, integrate the product as part of a CSC and/or CSCI, and perform testing
should be reflected in the percentage in order to estimate effective size. If these activities associated with the
COTS/GOTS software are not part of the Offeror’s software size methodology, the Offeror shall fully discuss these
efforts in the BOEs.

Effective Size for Reused As-is/Lifted Software (Col. J): Enter the number of lines of code or functions that
represent the pre-existing lines or functions that will be reused as-is/lifted (Col. H) and are adjusted based on the
applicable percentage (Col. I). Effective size represents the software size equivalent to developing the code from
scratch. The formula, in this spreadsheet, used for calculating Effective Size for the COTS/GOTS software is:

Col. J = Col. H * Col. I

B-6

The Offeror shall explain the method used for calculating effective size if it differs from the formula in this table.

Total Effective Size (Col. K): Enter the number of lines of code or functions that represent all new lines or
functions (Col. G) as well as the pre-existing lines or functions that are reused as-is/lifted (Col. J). Effective size
represents the software size equivalent to developing the code from scratch. The formula, in this spreadsheet, used
for calculating Total Effective Size is:

Col. K = Col. G + Col. J

Effective Size Representing Software Growth (Col. L): Enter the number of effective lines or functions that are
included in the effective size estimate (Col. K) to capture software growth. The Offeror shall provide the definition
of software growth used for the sizing estimate and the method used to estimate software growth.

Total Size (Col. M): Enter the number of new (Col. G) and pre-existing (Col. H) lines of code or functions. Total
size represents the total amount of new software that would need to be developed for the new software baseline, if
no code were to be reused as-is and/or modified.

C-1

Appendix C Data Item Description for the Reuse Management
Report

The Data Item Description for DI-SESS-81771 is available on the ASSIST database.

DATA ITEM DESCRIPTION

Title: REUSE MANAGEMENT REPORT (ReMR)

Number: DI-SESS-81771 Approval Date: 20090520
AMSC Number: F9071 Limitation: N/A
DTIC Applicable: N/A GIDEP Applicable: N/A
Preparing Activity: 13 (ESC/AQT)
Applicable Forms:
 Worksheet Questions for Reused As-is/Modified Software
 Worksheet Questions for COTS/GOTS Software
Use/Relationships: The Reuse Management Report (ReMR) provides information
about existing software products intended to be reused as-is or modified as part of the
delivered operational software. The report also provides the acquirer insight into the
current status of the activities associated with the reuse of these products as compared
to the planned activities, and alternative approaches.

This Data Item Description (DID) contains the format, content and intended use
information for the data product resulting from the work tasks described in the contract.

Requirements:
1. Reference documents. The applicable issue of the documents cited herein,
including their approval dates and dates of any applicable amendments, notices, and
revisions, shall be as cited in the contract.

2. Format. Contractor format is acceptable.

3. Content. The report shall contain the following:

3.1 Executive Summary. This section shall identify and briefly describe all software
products that will be reused as-is or modified (existing software requiring change) and
integrated into the delivered operational software. Both commercial off-the-shelf
(COTS) and government off-the-shelf (GOTS) shall be included.

3.2. Current Status. This section shall present the current status of the software reuse
activities compared to the contractor’s planned activities. Status shall include progress
made and accomplishments for the engineering and management activities for each
software reuse product.

C-2

3.3. Variance. This section shall identify any activities where work is not progressing
in accordance with the plans and schedules, including the reasons for this lack of
progress.

3.4. Milestones. This section shall describe the progress made against program
milestones during the reporting period.

3.5. Alternative Approaches. This section shall describe alternative approaches for
any reused as-is/modified and COTS/GOTS software products that are 1) considered
high or moderate risk or 2) not available (i.e., fully documented and tested) at contract
award. Alternative approaches provide options if these software reuse products cannot
be implemented as planned.

3.6. Impacts of Implementing Alternative Approaches. This section shall include an
assessment of the technical impacts to the program and estimates of the programmatic
(i.e., effort and schedule) impacts of implementing alternative approaches.

3.7. Decision Points. This section shall include the decision points for implementing
alternative approaches. These decision points shall identify when the alternative
approach would need to be implemented in the event that the planned software reuse
products are not available in time to preserve the program schedule.

3.8. Worksheet Questions. This section shall include the completed forms (updated, if
needed) for all reused as-is/modified and COTS/GOTS software products in accordance
with the instructions embedded in the forms. Forms will be included for any newly
identified software reuse products.

C-3

WORKSHEET QUESTIONS FOR
REUSED AS-IS/MODIFIED SOFTWARE

The questions below should be answered in the corresponding worksheet format for
each software product for which the Contractor plans to assume responsibility for the
performance of the product. Software products may be reused as-is or modified.
Information about the commercial off-the-shelf (COTS) or Government off-the-shelf
(GOTS) software products that will be reused as-is should be provided in the worksheet
format titled “Worksheet Questions for COTS/GOTS Software.”

Product and Contact Information

1. What is the name of the software product to be reused as-is or modified?
2. What is the version number and date of release for the software product that is being
reused as-is/modified?
3. What are the programming language(s) of this software?
4. For which system/program was the software originally developed?
5. Provide contact information, including the contact’s name, the office symbol (if
applicable), phone number and address for the:

- Program manager currently responsible for the reused as-is/modified
software
- Responsible entity or source of the software, if the Government is not
responsible for the software

Applicability

6. To which Computer Software Configuration Item (CSCI) (and Computer Software
Component (CSC), if known) is this reused as-is/modified software product assigned?
7. What functions/requirements will the software provide? (Attach a separate sheet
that shows performance requirements cross referenced to the Technical Requirements
Document (TRD). Identify any mismatches in requirements between the TRD and the
reused as-is/modified software product.)
8. Has the Contractor conducted an internal demonstration(s) to evaluate the
applicability of this software product for this system/program?
 - If yes, provide additional information
9. Have the software product’s interfaces that provide access to the functionality been
evaluated?
 - If yes, provide additional information
10. Has the software product’s architecture been evaluated for compatibility with the
system architecture?

- If yes, provide additional information
11. Has the software product been used on a hardware/software platform similar to the
one proposed for this system/program?

- If yes, provide additional information

C-4

Extent of Modification

12. Briefly describe the tasks (e.g., modification, integration, test) required to make the
reused as-is/modified software functional within this system.
13. What organization will perform the modifications to this software product?
14. What organization will integrate the reused as-is/modified software with the
system’s software?
15. What is the effective size of the reused as-is/modified software product and extent
of the modification, if applicable? Complete this table, in an Excel workbook, according
to the definitions and instructions attached.

Maturity

16. What is the extent of testing of the software that is to be reused as-is/modified (e.g.,
completed unit tests, completed CSC tests, completed CSCI tests)?
17. Has formal qualification has been conducted?
 - If yes, provide additional information
18. Has the software been certified and accredited?
 - If yes, provide additional information (e.g., specific certifications and
accreditations)
19. Has the software been fielded in an operational environment?

 - If yes, provide additional information
20. Has the software been fielded in an operational environment?
 - If yes, provide additional information (e.g., which systems/programs,
whether these systems/programs have fielded the software)
21. Is the software in long-term maintenance?

 - If yes, provide additional information (e.g., organization maintaining the
software)

A B C D E F G H I J
Total Delivery
or Delivered

Build

ID Number of
CSCI Contained

In

Name of CSCI
Contained In CSC Name Module or Class

Level

Development
Contractor/

Subcontractor

Sizing
Method

New
Software

Total Pre-
existing Software

Deleted
 Software

K L M N O P Q R

Modified
Software

Redesign
Required

(%)

Reimple-
mentation

Required (%)

Retest
 Required

(%)

Weight for
Design Phase

(%)

Weight for
Implementation

Phase (%)

Weight for
Test Phase

 (%)

Effective Size for
Modified
Software

S T U V W X

Reused As-is/
Lifted Software

Reuse As-is/ Lift
Factor Required

(%)

Effective Size for
Reused As-

is/Lifted Software

Total Effective
Size

Effective Size
Representing

Software Growth
Total Size

C-5

Availability

22. How does the Contractor have access to the software to be reused as-is/modified
(e.g., developed the software in-house, has or will acquire the software from another
contractor/vendor, or requesting the software be provided by the Government)?
23. Is the software currently available?
 - If not, describe the software delivery schedule, including all critical dates
that could affect program success.
24. Is the Contractor’s solution dependent on another Government program for this
software?
 - If yes, briefly discuss if cross program (and contractor to contractor)
relationships have been established, how they will be managed, and how the Contractor
plans to stay informed about the evolving software functionality.

Other Attributes
Designed for Reuse

25. Identify any attributes (e.g., standards, design patterns, architecture paradigms) of
the reused as-is/modified software that support reuse.

Contractor’s Experience with Software

26. Will the Contractor have any access to the software developers, who were part of
the original software development team?
 - If yes, provide additional information
27. Has the organization (that will be performing the modifications to this software
product for this program) reused as-is or modified (e.g., altered the design, made
changes to the code) the software previously?
 - If yes, provide additional information (e.g., for what systems/programs,
how many of the software developers have modified this software product before)
28. Has the organization (that will be integrating this software product for this program)
integrated the software previously?
 - If yes, provide additional information (e.g., for what systems/programs,
how many of the software integration engineers have integrated this software product
before)

Documentation

29. What supporting engineering and management documentation for the reused as-
is/modified software is available for the software developers?
30. What supporting documentation for the reused as-is/modified software is available
for the end users?
31. What documentation (both development and end user) will be delivered to the
Government?
32. Describe the test procedures that will support the conduct of the comprehensive
regression testing for the reused as-is/modified software?

C-6

 - Do these procedures exist or do they need to be created?

Standards

33. What development standards (e.g., IEEE/EIA Std 12207.0-2008) were followed
during the development of the software intended to be reused as-is/modified?

Data and Software Rights

34. What rights will the Government have to the data and software? Identify what data
and software rights are being provided to the Government using the relevant Defense
Federal Acquisition Regulation Supplement (DFARS) clause definitions (DFARS
227.7103-3 and 227.7203-3.1). What is the name of the COTS/GOTS software product
to be reused as-is?
35. Does the reused as-is/modified software require the Government to purchase any
COTS software licenses? If yes, provide the commercial software licenses for review.
36. Do you intend to transfer any COTS software licenses to the Government? If yes,
provide the commercial software licenses for review.

Defect Reports

37. How many Defect Reports (DRs) are currently open for the software?
38. Provide a listing of all (open and closed) DRs by category/priority, date when
opened, description of problem and planned/actual date of closure.

Maintenance and Support Strategy

39. What organization is expected to maintain the modified software?

Releases/Updates

40. Will the Contractor incorporate future releases of the reused as-is/modified product
into the system’s software baseline?
 - If yes, how will these releases be incorporated

Dead and Unused Code

41. Identify any dead code (i.e., unreachable, unnecessary, or inoperative code that is
not required for any purpose) and unused code (i.e., code used in applications other
than this program) from the reused as-is and modified software products. Discuss how
dead and unused code will be handled, how it will be tested, and whether it presents
any risks to the program.

C-7

WORKSHEET QUESTIONS FOR REUSED AS-IS/MODIFIED SOFTWARE
Instructions for Completing Question 15

Definitions: Total Delivery or Delivered Build (Col. A): If there are multiple delivered
builds (blocks, increments, etc.), enter the build identifier for the sizing information
provided. Enter “Total” if the sizing information represents the total delivery. A separate
table should be completed for each delivered build as well as the total delivery.

ID Number of CSCI Contained In (Col. B): Enter the identification numbers for the
Computer Software Configuration Item (CSCI), in which the reused as-is/modified
software product is contained.

Name of CSCI Contained In (Col. C): Enter the name of the CSCI, in which the reused
as-is/modified software product is contained.

CSC (Col. D): Enter the names of the Computer Software Components (CSCs), if
known. A separate row should be completed for each CSC.

Module or Class Level (Col. E): Enter the software module or class level, if known. A
separate row should be completed for each software module or class level.

Development Contractor/Subcontractor (Col. F): Enter the name of the contractor or
subcontractor responsible for the development of each CSCI.

Sizing Method (Col. G): Enter either Source Lines of Code (SLOC) or Function Points
(FP). Standard definitions for SLOC and FPs are provided below. Fully explain any
non-standard definition on a separate sheet. If an alternative sizing measure is used,
the counting method should be described in detail. This table can be adapted to
accommodate an alternative measure, but the type of information requested in these
instructions must be included.

 Lines of Code: Non-Comment lines of source code for the computer program.

Source lines to include are: All executable source lines such as (1) Control, (2)
Mathematical, (3) Conditional, (4) Deliverable Job Control, (5) Data Declaration
Statements, and (6) Data Typing and Equivalence; and input/output/format.
Source lines to exclude are: debug statements, continuation of single statement to
multiple lines, machine/library generated statement, and non-deliverable test
statements.

 Function Points: Unadjusted function points, IFPUG compatible. Use this only if

your size methods are function based rather than line based.

New Software (Col. H): Enter the new non-comment lines of source code or the new
number of unadjusted function points, IFPUG compatible for the computer program.
New code is software developed from scratch and is not modified or reused as-is in any
way from any pre-existing design or code.

C-8

Total Pre-existing Software (Col. I): Enter the number of lines of code or functions in a
pre-existing software package (before reuse as-is/modification/deletion), including lines
of code or functions that may not be pertinent to this program/system.

Deleted Software (Col. J): Enter the number of lines of code or functions which will be
deleted from the pre-existing software package (Col. I). The deletion will be
accomplished by physical omission or commenting out.

Modified Software (Col. K): Enter the total number of lines of code or functions that will
be modified from a pre-existing software package through re-design or re-
implementation, and then integrated and tested in the new software product baseline. If
there are multiple delivered builds, this number should represent the code developed in
previous builds that may need to be modified or re-tested with the code being
developed for the current build.

Redesign Required (Col. L): Enter the percentage of the pre-existing software to be
modified (Col. K) that requires redesign to make this software functional within the new
environment.

Reimplementation Required (Col. M): Enter the percentage of the pre-existing software
to be modified (Col. K) that requires reimplementation (i.e., code and unit test) to make
this software functional within the new environment.

Retest Required (Col. N): Enter the percentage of the pre-existing software to be
modified (Col. K) that requires retesting (i.e., CSC integration/test and CSCI
integration/test, but excluding CSCI-to-CSCI integration/test) to ensure this software
functions within performance, reliability, and other criteria after the modifications.

Weight for Design Phase (Col. O): Enter the percentage of the software development
effort (i.e., design, implementation and test) attributed to the design phase. The weights
(Col. O-Q) represent the phase distribution of effort, i.e., the distribution typically
observed for each phase. Note that the sum of the weights for the design,
implementation and test phases must equal 100 percent.

Weight for Implementation Phase (Col. P): Enter the percentage of the software
development effort (i.e., design, implementation and test) attributed to the
implementation phase.

Weight for Test Phase (Col. Q): Enter the percentage of the software development
effort (i.e., design, implementation and test) attributed to the test phase.

Effective Size for Modified Software (Col. R): Enter the number of lines of code or
functions that represent the pre-existing lines or functions that will be modified (Col. K)
and are adjusted based on the applicable percentages (Col. L-N) and weights (Col. O-
Q). Effective size represents the software size equivalent to developing the code from

C-9

scratch. The formula, in this spreadsheet, used for calculating Effective Size for the
Modified Software is:

Col. R = Col. K * ((Col. L * Col. O) + (Col. M * Col. P) + (Col. N * Col. Q))

Explain the method used for calculating effective size if it differs from the formula in this
table.

Reused As-is/Lifted Software (Col. S): Enter the number of lines of code or functions
that will be reused as-is or lifted, with no modification of design or code, from a pre-
existing software package.

Reuse As-is/Lift Factor Required (Col. T): Enter the percentage that is applied to the
pre-existing software to be reused as-is/lifted (Col. S) to estimate effective size. This
percentage is similar in concept to the percentages for redesign required,
reimplementation required and retest required, but is a composite factor applied to the
software that will be reused as-is/lifted. Reused as-is/lifted code, by definition, will not
require modification.

Reused as-is software products may require new code, such as glue code, wrappers, or
plug-ins, or parameterization, but the software product itself will remain unchanged.
The new lines of source code or functions associated with the software (e.g., glue code,
integration code) should be included as New Software (Col H). The effort required to
understand the product and its interfaces, integrate the product as part of a CSC and
CSCI, and perform testing should be reflected in the percentage in order to estimate
effective size.

Effective Size for Reused As-is/Lifted Software (Col. U): Enter the number of lines of
code or functions that represent the pre-existing lines or functions that will be reused as-
is/lifted (Col. 18) and are adjusted based on the applicable percentage (Col. 19).
Effective size represents the software size equivalent to developing the code from
scratch. The formula, in this spreadsheet, used for calculating Effective Size for the
Reused As-is/Lifted Software is:

Col. U = Col. S * Col. T

Explain the method used for calculating effective size if it differs from the formula in this
table.

Total Effective Size (Col. V): Enter the number of lines of code or functions that
represent all new lines or functions (Col. H) as well as the pre-existing lines or functions
that are modified (Col. K) or reused as-is/lifted (Col. S) and are adjusted based on the
applicable percentages (Col. N-N, T) and weights (Col. O-Q). Effective size represents
the software size equivalent to developing the code from scratch. The formula, in this
spreadsheet, used for calculating Total Effective Size is:

C-10

Col. V = Col. H + Col. R + Col. U

Effective Size Representing Software Growth (Col. W): Enter the number of effective
lines or functions that are included in the effective size estimate (Col. V) to capture
software growth. Provide the definition of software growth used for the sizing estimate
and the method used to estimate software growth.

Total Size (Col. X): Enter the number of new (Col. H) and pre-existing (Col. K and S)
lines of code or functions. Total size represents the total amount of new software that
would need to be developed for the new software baseline, if no code were to be reused
as-is or modified. Note that Total Size does not include the pre-existing software that
will be deleted.

C-11

WORKSHEET QUESTIONS FOR COTS/GOTS SOFTWARE

The questions below should be answered in the corresponding worksheet format for
each commercial off-the-shelf (COTS) or Government off-the-shelf (GOTS) software
product that will be reused as-is. COTS/GOTS software include the products, for which
the software provider, either a commercial vendor or the Government, assumes
responsibility for the performance of the software product. The source code is not
necessarily provided to the Contractor. The COTS/GOTS software products may
require new code, such as glue code, wrappers, or plug-ins, or parameterization, but the
COTS/GOTS product itself will remain unchanged.

Product and Contact Information

1. What is the name of the COTS/GOTS software product to be reused as-is?
2. What is the version number and date of release for the COTS/GOTS software
product that is being reused as-is?
3. Provide contact information, including the contact’s name, the office symbol (if
applicable), phone number and address for the:
 - COTS/GOTS software provider
 - Government program manager currently responsible for a program, if any,
that uses the COTS/GOTS software product

Applicability

4. To which Computer Software Configuration Item (CSCI) (and Computer Software
Component (CSC), if known) is this software product assigned?
5. What functions/requirements will the software provide? (For submissions with the
proposal, attach a separate sheet that shows functions cross referenced to the
Technical Requirements Document (TRD). Identify any mismatches in functionality
between the TRD and the COTS/GOTS product. After contract award, attach a
separate sheet that shows performance requirements cross referenced to the TRD.
Identify any mismatches in requirements between the TRD and the COTS/GOTS
product.)
6. Has the Contractor conducted an internal demonstration(s) to evaluate the
applicability and usability of this product for this system/program?
 - If yes, provide additional information
7. Have the COTS/GOTS product’s interfaces that provide access to the functionality
been evaluated?
 - If yes, provide additional information
8. Has the software product’s architecture been evaluated for compatibility with the
system architecture?
 - If yes, provide additional information
9. Are the COTS/GOTS product’s development and target hardware/software platforms
similar to the ones proposed for this system/program?
 - If yes, provide additional information

C-12

Approach to Integration/Test

10. Briefly describe the tasks (e.g., development of glue code, integration, test)
required to make the COTS/GOTS software functional within this system.
11. What organization will be responsible for developing any new code (e.g., glue code,
integration code) needed?
12. What organization will integrate this COTS/GOTS product with the system’s
software?
13. Does the Contractor need access to the source code?
 - If yes, does the Contractor have access to the source code?
14. What is the effective software size associated with the COTS/GOTS software
product? Complete this table, in an Excel workbook, according to the definitions and
instructions attached.

Maturity

15. When was the COTS/GOTS product first released?
16. How many versions (both major and minor updates) have subsequently been
released?
17. Has this COTS/GOTS product been successfully used on any Government
program?
 - Has it been system-level tested?
 - Has it been certified and accredited?
 - Has it been fielded?
 - If yes, provide additional information (e.g., for what Government program,
when, Government agency witnessing test, specific accreditations and certifications)

Availability

18. Is the COTS/GOTS software currently available?
 - If not, describe the software delivery schedule, including all critical dates
that could affect program success
19. Is the Contractor’s solution dependent on another Government program for this
software?

A B C D E F G
Total Delivery
or Delivered

Build

ID Number of
CSCI Contained

In

Name of CSCI
Contained In CSC Name

Development
Contractor/

Subcontractor

Sizing
Method

New
Software

H I J K L M

Reused As-is/
Lifted Software

Reuse As-is
/Lift Factor

Required (%)

Effective Size
for Reused As-

is/Lifted
Software

Total Effective
Size

Effective Size
Representing

Software Growth
Total Size

C-13

 - If yes, discuss if cross program (and contractor to contractor) relationships
have been established, how they will be managed, and how the Contractor plans to stay
informed about the evolving functionality of the COTS/GOTS software

Other Attributes
Contractor’s Experience with COTS/GOTS Product

20. Does the Contractor have experience using the proposed COTS/GOTS software?
 - If yes, for what systems/programs?
21. Does the Contractor have experience integrating the proposed COTS/GOTS
software?
 - If yes, for what systems/programs?
22. Has the Contractor worked with the vendor of the COTS software product before?
 - If yes, on which program or in what capacity?

Documentation

23. What documentation will be provided to the Government?

Data and Software Rights

24. What rights will the Government have to the data and COTS/GOTS software?
Identify what data and software rights are being provided to the Government using the
relevant Defense Federal Acquisition Regulation Supplement (DFARS) clause
definitions (DFARS 227.7103-3 and 227.7203-3.)
25. Does the reused COTS/GOTS software require the Government to purchase any
COTS software licenses? If yes, provide the commercial software licenses for review.
26. Do you intend to transfer any COTS software licenses to the Government? If yes,
provide the commercial software licenses for review.

Licensing

27. How will the COTS/GOTS software be licensed (e.g., per seat, per site, per host)
for both development and run-time for this program?
28. Will the Government be expected to keep track of run-time licenses?
29. Will there be any automated enforcement mechanisms (e.g., license managers,
activation)?

Maintenance and Support Strategy

30. What organization is expected to maintain the COTS/GOTS software?
31. For what time frame, will the COTS/GOTS software be maintained?

C-14

Releases/Updates

32. Will the Contractor incorporate future releases of the COTS/GOTS product into the
system’s software baseline?
 - If yes, how will these releases be incorporated?

COTS Vendor Viability

33. How long has the COTS vendor been in business?
34. How many of the vendor’s employees are dedicated to the implementation of the
product and to the product’s support?
35. What was the funding source for the development of this product?
36. What is the vendor’s customer base (e.g., commercial, Government defense, or
Government nondefense)?

C-15

WORKSHEET QUESTIONS FOR COTS/GOTS SOFTWARE
Instructions for Completing Question 14

Total Delivery or Delivered Build (Col. A): If there are multiple delivered builds (blocks,
increments, etc.), enter the build identifier for the sizing information provided. Enter
“Total” if the sizing information represents the total delivery. A separate table should be
completed for each delivered build as well as the total delivery.

ID Number of CSCI Contained in (Col. B): Enter the identification numbers for the
Computer Software Configuration Item (CSCI), in which the COTS/GOTS software
product is contained.

Name of CSCI Contained in (Col. C): Enter the name of the CSCI, in which the
COTS/GOTS software product is contained.

CSC (Col. D): Enter the names of the Computer Software Components (CSCs), if
known. A separate row should be completed for each CSC.

Development Contractor/Subcontractor (Col. E): Enter the name of the contractor or
subcontractor responsible for the development of each CSCI.

Sizing Method (Col. F): Enter either Source Lines of Code (SLOC) or Function Points
(FP). Standard definitions for SLOC and FPs are provided below. Fully explain any
non-standard definition on a separate sheet. If an alternative sizing measure is used,
the counting method should be described in detail. This table can be adapted to
accommodate an alternative measure, but the type of information requested in these
instructions must be included.

 Definitions:
 Lines of Code: Non-Comment lines of source code for the computer program.

Source lines to include are: All executable source lines such as (1) Control, (2)
Mathematical, (3) Conditional, (4) Deliverable Job Control, (5) Data Declaration
Statements, and (6) Data Typing and Equivalence; and input/output/format.
Source lines to exclude are: debug statements, continuation of single statement to
multiple lines, machine/library generated statement, and non-deliverable test
statements.

 Function Points: Unadjusted function points, IFPUG compatible. Use this only if

your size methods are function based rather than line based.

New Software (Col. G): Enter the new non-comment lines of source code or the new
number of unadjusted function points, IFPUG compatible for the computer program.
New code is software developed from scratch and is not modified or reused as-is in any
way from any pre-existing design or code. The new lines of source code or functions
associated with reusing as-is any COTS/GOTS software (e.g., glue code, integration
code) should be included in this column.

C-16

Reused As-is/Lifted Software (Col. H): Enter the number of lines of code or functions
that will be reused as-is or lifted, with no modification of design or code, from a pre-
existing COTS/GOTS software package. If COTS/GOTS software size is not
encompassed in the Contractor’s overall sizing methodology, attach a separate sheet to
explain the estimating methodology.

Reuse As-is/Lift Factor Required (Col. I): Enter the percentage that is applied to the
pre-existing COTS/GOTS software to be reused as-is/lifted (Col. H) to estimate effective
size.

Reused as-is software products may require new code, such as glue code, wrappers, or
plug-ins, or parameterization, but the software product itself will remain unchanged.
The new lines of source code or functions associated with the software (e.g., glue code,
integration code) should be included as New Software (Col G). The effort required to
understand the product and its interfaces, integrate the product as part of a CSC and
CSCI, and perform testing should be reflected in the percentage in order to estimate
effective size.

Effective Size for Reused As-is/Lifted Software (Col. J): Enter the number of lines of
code or functions that represent the pre-existing lines or functions that will be reused as-
is/lifted (Col. H) and are adjusted based on the applicable percentage (Col. I). Effective
size represents the software size equivalent to developing the code from scratch. The
formula, in this spreadsheet, used for calculating Effective Size for the COTS/GOTS
software is:

Col. J = Col. H * Col. I

Explain the method used for calculating effective size if it differs from the formula in this
table.

Total Effective Size (Col. K): Enter the number of lines of code or functions that
represent all new lines or functions (Col. G) as well as the pre-existing lines or functions
that are reused as-is/lifted (Col. J). Effective size represents the software size
equivalent to developing the code from scratch. The formula, in this spreadsheet, used
for calculating Total Effective Size is:

Col. K = Col. G + Col. J

Effective Size Representing Software Growth (Col. L): Enter the number of effective
lines or functions that are included in the effective size estimate (Col. K) to capture
software growth. Provide the definition of software growth used for the sizing estimate
and the method used to estimate software growth.

C-17

Total Size (Col. M): Enter the number of new (Col. G) and pre-existing (Col. H) lines of
code or functions. Total size represents the total amount of new software that would
need to be developed for the new software baseline, if no code were to be reused as-is.

4. End of DI-SESS-81771

D-1

Appendix D Format M-1 (Revised)
Sizing, Schedule and Historical Information

1 2 3 4 5 6 7 8 9
SIZE

Total Delivery
or Delivered

Build

CSCI
ID Number CSCI Name CSC Name

Development
Contractor/

Subcontractor

Sizing
Method

New
Software

Total Pre-existing
Software

Deleted
 Software

10 11 12 13 14 15 16 17
SIZE

Modified Software Redesign Required
(%)

Reimple-
mentation Required

(%)

Retest
 Required

(%)

Weight for Design
Phase

(%)

Weight for
Implementation

Phase (%)

Weight for
Test Phase

 (%)

Effective Size for
Modified Software

18 19 20 21 22 23 24 25
SIZE

Reused As-is/
Lifted Software

Reuse As-is/Lift
Factor Required

(%)

Effective Size for
Reused As-is/

Lifted Software
Total Effective Size

Effective Size
Representing

Software Growth
Total Size Productivity Software Language

26 27 28 29 30 31 32 33 34
 HISTORICAL DATA SCHEDULE (MONTHS ESTIMATED)

Software Program
Analogy Productivity Range Requirements

Analysis Preliminary Design Detailed
Design Implementation

CSC-to-CSC
Integration and

Test

CSCI-to-CSCI
Integration and

Test
Total Schedule

D-2

INSTRUCTIONS FOR FORMAT M-1 (REVISED)
Sizing, Schedule, and Historical Information

1. Total Delivery or Delivered Build (Col. 1): If there are multiple delivered builds
(blocks, increments, etc.), enter the build identifier for the sizing information provided.
Enter “Total” if the sizing information represents the total delivery. A separate Format M-1
should be completed for each delivered build as well as the total delivery.

2. CSCI ID Number (Col. 2): Enter the identification numbers for the Computer Software
Configuration Items (CSCIs). A separate row should be completed for each CSCI.

3. CSCI (Col. 3): Enter the names of the CSCIs.

4. CSC (Col. 4): Enter the names of the CSCs, if known. The size for the CSCs must sum
to the size for the respective CSCI. A separate row should be completed for each CSC.

5. Development Contractor/Subcontractor (Col. 5): Enter the name of the contractor or
subcontractor responsible for the development of each CSCI.

6. SIZE:

 6.1 Sizing Method (Col. 6): Enter either source lines of code (SLOC) or function
points (FP). Standard definitions for SLOC and FPs are provided below. Any non-standard
definition should be fully explained on a separate sheet. If an alternative sizing measure is
used, the counting method should be described in detail. This table can be adapted to
accommodate an alternative measure, but the type of information requested in these
instructions must be included.

 6.1.1 Lines of Code: Non-comment lines of source code for the computer
program. Source lines to include are: All executable source lines such as (1) Control, (2)
Mathematical, (3) Conditional, (4) Deliverable Job Control, (5) Data Declaration Statements,
and (6) Data Typing and Equivalence; and input/output/format. Source lines to exclude are:
debug statements, continuation of single statement to multiple lines, machine/library
generated statement, and non-deliverable test statements.

 6.1.2 Function Points: Unadjusted function points, IFPUG compatible.
Use this only if your size methods are function based rather than line based.

 6.2 New Software (Col. 7): Enter the new non-comment lines of source code or the
new number of unadjusted function points, IFPUG compatible for the computer program.
New code is software developed from scratch and is not modified or reused as-is in any way
from any pre-existing design or code. The new lines of source code or functions associated
with reusing as-is any COTS/GOTS software (e.g., glue code, integration code) should be
included in this column.

D-3

6.3 Total Pre-existing Software (Col. 8): Enter the number of lines of code or
functions in a pre-existing software package (before reuse as-is/modification/deletion),
including lines of code or functions that may not be pertinent to this program/system.

6.4 Deleted Software (Col. 9): Enter the number of lines of code or functions which
will be deleted from the pre-existing software package (Col. 8). The deletion will be
accomplished by physical omission or commenting out.

6.5 Modified Software (Col. 10): Enter the total number of lines of code or functions
that will be modified from a pre-existing software package through re-design or re-
implementation, and then integrated and tested in the new software product baseline. If there
are multiple delivered builds, this number should represent the code developed in previous
builds that may need to be modified or re-tested with the code being developed for the
current build.

 6.6 Redesign Required (Col. 11): Enter the percentage of the pre-existing software to
be modified (Col. 10) that requires redesign to make this software functional within the new
environment.

 6.7 Reimplementation Required (Col. 12): Enter the percentage of the pre-existing
software to be modified (Col. 10) that requires reimplementation (i.e., code and unit test) to
make this software functional within the new environment.

 6.8 Retest Required (Col. 13): Enter the percentage of the pre-existing software to be
modified (Col. 10) that requires retesting (i.e., CSC integration/test and CSCI
integration/test, but excluding CSCI-to-CSCI integration/test) to ensure this software
functions within performance, reliability, and other criteria after the modifications.

 6.9 Weight for Design Phase (Col. 14): Enter the percentage of the software
development effort (i.e., design, implementation and test) attributed to the design phase. The
weights (Col. 14-16) represent the phase distribution of effort, i.e., the distribution typically
observed for each phase. Note that the sum of the weights for the design, implementation,
and test phases must equal 100 percent.

 6.10 Weight for Implementation Phase (Col. 15): Enter the percentage of the software
development effort (i.e., design, implementation, and test) attributed to the implementation
phase.

 6.11 Weight for Test Phase (Col. 16): Enter the percentage of the software
development effort (i.e., design, implementation, and test) attributed to the test phase.

6.12 Effective Size for Modified Software (Col. 17): Enter the number of lines of
code or functions that represent the pre-existing lines or functions that will be modified (Col.
10) and are adjusted based on the applicable percentages (Col. 11-13) and weights (Col. 14-

D-4

16). Effective size represents the software size equivalent to developing the code from
scratch. The formula, in this spreadsheet, used for calculating Effective Size for the
Modified Software is:

Col. 17 = Col. 10 * ((Col. 11 * Col. 14) + (Col. 12 * Col. 15) + (Col. 13 * Col. 16))

The Offeror shall explain the method used for calculating effective size if it differs
from the formula in this table.

6.13 Reused As-is/Lifted Software (Col. 18): Enter the number of lines of code or
functions that will be reused as-is or lifted, with no modification of design or code, from a
pre-existing software package. This column should also include any COTS/GOTS software
that will be reused as-is. If COTS/GOTS software size is not encompassed in the Offeror’s
overall sizing methodology, the Offeror shall attach a separate sheet to explain the estimating
methodology and fully discuss all efforts associated with the COTS/GOTS products in the
Basis of Estimates (BOEs).

6.14 Reuse As-is/Lift Factor Required (Col. 19): Enter the percentage that is applied
to the pre-existing software to be reused as-is/lifted (Col. 18) to estimate effective size. This
percentage is similar in concept to the percentages for redesign required, reimplementation
required, and retest required, but is a composite factor applied to the software that will be
reused as-is/lifted. Reused as-is/lifted code, by definition, will not require modification. The
percentage, if applicable to the Offeror’s sizing methodology, applied to the COTS/GOTS
software that will be reused as-is should be included in this column.

Reused as-is software products may require new code, such as glue code, wrappers, or
plug-ins, or parameterization, but the software product itself will remain unchanged. The
new lines of source code or functions associated with the software (e.g., glue code,
integration code) should be included as New Software (Col. 7). The effort required to
understand the product and its interfaces, integrate the product as part of a CSC and CSCI,
and perform testing should be reflected in the percentage in order to estimate effective size.
If these activities associated with the COTS/GOTS software are not part of the Offeror’s
software size methodology, the Offeror shall fully discuss these efforts in the BOEs.

6.15 Effective Size for Reused As-is/Lifted Software (Col. 20): Enter the number of
lines of code or functions that represent the pre-existing lines or functions that will be reused
as-is/lifted (Col. 18) and are adjusted based on the applicable percentage (Col. 19). Effective
size represents the software size equivalent to developing the code from scratch. The
formula, in this spreadsheet, used for calculating Effective Size for the Reused As-is/Lifted
Software, including COTS/GOTS software, is:

Col. 20 = Col. 18 * Col. 19

The Offeror shall explain the method used for calculating effective size if it differs
from the formula in this table.

D-5

6.16 Total Effective Size (Col. 21): Enter the number of lines of code or functions
that represent all new lines or functions (Col. 7) as well as the pre-existing lines or functions
that are modified (Col. 10) or reused as-is/lifted (Col. 18) and are adjusted based on the
applicable percentages (Col. 11-13, 19) and weights (Col. 14-16). Effective size represents
the software size equivalent to developing the code from scratch. The formula, in this
spreadsheet, used for calculating Total Effective Size is:

Col. 21 = Col. 7 + Col. 17 + Col. 20

 6.17 Effective Size Representing Software Growth (Col. 22): Enter the number of
effective lines or functions that are included in the effective size estimate (Col. 21) to capture
software growth. The Offeror shall provide the definition of software growth used for the
sizing estimate and the method used to estimate software growth.

 6.18 Total Size (Col. 23): Enter the number of new (Col. 7) and pre-existing (Col. 10
and 18) lines of code or functions. Total size represents the total amount of new software
that would need to be developed for the new software baseline, if no code were to be reused
as-is or modified. Note that Total Size does not include the pre-existing software that will be
deleted.

7. Productivity (Col. 24): Enter the lines of code or functions per staff month estimated for
this development effort. Attach a separate sheet that identifies the number of hours per staff
month as well as which software development phases and labor categories from the lists
below are included in this estimate.

Software development phases:

• Software requirements analysis (derived requirements)
• Preliminary design
• Detailed design
• Code and unit test
• Software component, CSC and CSCI integration and test
• CSCI-to-CSCI integration and test

Software development labor categories:

• Direct software management/supervision
• Software requirements analysts
• Software design, code and unit testers
• Software component, CSC and CSCI integration and testing personnel
• CSCI-to-CSCI integration and testing personnel
• Software engineering data, configuration management and quality assurance

personnel

8. Software Language (Col. 25): Enter the software language for the new code for each
CSCI and CSC, if known.

D-6

9. HISTORICAL DATA:

 9.1 Software Program Analogy (Col. 26): Enter the name(s) of any software
development effort(s) similar to this effort.

 9.2 Productivity Range (Col. 27): Enter the lines of code or functions per staff month
observed for this development effort. Attach a separate sheet that identifies which software
development phases and labor categories from the lists below are included in this metric.

Software development phases:

• Software requirements analysis (derived requirements)
• Preliminary design
• Detailed design
• Code and unit test
• Software component, CSC and CSCI integration and test
• CSCI-to-CSCI integration and test

Software development labor categories:

• Direct software management/supervision
• Software requirements analysts
• Software design, code, and unit testers
• Software component, CSC and CSCI integration and testing personnel
• CSCI-to-CSCI integration and testing personnel
• Software engineering data, configuration management and quality assurance

personnel

10. SCHEDULE (MONTHS ESTIMATED): Enter the schedule estimates, in months,
for each CSCI. Schedule estimates do not need to be included on a CSC basis. The schedule
inputs below are based on a waterfall approach to software development. If the Offeror is
proposing an alternative schedule structure, provide the equivalent type of information and a
brief explanation of the schedule.

 10.1 Requirements Analysis (Col. 28): Enter the number of schedule months
estimated for the software requirements phase.

10.2 Preliminary Design (Col. 29): Enter the number of schedule months estimated for
the preliminary and detailed design phase.

10.3 Detailed Design (Col. 30): Enter the number of schedule months estimated for
the code and unit test phase.

10.4 Implementation (Col. 31): Enter the number of schedule months estimated for the
implementation (i.e., code and unit test) phase.

D-7

10.5 CSC-to-CSC Integration and Test (Col. 32): Enter the number of schedule
months estimated for the integration and test phase for the software components, CSCs and
individual CSCIs.

10.6 CSCI-to-CSCI Integration and Test (Col. 33): Enter the number of schedule
months estimated for the CSCI-to-CSCI integration and test phase.

10.7 Total Schedule (Col. 34): Enter the total number of elapsed schedule months
estimated from the start of requirements analysis through CSCI-to-CSCI integration and test.
The total number of months elapsed may be different from the sum of columns 28 through
33.

GL-1

Glossary

ACA after contract award
ADR Alternate Dispute Resolution
AF Air Force
AFP award fee plan
API application program interfaces

BOE basis of estimate

C&A certification and accreditation
CCM CORBA Component Model
CDRL Contract Data Requirements List
COTS commercial off-the-shelf
CPR Contract Performance Report
CSC Computer Software Component
CSCI Computer Software Configuration Item
CWBS Contract Work Breakdown Structure

DFARS Defense Federal Acquisition Regulation Supplement
DID Data Item Description
DoD Department of Defense
DR Defect Report

ELSG Electronic Systems Group

FAR Federal Acquisition Regulation
FP function points

GOTS Government off-the-shelf
GUI graphical user interface

IMP Integrated Master Plan
IMS Integrated Master Schedule
I/O input/output
IPT Integrated Product Team
IR&D internal research and development
ITO Information to Offerors

OTS off-the-shelf

GL-2

PCAG Performance Confidence Assessment Group
PDR Preliminary Design Review
PO program office

ReMR Reuse Management Report
RFI Request for Information
RFP Request for Proposal
RMP Risk Management Plan
ROMP Risk and Opportunity Management Plan

SDP Software Development Plan
SEMP System Engineering Management Plan
SLOC source lines of code
SOO Statement of Objectives
SOW Statement of Work
SSET Source Selection Evaluation Team
SQA Software Quality Assurance
SQAE Software Quality Assessment Exercise

TRD Technical Requirements Document
TRL technology readiness level

