
1

Implementing the NASA Deep Space LDPC Codes
for Defense Applications

Wiley H. Zhao, Jeffrey P. Long

Abstract—Selected codes from, and extended from, the NASA’s
deep space low-density parity-check (LDPC) codes are imple-
mented for high speed defense applications. This is part of an
effort to build Government reference waveform implementations
to assist defense acquisition programs and to promote waveform
re-use. Details of the decoder implementation, including memory
layout, parallelization architecture, layered-decoding scheduling,
and field programmable gate array (FPGA) resource utilization
are presented.

Index Terms—Forward Error Correction, Low Density Parity
Check Codes, FPGA

I. INTRODUCTION

THE low-density parity-check (LDPC) code is getting
utilized for high speed high performance applications due

to the ease of its parallel implementation in hardware and
close to capacity performance. Waveforms employing LDPC
codes include DVB-S2 [1] and IEEE 802.16 [2] and lately
an increasing number of defense applications have begun
to incorporate LDPC codes in their waveform designs, such
as the Global Positioning Systems (GPS) [3] among others
[4], [5]. As waveforms in defense applications are designed
or upgraded, one can expect LDPC codes to find wider
application in order to take the advantage of the high speed
implementation and capacity approaching performance.

In this paper, we present the implementation of four LDPC
codes based on the NASA deep space LDPC codes [6]. The
work is a part of an effort to build Government reference
waveform implementations to help reduce risk and promote
waveform re-use across related defense acquisition programs.
The codes are implemented in Very high speed integrated
circuit Hardware Description Language (VHDL) with the
intent of employing Field Programmable Gate Arrays (FPGA)
to offer a re-programmable radio solution.

The paper begins with a brief description of the LDPC
codes implemented along with the decoding algorithm used
(Sec. II) and continues with a description of the architectural
approach utilized (Sec III). This discussion will include details
on layered processing and proper scheduling as a technique
to increase throughput by pipe-lining multiple layers simul-
taneously in the decoding engine. In addition, the memory
utilization and layout will be explained in the context of the
layered processing approach. The paper will conclude with
FPGA resource utilization for the implementation as well as
the throughput achievable and performance curves (Sec. IV).

Wiley H. Zhao is with the MITRE Corporation, Bedford, MA, e-mail:
wzhao@mitre.org.

Jeffrey P. Long is with the MITRE Corporation, Bedford, MA, e-mail:
jplong@mitre.org.

Although not presented here it should be mentioned that a high
speed parallel encoder was also developed as a complement
to the decoder discussed in this work.

II. THE IMPLEMENTED CODES AND DECODING
ALGORITHM DESCRIPTION

Four LDPC codes based on NASA’s deep space LDPC
codes are implemented in this effort. Two of them are rate
1/2 with the coded block size of 2048 and 16384 bits and the
other two are rate 7/8 with the coded block size of 4096 and
16384 bits. These code rates and block sizes accommodate
both power-limited, bandwidth-limited and short, long delay
scenarios as the application requires. Among these codes, rate
1/2 2048-bit code is directly from [6]. The other three are
extensions from [6].

NASA’s deep space LDPC codes are Accumulate Repeat-
4 Jagged-Accumulate (AR4JA) codes [7]. These are struc-
tured LDPC codes designed by lifting up a protograph parity
check matrix into a larger parity check matrix consisting of
circulants. Parity check matrices constructed with circulants
are critical in implementing parallel decoding algorithms for
high speed applications. The DVB-S2 codes and the IEEE
802.16 codes are of this type. However, unlike DVB-S2 codes,
which consist of superimposed circulants, the NASA deep
space LDPC codes consist of only simple circulants. This
significantly simplifies the layered decoder implementation[8],
[9]. The layered decoding algorithm has been the preferred de-
coding algorithm because of its faster convergence compared
to the flooding algorithm [10].

For structured LDPC codes consisting of simple circulants,
each row of circulants in the parity check matrix naturally
becomes a “layer”. The actual rows within a “layer” (i.e.,
check nodes, c-nodes) can be processed in parallel because
they update different variable nodes (columns in the parity
check matrix, v-nodes) without memory access conflicts. The
decoding proceeds as follows:

• Step 0: initialize the v-node Log-likelihood-ratio (LLR)
to the channel LLR and c-node to v-node messages to
zero at the beginning of a code block

LQi = LLR(xi) (1)
Lrji = 0 (2)

• Step 1, 2, and 3 are applied to each layer at first, then
repeated for each decoding iteration

• Step 1: compute the v-node to c-node messages Lqij , for
each c-node j in a layer

Lqij = LQi − Lrji (3)

http://wzhao@mitre.org
http://jplong@mitre.org
SBORG
Text Box
Approved for Public Release; Distribution Unlimited - Case Number 13-1730
©2013 The MITRE Corporation. All Rights Reserved.

2

• Step 2: compute the c-node to v-node messages

Lrji =
∏

i′∈Vj\i

sign(Lqi′j) · f

 ∑
i′∈Vj\i

f (|Lqi′j |)

 (4)

• Step 3: update v-node LLRs

LQi = Lqij + Lrji (5)

where LQi is the v-node LLR; LLR(xi) is the received
channel LLR for bit i; Lrji is the message from c-node j
to v-node i; Lqij is the message from v-node i to c-node j;
Vj represents the set of v-nodes connected to c-node j; Vj\i
represents Vj excluding v-node i. The function f is defined
as

f(x) = log
ex + 1

ex − 1
= − log tan

(x
2

)
(6)

and it satisfies a special “addition” rule

f

(∑
i

f(βi)

)
≡
⊕
i

βi (7)

where the pairwise “addition” is

β1

⊕
β2 = min(β1, β2) + log

(
1 + e−(β1+β2)

)
− log

(
1 + e−|β1−β2|

)
. (8)

In this implementation, (4) is computed using the λ-min
algorithm [11] with λ = 3, i.e., among the v-nodes in Vj\i,
the smallest three are used to compute the c-node to v-node
messages using (7) and (8). Equation (8) is implemented by a
small lookup table for the log function.

III. HARDWARE ARCHITECTURE

Hardware implementation of a LDPC decoder can be very
resource intensive. A well thought out architecture approach is
the key to developing a decoder that is both high throughput
and small in size. In addition extra care must be taken to
tailor the implementation for an FPGA target. The hard-
ware architecture approach taken here attempts to maximize
throughput and minimize hardware complexity by utilizing a
parallel layered processing scheme. This takes advantage of
the structured nature of these NASA LDPC codes as well as
the use of circulants in building the parity check matrix.

A. Decoder memory layout and parallelization scheme

For LDPC codes with parity check matrices made of circu-
lants of size M (i.e., each circulant is a M×M rotated identity
matrix), (3), (4), and (5) can be implemented in parallel by
a factor up to M . For example, M LQ’s and M Lr’s are
accessed in parallel to update M Lq’s simultaneously. This
is closely related to the memory layout of LQ and Lr. In
the following, we follow a similar approach used for DVB-S2
codes [12]. Fig.1 illustrates how LQ and Lr is laid out in
FPGA block RAM (BRAM). LQ’s (initially populated with
input LLRs) are partitioned into multiple rows, each with M
values. Correspondingly, Lr’s are partitioned into rows with
M values each. Each memory access reads or writes one row
of LQ or Lr with M values. The parallel decoding processing

is equivalent to processing circulant by circulant. Each valid
pair of LQ row and Lr row corresponds to a circulant in
the parity check matrix. Since rotations in each circulant are
different, it is necessary to align LQ and Lr to a common
reference so that the 1 to M element of a Lr row corresponds
to the 1 to M element of the corresponding LQ row. This is
achieved by circularly left rotating a LQ row by the amount
indicated by the corresponding circulant rotation. After the
rotation, the first element in the rotated LQ corresponds to
the first element of the corresponding Lr row as indicated in
Fig.1.

Figure 1. An example decoder memory layout of Lr and LQ for a
hypothetical code with circulant size of M = 128. Each map from a row
of Lr to a row of LQ corresponds to a circulant in the parity check matrix.
The relation of the circulant rotation and the left rotation of a LQ row to
align with the Lr row is indicated.

The mapping of Lr rows to LQ rows and the correspond-
ing circulant rotations are the code parameters saved in the
decoder.

For the four implemented LDPC codes, the circulant sizes
are 128 (for 2048 rate 1/2), 1024 (for 16384 rate 1/2),
64 (for 4096 rate 7/8), and 256 (for 16384 rate 7/8). Full
parallelization by M would require too much FPGA resources
for large M (e.g., 1024). Further more, the four codes need
to share the same decoder architecture so that they can be
switch from one another without a complete FPGA reload. In
the following, a scheme of parallelization by L, with L being
a factor of M , is described following a similar approach in
[13]. With this scheme, L = 64 is the maximum parallelization
supported by all four codes implemented.

To create a parallel by L decoder, each row of LQ and
Lr in Fig.1 is converted into z = M/L rows by taking every
other z’th element into a new row with width L. We call these
smaller rows sub-rows. After the re-arrangement, the same
memory access scheme now accesses sub-rows, L elements at
a time. The layered decoding algorithm now works on sub-
layers.

The circular left rotations that align sub-rows of LQ and Lr,
and the sub-row processing order are related to the original

3

circulant rotation by the following

t1 = bRM/zc (9)
t2 = RM % z (10)
As = (ksub + t2)% z (11)

Rs =

{
(t1 + 1) %L As < t2

t1 As ≥ t2
(12)

where RM ∈ [0, M − 1] is the rotation of the circulant;
ksub ∈ [0, z − 1] is the sub-row processing order index;
As ∈ [0, z − 1] is the index of the sub-row corresponding to
the processing order index ksub; Rs ∈ [0, L−1] is the rotation
of the LQ sub-row needed to align sub-rows of LQ and Lr.
The symbol b∗c takes the integer portion of a division and
% is the remainder operator. Fig.2 shows an example of this
operation with a circulant of size M = 9 and a parallelization
by L = 3.

Figure 2. The example illustrates how to convert from the full parallelization
by the circulant size M = 9 to a parallelization by L = 3. Different colored
elements in a row of LQ are converted to z = M/L = 3 sub-rows. If the
circulant associated with this row of LQ and a certain row of Lr (not shown)
has a rotation value of 2, the left rotated LQ row for parallelization by M is
shown at the bottom left. The rotation value of 2 is distributed among z = 3
sub-rows for parallelization by L = 3, the first two sub-rows are left rotated
by 1 and the third sub-row is not rotated. The third sub-row is the first to be
processed.

B. Decoding Core and Check Node Calculation

The decoder core shown in Fig. 3 is responsible for imple-
menting the algorithm explained in Sec. II. Since the decoding
is done in parallel, the diagram is color coded to show which

elements are actually repeated in the hardware 64 times. The
memory is constructed of FPGA block RAMs arranged in
parallel to effectively build a single very wide word memory.
The number of block RAM required depends on what the
FPGA vendors offer in terms of the maximum word width per
block RAM. Since the decoder is parallel by 64 each word in
RAM is 64 times the width of each element. Details on the
choice of metric width is given in Sec. IV. The majority of
the RAM utilization is contained in the Lr and LQ RAM. The
LQ RAM is initially loaded with the input LLRs as in step 0
and then continually updated each iteration. The multiplexer
shown facilities that. The shifter is a simple 64 element wide
barrel shifter pipe-lined to improve speed. Since the v-node
to c-node calculation of step 1 is needed for the LQ updates
calculated in step 3 a simple FIFO is utilized to temporarily
store the step 1 results for step 3. A full memory is not usually
needed here but the FIFO is still required to support the very
wide word width.

(-)

LQ

RAM

Lr

RAM

Check

Node

Calculation

Shifter

Parallel Output
S

l

i

c

e

FIFO

Parallel Input

These Elements are Repeated in Parallel

Figure 3. Decoding Core

The c-node to v-node calculation or check node calculation
(Fig. 4) of step 2 utilizes a λ-min algorithm with λ = 3 as
mentioned in Sec. II. This is implemented using a minimum
sort routine followed by a calculation which performs the
operation in (4).

The operation denoted as min* performs β1 ⊕ β2 as in (8).
The complete details of the min* operation are shown in Fig.
5 As mentioned the log function is implemented via a small
look-up table. This table has only a few small values so it is
hard-coded and synthesizes to combinatorial logic.

C. Layer Scheduling

The decoder processes multiple layers in each iteration. As
a decoding iteration is essentially a process where you read
memory, calculate some results and write back to memory,
in theory it is possible to pipeline the operation to process

4

Lq

Sign Array

reg

min0

min1

min2

Max

Pos

Max

Pos

Max

Pos

Min*

Min*

Lr

Sign

Min Sort

Figure 4. Check Node Calculation

(-)

LUT
β1

β2

LUT

(-)
y

Min

Figure 5. Min* Calculation

layers back to back and increase throughput. In practice there
is latency in the calculation step and if a memory read requires
data that is still processing through the pipeline then there
will be an error. In our decoder implementation, layers are
reordered to avoid such memory conflicts so that multiple
layers can be pipe-lined to increase throughput. For codes that
cannot avoid such memory conflicts, wait times are inserted in
the pipeline flow so that the problem layer is completed and
written into memory before the next layer is started.

D. Overall Architecture

As was shown in Fig. 3 the decoding core processes parallel
sets of LQ and Lr in a single clock cycle. This creates a very
efficient processing approach but does not lend itself to a very
practical external interface. To facilitate data transfer in and
out of the decoder core, two sets of memory are utilized. This
memory serves several functions. It converts the serial stream
of LLR data coming into the decoder into the wide parallel
word and performs the reverse with the output data bits. It
also performs the packing and unpacking of the incoming
and outgoing data into the particular memory arrangement as
mentioned in Sec. III-A. Lastly it acts similar to a double
buffer arrangement to allow data to be continually transferred
in and out while decoding. Fig. 6 shows how decoding and data
transfer occurs. Since the decoding process requires the most
amount of time, input data can be slowly read in and slowly
read out while the decoding completes. We then take advantage
of the high degree of parallelization and quickly transfer
the contents in and out of the RAMs without significantly
impacting throughput. A complete component (Fig. 7) includes
this RAM at the input and output with additional control to
synchronize the decoding and transfer functions.

Fill Input RAM Read Input RAM

DECODE

Write Output RAMRead Output RAM

Figure 6. Decoder Processing Approach

Rdy

LLR Data (Serial)

Input

Ram

LDPC

Core

Output

Ram

Top Level Control

Data Valid

Rdy

Decoded Data(1 Bit)

Data Valid64 Wide 64 Wide

Figure 7. Decoder Top Level Diagram

IV. FPGA RESOURCE UTILIZATION, THROUGHPUT AND
PERFORMANCE

This FPGA implementation was targeted at a Xilinx FPGA
in the Virtex 6 family. While not the latest technology offered
by Xilinx this FPGA is considered the stable choice for many
of the FPGA processing cards currently offered on the market.
As the results in Tab. I show the design does not exceed the
size constraints of modern FPGAs and it would be possible
to utilize multiple cores within a single FPGA in order to
accommodate very high data rates.

Table I
FPGA RESOURCE UTILIZATION

Xilinx Virtex 6 LX 130
Slice Registers 18627

Slice LUTS 25035
Block RAM (36Kb) 36

The design metric widths shown in Tab. II are perhaps the
most critical in terms of determining overall size. They directly
impact the number of memory elements required as well as
the logic and register usage. Obviously the goal would be to
make these metrics as small as possible but you can quickly
encounter a loss in performance and may need to trade off
size for performance.

Table II
IMPLEMENTATION DETAILS

LLR Input Metric Width 5
Internal LQ Metric Width 8

Lr Metric Width 6

The decoder throughput is given in Tab. III. In the example
given, the decoder is asked to do 30 iterations. The design
as targeted for a Xilinx V6 is able to achieve a 175 Mhz
clock rate. The throughput of each code is then calculated as
shown. Obviously with fewer iterations the throughput could
be increased so again a balance needs to be found trading
throughput against performance. Of note is the row entitled
“Extra Processing Delay”. This is the extra wait time in clock

5

Table III
DECODER THROUGHPUT

Rate 1/2 2K Rate 1/2 16K Rate 7/8 4K Rate 7/8 16K
Clock Speed Achieved 175 MHz 175 MHz 175 MHz 175 MHz

M 128 1024 64 256
L 64 64 64 64

Rows/Iteration 120 960 252 1008
Iterations 30 30 30 30

Extra Processing Delay 75 3 149 104
Uncoded Throughput 31 Mbps 50 Mbps 52 Mbps 75 Mbps

cycles mentioned in Sec. III-C. This directly impacts the
throughput and needs to be minimized as much as possible
utilizing careful scheduling of the layers.

Fig.8 shows the simulated Bit Error Rate (BER) and the
block, here referred as Frame, Error Rate (FER) for the four
implemented codes using a fixed point decoder model running
at 30 iterations.

Figure 8. Simulated BER and FER curves for the four implemented codes
using a fixed point decoder model running at 30 iterations.

V. CONCLUSIONS

In this work we have successfully implemented an extension
to the NASA codes developed for Deep Space applications
with potential use in various high-speed high-throughput de-
fense applications. In addition we have shown how it is
possible to achieve high throughput with few logic resources
and still maintain decoding performance utilizing layered
parallel processing. It is felt that the results presented here
will be critical to helping LDPC codes find more application
in Defense applications without the impact to Size Weight
and Power (SWaP) as is traditionally thought. In addition the
utilization of FPGAs ensures use in re-programmable radio
applications. Future work will focus on further enhancements
and optimizations to increase throughput and reduce size while
maintaining the performance shown.

REFERENCES

[1] Digital video broadcasting (DVB); Second generation framing structure,
channel coding and modulation systems for broadcasting, interactive
services, news gathering and other broad-band satellite applications,
ETSI Std. EN 302 307 V1.2.1, 2009-08.

[2] IEEE Standard for Local and metropolitan area networks Part 16: Air
Interface for Fixed and Mobile Broadband Wireless Access Systems,
IEEE Std. 802.16e, 2005.

[3] Navstar GPS Space Segment/User Segment L1C Interfaces, GLOBAL
POSITIONING SYSTEMS WING (GPSW) SYSTEM ENGINEERING
and INTEGRATION , Version 5.4, 15 October 2008.

[4] High Data Rate - Radio Frequency Ground Modem, Phase 3, Modem
Performance Specification, The MITRE Corporation , Draft, 08 June
2012.

[5] Joint Internet Protocol Modem Performance Specification, Defense
Information Systems Agency and Defense Communications and Army
Transmission Systems , IS-GPS-800, 04 Sep 2008.

[6] Low Density Parity Check Codes for Use in Near-Earth and Deep Space
Applications, Orange Book, Issue 2, Consulative Committee for Space
Data Systems (CCSDS) Experimental Specification 131.1-O-2, 2007.

[7] D. Divsalar, C. Jones, S. Dolinar, and J. Thorpe, “Protograph based
ldpc codes with minimum distance linearly growing with block size,” in
Global Telecommunications Conference, 2005. GLOBECOM ’05. IEEE,
vol. 3, 2005, pp. 5 pp.–.

[8] M. Mansour and N. Shanbhag, “High-throughput ldpc decoders,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 11,
no. 6, pp. 976–996, 2003.

[9] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of ldpc codes,” in IEEE Workshop on Signal Processing
Systems, 2004, p. 107.

[10] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
M.I.T. Press, 1963.

[11] F. Guilloud, E. Boutillon, and J.-L. Danger, “Lambda-Min decoding
algorithm of regular and irregular LDPC codes,” in 3rd International
Symposium on Turbo Codes and related topics, 1-5 september, Brest,
France, 2003.

[12] M. Eroz, F.-W. Sun, and L.-N. Lee, “An innovative low-density parity-
check code design with near-shannon-limit performance and simple
implementation,” Communications, IEEE Transactions on, vol. 54, no. 1,
pp. 13–17, 2006.

[13] M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, and M. Falcao,
“Flexible parallel architecture for dvb-s2 ldpc decoders,” in Global
Telecommunications Conference, 2007. GLOBECOM ’07. IEEE, 2007,
pp. 3265–3269.

	I Introduction
	II The implemented codes and decoding algorithm description
	III Hardware Architecture
	III-A Decoder memory layout and parallelization scheme
	III-B Decoding Core and Check Node Calculation
	III-C Layer Scheduling
	III-D Overall Architecture

	IV FPGA Resource Utilization, Throughput and Performance
	V Conclusions
	References

