Approved for Public Release; Distribution Unlimited
Case # 08-0713

Leveraging Federal IT Investment 1.21

MTRO080117

MITRE TECHNICAL REPORT

Leveraging Federal IT Investment — Using
Service Oriented Architecture (SOA)

An Analysis of SOA’s Value Proposition for Federal
Senior Leadership Teams

April 2008
The Cross-MITRE SOA Initiative

Author: Geoffrey Raines
Contributors: Jeff Morse, Frank Petroski, Larry Pizette, Salim Semy

Sponsor: MITRE Contract No.: N/A
The views, opinions and/or findings contained in this report are those of Approved for Public Release; Distribution Unlimited
The MITRE Corporation and should not be construed as an official Case 08-0713

Government position, policy, or decision, unless designated by other
documentation.

12008 The MITRE Corporation. All Rights Reserved.

MITRE

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 08-0713

Revision History

Leveraging Federal IT Investment 1.21

Change Record

Version Number Change Description of Change Change
Number Effective Date
V1 0000 Initial publication 4/29/2008

Leveraging Federal IT Investment 1.21

Introduction to Cross MITRE SOA Initiative

This white paper is part of a series of documents andrgegsms created to provide a broad overview of
service oriented architectures (SOA) and considerategerding their applicability and successful
implementation.

SOA has become a high-interest paradigm for developing &ddeye-scale, networked, agile systems
of systems. However, SOA and the underlying Web Semipéementation standards present new IT
planning and portfolio management challenges for senior deaisakers. Special considerations arise
when employing SOA in the Federal IT domain space. We aee faith an enterprise larger than any
commercial enterprise as well as a diversity of comgtrahat are unique to the Federal domain. These
include acquisition and funding models, legislation, andueayltural barriers.

The breadth and depth of efforts to address these challangess the commercial, academic, and
government domains are significant. MITRE is actively workiritty &ll three sectors to provide the best
advice to our customers. However, the urgency to addregsdhallenges with so many competing
perspectives and interests - including financial - hdsdean overload of information and commercial
products in the Federal domain. Some of the informatiorvendor advice is helpful;' sometimes it's
not.

When MITRE engineers give advice to our customers, we nemhtmue our focus on ensuring that we
give high quality information to our sponsors. Given thed@gice of technological change in the SOA
domain and the number of new commercial products, it reqair@sganizational process to ensure that
we stay aligned with best practices. Thus, it isaaitihat we bring the ‘entire expertise of the company to
bear to benefit each of our customers, so that every custamdrenefit from the full depth and breadth

of our analysis and understanding.

To address these challenges, we're developing a reposftprgducts to provide MITRE engineers with
a consistent body of work that begins to define-an SCedétispac¥. We will use this trade space to
provide our customers with a consistent message under séindamstance.

Our approach is to leverage the substantial body. of infoomatithe public domain - from both
commercial and academic sources - and adapt it to theaiotsin the Federal space. We reference
analyses, research, and papers and provide context fdomain. Additionally, we capture lessons
learned from the Federal domain and provide additional infeom&bm our own engineering
backgrounds. We also leverage knowledge gained through our fidesaeith industry sources, such as
the SOA Consortium.

Completed work products.are reviewed and vetted acréBR by subject matter experts supporting a
wide range of ecustomers engaged in SOA activities.

! Trade studies which collectively define the trade spacare focused on comparing a range of design options
from the perspective of the objectives associated witsystem’s performance and cost. For example, #ircra
manufacturers always do trade studies focused on thaftigereight while maintaining the system’s cost, safet
and so forth. Similarly, safety, reliability, and caseé among the many other objectives that are comntioaly
focus of a trade study.” Buede, DennisTWe Engineering Design of Systems, Models and MetB6a8, John
Wiley and Sons, Page 268.

Leveraging Federal IT Investment 1.21

SponsorsThis effort is being championed by the MITRE CorporateeCEngineer’s office in
collaboration with the Director of Integration for Daad Services and the Command and Control
Technical Center.

To access the repository from within MITRE, FastJungrpSOA.
Team Members

* EdKenney

* Rob Mikula

* Larry Pizette

* Geoff Raines

« Salim Semy
Please send feedback and commentsda:list@lists.mitre.org

Leveraging Federal IT Investment 1.21

Executive Summary

SOA'’s Value PropositionService Oriented Architecture (SOA) builds on computeiresering
approaches of the past to offer an architectural appfoaemterprise systems, oriented around the
offering of services on a network of consumers. A fafihis service-oriented approach is on the
definition of service interfaces and predictable serlmgaviors. A set of industry standards, collectively
labeled “Web Service” standards in this paper, providdraptement the general SOA concept, and have
become the predominant set of practical tools used by estegurgineers for current SOA projects.
Some Web Service standards have become foundational aedvdely adopted, while many are still
seeking broad industry or Government acceptance.

SOA, as implemented through the common Web Servicessstimaffers Federal senior leadership
teams a path forward, given the diverse and complex infamtechnology (IT) portfolio that they have
inherited, allowing for incremental and focused improvemetteif IT support systems. With
thoughtful engineering and an enterprise point of view, St#positive benefits such as:

» Language Neutral I ntegration — The foundational contemporary Web Services standaeds us
XML, which is focused on the creation and consumption ofrdidd American Standard Code
for Information Interchange (ASCII) text. Regardlesshef development language your systems
use, these systems can offer and invoke services thratgghraon mechanism. Language
neutrality is a key differentiator from past integratapproaches.

» Component Reuse — Given current Web Service technolegy, once an organiza®blilt a
software component and offered it as a service, thef#se organization can then utilize that
service. With proper service governance, emphasizinggapich as service provider trust,
service security, and reliability, Web Services offerghtential for aiding the more effective
management of an enterprise portfolio, allowing a capalbditye built well once and shared.

* Organizational Agility — SOA defines building blocks of software capability in teoheffered
services that meet some portion of the organizationisir@gents. These building blocks, once
defined and reliably operated, can be recombined and itedgiapidly.

* Leveraging Existing Systems~ One common use of SOA is to define elements or functions of
existing application systems and make them available tertteeprise in a standard agreed-upon
way, leveraging the substantial investment already madesiting applications. The most
compelling business case for SOA is often made regareMegaging this legacy investment,
enabling integration between new and old systems components.

The benefits mentioned above will accrue only as the reEatimprehensive engineering and a
meaningful architecture at the ‘enterprise level. SOA service concept in no way eliminates the need
for strong software development practices, requirenteased lifecycles, and an effective enterprise
architecture. While SOA done right offers valuable bene®i@A without structured processes and
governance will lead to traditional large software syspeoblems.

Choosing to initiate an enterprise-wide SOA brings witeiteral key considerations for a senior
leadership team. SOA offers a means to effectivelgrige decades of software investment, while
providing a growth path for new capabilities. Portionseghly applications, which may have taken
many years and substantial resources to build, can bepedd and integrated into modern service
frameworks, incrementally leveraging significant past investyimas resources allow. Web Services can
provide a technical underpinning for structuring portfolioa asllection of discrete software services,
each with a definable customer base, acquisition strgpegigrmance levels, and a measurable
operational cost. However, in order to achieve theséymmsutcomes, architectural activities, such as
standards selection, security architectures, and serataloging, must occur at the enterprise level. A
key architectural activity is the decision regarding whetheommercially-based SOA approach is
appropriate under the specific circumstances; it is notyaltvee right choice. Similarly, enterprise

Executive Summary - 1

Leveraging Federal IT Investment 1.21

governance must align decision-making, funding mechanismsneuative structures to enable SOA
success, which often requires change from current pracesgractice, especially for government
acquisitions.

The remainder of the paper focuses on a series of concepiical important to a Federal senior
leadership team considering SOA, such as how SOA compeairgedration approaches of the past, how
component-based approaches have changed other industries, how cumpaaecan benefit the
enterprise as a whole, how enterprise standards can eoétllare component interoperability across an
organization, and where the benefits of SOA tend to accrbe following topics are examined in more
detail:

Integration Enterprise Application Integration (EAI) is a field afidy in computer science that focuses
on the integration of “systems of systems” and ente@pplications. With the span of attempted
systems integration and data sharing expanding in laggeiaations, the EAIl engineering discipline has
become increasingly central to senior leadership teamagiag portfolios of applications. SOA can be
considered another important step in a thirty year lyisibEAI technologies. The various historical
methods have differed in: the ease with which integmatobuld occur from a programmer’s point of
view, underlying network configurations (e.g. ports requireoei@pen on a network), the quantity of
enterprise equipment to operate, and general design appsot fault tolerance when failures occur.

Using Components — Historic Analogy with Integrated Circullairing the 1970s electronics engineers
experienced an architectural and design revolution witmtheduction of practical, inexpensive, and
ubiquitous Integrated Circuits (ICs). This revolutionhia tlesign of complex hardware systems is
informative for contemporary software professionals nbarged with building enterprise software
systems using the latest technologies of Web Services aotitext of SOAs. Like SOA, the IC
revolution was fundamentally a distributed, multi-team, monent-based approach to building larger
systems. Through the commercial market place, corpasasiuccessfully built components that could be
described, procured, and reused by engineering teams ditirématund the world.

Reuse Reuse of a service differs from source code reuse inhéaixternal service is called from across
the network and is not compiled into local system lilesadr local executables. The provider of the
service continues to operate, monitor, and upgrade thiesewhile the consumer of the service still
needs to trust the reliability and correctness of the produservice. The consumer must be able to find
the service and have adequate documentation accurately destirédbehavior and interface of the
service. Performance of the service is still key.

Mature SOAs should measure reuse as part of a periadioljpomanagement assessment. The
assessment of reuse can be effectively integratedhatinformation repository used for service
discovery in the organization, called the “enterprise ogtalSince changes to a service over time will
require that the service’s consumers be rememberedatified, it is a small step further to quantify the
current consumers for a:service for the purposes diofiortnanagement and reuse assessment.

Creating a generic reusable software component for a brahidnce takes more resources (20% to 100%
more) than creating a less generic point solution. Theofestise, therefore, shifts to the service
providers; and benefits the consumers. Consequentlye @hnterprise decides to fund service providers,
there is great benefit in maximizing the number of coressrfor an operational service. Also, the
creation and continued providing of services must be motivateded, and/or otherwise incented—it

will not generally happen due to self-interest withinmgle program whose primary focus is to field
capability other than enterprise infrastructure S&&\'s Beneficiariebelow).

Acquiring ReuseMany of the current trends in performance-based contigaatork well with the
acquisition of SOA services. For example, Office of Bgeament and Budget (OMB), performance-
based service contracting (PBSC) is true to the underlping and architecture of an SOA’s service,
which focuses on the result of the service, not on specignrigiplementation or “how” the service’s
work is to be done.

Executive Summary - 2

Leveraging Federal IT Investment 1.21

Reuse of services on an enterprise scale is a tear efiblGovernment leadership has a singular
responsibility to strategically guide enterprise IT expemdg. Planned acquisitions must match the
overall portfolio goals of the organization and many omgtions are establishing review boards for this
purpose. If a service is meant to be reused as a cormwngronent for a series of programs or projects,
contract language and incentives must be explicitly orgdrazound that goal.

Enterprise StandardsWwhen many components are being simultaneously developed bydiralitéams,

it becomes critical for the interface of a provider's/ge to match up to the “call” of a consumer.
Similarly, it helps everyone involved if the interfaces as®ervices have some commonality in structure
and access mechanisms. Choosing and communicating astmmgive set of enterprise standards is a
responsible approach to aid in enterprise SOA integration.

Where SOA Works BesThe Web Service technologies commonly used today to implea@@at
concepts have certain design presumptions. They work bestéhanderlying network:is robust,
reliable, and available. This is not to say that @eiyciency in the underlying network can not be
compensated for by thoughtful engineering and the userafast queuing and buffering
communications methods. However, employing these alterrgdjy®aches to compensate for the
underlying network will take a project further from the maiesm commercial implementations of Web
Services.

Agility When we discuss “agility” as it relates to SOA, ave often referring to organizational agility, or
the ability to more rapidly adapt a Federal organizatityt$s to meet their current requirements. An
organization’s requirements of IT might change over tioneafnumber of reasons including changes in
the mission, changes in organizational reporting requiranehanges.in the law, new technologies in
the commercial marketplace, attempts to combine diversesdatees to improve the organization’s
operational picture, and many other reasons. The largatge of an enterprise SOA is that once a
sufficient quantity of legacy-wrapped components exist,aar.accessible on the IP wide area network
(WAN), they can be re-connected more rapidly to solve nebigmts.

SOA's Beneficiaries Efforts that benefit the.Chief Information Officer81Q’s) enterprise, and look

good to the senior leadership team of an organization, do oess®ily benefit the small software
projects in an agency. Transitioning a'legacy applicationclude a set of Web Services, and putting the
services in place with a robust infrastructure of redungdxy? reliable servers with full support as well

as a service discovery mechanism is an expensive tgstfuig enabled by enterprise level

infrastructure efforts. If, as a result of creatingpad service, an individual project then picks up many
more consumers than it had previously, then clearly dlyet@day demands on the project’s IT
infrastructure increase. The common result of serviceess is higher local operational costs. At the
enterprise level, this is‘a benefit, because it meansrbige customers are reusing the same shared
services, instead of rebuilding them.

In summary, the local perspective of individual legacy ptsj&ill not justify an enterprise SOA effort,

but this should not be allowed to stop the enterprise 8@A occurring. The SOA benefits accrue
largely at the enterprise’s level in cost avoidanceugh reuse, and increased data exchange and agility.
Consequently, a corresponding investment is requirdeariterprise level, where the benefit is found.

Executive Summary - 3

Table of Contents

Introduction to Cross MITRE SOA INILIALIVEccammiiiiiiiiiiiiii e 1
EXE@CULIVE SUMIMAIYeeiii ittt e e e e e et e e e e et e e e eaa e e e nea e e e eaa e e e eta e e eeeaan e eeeennnnans 1
1.0 SOA — Value PrOPOSITION. .. .cceeee ettt e e e e e et e e e e e e e e e et e e e e et e e eeenneeeas 1
2.0 Drawing Parallels - Past IS ProlOgUE ..ot 5
G T L= 1] PR 8
4.0 SOA as an Enterprise Integration TEChNOIOGYcceuuiiiiiiiiiiiei et 12
5.0 ENterpris@ SOA SEANUAITS.ciiiiiiiiemmmmmm ettt e ettt e e e ereaa e e e e e senabr e e eeeeennnes 15
6.0 Where D0ES SOA BeSt APPIY? ..ottt e e e eeeennnes 17
7.0 SOA-DASEA AGIIILY ..ottt e et e e et e e e b e e et e e e a e e e eaa s 20
8.0 Reaping the BENEefitS OFf SOA ... e e et e e e et e e eaa s 23
S O ©o] 3 o] 18 11 o o [PSRRI 25
PN o] oL a0 QN o] 0])Y/ o - U SN 26
Yo (o [11T0] gt= L o T] (o IO =To || £ P SO P PP SUPPPPPPPTN 28

Introductory Service Oriented Architecture
(SOA) definitions and concepts can be found in

our paper “Overview Of The Service Model”. If
you are new to SOA, please begin there.

Table of Contents - 1

1.0 SOA — Value Proposition “After creating islands of automation through
Contemporary Issues for Federal IT Decision generations of technology, users and business
Makers Similar to the nation’s Fortune 500 managers are demanding that seamless bridges
leadership, today’s Federal leadership teams offefe built to join them.”— David Linthicum 2

find themselves facing significant IT investment
and portfolio challenges. They have inherited a computifngstructure that is often not uniform, and
whose technologies span the recent history of computing. Tiné&Btructures tend to have the
following characteristics:

» Diverse Environments: Mainframe systems, client/server systems, anditmerdtWeb-based
systems sit side by side, demanding operations and mamginesources from a technology
marketplace in which the cost of niche legacy technids slontinues to rise. The portfolio of
systems are generally written in a number of diffesarftware development languages such as
COBOL, Java, assembly, and ‘C’, requiring heterogenetaffisskill sets, and experience in a
variety of commercial products, some of which are sdlatlthey no longer offer support
licenses.

» Complex Business Logic: The systems often conform to a set of complex businessttagihas
developed over a number of years in response to evolvinig é&egarements, Congressional
reporting mandates, changes in contractor teams, andmefnt of business processes. While
some systems are new and robust, many are brittle antbhauatlify, relying on technical skills
not common in the marketplace that become increasingly mpengive. The maintenance tail
on these systems is surprisingly high and competes for resowith required new functionality.

* Inconsistent interfaces: Interfaces between systems have grown up
spontaneously without enterprise planning, over many yeat® interfaces
are the result of one-off negotiations between various pathe
organization, and have been designed using many varied tegiesaduring
the organization’s IT history, following no consistent degpattern. Recent
enterprise architecture efforts have documented thepeiseinterfaces in
diagrams that resemble a Rorschach inkblot test.

* Limited Sustainment Budgets: Even without the continuous downward pressure on IT budgets
brought by competing National requirements, and the viewThsttould be increasingly viewed
as a commodity, there are not enough budget resources anasources to recast the portfolio
of systems to be modern and robust in one action. “Accotdiagalysts at Forrester Research,
there are some 200 billion lines of Cobol, the most populaciegrogramming language, still in
use. Nor is it going away: maintenance and modificatiomsstalled software increase that
number by five billion lines a year. IBM meanwhile claitssCICS mainframe transaction
software handles more than 30 billion transactions perptagesses $1 trillion in transaction
values, and is used by 30 million peopleGiven budget constraints, an incremental approach
seems to be required.

SOA's Value PropositionService Oriented Architecture (SOA) builds on computefireeering

approaches of the past, to offer an architectural appfoaemterprise systems, oriented around the
offering of services on a network of consumers. A fafubis service oriented approach is on the
definition of service interfaces and predictable servitebers. A set of Industry standards, collectively
labeled “Web Service” standards in this paper, providdraptement the general SOA concept, and have

2 David Linthicum, “Enterprise Application Integration”, {ht/safari.oreilly.com/0201615835] November 12, 1999

% Loosely Coupled, David Longworth, “Service reuse unldikigen value”
[http://www.looselycoupled.com/stories/2003/reuse-ca0929.htrrezf. 2003

become the predominant set of practical tools used by estegrgineers for current SOA projects.
Some Web Service standards have become foundational aedvely adopted, while many are still
seeking broad industry or Government acceptance. An intioduo basic SOA concepts can be found
in Appendix A.

SOA, as implemented through the common Web Servicesastimaffers Federal senior leadership
teams a path forward, given the diverse and complex ITofiorthat they have inherited, allowing for
incremental and focused improvement of their IT suppotesys With thoughtful engineering and an
enterprise point of view, SOA offers positive benefits sasch

Language Neutral I ntegration — Web-enabling applications with a common browser interface
became a powerful tool during the 1990s. In the same waATdL defined a simple user
browser interface that almost all software applicatmmdd create, Web Services define a
programming interface available in almost all environtsieiThe HTML interface at the
presentation layer became ubiquitous because it was easate, being composed of ASCII
characters. Similarly, the foundational contemporagb\8ervices standards use XML, which
again is focused on the creation and consumption of detirACII text. The bottom line is that
regardless of the development language your systems useygt@ms can offer and invoke
services through a common mechanism.

The Rosetta Stone, an Egyptian artifact which wasungental in
advancing our translation of ancient writing, has textasie up of
three translations of a single passagehe Stone allowed translators
to understand text in unknown languages by utilizing languages th
knew. Contemporary Web Service standards provide a tRRose
Stone” across programming languages and software develbpmen
environments and can be leveraged for the purpose of enterprise
systems integration. The term Rosetta Stone has bedmmatic as
something that is a critical key to a process of traiosiaif a

difficult problem. SOA, as implemented through Web Servic
standards, provides a common enterprise integration techrnfology
the multiple computing environments, and languages that arise in
typical Federal IT portfolio. Enterprise integratioargtards and their use in a large SOA effort
are discussed further in Section 5.

Component Reuse — Given current Web Service technology, once an organiza®built a
software component and offered it as a service, th@f#se organization can then utilize that
service. Given proper service governance, including itemsasushrvice provider trust, service
security, and reliability, Web Services offer the potrfor aiding the more effective
management of an enterprise portfolio, allowing a capalbditye built well once and shared, in
contrast to sustaining redundant systems with many «faime capabilities (e.g., multiple
payroll, trouble ticket, or mapping systems in one orgamiaati Reuse, through the
implementation of enterprise service offerings, is furtliecussed in Section 3.

Organizational Agility — SOA defines building blocks of software capability in teoheffered
services that meet some portion of the organizationsiragents. These building blocks, once
defined and reliably operated, can be recombined and iteédgiapidly. Peter Fingar stated,
“Classes, systems, or subsystems that can be desigrexésable pieces. These pieces can then
be assembled to create various new applicationgility, the ability to more rapidly adapt a

* Wikipedia, “Rosetta Stone”, [http://en.wikipedia.org/wiki$etta_stone] 28 March 2008

® Peter Fingar et. al., “Next Generation Computingtritisted Objects for Business”, SIGS Books & Multimedia,
New York., 1996

Federal organization’s tools to meet their current requngés) can be enhanced by having well-
documented and understood interfaces and enterprise acesssiblare capabilities.
Organizational agility, as enhanced by a consisteetrgrise-scoped SOA, is discussed in
Section 7.

L everaging Existing Systems — One common use of SOA is to encapsulate elements or
functions of existing application systems and make thentedolaito the enterprise in a standard
agreed-upon way, leveraging the substantial investment pineadie. The most compelling
business case for SOA is often made regarding leveragstptfacy investment, enabling
integration between new and old systems components. Whecapawilities are built, they are
also designed to work within the chosen component model. @eesize and complexity of the
installed Federal application system base, being able toget value from these systems is a
key driver for SOA adoption. David Litwack writes, “@Imovement toward Web services will
be rooted not in the invention of radical new technology, butrattibe Internet-enabling and
re-purposing of the cumulative technology of more than 40 y@aganizations will continue to
use Java, mainframe and midrange systems, and Mictesbftologies as a foundation for
solutions of the future’”

The benefits mentioned above, however, accrue only as theoksaimprehensive engineering and a
meaningful architecture at the enterprise level. SOA service concept in no way eliminates the need
for strong software development practices, requirenteassd lifecycles, and an effective enterprise
architecture. While SOA done right offers valuable beneBi@A without structured processes and
governance will lead to traditional software system proble

Number of Systems Involved

) . Cross
Digitization Age Integration Enterprise
Age soA /)
Enterprise P
EAI With

Integration @ %%
wo |l g8z o0
Client Enabled P @ o @

Intel Server I (P G
8088 18 ¢ i@ . 7 %%%
— g a1 K sl o
T U

< D WAy N W,
[ITier | T 2Tier T T Multi-tiered

Smaller

i
<
@

Span of Attempted Integration

Figure 1.0-1 Integration isincreasing in scope and complexity

® Internet World Magazine, David Litwack, “Web Sensddas the Biggest Hype Machine Behind it of any
Technology Today. Here is Why You Should Be Excited Anyway
[http://iw.com/magazine.php?inc=060102/06.01.02ebusiness1.htiatje 2002

SOA — Why now?SOA and its implementing standards, such as the Weir&e standards, come to us
at a particular point in computing history. While severglikgprovements, such as language neutrality,
differentiate today’s Web Service technologies, there hasd&ng history of integrating technologies
with qualities analogous to Web Services, including & fiélstudy often referred to Enterprise
Application Integration (EAI). One of the key trends drivihg adoption of Web Services is the
increasing span of integration being attempted in orgéinizs today.Systems integration is increasing
both in complexity within organizations and across edeorganizations. We can expect this trend to
continue as we combine greater numbers of data soarpesvide higher value information. Ronan
Bradley writes, “ClOs often have difficulty in justifyy the substantial costs associated with integration
but, nevertheless, in order to deliver compelling solutionsigtomers or improve operational efficiency,
sooner or later an organization is faced with an integrahallenge.” Figure 1.0-1 above depicts a few
waypoints in the trend toward increasing systems integrabmplexity.

" GDS InfoCentre, Ronan Bradley, “Agile Infrastrucsire
[http://gdsinternational.com/infocentre/artsum.asp?mag=1k34& 50&art=25901&lang=en] 28 March 2008

2.0 Drawing Parallels - Past Is Prologue

Drawing Parallels — Past is Prologue
During the 1970s electronics engineers What can we learn from the Integrated Circuit (IC)
experienced an architectural and design revolution of the 1970s? How can component-based
revolution with the introduction of architectures change the approach of an entire industry?
practical, inexpensive, and ubiquitous
Integrated Circuits (ICs). This revolution in the desijcomplex hardware systems is informative for
contemporary software professionals now charged with buileleyprise software systems using the
latest technologies of Web Services in the context of SOAs.

Like SOA, the IC revolution was fundamentally a distributed,
multi-team, component-based approach to building larger systems
Through the commercial market place, corporations built
components for use by engineering teams distributed around the
world. Teams of engineers created building blocks indha bf

IC components that could then be described, procuredeasdd.

Like software services, every IC chip has a defined iaerf The

IC interface is described in several ways. Firg,dhip has a

defined function — a predictable behavior that can be described and psostaee value for the

consumer. Next the physical dimensions of the chip are eatede For example, the number and shape
of pins is specified. Further, the electronic signaltimging, and voltages across the pins are specified.
All these characteristics make up the tohéér face definition for the IC. Of course, software services

do not have an identical physical definition, but an analogosept of a comprehensive interface
definition is still viable. Effective software componenisogpossess a predictable and definable
behavior.

Introducing and using ICs included the following considerations:

* Who Pays?: Building an IC chip the first time requires a large exptemeiof resources and
capital. The team who builds the IC spends considerable cesoufhe teams who reuse an IC,
instead of rebuilding them, save considerable time and sgpeh chip might take $500K dollars
to build the first time, and might be available for reinse commercial catalog for $3.99. The
creation of the chip the first time involves many time-corisgreteps including requirements
analysis, behavior definition, design layout, photolithograplsying packaging, manufacturing
and marketingy The team who gets to reuse the chip instead of rdibgiit, saves both time
and dollars. At the time, designs of over 100,000 transistere reported as requiring hundreds
of staff-years to produce manudlly

* Generic Or Specialty Components?: Given the amount of investment required to build a chip,
designs were purposely scoped to be generic or specificpaiticular market segments and
consumer audiences in mind. Some chips only worked forspagific problem domains, such
as audio analysis. Some were very generic and intendexused broadly, like a logic
multiplexer. The bigger the market, and the greater thenipamitéor reuse, the easier it was for a
manufacturer to amortize costs against a broader tessdting in lower costs per instance.

* Increased Potential Design Scope: By combining existing chips into larger assemblies, an
engineer could quickly leverage the power of hundreds of thosisdrichnsistors. In this way,

8 Intel, “How Chips Are Made”, [http://www.intel.com/eduitat/makingchips/preparation.htm] 28 March 2008

° Design World, Electronic Design, C. Panasuk, “Sili@mpilers Make Sweeping Changes in the VLSI”, Sep 20
1984, pp. 67-74.

IC reuse expanded the reach of the average engineer, allowieggiiheer to leverage resources
and dollars spent far in excess of the local project budget.

» Design Granularity: The designer of an IC had to decide how much logic teptaa chip to
make the chip most effective on the marketplace. Shouldesigner create many smaller
function chips, or fewer larger function chips? Familiestops were often built with the
intention of their functions being used as a set, not ualikeary of software functions. Often
these families of chips had similar interface designsh as consistent signal voltages.

» Speed of Integration: As designers became familiar with the details of comparfésrings,
and by leveraging pre-built functions, the speed at whiciméegrated” product, built of many
components, could come to market was substantially increased

» Catalogs. When the collection of potential ICs offered becamgeacatalogs of components
were then created, and classification systems fopooents were established. Catalogs often
had a combination of sales and definitive technical infdonatThe catalogs often had to point
to more detailed resources for the technical audienceththasold components to.

* Testing: Technical documents defined the expected behavior of@Gmponents were tested
by both the manufacturer and the marketplace. Anomalous bebaviGs became noted in
errata in technical specifications.

» Engineering support: IC vendors offered advanced technical labor support to customthe
form of Application Engineer’s and other technical stafelgihg customers use the products
fundamentally supported product sales.

* Valuechains: Value chains consume raw components and produce mopesoivalue added
offerings. ICs enabled value chains to be createsléctions of chips became circuit boards,
and collections of circuit boards became products.

* Innovation: ICs were put together in ways not anticipated by theigdess. Teams who
designed chips could not foretell all the possible uses aftips over the years. Componentized
logic allowed engineers to create innovative solutions beyond itfieadrvision of component
builders.

Did it work? One might ask, “Were electrical engineers successthlthis component-based
approach?” Certainly the marketplace was populated leyyalarge number of offerings based in some
part on ICs. Certainly many fortunes and value chaime wreated. The cost effectiveness of the reuse
approach was validated by the fact that it became tldopmieant approach of the electronics industry.
In short, electronic offerings of the time could notdoét to market

prices if each chip, specification, module, or componentdheé re-

fabricated on each project. Reuse, through component-based

methods, enabled by new technologies, led this revolution. théet

transformation took a decade to occur.

SOA Analogy In many ways the IC chip revolution described above

is analogous to the effort underway with Web Services today.

Clearly Web Service components have analogous interfaces

definitions, and defined and documented behaviors that previtie benefit to a potential consumer.
One can also reasonably expect that the team produciigeth&ervice will incur substantial expenses
that consumers of the service will not. For examplgh reliability requirements for the operation of a
service and its server and network infrastructure cannasvacost driver for the provider. Historically,
designing software for reuse generally drives the cost ugdmta of 1.2 to 2.0 and this may be an

additional cost driver for a provid&t. To continue the analogy, collections of service offeraugs
becoming sufficiently large to require some librarian fiorcto organize, catalog and describe the
components. While many SOA projects use Universal DesmjdDiscovery, and Integration (UDDI)
for this purpose, other reasonable options exist. Enterptisgration engineers are realizing the ability
to more rapidly combine network-based service offeringsaamelv paradigm, sometimes referred to a
“mashup”, is demonstrating the speed at which integrammow occut® Value chains of data
integration are already occurring the in marketplacelat integrator can ingest the product of multiple
services and produce a service with correlated dateeafagrvalue. Finally, it is also safe to say that
service providers may be surprised at how their servicestggtated over time and they may be part of
larger integration that they could not have foreseeimduhe original design. (Also note that this same
component-based approach is now being examined for geneticasvarddl. The same interface
definition, behavior, cataloging and reuse discussions arentlyroccurring, creating a new genetic sub-
field known assynthetic genetic8) In summary, many aspects of the current SOA effotksvi similar
component-based patterns, and many of the benefits rehistedcally by the IC revolution, will be
potentially realized by SOA efforts.

10 Jeffery Poulin, “Measuring Software Reuse”, Addisorsi&f 1997
1 programmable Web, “Mashup Dashboard”, [http://www.prograbieweb.com/mashups] 28 March 2008

12 |nternational Genetically Engineered Machine Competil GEM), “Registry of Standard Biological Parts”,
[http://parts.mit.edu/registry/index.php/Main_Page] 28 M&0608

3.0 Reuse

Historic Source Code Reus®uring the 1980s
many organizations, including the Department of Reuse is a critical characteristic of the SOA value
Defense (DoD), attempted to reuse source codg proposition for a large organization, but we have
modules with very little success. For example, to be careful how we characterize reuse.
during the DoD’s focus on the Ada language,
programs were established to reuse Ada language functidnzacedures across projetisThe basic
reuse premise outlines a process where a producer ofce smagte module would post the source code to
a common shared area along with a description of its pugpakiés input and output dati. At that

point, staff from another project would find the code modibeynload it, and decide to invokdatally

in their source code, and actually compile it into thagal libraries and system executables. As an
example, thé\da Quality and Styl&uidestates that, “One of the design goals of Ada was itée the
creation and use of reusable parts to improve productivitythi$@nd, Ada provides features to develop
reusable parts and to adapt them once they are avaitatif@r exampleProject Amight create a high
quality sorting function, anBroject Bcould then compile that function into their own software
application.

Though well intentioned, the actual discovery and reudecodurce code modules did not happen on a
large scale in practice. Reasons given for the lac&ufe at the time included: lack of trust of mission-
central requirements to an external producer of the scod® failure to show a benefit to the contractor
“reuser” implementing later systems, inadequate descrgptbthe behavior of a module to be reused,
and inadequate testing of all the possible outcomes of ddalmto be reused. All in all, the barriers to
reuse were high.

Service ReuseThe danger in describing the use of services as “reugbgtishe reader will assume we
mean the source code reuse model of the 1980s described aboden'Weén fact, the nature of service
reuse is closer to the model of the reuse of Integratedi@i (ICs) by electrical engineers described in
Section 2, though still having common issues of trusinddfbehavior, and expected performance. In
plain terms, reuse in the service context memns ebuilding a service, but rather the using again, or
invoking, of a service built by someone else.

The enterprise as a whole saves resources every timgeet glecides to reuse a current software service,
rather than creating redundant services based on sumidlrlying requirements, and adding to an
agency’s maintenance portfolio. Since a system’s mzant= costs often exceed the cost to build them,
over their lifetime, the enterprise saves not only in the dpweént and establishment cost of a new
service but also in the twenty plus year maintenance costlerservice’s lifecycle. One web vendor
stated, “Web services reuse is everything: on top of therroagt savings., reuse means there are fewer
services to maintain and triage. So reuse generates savargl frequency of use drives value in the
organization.*” However, we should not assume a straight-line savirtgs,ewunning one service is
exactly half as costly as running two services, becteseost of running a service is also impacted by
the number of service consumers. Consolidation can thakemaining service more popular, with a
greater demand on resources.

13 Department of Defense, Ada Joint Program Office, “A8aQuality and Style Guide”,
[http://www.adaic.com/docs/95style/html/sec_8/] 28 March 2008

14 Boehm, B.W., et at. "An environment for improvindta@re productivity.” Computer, June 1984.
15 Ada Joint Program Office
'8 Traez, Will. "Software Reuse: Motivators and Inhikstt proceedings of COMPCON S'87, 1987.

" Progress Actional, “Web Services and Reuse” [http:ivagtional.com/resources/whitepapers/SOA-Worst-
Practices-Vol-1/Web-Services-Reuse.html] 28 March 2008

Reuse of a service differs from source code reuse i
that the external service is called from across the “Certainly if you were measuring SOA
network and is not compiled into local system libraries success, and you should of course, then an
or local executables. The provider of the service obvious measure is service reuse.” National
continues to operate, monitor, and upgrade the service Practice Director for SOA, Perficient, Inc.19
as appropriate. Thanks to the benefits of

contemporary Web Service technologies, the external reusadesean: be in another software
language, use a completely foreign multi-tiered or singted machine architecture, be updated at any
time with a logic or patch modification by the servicevwler, represent 5 lines of Java, or 5 million
lines of COBOL, or be mostly composed of a legacy systeitten twenty years ago. In these ways
service reuse is very different from source code reuse giiste

Some aspects of reuse remain unchanged. The consurner of t
service still needs to trust the reliability and comess of the
producer’s service. The consumer must be able to find the
service and have adequate documentation accurately describing
the behavior and interface of the service. Performahiteo
service is still key. ZDnet stated, “Converging trends and
business necessity — above and beyond the SOA "vision" itself
— may help drive, or even force, reuse. SOA is not springing
from a vacuum, or even from the minds of starry-eyed idsalist
It's becoming a necessary way of doing business, of dispersing
technology solutions as cost-effectively as possible. Andnatély, providing businesses new avenues
for agility, freeing up processes from rigid systeths”

Mature SOAs should measure reuse as part of a periadfolipomanagement assessméhtActional
wrote, “Reuse is not only a key benefit of SOA, but atsuething that you can quantify. You can
measure how many times a service is being used and howpr@r@gses it is supporting, thus the
number of items being reused. This enables you to neetigivalue of the service. With a little work,
you can calculate the service cost savings for eadmicstof reuse, including saved architecture and
design time, saved development time, and saved testingfinfie assessment of reuse can be
effectively integrated into the information repositaged for service discovery in the organization, the
enterprise catalog. Since changes to a service onentill require that the service’s consumers be
remembered and notified, it is a small step furtheutmtify the current consumers for a service for the
purposes of portfolio management and reuse assessment.

18 7Dnet, Joe McKendrick, “Pouring cold water on SOA ‘reusantra” http://blogs.zdnet.com/service-

oriented/?p=69930 August 2006

19 Eric Roch, “SOA Service Reuse” [http://blogs.ittoolmmm/eai/business/archives/SOA-Service-Reuse—14699]
28 March 2008

20 progress Actional, “Web Services and Reuse” [http:iivagtional.com/resources/whitepapers/SOA-Worst-
Practices-Vol-1/Web-Services-Reuse.html] 28 March 2008

Reuse CostBarry Boehm provided two useful formulas when estimatiegcbsts of software systems
reuse. One formula is from the provider’s point of viewjlevthe other is from the consumef's.

Provider focused formula:

Cost of Developing

Relative Cost Resuable Asset
Of Writing For Reuse =
(RCWR) Cost of Developing

Single-Use Asset
Consumer’s formula:

Relative Cost _ Cost To Reuse Asset
of Reuse (RCR) ~

Cost To Develop Asset
From Scratch

In Measuring Software Reus#effery Paulin examined systems to estimate the vahges for these
formulas in practicé® Paulin’s values are based on the historic context of smade reuse and

therefore may not fully apply to software services, but atlsreno better numbers are available in a
SOA context. RCWR ranges between 1.2 and 2.0, while R@ges between .03 and .40 with a median
of .20. In other words, Paulin’s work suggests that icrg@t generic reusable software component for a
broad audience takes more resources (20% to 100% more)#ading a less generic point solution. The
cost of reuse therefore, shifts to the providers, and lierled consumers. We can see from these
formulas that as the enterprise decides to fund sepvaseders, there is great benefit in maximizing the
number of consumers for an operational service.

Acquiring ReuseMany of the current trends in performance-based

contracting sponsored by the incumbent administration wetkwith

the acquisition of SOA services. For example, OfficBlahagement

and Budget (OMB), performance-based service contrad®B&C) is

true to the underlying spirit and architecture of an SOArsise,

which focuses on the result of the service, not on specifnng

implementation or “how” the service’s work is to be doAes. a

consumer of an SOA service we care most about the esrunterface

and its performance characteristics. Similarly, EB$so focuses on

the performance characteristics of the vendor’s servitteet@overnment. OMB states, “The key
elements of a PBSC Performance Work Statement (PYéSa atatement of the required services in
terms ofozLétput; ameasur able per for mance standar d for the output; and an acceptaglslity level
(AQL)...”

OMB writes, “Performance-based contracting methodsnéeaded to ensure that required performance
quality levels are achieved and that total paymentasee to the degree that services performed meet
contract standards® The key is that service outcomes are to be measureekagdtations are defined.
OMB states further, “The definitions of standard perforogamaximum positive and negative
performance incentives, and the units of measurementdshewdstablished in the solicitation.” Both
these ideas have a parallel in an SOA service. As @&se¥ice provider, one carefully defines the

2 Barry Boehm, DARPA Workshop, “Software Reuse Econonftesp://sunset.usc.edu/GSAW/gsaw99/pdf-
presentations/breakout-2/boehm.pdf] 14 January 1997

22 Jeffery Poulin, “Measuring Software Reuse”, Addisorsiélg 1997

% Office of Management and Budget, Office of Federal ProcengniPolicy Performance-Based Service
Acquisition”, [http://mww.whitehouse.gov/omb/procurement/0703ppsd July 2003

24 |bid.

10

offering to the enterprise. Service performance requants drive the quantity of underlying
infrastructure run by the service provider and therefore thiv@rovider’s cost. If a contract is crafted to
provide an SOA service to the enterprise, the expectetasdevels will drive the estimated cost of the
service and should be considered carefully.

Reuse of services on an enterprise scale is a tear) efiblGovernment leadership has a singular
responsibility to strategically guide enterprise IT expemdg. Planned acquisitions must match the
overall portfolio goals of the organization and many omgtions are establishing review boards for this
purpose. If a service is meant to be reused as a coewngronent for a series of programs or projects,
contract language and incentives must be explicitly orgdrazound that goal. Good will or positive
intentions are not sufficient. Portfolio managemeit scarce resources will demand that Government
staff reign in desires of contractors or even projennieto create redundant systems and services. The
Government must establish processes and organizations $e assleenforce prohibitions against the
creation of redundant capability. This requires bothri@al skills to understand potential architectural
solutions and contracting skills to structure existing Fadsrquisition Regulation (FAR)-based
contracting tools with appropriate objective-driven languaggerihe trend for the expansion of
attempted integration as described in Section 1.0, redapds IT capability will only become more
visible over time.

11

4.0 SOA as an Enterprise Integration Technology

Enterprise Application Integration (EAI) is a field
of study in computer science that focuses on thg Web Services, as a set of implementing standards
integration of “systems of systems” and enterprise for SOA, offer new value to the engineer
applications. Wikipedia states that, “EAl is a attempting large-scale application integration.
response to decades of creating distributed
monolithic, single purpose applications leveraging a hodgepodge afrpiathnd development
approaches. Attending to EAI involves looking at the systiesysiems, which involves large scale
inter-disciplinary problems with multiple, heterogeneousridisted systems that are embedded in
networks at multiple levels’® With the span of attempted systems integration atedstaring
continually increasing in large organizations as discuiss8éction 1.0, the EAI engineering discipline
has become increasingly central to senior leadership teamaging portfolios of applications.

The fundamental EAI tenets are based on traditional acétengineering methods, though the scale is
often considerably larger. While the traditional sofeveoder focused on the parameters that would be
sent to, and received from, a function or procedure, fieeBgineer focuses on the parameters that are
exchanged with an entire system. The traditional cotight have been writing one hundred source lines
of code (SLOC) for a function, while the EAIl engineer mightnvoking a system with a million SLOC,
and several tiers of hardware for operational impleéatem. However, the overall request/response
pattern is the same, and the logic issues like error recawest still be handled gracefully in either case.

Overall, the EAI engineer is looking for the following charast&s in an enterprise integration solution:

« Open Architecture - An open architecture, independent of underlying programfaimguages,
and application platforms. The architecture should foous o
allowing systems to communicate in a loosely coupled dashi
allowing any application or system to map its own internal
architecture to well defined external interfaces. RdBeadley
writes, “It is with the introduction of ‘loosely coupled’chuitectures
that SOA has emerged as a truly viable means of delivietsigess
and IT agility. In a loosely coupled system, eachise simply
presents a standard interface to a common infrastru¢cha&OA
itself). Implementation is hidden behind this interfacel as a consequence services can be
swapped, adapted or reconfigured at will — hence the teselipooupled; there is no tight link
between the service implementation and the client reqgestat service®

« Layered Model - Use of a layered model, with hierarchy and moduldatgupport the
composition of smaller services in the creation of gdaand more fully functional service. The
invocation of one service may lead to the invocation ofratbevices that execute parts of the
larger service request.

» Exploit COTS Standar ds - Maximize use of current and emerging commercial-off-thé-she
(COTS) standards, technologies, and products. Minimizemigation and modification of
commercial products and focus research and developmentyaati unique organization
missions and requirements. Services should be desigttedhinimal dependence on vendor
proprietary implementations.

% Wikipedia, “Enterprise Application Integration”, [httpmevikipedia.org/wiki/Enterprise_application_integration]
28 March 2008

% GDS InfoCentre, Ronan Bradley, “Agile Infrastrucsire
[http://gdsinternational.com/infocentre/artsum.asp?mag=1k34& 50&art=25901&lang=en]

12

» Scaleto global proportions — The architecture of the EAIl integration layer needsufport
graceful scaling to larger implementations with inceebservice capacity.

* End-to-End management - Services must be manageable, both in terms of theistatus and
performance, and in their interactions with other seszicUsing contemporary virtualization best
practices, they should provide the means to be create@tepeand deployed in response to
demand and operational needs.

* Accommodate heterogeneity - Services must accommodate different development models,
languages, components, etc. Anne Manes wrote of Web Sef\libedjrst and most obvious
bell ringer is the need to connect applications from incompaibl@onments, such as Windows
and UNIX, or .NET and J2EE. Web services support heterogeimgegsation. They support
any programming language on any platform. One thing thatisydarly useful about Web
services is that you can use any Web services clientoamvént to talk to any Web services
server environment:®

» Accommodate continual asynchronous change - The scope of the IT infrastructure for large
organizations ensures that there will always be charggesrang in some services. It will not be
feasible to synchronize service changes and still remsgonsive to changing user needs.
Modifications to one service must not break the connectioath& applications. It is unlikely
that releases of new service builds will be coordinatedss service providers. Of course, there
will be a good deal of coordination between service provigedstheir current list of consumers.

» Allow decentralized operations and management - There will be many service providers in a
large organization. An enterprise solution should supportdédarand interaction among the
different parts comprising an end-to-end service offering.

* Integrated, layered security - applications require a robust security framework that
accommodates the full spectrum of security services indualithentication, authorization,
integrity, confidentiality, and accountability.

SOA can be considered another important step in a 30-ystaryhof EAl technologies. “SOA
eliminates the traditional “spaghetti” architecturet ttemuires many interconnected systems to solve a
single problem® SOA'’s ability to run logic and functions from acrosseawork is not new. Recent
examples include Enterprise JavaBeans (EJB) by Suro8§stems Inc. and Common Object Request
Broker Architecture (CORBA) by the Object Management Gr@gmponent Object Model (COM),
Distributed Component Object Model (DCOM) and .NET from therdoft Corporation. The various
methods have differed in the ease with which integraitnd occur from a programmer’s point of view,
the methods for conveying runtime errors, ports required tpbe on a network, the quantity of
enterprise equipment to operate, and general design appsot fault tolerance when failures occur.

SOA as an integration concept, and Web Services ahisgtlementing standards, offer something
new to the EAI engineer. First and foremost, as destiib8ection 1.0, SOA Web Service
implementations offer a language neutral, platform neuotealins to connect services and systems. DM
Review stated, “SOA provides the key to unlocking integmatby providing an enterprise-wide
architectural approach to bridging applications and promaetisef of standards for rich interoperability.

27 Computer World, Anne Thomas Manes, “When to Use Webi@st",
[http://www.computerworld.com/printthis/2004/0,4814,94886,00.htmljagust 2004

28 Ebiz, Dr. Chris Harding, “Achieving Business Agility tugh Model-Driven SOA”
[http://www.ebizq.net/topics/soa/features/6639.html] 29 4danA006

13

It's only a matter of time before this flexible waytloinking about applications makes integration
technology a natural, fundamental aspect of IT infrastrattr

Web Services also ease a significant enterprise irttegrehallenge by utilizing common

communications ports for integration. Individual Web Sews/exe accessed through web servers, a
common element in contemporary IT infrastructures. Thepk@yt here is that the ports and protocols to
access web servers are usually already defined (e.g. pdiiB®), and open across an organization, both
in policy and implementation. This means that thenédés and access control points are more likely to
be friendly to this type of data exchange, as compared tosuggthat an organization open up a whole
new set of ports and protocols for integration.

29 DM Review, Integration Consortium, “Integration Evehave — How SOA is Altering the Direction of EAI -
Thoughts from the EAIl Consortium” [http://www.dmrevieana/news/8229-1.html] 4 March 2004

14

5.0 Enterprise SOA Standards

The Need For Enterprise StandardSOA
programs are most often enterprise level
endeavors involving “teams of teams” who contre

SOA is currently implemented through a complex

set of sometimes overlapping standards, each
supported by different large Industry partners.

“systems of systems”. Personnel experience ranges fpents in the organization’s data sources and
legacy systems, to EAIl engineer’s with expertise igdascale integration. Often teams in large
enterprises are physically dispersed. This makes tligy abicommunicate the design and architecture
specifications of a component an important organizaticaability.

In this context, where many components are being simultaneously
developed by individual teams, it becomes critical forinbterface

of a provider’s service to match up to the call of asconer.

Similarly, it helps everyone involved if the interfaces asros
services have some commonality in structure and access
mechanisms. The worst case would be a situation where
programmer teams had to have one-on-one personal meetings to
understand interface designs with service providers eveey tim
they wanted to invoke a new service. In that situatioifityagyill

slow to the speed of organizational dynamics, instead ciitbed

of coding and testing processes. Choosing and communieatiogprehensive set of enterprise
standards is a good approach to aid in enterprise S@gration.

Example Enterprise Standard€nterprise standards to support SOA fall into sewg@aéral categories
and a typical enterprise set might look like the following:

3

Web Services Related

URI Uniform Resource Identifier (URI): Generic Syntdanuary 2005.

WSDL Web Services Description Language (WSDL) 1.1, W3@NBb March 2001.

SOAP Simple Object Access Protocol (SOAP) 1.1, W3G@&Ns&May 2000

HTTP Hypertext Transfer Protocol (HTTP) 1.1, June 1989 FIRFC 2616

Networ k/Networ k M anagement Related

TCP Transmission Control Protocol (TCP), SeptemB8&A1LIETF Standard 7/RFC 793

IP Internet Protocol (IP), September 1981. IETF Stan8Savidh RFC's
791/950/919/922/792/1112

SNMP Simple Network Management Protocol (SNMP), May 19€1.FIStandard
15/RFC 1157

Security Related

SAML v2.0 SAML 2.0 OASIS Assertions and Protocols far @ASIS Security Assertion
Markup Language (SAML) V2.0, OASIS Standard, 15 March 2005

PKI X.509 Public Key Infrastructure Certificate

PKI CRL X.509 Public Key Infrastructure Certificate a@drtificate Revocation List (CRL)
Profile, April 2002. IETF RFC 3280.

WS-Security Web Services Security: SOAP Message Sedu@it(\WS-Security 2004), OASIS
Standard, March 2004

SSL v3.0 Secure Sockets Layer (SSL) Version 3.0

XACML eXtensible Access Control Markup Language (XACMIgrsion 2.0, OASIS
Standard, 1 February 2005

OCSP Online Certificate Status Protocol (OCSP), RE@D2June 1999

Registry/Directory

UDDI v3.0.2 Universal Description, Discovery, and Integnati/ersion 3.0.2 OASIS UDDI
Spec, Dated 2004-Oct-19

LDAP v3.0 Lightweight Directory Access Protocol (v3): hatal Specification;

September 2002

15

Data Standar ds

XML Extensible Markup Language (XML) 1.0 (Third Edition),3®@ Recommendation
04 February 2004

XSLT XSL Transformations (XSLT) Version 2.0, W3C W Draft 4 April 2005

XPath XML Path Language (XPath) 2.0, W3C Recommendatiqala@@ary 2007

Syndication
RSS v2.0 | Really Simple Syndication (RSS) Version 2.0
Presentation Related

HTML HTML 4.01 Specification, W3C Recommendation, revisedDa¢ 1999

CSS CSS2:1998 Cascading Style Sheets, level 2 CSS2 SyjemifiaV3C
Recommendation 12 May 1998

WSRP WSRP OASIS; OASIS Web Services for Remotdd@siSpecification, August
2003

JSR-168 JSR-168; Java Specification Request (JSR) JSR-168t Bpettification API,

Final Release ballot, Version 1.0, 06 October 2003

The Current State of Web Service Standards this time, despite the few selected in the tabteva,
Web Service standards as a whole remain in flux. Infa€@syr“A flurry of protocols, collectively
named WS*, have also been introduced as extensionsAB $d in some cases WSDL) to facilitate

specific communication requirements and scenarios. dtegaries of WS* are broad, and it has reached
a point where the sheer number of standards is sothegatespite a core set being implemented in many

platforms, many in the web service community are confuledtavhich standards they should care
about, when and why*® Consequently, while it is a valuable effort to sekegroup of standards for

enterprise integration as shown in the table above, weseaonably expect many revisions to this list in

the next five years. These revisions will ripple throughctiTamunity of service providers that work to
comply with selected enterprise standards and thei@asisvill have attendant development costs.

% InfoQ, Michele Leroux Bustamante, “Making Sense bftese Crazy Web Service Standards”,
[http://www.infog.com/articles/ws-standards-wcf-bustamef 16 May 2007

16

6.0 Where Does SOA Best Apply?

The Web Service technologies commonly used
today to implement SOA concepts have certain| ‘You want to be cautious when trying to use Web
design presumptions. They work best when the| services in situations with stringent requirements
underlying network is robust, reliable, and for real-time performance.” Anne Thomas Manes *
available. Web Service standards have becomd
area of focus at this point in computing history becausenibw conceivable to trust corporate networks
in the continental United States to the task of runninwte services with reasonable success.
Fundamentally, Web Services allow the programmer to invoke cwtegplication logic across the
network, with input and output information. If the applioatunder development is central to the
mission of the organization, the network has to be suffi¢cgefacilitate communication between the
service provider and consumer. This is not to say thatlefigiency in the underlying network can not

be compensated for by thoughtful engineering and the usendistaqueuing and buffering
communications methods. However, these approaches andrdtdedmn patterns to compensate for the
underlying network will take a project further from the maiesin commercial implementations of Web
Services. Several Federal projects work in environmentsevtherunderlying network is not on par with
the CONUS corporate Internet, and those projects asgugater risk in diverging from mainstream
standards in order to implement SOA. Web Services asaumasonable network.

Unreliable or Low-Bandwidth Networks There are several
characteristics that are important to defining the guafithe
underlying network. The network can fail a Web Service
implementation for several reasons such as, but noetinat

* Bandwidth - Insufficient bandwidth to carry the large (and
often inefficient) XML payloads between service provider
and consumer within desired performance requirements

* Rdiability — Network components that lose a sufficient
portion of the IP packets between a service provider and censanthat performance
requirements are not met

* Intermittent Communications — Sporadic communication between the service provider and
consumer that turns what might have been a rapid rémgsgginse pair into a form of buffered
asynchronous communications

In these cases compensating software designs can beptatérto make up for the deficiencies in the
underlying networks. Traditional methods to compensate far gummunications include extra error
checking and error recovery logic, including the ability toaresmit messages or parts of messages when
needed, and the ability to queue communications in buffaricigtectures until one of the parties can
attend to it. For example, a Web server offering stanidaiP on port 80 out of the box will not

perform all these compensating functions. These desidjrtake the engineer further from the common
commercial implementations of Web Services and make thecappi of COTS products less likely. In
some extreme environments, such as the forward edge of afietdtleliverging from commercial
products will be required and that alone should not stogmies from being service oriented. However,
we must recognize that as the software system becosseldsed on industry standard approaches and
patterns, and becomes more of a one-off custom desigrosdiatione problem space, the risk profile
for the project changes.

High Reliability Requirements However, it's not just the extreme network cases in wileb Services
offer some concern. Mary Brandel astutely points out tB&fore mission-critical Web services

17

applications enter the mainstream, reliable messagindavit to become less complex and costlyAs
discussed in Section 4.0, Web Services are being usedrgsgunation tool by many organizations, and
consequently they are being directly compared to many exisighdy robust integration tools. For
example, integration brokers are used in the banking indwstrgnsfer large sums of money. This is an
area where the software can not get it wrong, and constigtiee capabilities for assured delivery and
non-repudiation are mature. There are ongoing attempts by Isefivitra Web Services standards bodies
to replicate these capabilities in standards that tepe broadly adopted by industry. It is safe to say
that given current Web Service implementations, very regability delivery mechanisms are not
sufficient. Of course, as was mentioned in the netwatugsion, thoughtful engineering can
compensate for these issues, but the solutions become norrdtanda

Real-time Processing Requirement§iven the state of contemporary Web Service technologggs, re
time processing is a significant challenge. Thereeavreral performance issues with Web Services and
the underlying premise of running services across a netwatorfance challenges can include the
marshalling of XML data, network propagation delaysl te underlying security design pattern
especially in the area of services calling serviceseorice chaining. And while the definition of “real-
time” can vary, the problems outlined below affect mésdses of real-time systems.

For example, several large-scale projects have repitidethe marshalling of data, both in and out of
Web Service calls, and rendering XML is a low-performaantevity.** Converting organically binary
data into ASCII formats for inclusion in XML, is prdiiiively slow for many real-time applications. Ann
Manes writes, “XML is tremendously versatile, but ittishe most compact or efficient mechanism for
transferring data. A SOAP message is much bigger tikamparable native binary message used with
RPC, RMI, CORBA, or DCOM. It also takes a lot mtiree to process an XML message than a binary
message. Even with the best-performing implementat®@&P messaging can take 10 to 20 times
longer than RMI or DCOM

oooo:o:oooo

Service Firewall Router Switches Router Firewall Consumer
Provider

Web Service technologies share challenges that have existgebfs with large distributed systems. On
a contemporary IP network, the distance from a sepviceider to a service consumer is measured in
“hops”. As shown in the inset figure, at each hop tinspent performing some action on a packet, such
as routing it, or inspecting its contents. Some hopfaatglow latency) such as switches, while some
hops are very slow (high latency) such as firewalls watiitent checking rules. Thirty or more hops
would not be unusual for a typical packet. In total theges add up to some network propagation delay
from the point of view of the service level software. Thenber and types of hops from the provider to
the consumer directly affects perceived performance afeéhdce.

31 Computer World, Mary Brandel, “Message Received? Comgdni require highly reliable Web services are
building in their own guarantees”
[http://lwww.computerworld.com/action/article.do?commavidwArticleTOC&specialReportld=620&articleld=95
221]

32 pushToTest, Frank Cohen, “Discover SOAP encoding's impadteb service performance”
[http://www.ibm.com/developerworks/webservices/librars/soapenc/] 1 March 2003

33 Computer World, Anne Thomas Manes, “When to Use Webi@st",
[http://www.computerworld.com/printthis/2004/0,4814,94886,00.htmljagust 2004

18

Even though the service provider often can not control the YAfide Network (WAN), the ability to
effectively run a service is impacted by the service pro@decation on the network topology. In the
commercial world service providers pay extra fees to hest $ervers a minimum number of hops off of
the main IP exchange points on the Internet. Finally,@ssider that the IP-based Internet is
dynamically routed. This means that from moment to monaewl day to day, the path that the IP packet
must take will change. For all these reasons, runninicesracross a network can be risky for real-time
applications.

An often overlooked point is that performance of each seqiovider is localized and unknown to the
consumer, moment to moment. For example, some world

event may cause thousands of end-users to start their

browsers and cause a particular service to be launched.

All these service calls will come into the same sersice

about the same time. Each end-user does not know that

the same query might run a hundred times faster alhemnot

moment, but due to resource contention, the response will

be momentarily poor. In this sense, the consumer does not

know, moment to moment, the status of the provider.

There are local and global load balancing approacheseihvétes providers put in place to compensate for
this issue, but overall it is another reason why perfon@dor real-time applications can be
unpredictable.

Security designs can induce significant performance delagsexample, if a service access requires PKI
validation, then a set of information exchanges must deetween the provider and a credential holder.
Each of these exchanges occurs in the context of a dynammatéd, multi-hop packet exchange as
described previously. In some enterprise designs, a s@ailing a service (service chaining) can

initiate the same security information exchange. Maay-time applications could not successfully
operate given the time required for all these secuxithanges.

Performance implications, such as those discussed abgagtithe design approach to services. For
example, if the overhead to invoke a service across the neisvsukstantial, between getting the data to
the service, and consulting security, then it might maksesenhave the service do more once it is
running. This is the basic discussion of service granulaBtyuld you have a few bigger services or
many little services?

19

7.0 SOA-based Agility

When we discuss “agility” as it relates to
SOA, we are often referring to organizationa “The fact of the matter is that the core benefit of SOA
agility, or the ability to more rapidly adapt a | is agility. If you have agility, then you have the ability
Federal organization’s tools to meet their to change the architecture as the business needs
current requirements. SOA World magazing changes.” — David Linthicum, EAI expert 35
explains, “The goal of IT is to put valuable
systems in front of our users in a timely manner. Deptpgimd redeploying in a short time frame is
essential to achieving agility™ The organization’s requirements of IT might change owee for a
number of reasons including changes in the mission, changeganizational reporting requirements,
changes in the law, new technologies in the commercial npdakef attempts to combine diverse data
sources to improve the organization’s operational pictudenamny other reasons. Advocates of SOA
assert that, as compared to previous enterprise intagtathnologies, Web Services offer a more agile
mann(zgsof interconnecting systems, and improve an organizaaibitity to re-tool IT to support

change:

Agility is most effectively discussed as a spectrum, roiefalse boolean value, and it can be assessed
as change over a period of time. @A Infrastructure Blogecently stated, “Efficiency is optimizing

for the known. Agility is optimizing for the unknown (i.e. opiing your future efficiency)*® Many of

the IT requirements an organization will fulfill in thexheecade, are not known at this time. Also
consider that systems have a habit of living on for much tathg@ their original creators anticipate.

And while we can not anticipate all the requirementsfavare system will someday fulfill, or all the

data sources the system will someday need to either censupnoduce, it is safe to say that working
with defined, standards-based, bounded components, is teasianonolithic one-off solutions.

An Example of Agility Claiming

that component-based services offg Probably LessAgile Presesly Wersegle
more organizational agility, require$ A point-to-point one-off negotiated| A general standards-based
you to compare this approach to a | interface between two specific interface for a community
previous method. For example, for| systems

the purposes of comparison, when["A"yser formatted ASCII data file XML formatted dataiwa
considering a Web Service as an schema

integration method to exchange da
between systems, consider that

many of the legacy interfaces
between Federal systems are one-pfh data exchange understood by twoA data exchange used by 50
negotiated point-to-point data programmers at the time organizations with published

exchanges. A common exchange documentation in a searchable
method is send an ASCII file with registry

uniquely formatted data, at a pre- | A custom data file exchanged at | A function available 24x7 on
defined mutually agreed non-peak | 1:00 am when computer usage is | scaled redundant servers
time of day. This legacy point-to- | low
point interface between a data

“A custom data exchange designed iA Web Service standards-basefd
the 1980s by staff who have retired function call

3 SOA World Magazine, Jeff Schneider, “SOA Web Servigeses Your SOA Achieve Agility?”,
[http://webservices.sys-con.com/read/143900_2.htm] 10 NoveP@os

% David Linthicum, “Real World SOA”
[http://weblog.infoworld.com/realworldsoa/archives/2007/11/ysin backlo.html?source=rss] 28 March, 2008

3% SOA Infrastructure Blog, Dan Foody, “So what is SQfiey anyway?”
[http://blogs.progress.com/soa_infrastructure/2007/08/véhagility.html] 29 August 2007

20

producer system and a data consuming system is laleasive to code, often requires many staff
meetings between both parties to implement, probably doesadtandard representations for data, and
often is not well documented. If the consuming syssbould decide to move to another source for the
data, the amount of rework is substantial, and thedspleehange will not be rapid, and this approach
could be fairly tagged as less agile.

In contrast, an organization facing the same data exchange
requirements could establish and socialize a dataatadefined by
standard XML. A Web Service which offers that defixddL

can be made operational through a web server and runearlg n
24x7 basis, using SOAP and HTTP. A description of thes®rvi
can be made available in a service registry for theeenti
organization to use. Finally, a Service Level AgreeniBhA),
defining organizational commitments to service perforraazam
be developed and offered to all potential service consimafith
this overall approach a better documented, standardd-baseace is created, and the organization as a
whole can more quickly make use of this data source.

Agility in an SOA context is enhanced by the following eweristics:

» Architectural commonality among services — This is best enabled by having a common set of
enterprise-defined standards within which to offer servisedescribed in Section 5.0. The worst
case scenario requires the caller of a service fomtti have to call each provider and negotiate a
one-off agreement or technical explanation when trying to inaadervice.

» Ability to clearly define a serviceinterface — Being able to define the inputs, outputs, and
expected behavior and performance of a servicai@adrto helping consumer technical staff
rapidly invoke a service.

» Ability tofind a service — Services live on URI endpoints on the IP network. iliesitable that
during the lifetime of a service these endpoints willngfea A common method for sharing
information on offered services is a service regisirlge community of consumers will require
some common means of sharing service information.

The larger promise of an enterprise SOA is that onedfigient quantity of legacy-wrapped components
exist, and are accessible on the IP wide area netWéAR\(, they can be re-connected more rapidly to
solve new problems. SOA World magazine stated, “Mar§gdiologna aside, agility is directly related to
the time and effort required to create new functiorn® onodify existing functions - and then to re-
release those functions to the custométswWell defined SOA components allow programmers to more
rapidly assemble components, as compared to one-off interdhtee past. Russ Abbott writes, “We
tend to build systems hierarchically. We formulatemlevel design that meets top level requirements
and then determine what components we need to implemaneithen decide how to build the
components in terms of sub-components, etc. This appdossim’t take advantage of existing products
and servicesxcept when we use standard parts—and we do that too rarely®

Federal organizational agility will have a lot to dowibhe ease with which components can be found and
re-combined over the next decade. Dion Hinchcliffe blogs, “Aportant reason why the Web is now
the world's biggest and most important computing platfortimais people providing software over the

37 SOA World Magazine, Jeff Schneider, “SOA Web Servigeses Your SOA Achieve Agility?”,
[http://webservices.sys-con.com/read/143900.htm] 10 Nove&dis

38 Russ Abbott, “Putting Complex Systems to Work”,
[http://64.233.169.104/search?q=cache:wunzA2V5_|8J:cs.calstaletaiki/images/7/7e/Abbott.doc] 28 March
2008

21

Internet are starting to understand ldne of unintended usesGreat web sites no longer limit themselves
to just the user interface they provide. They also openaipftimctionality and data to anyone who

wants to use their services as their own. This alleeple to reuse, and re-reuse a thousand times over,
another service's functionality in their own softwarevibatever reasons they want, in ways that couldn't
be predicted. The future of software is going to be combihi@gervices in the global service landscape

into new, innovative application$®

39 Social Computing Magazine, Dion Hinchcliffe, “Sociajjdxegators Emerge To Manage Digital Lifestyles”
[http://web2.socialcomputingmagazine.com/] 28 March 2008

22

8.0 Reaping the Benefits of SOA

A Historic Analogy Interstate 95 (I-95), a
1,927-mile highway on the East Coast of thef Who is the key beneficiary of SOA? Do individual
United States, was established by the legacy software projects benefit, or does the
Eisenhower administration with the Federal | enterprise as a whole benefit? Are the interests of the
Highway Act of 1956 as a key piece of our software Project Leader and the CIO the same?
National infrastructur€ The highway, and
its considerable acquisition and construction expenseweadentral purposes. First, the highway was
to enable greater commerce, supporting the more effiel@ftange of goods. Second, it supported the
Nation’s defense by more efficiently allowing the movemeritadps and their supporting equipment
and supplies during the early Cold War. The parallel rBadfe 1, which was at several points a single
lane road and lined with small towns, was an alternativee at the time. Analyses during the late 1990s
estimated that for every dollar spent on 1-95, seven ddikre been returned to the general economy, in
addition to the improved National defense characteridietswere provided. In retrospect I-95 seems to
have been a good investment.

However, if in 1950 we took the approach of asking any of the 4n@fl0-person towns along Route 1,
would they pay for a five to ten lane highway and arrafip to their town, most would find their local
town budgets orders of magnitude too small for such a prajedtmany would might not even want to
attempt it, as nearby Route 1 was already sufficient apthee. The interests of the “enterprise” and of
the local towns did not necessarily align.

We can now more clearly estimate the economic benefitsniuay of
these towns have accumulated since 1950 as a result lafrges
infrastructure expenditure. And we can also see the egaddliects of a
more efficient exchange of goods to the larger econdmify.astr ucture
spending enabled exchange on a larger scale with less “friction”.
Analogously, we expect that IT infrastructure spending esahkeagile
exchange of information in a SOA.

Similarly, efforts that benefit the CIO’s enterpriseddook good to the

senior leadership team of an organization, do not necgssanifit the

small software projects in an agency. Transitioningyadg application to include a set of Web Services,

and putting the services in place with a robust infratire of redundant 24x7 reliable servers with full

support as well as a service discovery mechanism is am&xe task, hopefully enabled by enterprise

level infrastructure efforts. For example, SOA witdmmporary Web Service implementations is

directly enabled by the quality of the underlying IP netwarld the server redundancy of the Web

Service offerlngs Real Web Service implementatiorenaféquire multiple tiers of servers, such as Web
- e Servers, logic servers, and databases, to all operate

reliably to fulfill a mission.

If as a result of creating a good service, an individual
project then picks up many more consumers than it
had previously, then clearly the day-to-day demands
on the project’s IT infrastructure increase. The
common result of service success is higher local
operational costs. At the enterprise level, this is a
benefit, because it means that more customers are

¥ Mt % s : reusing the same shared services, instead of rebuilding

0 Wikipedia, “Interstate Highway System”, [http://en.wikifie.org/wiki/Interstate_Highway_System] 28 March
2008

23

them. The leadership team should be pleased. But thedudifederal software system project leader
is likely to be on a fixed budget that may have beerblsi@d well before the dynamic nature of the
SOA producer/consumer model was noticed. And while a coomheorporation can be more nimble in
responding to rapid usage changes, Federal programs can ¢peidés® measure and respond to such
changes.

In summary, the local perspective of individual legacy otsj&vill not justify an enterprise SOA effort,
but this should not be allowed to stop the enterprise @A occurring. The SOA benefits accrue
largely at the enterprise’s level in cost avoidanceuph reuse, and increased data exchange and agility.
Consequently, a corresponding investment is requirdeariterprise level, where the benefit is found.

Enterprise Standards Compliancénother interesting enterprise characteristic of S@A 295 is that

both rely on standards compliance. Federal funding ishieé motivator for compliance with Federal
standards for highways. “The American Association afeSHighway and Transportation Officials
(AASHTO) has defined a set of standards that all meer$tates must meet unless a waiver from the
Federal Highway Administration (FHWA) is obtained. Thesadards have become more strict over the
years.... The dominant role of the Federal government in roaacBraas enabled it to achieve legislative
goals that fall outside its power to regulate interstatemerce. By threatening to withhold highway
funds, the Federal government has been able to stimulatéesiatatures to pass a variety of laws.”

Standards compliance has obvious benefits for a highwésnsynd a set of enterprise services. As
discussed in Section 5, Web Services can be defined bytiséustry standards that form a common
framework for implementation. One of the chief concanrthis area are the standards and mechanisms
established for security. Consequently, establishingtdredards and a governance mechanism is a key
part of implementing an enterprise SOA. Agility is engeedday architecture commonality, which eases
reuse across a large organization.

SOA Market ModelsSenior leadership team
in large organizations often find themselves Natural ecologies and market economies are both
considering the philosophical underpinnings| examples of what we call innovative environments.
and organizational dynamics of IT portfolio | The fundamental principle is that new things are built

management. In this final analogy, the SOA on top of existing things. Russ Abbott 3
effort is discussed as an example of a marke

economy or a command economy. In practice, some mixture tieh@pproaches is most often needed.
For example, individual service providers, who have the deaepdststanding of their customers and
data sources, must be allowed to offer the servicesnhiag sense from their market-oriented point of
view. They can offer services that match their custsmereds and they can enjoy the success of
correctly matching customer requirements, or endure theeqoaaces of forecasting incorrectly. The
enterprise CIO must also assure from a command pouiewfthat the enterprise has a reasonable IT
portfolio, gaps in services capabilities are being fillechewhere in the organization, and architectural
commonality is being preserved. Successful SOA effaittsupport innovation by the participants,
while also ensuring a comprehensive set of reused servidegandards compliance. The challenge is
finding the balance.

41 bid

24

9.0 Conclusion

SOA offers Federal leadership teams a means to effgcleverage decades of IT investment, while
providing a growth path for new capabilities. ContempoB&DA technologies, such as the Web Services
standards, offer valuable new capabilities such as lgegoeutral integration, yet still require structured
engineering processes and well defined acquisitions, aagpese portfolio management. T8eience

of Computer Programmingurnal stated, “Executives of large organizations withssantial IT budgets
learned the hard way that spending more is not the wintiatggy. Some of them realized that after a
long string of staggering IT investments plus their challertbey, must start to control their IT
portfolios.” SOA provides a technical underpinning for structuring poriai®a collection of discrete
services, each with a definable customer base, acquisitetegy, performance levels, and a measurable
operational cost.

A key current challenge for many Federal organizatiortseistructuring of their IT portfolio around a
component-based service model and enforcing sufficient stinehin their own organizational
boundaries, which can be quite large. As the spaneshpted integration continues to grow, the
challenge of the next ten years will be enabling that iatem model to bridge multiplexter nal
organizations that undoubtedly will be using disparate stdacard tools. After the first generation of
standards-based service integrations has passed, afafiggoltecome defined, process driven, and
manageable, translation and brokering will be the next detyofross-enterprise services.

%2 C. Verhoef, “Quantitative IT Portfolio Managementi@&ce of Computer Programming, Volume 45 Issue 1,
[http:/fwww.cs.vu.nl/~x/ipm/ipm.pdf] 28 March 2008

25

Appendix A — Acronyms

Acronym Definition
AASHTO American Association of State Highway and Transportation Officials
ASCII American Standard Code for Information Interchange
CSS Cascading Style Sheets
CICS Customer Information Control System
CIO Chief Information Officer
CORBA Common Object Request Broker Architecture
COM Component Object Model
COTS Commercial-Off-The-Shelf
CRL Certificate Revocation List
DCOM Distributed Component Object Model
DoD Department of Defense
EAI Enterprise Application Integration
EJB Enterprise JavaBeans
FHWA Federal Highway Administration
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IC Integrated Circuit
IP Internet Protocol
IT Information Technology
JSR Java Specification Request
LDAP Lightweight Directory Access Protocol
OCSP Online Certificate Status Protocol
OMB Office of Management and Budget
PBSC Performance-Based Service Contracting
PKI Public Key Infrastructure
PWS Performance Work Statement
SAML Security Assertion Markup Language
SLA Service Level Agreement
SLOC Service Lines of Code
SAML Security Assertion Markup Language
SNMP Simple Network Management Protocol
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SSL Secure Sockets Layer
TCP Transmission Control Protocol
RCR Relative Cost of Reuse
RCWR Relative Cost of Writing For Reuse
RSS Really Simple Syndication
uDDI Universal Description, Discovery, and Integration
URI Uniform Resource Identifier
WAN Wide Area Network
WS* Web Services standards
WSDL Web Services Description Language

26

Acronym Definition
WSRP Web Services for Remote Portlets
XACML eXtensible Access Control Markup Language
XML Extensible Markup Language
XPath

XML Path Language

27

Additional Photo Credits:
Inset photos used under license from iStockPhoto.com
Except the following:

Section 1: Rosetta Stone, Public Domain - Wikipedia

Section 4: Black Box photo — used with permission of Perdmce Trends Inc.
[http://www.performancetrends.com/]

Section 8: President Eisenhower with Clay Commission photwurtesy of the Eisenhower
Presidential Library and the National Park Service -d ugth permission,
[http://www.eisenhower.utexas.edu/]

28

