
Leveraging Federal IT Investment 1.21

MTR080117

MITRE TECHNICAL REPORT

Leveraging Federal IT Investment – Using
Service Oriented Architecture (SOA)

An Analysis of SOA’s Value Proposition for Federal
Senior Leadership Teams

April 2008

The Cross-MITRE SOA Initiative

Author: Geoffrey Raines
Contributors: Jeff Morse, Frank Petroski, Larry Pizette, Salim Semy

Sponsor: MITRE Contract No.: N/A

The views, opinions and/or findings contained in this report are those of
The MITRE Corporation and should not be construed as an official
Government position, policy, or decision, unless designated by other
documentation.

Approved for Public Release; Distribution Unlimited
Case 08-0713

2008 The MITRE Corporation. All Rights Reserved.

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 08-0713

Leveraging Federal IT Investment 1.21

Revision History

 Change Record

Version Number Change
Number

Description of Change Change
Effective Date

V1 0000 Initial publication 4/29/2008

Leveraging Federal IT Investment 1.21

Introduction to Cross MITRE SOA Initiative
This white paper is part of a series of documents and presentations created to provide a broad overview of
service oriented architectures (SOA) and considerations regarding their applicability and successful
implementation.

SOA has become a high-interest paradigm for developing Federal large-scale, networked, agile systems
of systems. However, SOA and the underlying Web Service implementation standards present new IT
planning and portfolio management challenges for senior decision makers. Special considerations arise
when employing SOA in the Federal IT domain space. We are faced with an enterprise larger than any
commercial enterprise as well as a diversity of constraints that are unique to the Federal domain. These
include acquisition and funding models, legislation, and unique cultural barriers.

The breadth and depth of efforts to address these challenges across the commercial, academic, and
government domains are significant. MITRE is actively working with all three sectors to provide the best
advice to our customers. However, the urgency to address these challenges with so many competing
perspectives and interests - including financial - has led to an overload of information and commercial
products in the Federal domain. Some of the information and vendor advice is helpful; sometimes it’s
not.

When MITRE engineers give advice to our customers, we need to continue our focus on ensuring that we
give high quality information to our sponsors. Given the rapid pace of technological change in the SOA
domain and the number of new commercial products, it requires an organizational process to ensure that
we stay aligned with best practices. Thus, it is critical that we bring the entire expertise of the company to
bear to benefit each of our customers, so that every customer can benefit from the full depth and breadth
of our analysis and understanding.

To address these challenges, we’re developing a repository of products to provide MITRE engineers with
a consistent body of work that begins to define an SOA “trade space.1” We will use this trade space to
provide our customers with a consistent message under similar circumstance.

Our approach is to leverage the substantial body of information in the public domain - from both
commercial and academic sources - and adapt it to the constraints in the Federal space. We reference
analyses, research, and papers and provide context for our domain. Additionally, we capture lessons
learned from the Federal domain and provide additional information from our own engineering
backgrounds. We also leverage knowledge gained through our interactions with industry sources, such as
the SOA Consortium.

Completed work products are reviewed and vetted across MITRE by subject matter experts supporting a
wide range of customers engaged in SOA activities.

1 Trade studies which collectively define the trade space “…are focused on comparing a range of design options
from the perspective of the objectives associated with the system’s performance and cost. For example, aircraft
manufacturers always do trade studies focused on the aircraft’s weight while maintaining the system’s cost, safety
and so forth. Similarly, safety, reliability, and cost are among the many other objectives that are commonly the
focus of a trade study.” Buede, Dennis M, The Engineering Design of Systems, Models and Methods, 2000, John
Wiley and Sons, Page 268.

Leveraging Federal IT Investment 1.21

Sponsors This effort is being championed by the MITRE Corporate Chief Engineer’s office in
collaboration with the Director of Integration for Data and Services and the Command and Control
Technical Center.

To access the repository from within MITRE, FastJump: CorpSOA.

Team Members

• Ed Kenney

• Rob Mikula

• Larry Pizette

• Geoff Raines

• Salim Semy

Please send feedback and comments to: soa-list@lists.mitre.org

Leveraging Federal IT Investment 1.21

Executive Summary - 1

Executive Summary
SOA’s Value Proposition Service Oriented Architecture (SOA) builds on computer engineering
approaches of the past to offer an architectural approach for enterprise systems, oriented around the
offering of services on a network of consumers. A focus of this service-oriented approach is on the
definition of service interfaces and predictable service behaviors. A set of industry standards, collectively
labeled “Web Service” standards in this paper, provide and implement the general SOA concept, and have
become the predominant set of practical tools used by enterprise engineers for current SOA projects.
Some Web Service standards have become foundational and more widely adopted, while many are still
seeking broad industry or Government acceptance.

SOA, as implemented through the common Web Services standards, offers Federal senior leadership
teams a path forward, given the diverse and complex information technology (IT) portfolio that they have
inherited, allowing for incremental and focused improvement of their IT support systems. With
thoughtful engineering and an enterprise point of view, SOA offers positive benefits such as:

• Language Neutral Integration – The foundational contemporary Web Services standards use
XML, which is focused on the creation and consumption of delimited American Standard Code
for Information Interchange (ASCII) text. Regardless of the development language your systems
use, these systems can offer and invoke services through a common mechanism. Language
neutrality is a key differentiator from past integration approaches.

• Component Reuse – Given current Web Service technology, once an organization has built a
software component and offered it as a service, the rest of the organization can then utilize that
service. With proper service governance, emphasizing topics such as service provider trust,
service security, and reliability, Web Services offer the potential for aiding the more effective
management of an enterprise portfolio, allowing a capability to be built well once and shared.

• Organizational Agility – SOA defines building blocks of software capability in terms of offered
services that meet some portion of the organization’s requirements. These building blocks, once
defined and reliably operated, can be recombined and integrated rapidly.

• Leveraging Existing Systems – One common use of SOA is to define elements or functions of
existing application systems and make them available to the enterprise in a standard agreed-upon
way, leveraging the substantial investment already made in existing applications. The most
compelling business case for SOA is often made regarding leveraging this legacy investment,
enabling integration between new and old systems components.

The benefits mentioned above will accrue only as the result of comprehensive engineering and a
meaningful architecture at the enterprise level. SOA as a service concept in no way eliminates the need
for strong software development practices, requirements-based lifecycles, and an effective enterprise
architecture. While SOA done right offers valuable benefits, SOA without structured processes and
governance will lead to traditional large software system problems.

Choosing to initiate an enterprise-wide SOA brings with it several key considerations for a senior
leadership team. SOA offers a means to effectively leverage decades of software investment, while
providing a growth path for new capabilities. Portions of legacy applications, which may have taken
many years and substantial resources to build, can be “wrapped” and integrated into modern service
frameworks, incrementally leveraging significant past investment, as resources allow. Web Services can
provide a technical underpinning for structuring portfolios as a collection of discrete software services,
each with a definable customer base, acquisition strategy, performance levels, and a measurable
operational cost. However, in order to achieve these positive outcomes, architectural activities, such as
standards selection, security architectures, and service cataloging, must occur at the enterprise level. A
key architectural activity is the decision regarding whether a commercially-based SOA approach is
appropriate under the specific circumstances; it is not always the right choice. Similarly, enterprise

Leveraging Federal IT Investment 1.21

Executive Summary - 2

governance must align decision-making, funding mechanisms, and incentive structures to enable SOA
success, which often requires change from current process and practice, especially for government
acquisitions.

The remainder of the paper focuses on a series of conceptual topics important to a Federal senior
leadership team considering SOA, such as how SOA compares to integration approaches of the past, how
component-based approaches have changed other industries, how component reuse can benefit the
enterprise as a whole, how enterprise standards can enable software component interoperability across an
organization, and where the benefits of SOA tend to accrue. The following topics are examined in more
detail:

Integration Enterprise Application Integration (EAI) is a field of study in computer science that focuses
on the integration of “systems of systems” and enterprise applications. With the span of attempted
systems integration and data sharing expanding in large organizations, the EAI engineering discipline has
become increasingly central to senior leadership teams managing portfolios of applications. SOA can be
considered another important step in a thirty year history of EAI technologies. The various historical
methods have differed in: the ease with which integration could occur from a programmer’s point of
view, underlying network configurations (e.g. ports required to be open on a network), the quantity of
enterprise equipment to operate, and general design approaches to fault tolerance when failures occur.

Using Components – Historic Analogy with Integrated Circuits During the 1970s electronics engineers
experienced an architectural and design revolution with the introduction of practical, inexpensive, and
ubiquitous Integrated Circuits (ICs). This revolution in the design of complex hardware systems is
informative for contemporary software professionals now charged with building enterprise software
systems using the latest technologies of Web Services in the context of SOAs. Like SOA, the IC
revolution was fundamentally a distributed, multi-team, component-based approach to building larger
systems. Through the commercial market place, corporations successfully built components that could be
described, procured, and reused by engineering teams distributed around the world.

Reuse Reuse of a service differs from source code reuse in that the external service is called from across
the network and is not compiled into local system libraries or local executables. The provider of the
service continues to operate, monitor, and upgrade the service, while the consumer of the service still
needs to trust the reliability and correctness of the producer’s service. The consumer must be able to find
the service and have adequate documentation accurately describing the behavior and interface of the
service. Performance of the service is still key.

Mature SOAs should measure reuse as part of a periodic portfolio management assessment. The
assessment of reuse can be effectively integrated into the information repository used for service
discovery in the organization, called the “enterprise catalog”. Since changes to a service over time will
require that the service’s consumers be remembered and notified, it is a small step further to quantify the
current consumers for a service for the purposes of portfolio management and reuse assessment.

Creating a generic reusable software component for a broad audience takes more resources (20% to 100%
more) than creating a less generic point solution. The cost of reuse, therefore, shifts to the service
providers, and benefits the consumers. Consequently, as the enterprise decides to fund service providers,
there is great benefit in maximizing the number of consumers for an operational service. Also, the
creation and continued providing of services must be motivated, funded, and/or otherwise incented—it
will not generally happen due to self-interest within a single program whose primary focus is to field
capability other than enterprise infrastructure (see SOA’s Beneficiaries below).

Acquiring Reuse Many of the current trends in performance-based contracting work well with the
acquisition of SOA services. For example, Office of Management and Budget (OMB), performance-
based service contracting (PBSC) is true to the underlying spirit and architecture of an SOA’s service,
which focuses on the result of the service, not on specifying an implementation or “how” the service’s
work is to be done.

Leveraging Federal IT Investment 1.21

Executive Summary - 3

Reuse of services on an enterprise scale is a team effort, but Government leadership has a singular
responsibility to strategically guide enterprise IT expenditures. Planned acquisitions must match the
overall portfolio goals of the organization and many organizations are establishing review boards for this
purpose. If a service is meant to be reused as a common component for a series of programs or projects,
contract language and incentives must be explicitly organized around that goal.

Enterprise Standards When many components are being simultaneously developed by individual teams,
it becomes critical for the interface of a provider’s service to match up to the “call” of a consumer.
Similarly, it helps everyone involved if the interfaces across services have some commonality in structure
and access mechanisms. Choosing and communicating a comprehensive set of enterprise standards is a
responsible approach to aid in enterprise SOA integration.

Where SOA Works Best The Web Service technologies commonly used today to implement SOA
concepts have certain design presumptions. They work best when the underlying network is robust,
reliable, and available. This is not to say that any deficiency in the underlying network can not be
compensated for by thoughtful engineering and the use of standard queuing and buffering
communications methods. However, employing these alternative approaches to compensate for the
underlying network will take a project further from the mainstream commercial implementations of Web
Services.

Agility When we discuss “agility” as it relates to SOA, we are often referring to organizational agility, or
the ability to more rapidly adapt a Federal organization’s tools to meet their current requirements. An
organization’s requirements of IT might change over time for a number of reasons including changes in
the mission, changes in organizational reporting requirements, changes in the law, new technologies in
the commercial marketplace, attempts to combine diverse data sources to improve the organization’s
operational picture, and many other reasons. The larger promise of an enterprise SOA is that once a
sufficient quantity of legacy-wrapped components exist, and are accessible on the IP wide area network
(WAN), they can be re-connected more rapidly to solve new problems.

SOA’s Beneficiaries Efforts that benefit the Chief Information Officer’s (CIO’s) enterprise, and look
good to the senior leadership team of an organization, do not necessarily benefit the small software
projects in an agency. Transitioning a legacy application to include a set of Web Services, and putting the
services in place with a robust infrastructure of redundant 24x7 reliable servers with full support as well
as a service discovery mechanism is an expensive task, hopefully enabled by enterprise level
infrastructure efforts. If, as a result of creating a good service, an individual project then picks up many
more consumers than it had previously, then clearly the day-to-day demands on the project’s IT
infrastructure increase. The common result of service success is higher local operational costs. At the
enterprise level, this is a benefit, because it means that more customers are reusing the same shared
services, instead of rebuilding them.

In summary, the local perspective of individual legacy projects will not justify an enterprise SOA effort,
but this should not be allowed to stop the enterprise SOA from occurring. The SOA benefits accrue
largely at the enterprise’s level in cost avoidance through reuse, and increased data exchange and agility.
Consequently, a corresponding investment is required at the enterprise level, where the benefit is found.

Table of Contents - 1

Table of Contents

Introduction to Cross MITRE SOA Initiative...1

Executive Summary ..1

1.0 SOA – Value Proposition...1

2.0 Drawing Parallels - Past Is Prologue ..5

3.0 Reuse ..8

4.0 SOA as an Enterprise Integration Technology.. 12

5.0 Enterprise SOA Standards.. 15

6.0 Where Does SOA Best Apply? .. 17

7.0 SOA-based Agility .. 20

8.0 Reaping the Benefits of SOA... 23

9.0 Conclusion .. 25

Appendix A – Acronyms ... 26

Additional Photo Credits: .. 28

Introductory Service Oriented Architecture
(SOA) definitions and concepts can be found in
our paper “Overview Of The Service Model”. If
you are new to SOA, please begin there.

1

1.0 SOA – Value Proposition
Contemporary Issues for Federal IT Decision
Makers Similar to the nation’s Fortune 500
leadership, today’s Federal leadership teams often
find themselves facing significant IT investment
and portfolio challenges. They have inherited a computing infrastructure that is often not uniform, and
whose technologies span the recent history of computing. The IT infrastructures tend to have the
following characteristics:

• Diverse Environments: Mainframe systems, client/server systems, and multi-tier Web-based
systems sit side by side, demanding operations and maintenance resources from a technology
marketplace in which the cost of niche legacy technical skills continues to rise. The portfolio of
systems are generally written in a number of different software development languages such as
COBOL, Java, assembly, and ‘C’, requiring heterogeneous staff skill sets, and experience in a
variety of commercial products, some of which are so old that they no longer offer support
licenses.

• Complex Business Logic: The systems often conform to a set of complex business logic that has
developed over a number of years in response to evolving legal requirements, Congressional
reporting mandates, changes in contractor teams, and refinement of business processes. While
some systems are new and robust, many are brittle and hard to modify, relying on technical skills
not common in the marketplace that become increasingly more expensive. The maintenance tail
on these systems is surprisingly high and competes for resources with required new functionality.

• Inconsistent interfaces: Interfaces between systems have grown up
spontaneously without enterprise planning, over many years.2 The interfaces
are the result of one-off negotiations between various parts of the
organization, and have been designed using many varied technologies during
the organization’s IT history, following no consistent design pattern. Recent
enterprise architecture efforts have documented the enterprise interfaces in
diagrams that resemble a Rorschach inkblot test.

• Limited Sustainment Budgets: Even without the continuous downward pressure on IT budgets
brought by competing National requirements, and the view that IT should be increasingly viewed
as a commodity, there are not enough budget resources or human resources to recast the portfolio
of systems to be modern and robust in one action. “According to analysts at Forrester Research,
there are some 200 billion lines of Cobol, the most popular legacy programming language, still in
use. Nor is it going away: maintenance and modifications to installed software increase that
number by five billion lines a year. IBM meanwhile claims its CICS mainframe transaction
software handles more than 30 billion transactions per day, processes $1 trillion in transaction
values, and is used by 30 million people.”3 Given budget constraints, an incremental approach
seems to be required.

SOA’s Value Proposition Service Oriented Architecture (SOA) builds on computer engineering
approaches of the past, to offer an architectural approach for enterprise systems, oriented around the
offering of services on a network of consumers. A focus of this service oriented approach is on the
definition of service interfaces and predictable service behaviors. A set of Industry standards, collectively
labeled “Web Service” standards in this paper, provide and implement the general SOA concept, and have

2 David Linthicum, “Enterprise Application Integration”, [http://safari.oreilly.com/0201615835] November 12, 1999
3 Loosely Coupled, David Longworth, “Service reuse unlocks hidden value”
[http://www.looselycoupled.com/stories/2003/reuse-ca0929.html] 29 Sept. 2003

“After creating islands of automation through
generations of technology, users and business
managers are demanding that seamless bridges
be built to join them.” – David Linthicum 2

2

become the predominant set of practical tools used by enterprise engineers for current SOA projects.
Some Web Service standards have become foundational and more widely adopted, while many are still
seeking broad industry or Government acceptance. An introduction to basic SOA concepts can be found
in Appendix A.

SOA, as implemented through the common Web Services standards, offers Federal senior leadership
teams a path forward, given the diverse and complex IT portfolio that they have inherited, allowing for
incremental and focused improvement of their IT support systems. With thoughtful engineering and an
enterprise point of view, SOA offers positive benefits such as:

• Language Neutral Integration – Web-enabling applications with a common browser interface
became a powerful tool during the 1990s. In the same way that HTML defined a simple user
browser interface that almost all software applications could create, Web Services define a
programming interface available in almost all environments. The HTML interface at the
presentation layer became ubiquitous because it was easy to create, being composed of ASCII
characters. Similarly, the foundational contemporary Web Services standards use XML, which
again is focused on the creation and consumption of delimited ASCII text. The bottom line is that
regardless of the development language your systems use, your systems can offer and invoke
services through a common mechanism.

The Rosetta Stone, an Egyptian artifact which was instrumental in
advancing our translation of ancient writing, has text is made up of
three translations of a single passage.4 The Stone allowed translators
to understand text in unknown languages by utilizing languages they
knew. Contemporary Web Service standards provide a “Rosetta
Stone” across programming languages and software development
environments and can be leveraged for the purpose of enterprise
systems integration. The term Rosetta Stone has become idiomatic as
something that is a critical key to a process of translation of a
difficult problem. SOA, as implemented through Web Service
standards, provides a common enterprise integration technology for
the multiple computing environments, and languages that arise in the
typical Federal IT portfolio. Enterprise integration standards and their use in a large SOA effort
are discussed further in Section 5.

• Component Reuse – Given current Web Service technology, once an organization has built a
software component and offered it as a service, the rest of the organization can then utilize that
service. Given proper service governance, including items such as service provider trust, service
security, and reliability, Web Services offer the potential for aiding the more effective
management of an enterprise portfolio, allowing a capability to be built well once and shared, in
contrast to sustaining redundant systems with many of the same capabilities (e.g., multiple
payroll, trouble ticket, or mapping systems in one organization). Reuse, through the
implementation of enterprise service offerings, is further discussed in Section 3.

• Organizational Agility – SOA defines building blocks of software capability in terms of offered
services that meet some portion of the organization’s requirements. These building blocks, once
defined and reliably operated, can be recombined and integrated rapidly. Peter Fingar stated,
“Classes, systems, or subsystems that can be designed as reusable pieces. These pieces can then
be assembled to create various new applications.”5 Agility, the ability to more rapidly adapt a

4 Wikipedia, “Rosetta Stone”, [http://en.wikipedia.org/wiki/Rosetta_stone] 28 March 2008
5 Peter Fingar et. al., “Next Generation Computing: Distributed Objects for Business”, SIGS Books & Multimedia,
New York., 1996

3

Federal organization’s tools to meet their current requirements, can be enhanced by having well-
documented and understood interfaces and enterprise accessible software capabilities.
Organizational agility, as enhanced by a consistent enterprise-scoped SOA, is discussed in
Section 7.

• Leveraging Existing Systems – One common use of SOA is to encapsulate elements or
functions of existing application systems and make them available to the enterprise in a standard
agreed-upon way, leveraging the substantial investment already made. The most compelling
business case for SOA is often made regarding leveraging this legacy investment, enabling
integration between new and old systems components. When new capabilities are built, they are
also designed to work within the chosen component model. Given the size and complexity of the
installed Federal application system base, being able to get more value from these systems is a
key driver for SOA adoption. David Litwack writes, “The movement toward Web services will
be rooted not in the invention of radical new technology, but rather in the Internet-enabling and
re-purposing of the cumulative technology of more than 40 years. Organizations will continue to
use Java, mainframe and midrange systems, and Microsoft technologies as a foundation for
solutions of the future.”6

The benefits mentioned above, however, accrue only as the result of comprehensive engineering and a
meaningful architecture at the enterprise level. SOA as a service concept in no way eliminates the need
for strong software development practices, requirements-based lifecycles, and an effective enterprise
architecture. While SOA done right offers valuable benefits, SOA without structured processes and
governance will lead to traditional software system problems.

N
um

be
r o

f S
ys

te
m

s
In

vo
lv

ed

Span of Attempted Integration

Intel
8088

Smaller Larger

F
ew

e
r

M
an

y

1 Tier 2 Tier Multi-tiered

Client/
Server

Web
Enabled

EAI With
Integration

Hub

Enterprise
SOA

Cross
Enterprise

SOA

`

`

LAN

`

IP

`

IP

Hub
S ys tem

Sy st em

Syst em

Sy st em

Sy st em

Sy st em
Sys t em

Digitization AgeDigitization Age Integration Integration
AgeAge

`

IP

IP

`

IP

`

IP

Figure 1.0-1 Integration is increasing in scope and complexity

6 Internet World Magazine, David Litwack, “Web Services Has the Biggest Hype Machine Behind it of any
Technology Today. Here is Why You Should Be Excited Anyway”
[http://iw.com/magazine.php?inc=060102/06.01.02ebusiness1.html] 1 June 2002

4

SOA – Why now? SOA and its implementing standards, such as the Web Services standards, come to us
at a particular point in computing history. While several key improvements, such as language neutrality,
differentiate today’s Web Service technologies, there has been a long history of integrating technologies
with qualities analogous to Web Services, including a field of study often referred to Enterprise
Application Integration (EAI). One of the key trends driving the adoption of Web Services is the
increasing span of integration being attempted in organizations today. Systems integration is increasing
both in complexity within organizations and across external organizations. We can expect this trend to
continue as we combine greater numbers of data sources to provide higher value information. Ronan
Bradley writes, “CIOs often have difficulty in justifying the substantial costs associated with integration
but, nevertheless, in order to deliver compelling solutions to customers or improve operational efficiency,
sooner or later an organization is faced with an integration challenge.”7 Figure 1.0-1 above depicts a few
waypoints in the trend toward increasing systems integration complexity.

7 GDS InfoCentre, Ronan Bradley, “Agile Infrastructures”
[http://gdsinternational.com/infocentre/artsum.asp?mag=184&iss=150&art=25901&lang=en] 28 March 2008

5

2.0 Drawing Parallels - Past Is Prologue
Drawing Parallels – Past is Prologue
During the 1970s electronics engineers
experienced an architectural and design
revolution with the introduction of
practical, inexpensive, and ubiquitous
Integrated Circuits (ICs). This revolution in the design of complex hardware systems is informative for
contemporary software professionals now charged with building enterprise software systems using the
latest technologies of Web Services in the context of SOAs.

Like SOA, the IC revolution was fundamentally a distributed,
multi-team, component-based approach to building larger systems.
Through the commercial market place, corporations built
components for use by engineering teams distributed around the
world. Teams of engineers created building blocks in the form of
IC components that could then be described, procured, and reused.

Like software services, every IC chip has a defined interface. The
IC interface is described in several ways. First, the chip has a
defined function – a predictable behavior that can be described and provides some value for the
consumer. Next the physical dimensions of the chip are enumerated. For example, the number and shape
of pins is specified. Further, the electronic signaling, timing, and voltages across the pins are specified.
All these characteristics make up the total interface definition for the IC. Of course, software services
do not have an identical physical definition, but an analogous concept of a comprehensive interface
definition is still viable. Effective software components also possess a predictable and definable
behavior.

Introducing and using ICs included the following considerations:

• Who Pays?: Building an IC chip the first time requires a large expenditure of resources and
capital. The team who builds the IC spends considerable resources. The teams who reuse an IC,
instead of rebuilding them, save considerable time and expense. A chip might take $500K dollars
to build the first time, and might be available for reuse in a commercial catalog for $3.99. The
creation of the chip the first time involves many time-consuming steps including requirements
analysis, behavior definition, design layout, photolithography, testing, packaging, manufacturing
and marketing8. The team who gets to reuse the chip instead of re-building it, saves both time
and dollars. At the time, designs of over 100,000 transistors were reported as requiring hundreds
of staff-years to produce manually9

• Generic Or Specialty Components?: Given the amount of investment required to build a chip,
designs were purposely scoped to be generic or specific, with particular market segments and
consumer audiences in mind. Some chips only worked for very specific problem domains, such
as audio analysis. Some were very generic and intended to be used broadly, like a logic
multiplexer. The bigger the market, and the greater the potential for reuse, the easier it was for a
manufacturer to amortize costs against a broader base, resulting in lower costs per instance.

• Increased Potential Design Scope: By combining existing chips into larger assemblies, an
engineer could quickly leverage the power of hundreds of thousands of transistors. In this way,

8 Intel, “How Chips Are Made”, [http://www.intel.com/education/makingchips/preparation.htm] 28 March 2008
9 Design World, Electronic Design, C. Panasuk, “Silicon Compilers Make Sweeping Changes in the VLSI”, Sep 20
1984, pp. 67-74.

What can we learn from the Integrated Circuit (IC)
revolution of the 1970s? How can component-based

architectures change the approach of an entire industry?

6

IC reuse expanded the reach of the average engineer, allowing the engineer to leverage resources
and dollars spent far in excess of the local project budget.

• Design Granularity: The designer of an IC had to decide how much logic to place in a chip to
make the chip most effective on the marketplace. Should the designer create many smaller
function chips, or fewer larger function chips? Families of chips were often built with the
intention of their functions being used as a set, not unlike a library of software functions. Often
these families of chips had similar interface designs, such as consistent signal voltages.

• Speed of Integration: As designers became familiar with the details of component offerings,
and by leveraging pre-built functions, the speed at which an “integrated” product, built of many
components, could come to market was substantially increased.

• Catalogs: When the collection of potential ICs offered became large, catalogs of components
were then created, and classification systems for components were established. Catalogs often
had a combination of sales and definitive technical information. The catalogs often had to point
to more detailed resources for the technical audiences that they sold components to.

• Testing: Technical documents defined the expected behavior of ICs. Components were tested
by both the manufacturer and the marketplace. Anomalous behavior by ICs became noted in
errata in technical specifications.

• Engineering support: IC vendors offered advanced technical labor support to customers in the
form of Application Engineer’s and other technical staff. Helping customers use the products
fundamentally supported product sales.

• Value chains: Value chains consume raw components and produce more complex, value added
offerings. ICs enabled value chains to be created as collections of chips became circuit boards,
and collections of circuit boards became products.

• Innovation: ICs were put together in ways not anticipated by their designers. Teams who
designed chips could not foretell all the possible uses of the chips over the years. Componentized
logic allowed engineers to create innovative solutions beyond the original vision of component
builders.

Did it work? One might ask, “Were electrical engineers successful with this component-based
approach?” Certainly the marketplace was populated by a very large number of offerings based in some
part on ICs. Certainly many fortunes and value chains were created. The cost effectiveness of the reuse
approach was validated by the fact that it became the predominant approach of the electronics industry.
In short, electronic offerings of the time could not be built to market
prices if each chip, specification, module, or component had to be re-
fabricated on each project. Reuse, through component-based
methods, enabled by new technologies, led this revolution. Yet, the
transformation took a decade to occur.

SOA Analogy In many ways the IC chip revolution described above
is analogous to the effort underway with Web Services today.
Clearly Web Service components have analogous interfaces
definitions, and defined and documented behaviors that provide some benefit to a potential consumer.
One can also reasonably expect that the team producing the Web Service will incur substantial expenses
that consumers of the service will not. For example, high reliability requirements for the operation of a
service and its server and network infrastructure can be a new cost driver for the provider. Historically,
designing software for reuse generally drives the cost up by a factor of 1.2 to 2.0 and this may be an

7

additional cost driver for a provider.10 To continue the analogy, collections of service offerings are
becoming sufficiently large to require some librarian function to organize, catalog and describe the
components. While many SOA projects use Universal Description, Discovery, and Integration (UDDI)
for this purpose, other reasonable options exist. Enterprise integration engineers are realizing the ability
to more rapidly combine network-based service offerings and a new paradigm, sometimes referred to a
“mashup”, is demonstrating the speed at which integration can now occur.11 Value chains of data
integration are already occurring the in marketplace. A data integrator can ingest the product of multiple
services and produce a service with correlated data of greater value. Finally, it is also safe to say that
service providers may be surprised at how their services get integrated over time and they may be part of
larger integration that they could not have foreseen during the original design. (Also note that this same
component-based approach is now being examined for genetics work as well. The same interface
definition, behavior, cataloging and reuse discussions are currently occurring, creating a new genetic sub-
field known as synthetic genetics.12) In summary, many aspects of the current SOA efforts follow similar
component-based patterns, and many of the benefits realized historically by the IC revolution, will be
potentially realized by SOA efforts.

10 Jeffery Poulin, “Measuring Software Reuse”, Addison Wesley, 1997
11 Programmable Web, “Mashup Dashboard”, [http://www.programmableweb.com/mashups] 28 March 2008
12 International Genetically Engineered Machine Competition (IGEM), “Registry of Standard Biological Parts”,
[http://parts.mit.edu/registry/index.php/Main_Page] 28 March 2008

8

3.0 Reuse
Historic Source Code Reuse During the 1980s
many organizations, including the Department of
Defense (DoD), attempted to reuse source code
modules with very little success. For example,
during the DoD’s focus on the Ada language,
programs were established to reuse Ada language functions and procedures across projects.13 The basic
reuse premise outlines a process where a producer of a source code module would post the source code to
a common shared area along with a description of its purpose and its input and output data. 14 At that
point, staff from another project would find the code module, download it, and decide to invoke it locally
in their source code, and actually compile it into their local libraries and system executables. As an
example, the Ada Quality and Style Guide states that, “One of the design goals of Ada was to facilitate the
creation and use of reusable parts to improve productivity. To this end, Ada provides features to develop
reusable parts and to adapt them once they are available.”15 For example, Project A might create a high
quality sorting function, and Project B could then compile that function into their own software
application.

Though well intentioned, the actual discovery and reuse of the source code modules did not happen on a
large scale in practice. Reasons given for the lack of reuse at the time included: lack of trust of mission-
central requirements to an external producer of the source code, failure to show a benefit to the contractor
“reuser” implementing later systems, inadequate descriptions of the behavior of a module to be reused,
and inadequate testing of all the possible outcomes of the module to be reused.16 All in all, the barriers to
reuse were high.

Service Reuse The danger in describing the use of services as “reuse”, is that the reader will assume we
mean the source code reuse model of the 1980s described above. We don’t. In fact, the nature of service
reuse is closer to the model of the reuse of Integrated Circuits (ICs) by electrical engineers described in
Section 2, though still having common issues of trust, defined behavior, and expected performance. In
plain terms, reuse in the service context means not rebuilding a service, but rather the using again, or
invoking, of a service built by someone else.

The enterprise as a whole saves resources every time a project decides to reuse a current software service,
rather than creating redundant services based on similar underlying requirements, and adding to an
agency’s maintenance portfolio. Since a system’s maintenance costs often exceed the cost to build them,
over their lifetime, the enterprise saves not only in the development and establishment cost of a new
service but also in the twenty plus year maintenance cost over the service’s lifecycle. One web vendor
stated, “Web services reuse is everything: on top of the major cost savings…, reuse means there are fewer
services to maintain and triage. So reuse generates savings – and frequency of use drives value in the
organization.”17 However, we should not assume a straight-line savings, where running one service is
exactly half as costly as running two services, because the cost of running a service is also impacted by
the number of service consumers. Consolidation can make the remaining service more popular, with a
greater demand on resources.

13 Department of Defense, Ada Joint Program Office, “Ada 95 Quality and Style Guide”,
[http://www.adaic.com/docs/95style/html/sec_8/] 28 March 2008
14 Boehm, B.W., et at. "An environment for improving software productivity." Computer, June 1984.
15 Ada Joint Program Office
16 Traez, Will. "Software Reuse: Motivators and lnhibitors." proceedings of COMPCON S'87, 1987.
17 Progress Actional, “Web Services and Reuse” [http://www.actional.com/resources/whitepapers/SOA-Worst-
Practices-Vol-I/Web-Services-Reuse.html] 28 March 2008

Reuse is a critical characteristic of the SOA value
proposition for a large organization, but we have

to be careful how we characterize reuse.

9

Reuse of a service differs from source code reuse in
that the external service is called from across the
network and is not compiled into local system libraries
or local executables. The provider of the service
continues to operate, monitor, and upgrade the service
as appropriate. Thanks to the benefits of
contemporary Web Service technologies, the external reused service can: be in another software
language, use a completely foreign multi-tiered or single tiered machine architecture, be updated at any
time with a logic or patch modification by the service provider, represent 5 lines of Java, or 5 million
lines of COBOL, or be mostly composed of a legacy system written twenty years ago. In these ways
service reuse is very different from source code reuse of the past.

Some aspects of reuse remain unchanged. The consumer of the
service still needs to trust the reliability and correctness of the
producer’s service. The consumer must be able to find the
service and have adequate documentation accurately describing
the behavior and interface of the service. Performance of the
service is still key. ZDnet stated, “Converging trends and
business necessity — above and beyond the SOA "vision" itself
— may help drive, or even force, reuse. SOA is not springing
from a vacuum, or even from the minds of starry-eyed idealists.
It’s becoming a necessary way of doing business, of dispersing
technology solutions as cost-effectively as possible. And, ultimately, providing businesses new avenues
for agility, freeing up processes from rigid systems”18

Mature SOAs should measure reuse as part of a periodic portfolio management assessment.19 Actional
wrote, “Reuse is not only a key benefit of SOA, but also something that you can quantify. You can
measure how many times a service is being used and how many processes it is supporting, thus the
number of items being reused. This enables you to measure the value of the service. With a little work,
you can calculate the service cost savings for each instance of reuse, including saved architecture and
design time, saved development time, and saved testing time.”20 The assessment of reuse can be
effectively integrated into the information repository used for service discovery in the organization, the
enterprise catalog. Since changes to a service over time will require that the service’s consumers be
remembered and notified, it is a small step further to quantify the current consumers for a service for the
purposes of portfolio management and reuse assessment.

18 ZDnet, Joe McKendrick, “Pouring cold water on SOA ‘reuse’ mantra” [http://blogs.zdnet.com/service-
oriented/?p=699] 30 August 2006
19 Eric Roch, “SOA Service Reuse” [http://blogs.ittoolbox.com/eai/business/archives/SOA-Service-Reuse—14699]
28 March 2008
20 Progress Actional, “Web Services and Reuse” [http://www.actional.com/resources/whitepapers/SOA-Worst-
Practices-Vol-I/Web-Services-Reuse.html] 28 March 2008

“Certainly if you were measuring SOA
success, and you should of course, then an
obvious measure is service reuse.” National
Practice Director for SOA, Perficient, Inc.19

10

Reuse Costs Barry Boehm provided two useful formulas when estimating the costs of software systems
reuse. One formula is from the provider’s point of view, while the other is from the consumer’s.21

Provider focused formula:

Cost of Developing
Resuable Asset

Cost of Developing
Single-Use Asset

Relative Cost
Of Writing For Reuse

(RCWR)
=

Consumer’s formula:

Cost To Reuse Asset

Cost To Develop Asset
From Scratch

Relative Cost
of Reuse (RCR) =

In Measuring Software Reuse, Jeffery Paulin examined systems to estimate the value ranges for these
formulas in practice.22 Paulin’s values are based on the historic context of source code reuse and
therefore may not fully apply to software services, but currently, no better numbers are available in a
SOA context. RCWR ranges between 1.2 and 2.0, while RCR ranges between .03 and .40 with a median
of .20. In other words, Paulin’s work suggests that creating a generic reusable software component for a
broad audience takes more resources (20% to 100% more) than creating a less generic point solution. The
cost of reuse therefore, shifts to the providers, and benefits the consumers. We can see from these
formulas that as the enterprise decides to fund service providers, there is great benefit in maximizing the
number of consumers for an operational service.

Acquiring Reuse Many of the current trends in performance-based
contracting sponsored by the incumbent administration work well with
the acquisition of SOA services. For example, Office of Management
and Budget (OMB), performance-based service contracting (PBSC) is
true to the underlying spirit and architecture of an SOA’s service,
which focuses on the result of the service, not on specifying an
implementation or “how” the service’s work is to be done. As a
consumer of an SOA service we care most about the service’s interface
and its performance characteristics. Similarly, PBSC also focuses on
the performance characteristics of the vendor’s service to the Government. OMB states, “The key
elements of a PBSC Performance Work Statement (PWS) are: a statement of the required services in
terms of output; a measurable performance standard for the output; and an acceptable quality level
(AQL)...”23

OMB writes, “Performance-based contracting methods are intended to ensure that required performance
quality levels are achieved and that total payment is related to the degree that services performed meet
contract standards.”24 The key is that service outcomes are to be measured and expectations are defined.
OMB states further, “The definitions of standard performance, maximum positive and negative
performance incentives, and the units of measurement should be established in the solicitation.” Both
these ideas have a parallel in an SOA service. As an SOA service provider, one carefully defines the

21 Barry Boehm, DARPA Workshop, “Software Reuse Economics” [http://sunset.usc.edu/GSAW/gsaw99/pdf-
presentations/breakout-2/boehm.pdf] 14 January 1997
22 Jeffery Poulin, “Measuring Software Reuse”, Addison Wesley, 1997
23 Office of Management and Budget, Office of Federal Procurement, “Policy Performance-Based Service
Acquisition”, [http://www.whitehouse.gov/omb/procurement/0703pbsat.pdf] July 2003
24 Ibid.

11

offering to the enterprise. Service performance requirements drive the quantity of underlying
infrastructure run by the service provider and therefore drive the provider’s cost. If a contract is crafted to
provide an SOA service to the enterprise, the expected service levels will drive the estimated cost of the
service and should be considered carefully.

Reuse of services on an enterprise scale is a team effort, but Government leadership has a singular
responsibility to strategically guide enterprise IT expenditures. Planned acquisitions must match the
overall portfolio goals of the organization and many organizations are establishing review boards for this
purpose. If a service is meant to be reused as a common component for a series of programs or projects,
contract language and incentives must be explicitly organized around that goal. Good will or positive
intentions are not sufficient. Portfolio management and scarce resources will demand that Government
staff reign in desires of contractors or even project teams to create redundant systems and services. The
Government must establish processes and organizations to assess and enforce prohibitions against the
creation of redundant capability. This requires both technical skills to understand potential architectural
solutions and contracting skills to structure existing Federal Acquisition Regulation (FAR)-based
contracting tools with appropriate objective-driven language. Given the trend for the expansion of
attempted integration as described in Section 1.0, redundancy of IT capability will only become more
visible over time.

12

4.0 SOA as an Enterprise Integration Technology
Enterprise Application Integration (EAI) is a field
of study in computer science that focuses on the
integration of “systems of systems” and enterprise
applications. Wikipedia states that, “EAI is a
response to decades of creating distributed
monolithic, single purpose applications leveraging a hodgepodge of platforms and development
approaches. Attending to EAI involves looking at the system of systems, which involves large scale
inter-disciplinary problems with multiple, heterogeneous, distributed systems that are embedded in
networks at multiple levels.”25 With the span of attempted systems integration and data sharing
continually increasing in large organizations as discussed in Section 1.0, the EAI engineering discipline
has become increasingly central to senior leadership teams managing portfolios of applications.

The fundamental EAI tenets are based on traditional software engineering methods, though the scale is
often considerably larger. While the traditional software coder focused on the parameters that would be
sent to, and received from, a function or procedure, the EAI engineer focuses on the parameters that are
exchanged with an entire system. The traditional coder might have been writing one hundred source lines
of code (SLOC) for a function, while the EAI engineer might be invoking a system with a million SLOC,
and several tiers of hardware for operational implementation. However, the overall request/response
pattern is the same, and the logic issues like error recovery must still be handled gracefully in either case.

Overall, the EAI engineer is looking for the following characteristics in an enterprise integration solution:

• Open Architecture - An open architecture, independent of underlying programming languages,
and application platforms. The architecture should focus on
allowing systems to communicate in a loosely coupled fashion,
allowing any application or system to map its own internal
architecture to well defined external interfaces. Ronan Bradley
writes, “It is with the introduction of ‘loosely coupled’ architectures
that SOA has emerged as a truly viable means of delivering business
and IT agility. In a loosely coupled system, each service simply
presents a standard interface to a common infrastructure (the SOA
itself). Implementation is hidden behind this interface, and as a consequence services can be
swapped, adapted or reconfigured at will – hence the term loosely coupled; there is no tight link
between the service implementation and the client requesting that service.”26

• Layered Model - Use of a layered model, with hierarchy and modularity to support the
composition of smaller services in the creation of a larger and more fully functional service. The
invocation of one service may lead to the invocation of other services that execute parts of the
larger service request.

• Exploit COTS Standards - Maximize use of current and emerging commercial-off-the-shelf
(COTS) standards, technologies, and products. Minimize customization and modification of
commercial products and focus research and development activity on unique organization
missions and requirements. Services should be designed with minimal dependence on vendor
proprietary implementations.

25 Wikipedia, “Enterprise Application Integration”, [http://en.wikipedia.org/wiki/Enterprise_application_integration]
28 March 2008
26 GDS InfoCentre, Ronan Bradley, “Agile Infrastructures”,
[http://gdsinternational.com/infocentre/artsum.asp?mag=184&iss=150&art=25901&lang=en]

Web Services, as a set of implementing standards
for SOA, offer new value to the engineer

attempting large-scale application integration.

13

• Scale to global proportions – The architecture of the EAI integration layer needs to support
graceful scaling to larger implementations with increased service capacity.

• End-to-End management - Services must be manageable, both in terms of their own status and
performance, and in their interactions with other services. Using contemporary virtualization best
practices, they should provide the means to be created, operated, and deployed in response to
demand and operational needs.

• Accommodate heterogeneity - Services must accommodate different development models,
languages, components, etc. Anne Manes wrote of Web Services, “The first and most obvious
bell ringer is the need to connect applications from incompatible environments, such as Windows
and UNIX, or .NET and J2EE. Web services support heterogeneous integration. They support
any programming language on any platform. One thing that's particularly useful about Web
services is that you can use any Web services client environment to talk to any Web services
server environment.”27

• Accommodate continual asynchronous change - The scope of the IT infrastructure for large
organizations ensures that there will always be changes occurring in some services. It will not be
feasible to synchronize service changes and still remain responsive to changing user needs.
Modifications to one service must not break the connections to other applications. It is unlikely
that releases of new service builds will be coordinated across service providers. Of course, there
will be a good deal of coordination between service providers and their current list of consumers.

• Allow decentralized operations and management - There will be many service providers in a
large organization. An enterprise solution should support federation and interaction among the
different parts comprising an end-to-end service offering.

• Integrated, layered security - applications require a robust security framework that
accommodates the full spectrum of security services including authentication, authorization,
integrity, confidentiality, and accountability.

SOA can be considered another important step in a 30-year history of EAI technologies. “SOA
eliminates the traditional “spaghetti” architecture that requires many interconnected systems to solve a
single problem.”28 SOA’s ability to run logic and functions from across a network is not new. Recent
examples include Enterprise JavaBeans (EJB) by Sun Microsystems Inc. and Common Object Request
Broker Architecture (CORBA) by the Object Management Group, Component Object Model (COM),
Distributed Component Object Model (DCOM) and .NET from the Microsoft Corporation. The various
methods have differed in the ease with which integration could occur from a programmer’s point of view,
the methods for conveying runtime errors, ports required to be open on a network, the quantity of
enterprise equipment to operate, and general design approaches to fault tolerance when failures occur.

SOA as an integration concept, and Web Services as a set of implementing standards, offer something
new to the EAI engineer. First and foremost, as described in Section 1.0, SOA Web Service
implementations offer a language neutral, platform neutral means to connect services and systems. DM
Review stated, “SOA provides the key to unlocking integration, by providing an enterprise-wide
architectural approach to bridging applications and promoting a set of standards for rich interoperability.

27 Computer World, Anne Thomas Manes, “When to Use Web Services”,
[http://www.computerworld.com/printthis/2004/0,4814,94886,00.html] 16 August 2004
28 Ebiz, Dr. Chris Harding, “Achieving Business Agility through Model-Driven SOA”
[http://www.ebizq.net/topics/soa/features/6639.html] 29 January 2006

14

It's only a matter of time before this flexible way of thinking about applications makes integration
technology a natural, fundamental aspect of IT infrastructure”.29

Web Services also ease a significant enterprise integration challenge by utilizing common
communications ports for integration. Individual Web Services are accessed through web servers, a
common element in contemporary IT infrastructures. The key point here is that the ports and protocols to
access web servers are usually already defined (e.g. port 80 HTTP), and open across an organization, both
in policy and implementation. This means that the firewalls and access control points are more likely to
be friendly to this type of data exchange, as compared to suggesting that an organization open up a whole
new set of ports and protocols for integration.

29 DM Review, Integration Consortium, “Integration Everywhere – How SOA is Altering the Direction of EAI -
Thoughts from the EAI Consortium” [http://www.dmreview.com/news/8229-1.html] 4 March 2004

15

5.0 Enterprise SOA Standards
The Need For Enterprise Standards SOA
programs are most often enterprise level
endeavors involving “teams of teams” who control
“systems of systems”. Personnel experience ranges from experts in the organization’s data sources and
legacy systems, to EAI engineer’s with expertise in large-scale integration. Often teams in large
enterprises are physically dispersed. This makes the ability to communicate the design and architecture
specifications of a component an important organizational capability.

In this context, where many components are being simultaneously
developed by individual teams, it becomes critical for the interface
of a provider’s service to match up to the call of a consumer.
Similarly, it helps everyone involved if the interfaces across
services have some commonality in structure and access
mechanisms. The worst case would be a situation where
programmer teams had to have one-on-one personal meetings to
understand interface designs with service providers every time
they wanted to invoke a new service. In that situation, agility will
slow to the speed of organizational dynamics, instead of the speed
of coding and testing processes. Choosing and communicating a comprehensive set of enterprise
standards is a good approach to aid in enterprise SOA integration.

Example Enterprise Standards Enterprise standards to support SOA fall into several general categories
and a typical enterprise set might look like the following:

Web Services Related
URI Uniform Resource Identifier (URI): Generic Syntax, January 2005.
WSDL Web Services Description Language (WSDL) 1.1, W3C Note, 15 March 2001.
SOAP Simple Object Access Protocol (SOAP) 1.1, W3C Note, 8 May 2000
HTTP Hypertext Transfer Protocol (HTTP) 1.1, June 1999. IETF RFC 2616

Network/Network Management Related
TCP Transmission Control Protocol (TCP), September 1981, IETF Standard 7/RFC 793
IP Internet Protocol (IP), September 1981. IETF Standard 5 with RFC's

791/950/919/922/792/1112
SNMP Simple Network Management Protocol (SNMP), May 1990. IETF Standard

15/RFC 1157
Security Related

SAML v2.0 SAML 2.0 OASIS Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0, OASIS Standard, 15 March 2005

PKI X.509 Public Key Infrastructure Certificate
PKI CRL X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)

Profile, April 2002. IETF RFC 3280.
WS-Security Web Services Security: SOAP Message Security 1.0 (WS-Security 2004), OASIS

Standard, March 2004
SSL v3.0 Secure Sockets Layer (SSL) Version 3.0
XACML eXtensible Access Control Markup Language (XACML) Version 2.0, OASIS

Standard, 1 February 2005
OCSP Online Certificate Status Protocol (OCSP), RFC 2560, June 1999

Registry/Directory
UDDI v3.0.2 Universal Description, Discovery, and Integration Version 3.0.2 OASIS UDDI

Spec, Dated 2004-Oct-19
LDAP v3.0 Lightweight Directory Access Protocol (v3): Technical Specification;

September 2002

SOA is currently implemented through a complex
set of sometimes overlapping standards, each
supported by different large Industry partners.

16

Data Standards
XML Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation

04 February 2004
XSLT XSL Transformations (XSLT) Version 2.0, W3C Working Draft 4 April 2005
XPath XML Path Language (XPath) 2.0, W3C Recommendation 23 January 2007

Syndication
RSS v2.0 Really Simple Syndication (RSS) Version 2.0

Presentation Related
HTML HTML 4.01 Specification, W3C Recommendation, revised, 24 Dec 1999
CSS CSS2:1998 Cascading Style Sheets, level 2 CSS2 Specification, W3C

Recommendation 12 May 1998
WSRP WSRP OASIS; OASIS Web Services for Remote Portlets Specification, August

2003
JSR-168 JSR-168; Java Specification Request (JSR) JSR-168, Portlet Specification API,

Final Release ballot, Version 1.0, 06 October 2003

The Current State of Web Service Standards At this time, despite the few selected in the table above,
Web Service standards as a whole remain in flux. InfoQ writes, “A flurry of protocols, collectively
named WS*, have also been introduced as extensions to SOAP (and in some cases WSDL) to facilitate
specific communication requirements and scenarios. The categories of WS* are broad, and it has reached
a point where the sheer number of standards is so great that despite a core set being implemented in many
platforms, many in the web service community are confused about which standards they should care
about, when and why.”30 Consequently, while it is a valuable effort to select a group of standards for
enterprise integration as shown in the table above, we can reasonably expect many revisions to this list in
the next five years. These revisions will ripple through the community of service providers that work to
comply with selected enterprise standards and the revisions will have attendant development costs.

30 InfoQ, Michele Leroux Bustamante, “Making Sense of all these Crazy Web Service Standards”,
[http://www.infoq.com/articles/ws-standards-wcf-bustamante] 16 May 2007

17

6.0 Where Does SOA Best Apply?
The Web Service technologies commonly used
today to implement SOA concepts have certain
design presumptions. They work best when the
underlying network is robust, reliable, and
available. Web Service standards have become an
area of focus at this point in computing history because it is now conceivable to trust corporate networks
in the continental United States to the task of running remote services with reasonable success.
Fundamentally, Web Services allow the programmer to invoke code and application logic across the
network, with input and output information. If the application under development is central to the
mission of the organization, the network has to be sufficient to facilitate communication between the
service provider and consumer. This is not to say that any deficiency in the underlying network can not
be compensated for by thoughtful engineering and the use of standard queuing and buffering
communications methods. However, these approaches and standard design patterns to compensate for the
underlying network will take a project further from the mainstream commercial implementations of Web
Services. Several Federal projects work in environments where the underlying network is not on par with
the CONUS corporate Internet, and those projects assume greater risk in diverging from mainstream
standards in order to implement SOA. Web Services assume a reasonable network.

Unreliable or Low-Bandwidth Networks: There are several
characteristics that are important to defining the quality of the
underlying network. The network can fail a Web Service
implementation for several reasons such as, but not limited to:

• Bandwidth - Insufficient bandwidth to carry the large (and
often inefficient) XML payloads between service provider
and consumer within desired performance requirements

• Reliability – Network components that lose a sufficient
portion of the IP packets between a service provider and consumer so that performance
requirements are not met

• Intermittent Communications – Sporadic communication between the service provider and
consumer that turns what might have been a rapid request/response pair into a form of buffered
asynchronous communications

In these cases compensating software designs can be put in place to make up for the deficiencies in the
underlying networks. Traditional methods to compensate for poor communications include extra error
checking and error recovery logic, including the ability to retransmit messages or parts of messages when
needed, and the ability to queue communications in buffering architectures until one of the parties can
attend to it. For example, a Web server offering standard HTTP on port 80 out of the box will not
perform all these compensating functions. These designs will take the engineer further from the common
commercial implementations of Web Services and make the application of COTS products less likely. In
some extreme environments, such as the forward edge of a battle field, diverging from commercial
products will be required and that alone should not stop designers from being service oriented. However,
we must recognize that as the software system becomes less based on industry standard approaches and
patterns, and becomes more of a one-off custom design solution for one problem space, the risk profile
for the project changes.

High Reliability Requirements: However, it’s not just the extreme network cases in which Web Services
offer some concern. Mary Brandel astutely points out that, “Before mission-critical Web services

“You want to be cautious when trying to use Web
services in situations with stringent requirements
for real-time performance.” Anne Thomas Manes 33

18

applications enter the mainstream, reliable messaging will have to become less complex and costly.”31 As
discussed in Section 4.0, Web Services are being used as an integration tool by many organizations, and
consequently they are being directly compared to many existing highly robust integration tools. For
example, integration brokers are used in the banking industry to transfer large sums of money. This is an
area where the software can not get it wrong, and consequently the capabilities for assured delivery and
non-repudiation are mature. There are ongoing attempts by several of the Web Services standards bodies
to replicate these capabilities in standards that hope to be broadly adopted by industry. It is safe to say
that given current Web Service implementations, very high reliability delivery mechanisms are not
sufficient. Of course, as was mentioned in the network discussion, thoughtful engineering can
compensate for these issues, but the solutions become non-standard.

Real-time Processing Requirements: Given the state of contemporary Web Service technologies, real-
time processing is a significant challenge. There are several performance issues with Web Services and
the underlying premise of running services across a network. Performance challenges can include the
marshalling of XML data, network propagation delays, and the underlying security design pattern
especially in the area of services calling services, or service chaining. And while the definition of “real-
time” can vary, the problems outlined below affect most classes of real-time systems.

For example, several large-scale projects have reported that the marshalling of data, both in and out of
Web Service calls, and rendering XML is a low-performance activity.32 Converting organically binary
data into ASCII formats for inclusion in XML, is prohibitively slow for many real-time applications. Ann
Manes writes, “XML is tremendously versatile, but it isn't the most compact or efficient mechanism for
transferring data. A SOAP message is much bigger than a comparable native binary message used with
RPC, RMI, CORBA, or DCOM. It also takes a lot more time to process an XML message than a binary
message. Even with the best-performing implementations, SOAP messaging can take 10 to 20 times
longer than RMI or DCOM.”33

S D

Pr ofess ional W orks tati on 6000

P RO

SD

SD

ESC

DLT

P RO L IA NT 80 00

ConsumerService
Provider

H HH

S D S D

H

Firewall Firewall

S D

C at al yst
850 0

P o w e r S up p l y 0CI SCO YSTEMSS Power Suppl y 1

S wit ch
P rocessor

SERIES

H

SD

Catal yst
8500

Power Suppl y 0CI SCO YSTEMSS Power Supply 1

Swi tch
Proc essor

SERIES

H

Router Router

SD

D EF I NI TY 0 34
SD

D E F IN IT Y 0 34
S D

D E FI NI TY 0 3 4

H HH

Switches

Web Service technologies share challenges that have existed for years with large distributed systems. On
a contemporary IP network, the distance from a service provider to a service consumer is measured in
“hops”. As shown in the inset figure, at each hop time is spent performing some action on a packet, such
as routing it, or inspecting its contents. Some hops are fast (low latency) such as switches, while some
hops are very slow (high latency) such as firewalls with content checking rules. Thirty or more hops
would not be unusual for a typical packet. In total these hops add up to some network propagation delay
from the point of view of the service level software. The number and types of hops from the provider to
the consumer directly affects perceived performance of the service.

31 Computer World, Mary Brandel, “Message Received? Companies that require highly reliable Web services are
building in their own guarantees”
[http://www.computerworld.com/action/article.do?command=viewArticleTOC&specialReportId=620&articleId=95
221]
32 PushToTest, Frank Cohen, “Discover SOAP encoding's impact on Web service performance”
[http://www.ibm.com/developerworks/webservices/library/ws-soapenc/] 1 March 2003
33 Computer World, Anne Thomas Manes, “When to Use Web Services”,
[http://www.computerworld.com/printthis/2004/0,4814,94886,00.html] 16 August 2004

19

Even though the service provider often can not control the Wide Area Network (WAN), the ability to
effectively run a service is impacted by the service provider’s location on the network topology. In the
commercial world service providers pay extra fees to host their servers a minimum number of hops off of
the main IP exchange points on the Internet. Finally, also consider that the IP-based Internet is
dynamically routed. This means that from moment to moment, and day to day, the path that the IP packet
must take will change. For all these reasons, running services across a network can be risky for real-time
applications.

An often overlooked point is that performance of each service provider is localized and unknown to the
consumer, moment to moment. For example, some world
event may cause thousands of end-users to start their
browsers and cause a particular service to be launched.
All these service calls will come into the same service at
about the same time. Each end-user does not know that
the same query might run a hundred times faster at another
moment, but due to resource contention, the response will
be momentarily poor. In this sense, the consumer does not
know, moment to moment, the status of the provider.
There are local and global load balancing approaches that service providers put in place to compensate for
this issue, but overall it is another reason why performance for real-time applications can be
unpredictable.

Security designs can induce significant performance delays. For example, if a service access requires PKI
validation, then a set of information exchanges must occur between the provider and a credential holder.
Each of these exchanges occurs in the context of a dynamically routed, multi-hop packet exchange as
described previously. In some enterprise designs, a service calling a service (service chaining) can
initiate the same security information exchange. Many real-time applications could not successfully
operate given the time required for all these security exchanges.

Performance implications, such as those discussed above, impact the design approach to services. For
example, if the overhead to invoke a service across the network is substantial, between getting the data to
the service, and consulting security, then it might make sense to have the service do more once it is
running. This is the basic discussion of service granularity. Should you have a few bigger services or
many little services?

20

7.0 SOA-based Agility
When we discuss “agility” as it relates to
SOA, we are often referring to organizational
agility, or the ability to more rapidly adapt a
Federal organization’s tools to meet their
current requirements. SOA World magazine
explains, “The goal of IT is to put valuable
systems in front of our users in a timely manner. Deploying and redeploying in a short time frame is
essential to achieving agility.”34 The organization’s requirements of IT might change over time for a
number of reasons including changes in the mission, changes in organizational reporting requirements,
changes in the law, new technologies in the commercial marketplace, attempts to combine diverse data
sources to improve the organization’s operational picture, and many other reasons. Advocates of SOA
assert that, as compared to previous enterprise integration technologies, Web Services offer a more agile
manner of interconnecting systems, and improve an organization’s ability to re-tool IT to support
change.35

Agility is most effectively discussed as a spectrum, not a true/false boolean value, and it can be assessed
as change over a period of time. The SOA Infrastructure Blog recently stated, “Efficiency is optimizing
for the known. Agility is optimizing for the unknown (i.e. optimizing your future efficiency)”36 Many of
the IT requirements an organization will fulfill in the next decade, are not known at this time. Also
consider that systems have a habit of living on for much longer than their original creators anticipate.
And while we can not anticipate all the requirements a software system will someday fulfill, or all the
data sources the system will someday need to either consume or produce, it is safe to say that working
with defined, standards-based, bounded components, is easier than monolithic one-off solutions.

An Example of Agility Claiming
that component-based services offer
more organizational agility, requires
you to compare this approach to a
previous method. For example, for
the purposes of comparison, when
considering a Web Service as an
integration method to exchange data
between systems, consider that
many of the legacy interfaces
between Federal systems are one-off
negotiated point-to-point data
exchanges. A common exchange
method is send an ASCII file with
uniquely formatted data, at a pre-
defined mutually agreed non-peak
time of day. This legacy point-to-
point interface between a data

34 SOA World Magazine, Jeff Schneider, “SOA Web Services: Does Your SOA Achieve Agility?”,
[http://webservices.sys-con.com/read/143900_2.htm] 10 November 2005
35 David Linthicum, “Real World SOA”
[http://weblog.infoworld.com/realworldsoa/archives/2007/11/using_it_backlo.html?source=rss] 28 March, 2008
36 SOA Infrastructure Blog, Dan Foody, “So what is SOA agility anyway?”
[http://blogs.progress.com/soa_infrastructure/2007/08/what-is-agility.html] 29 August 2007

Probably Less Agile Probably More Agile

A point-to-point one-off negotiated
interface between two specific
systems

A general standards-based
interface for a community

A user formatted ASCII data file XML formatted data with a
schema

A custom data exchange designed in
the 1980s by staff who have retired

A Web Service standards-based
function call

A data exchange understood by two
programmers at the time

A data exchange used by 50
organizations with published
documentation in a searchable
registry

A custom data file exchanged at
1:00 am when computer usage is
low

A function available 24x7 on
scaled redundant servers

“The fact of the matter is that the core benefit of SOA
is agility. If you have agility, then you have the ability

to change the architecture as the business needs
changes.” – David Linthicum, EAI expert 35

21

producer system and a data consuming system is labor intensive to code, often requires many staff
meetings between both parties to implement, probably does not use standard representations for data, and
often is not well documented. If the consuming system should decide to move to another source for the
data, the amount of rework is substantial, and the speed of change will not be rapid, and this approach
could be fairly tagged as less agile.

In contrast, an organization facing the same data exchange
requirements could establish and socialize a data format defined by
standard XML. A Web Service which offers that defined XML
can be made operational through a web server and run on a nearly
24x7 basis, using SOAP and HTTP. A description of the service
can be made available in a service registry for the entire
organization to use. Finally, a Service Level Agreement (SLA),
defining organizational commitments to service performance can
be developed and offered to all potential service consumers. With
this overall approach a better documented, standards-based interface is created, and the organization as a
whole can more quickly make use of this data source.

Agility in an SOA context is enhanced by the following characteristics:

• Architectural commonality among services – This is best enabled by having a common set of
enterprise-defined standards within which to offer services as described in Section 5.0. The worst
case scenario requires the caller of a service function to have to call each provider and negotiate a
one-off agreement or technical explanation when trying to invoke a service.

• Ability to clearly define a service interface – Being able to define the inputs, outputs, and
expected behavior and performance of a service is crucial to helping consumer technical staff
rapidly invoke a service.

• Ability to find a service – Services live on URI endpoints on the IP network. It is inevitable that
during the lifetime of a service these endpoints will change. A common method for sharing
information on offered services is a service registry. The community of consumers will require
some common means of sharing service information.

The larger promise of an enterprise SOA is that once a sufficient quantity of legacy-wrapped components
exist, and are accessible on the IP wide area network (WAN), they can be re-connected more rapidly to
solve new problems. SOA World magazine stated, “Marketing bologna aside, agility is directly related to
the time and effort required to create new functions or to modify existing functions - and then to re-
release those functions to the customers.”37 Well defined SOA components allow programmers to more
rapidly assemble components, as compared to one-off interfaces of the past. Russ Abbott writes, “We
tend to build systems hierarchically. We formulate a top-level design that meets top level requirements
and then determine what components we need to implement it. We then decide how to build the
components in terms of sub-components, etc. This approach doesn’t take advantage of existing products
and services except when we use standard parts—and we do that too rarely.”38

Federal organizational agility will have a lot to do with the ease with which components can be found and
re-combined over the next decade. Dion Hinchcliffe blogs, “An important reason why the Web is now
the world's biggest and most important computing platform is that people providing software over the

37 SOA World Magazine, Jeff Schneider, “SOA Web Services: Does Your SOA Achieve Agility?”,
[http://webservices.sys-con.com/read/143900.htm] 10 November 2005
38 Russ Abbott, “Putting Complex Systems to Work”,
[http://64.233.169.104/search?q=cache:wunzA2V5_l8J:cs.calstatela.edu/wiki/images/7/7e/Abbott.doc] 28 March
2008

22

Internet are starting to understand the law of unintended uses. Great web sites no longer limit themselves
to just the user interface they provide. They also open up their functionality and data to anyone who
wants to use their services as their own. This allows people to reuse, and re-reuse a thousand times over,
another service's functionality in their own software for whatever reasons they want, in ways that couldn't
be predicted. The future of software is going to be combining the services in the global service landscape
into new, innovative applications.”39

39 Social Computing Magazine, Dion Hinchcliffe, “Social Aggregators Emerge To Manage Digital Lifestyles”
[http://web2.socialcomputingmagazine.com/] 28 March 2008

23

8.0 Reaping the Benefits of SOA
A Historic Analogy Interstate 95 (I-95), a
1,927-mile highway on the East Coast of the
United States, was established by the
Eisenhower administration with the Federal
Highway Act of 1956 as a key piece of our
National infrastructure.40 The highway, and
its considerable acquisition and construction expense, had two central purposes. First, the highway was
to enable greater commerce, supporting the more efficient exchange of goods. Second, it supported the
Nation’s defense by more efficiently allowing the movement of troops and their supporting equipment
and supplies during the early Cold War. The parallel road, Route 1, which was at several points a single
lane road and lined with small towns, was an alternative route at the time. Analyses during the late 1990s
estimated that for every dollar spent on I-95, seven dollars have been returned to the general economy, in
addition to the improved National defense characteristics that were provided. In retrospect I-95 seems to
have been a good investment.

However, if in 1950 we took the approach of asking any of the small 4,000-person towns along Route 1,
would they pay for a five to ten lane highway and an off ramp to their town, most would find their local
town budgets orders of magnitude too small for such a project, and many would might not even want to
attempt it, as nearby Route 1 was already sufficient and in place. The interests of the “enterprise” and of
the local towns did not necessarily align.

We can now more clearly estimate the economic benefits that many of
these towns have accumulated since 1950 as a result of this large
infrastructure expenditure. And we can also see the enabling effects of a
more efficient exchange of goods to the larger economy. Infrastructure
spending enabled exchange on a larger scale with less “friction”.
Analogously, we expect that IT infrastructure spending enables the agile
exchange of information in a SOA.

Similarly, efforts that benefit the CIO’s enterprise, and look good to the
senior leadership team of an organization, do not necessarily benefit the
small software projects in an agency. Transitioning a legacy application to include a set of Web Services,
and putting the services in place with a robust infrastructure of redundant 24x7 reliable servers with full
support as well as a service discovery mechanism is an expensive task, hopefully enabled by enterprise
level infrastructure efforts. For example, SOA with contemporary Web Service implementations is
directly enabled by the quality of the underlying IP network, and the server redundancy of the Web
Service offerings. Real Web Service implementations often require multiple tiers of servers, such as Web

Servers, logic servers, and databases, to all operate
reliably to fulfill a mission.

If as a result of creating a good service, an individual
project then picks up many more consumers than it
had previously, then clearly the day-to-day demands
on the project’s IT infrastructure increase. The
common result of service success is higher local
operational costs. At the enterprise level, this is a
benefit, because it means that more customers are
reusing the same shared services, instead of rebuilding

40 Wikipedia, “Interstate Highway System”, [http://en.wikipedia.org/wiki/Interstate_Highway_System] 28 March
2008

Who is the key beneficiary of SOA? Do individual
legacy software projects benefit, or does the

enterprise as a whole benefit? Are the interests of the
software Project Leader and the CIO the same?

24

them. The leadership team should be pleased. But the individual Federal software system project leader
is likely to be on a fixed budget that may have been established well before the dynamic nature of the
SOA producer/consumer model was noticed. And while a commercial corporation can be more nimble in
responding to rapid usage changes, Federal programs can be less quick to measure and respond to such
changes.

In summary, the local perspective of individual legacy projects will not justify an enterprise SOA effort,
but this should not be allowed to stop the enterprise SOA from occurring. The SOA benefits accrue
largely at the enterprise’s level in cost avoidance through reuse, and increased data exchange and agility.
Consequently, a corresponding investment is required at the enterprise level, where the benefit is found.

Enterprise Standards Compliance Another interesting enterprise characteristic of SOA and I-95 is that
both rely on standards compliance. Federal funding is the chief motivator for compliance with Federal
standards for highways. “The American Association of State Highway and Transportation Officials
(AASHTO) has defined a set of standards that all new Interstates must meet unless a waiver from the
Federal Highway Administration (FHWA) is obtained. These standards have become more strict over the
years…. The dominant role of the Federal government in road finance has enabled it to achieve legislative
goals that fall outside its power to regulate interstate commerce. By threatening to withhold highway
funds, the Federal government has been able to stimulate state legislatures to pass a variety of laws.”41

Standards compliance has obvious benefits for a highway system and a set of enterprise services. As
discussed in Section 5, Web Services can be defined by a set of industry standards that form a common
framework for implementation. One of the chief concerns in this area are the standards and mechanisms
established for security. Consequently, establishing the standards and a governance mechanism is a key
part of implementing an enterprise SOA. Agility is engendered by architecture commonality, which eases
reuse across a large organization.

SOA Market Models Senior leadership teams
in large organizations often find themselves
considering the philosophical underpinnings
and organizational dynamics of IT portfolio
management. In this final analogy, the SOA
effort is discussed as an example of a market
economy or a command economy. In practice, some mixture of the two approaches is most often needed.
For example, individual service providers, who have the deepest understanding of their customers and
data sources, must be allowed to offer the services that make sense from their market-oriented point of
view. They can offer services that match their customer’s needs and they can enjoy the success of
correctly matching customer requirements, or endure the consequences of forecasting incorrectly. The
enterprise CIO must also assure from a command point of view that the enterprise has a reasonable IT
portfolio, gaps in services capabilities are being filled somewhere in the organization, and architectural
commonality is being preserved. Successful SOA efforts will support innovation by the participants,
while also ensuring a comprehensive set of reused services and standards compliance. The challenge is
finding the balance.

41 Ibid

Natural ecologies and market economies are both
examples of what we call innovative environments.

The fundamental principle is that new things are built
on top of existing things. Russ Abbott 38

25

9.0 Conclusion
SOA offers Federal leadership teams a means to effectively leverage decades of IT investment, while
providing a growth path for new capabilities. Contemporary SOA technologies, such as the Web Services
standards, offer valuable new capabilities such as language neutral integration, yet still require structured
engineering processes and well defined acquisitions, and enterprise portfolio management. The Science
of Computer Programming journal stated, “Executives of large organizations with substantial IT budgets
learned the hard way that spending more is not the winning strategy. Some of them realized that after a
long string of staggering IT investments plus their challenges, they must start to control their IT
portfolios.”42 SOA provides a technical underpinning for structuring portfolios as a collection of discrete
services, each with a definable customer base, acquisition strategy, performance levels, and a measurable
operational cost.

A key current challenge for many Federal organizations is the structuring of their IT portfolio around a
component-based service model and enforcing sufficient standards within their own organizational
boundaries, which can be quite large. As the span of attempted integration continues to grow, the
challenge of the next ten years will be enabling that integration model to bridge multiple external
organizations that undoubtedly will be using disparate standards and tools. After the first generation of
standards-based service integrations has passed, and portfolios become defined, process driven, and
manageable, translation and brokering will be the next set of key cross-enterprise services.

42 C. Verhoef, “Quantitative IT Portfolio Management”, Science of Computer Programming, Volume 45 Issue 1,
[http://www.cs.vu.nl/~x/ipm/ipm.pdf] 28 March 2008

26

Appendix A – Acronyms
Acronym Definition

AASHTO American Association of State Highway and Transportation Officials
ASCII American Standard Code for Information Interchange
CSS Cascading Style Sheets
CICS Customer Information Control System
CIO Chief Information Officer
CORBA Common Object Request Broker Architecture
COM Component Object Model
COTS Commercial-Off-The-Shelf
CRL Certificate Revocation List
DCOM Distributed Component Object Model
DoD Department of Defense
EAI Enterprise Application Integration
EJB Enterprise JavaBeans
FHWA Federal Highway Administration
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IC Integrated Circuit
IP Internet Protocol
IT Information Technology
JSR Java Specification Request
LDAP Lightweight Directory Access Protocol
OCSP Online Certificate Status Protocol
OMB Office of Management and Budget
PBSC Performance-Based Service Contracting
PKI Public Key Infrastructure
PWS Performance Work Statement
SAML Security Assertion Markup Language
SLA Service Level Agreement
SLOC Service Lines of Code
SAML Security Assertion Markup Language
SNMP Simple Network Management Protocol
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SSL Secure Sockets Layer
TCP Transmission Control Protocol
RCR Relative Cost of Reuse
RCWR Relative Cost of Writing For Reuse
RSS Really Simple Syndication
UDDI Universal Description, Discovery, and Integration
URI Uniform Resource Identifier
WAN Wide Area Network
WS* Web Services standards
WSDL Web Services Description Language

27

Acronym Definition
WSRP Web Services for Remote Portlets
XACML eXtensible Access Control Markup Language
XML Extensible Markup Language
XPath XML Path Language

28

Additional Photo Credits:
Inset photos used under license from iStockPhoto.com

Except the following:

Section 1: Rosetta Stone, Public Domain - Wikipedia

Section 4: Black Box photo – used with permission of Performance Trends Inc.
[http://www.performancetrends.com/]

Section 8: President Eisenhower with Clay Commission photo – courtesy of the Eisenhower
Presidential Library and the National Park Service – used with permission,
[http://www.eisenhower.utexas.edu/]

