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Data were collected over the site using a suite of sensors on board a DC3 aircraft operated by Airborne Imaging, 
which included the Mapping Reflected-energy Spectrometer (MaRS), a Nikon D2X camera, and an Optech LiDAR.   
MaRS is an HSI sensor built by NASA JPL that measures spectra in the 0.4 µm to 2.5 µm  spectral range.  The Nikon 
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ABSTRACT 
Fusion of Light Detection and Ranging (LiDAR) and Hyperspectral Imagery (HSI) products is useful for geological 
analysis, particularly for visualization of geomorphology and hydrology.  In early 2007, coincident hyperspectral 
imagery and LiDAR were acquired over Cuprite, Nevada.  The data were analyzed with ENVI and the ENVI LiDAR 
Toolkit.  Results of the analysis of these data suggest, for some surfaces, a correlation between mineral content and 
surface roughness.  However, the LiDAR resolution (~1 meter ground sampling distance) is likely too coarse to extract 
surface texture properties of clay minerals in some of the alluvial fans captured in the imagery.  Though not 
demonstrated in this particular experiment (but a goal of the research), the relation between surface roughness and 
mineral composition may provide valuable information about the mechanical properties of the surface cover—in 
addition to generating another variable useful for material characterization, image classification, and scene segmentation.  
Future mission planning should include consideration of determining optimal ground sampling to be used by LiDAR and 
HSI systems.  The fusion of LiDAR elevation data and multi- and hyperspectral classification results is, in and of itself, a 
valuable tool for imagery analysis and should be explored further.  
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1. INTRODUCTION 
The utility of fusing hyperspectral imagery (HSI) and Light Detection and Ranging (LiDAR) has been 

demonstrated for the analysis of vegetation1. It was shown that fusing surface roughness derived from LiDAR and 
matched filter scores from HSI improved the classification of sagebrush in arid regions. It has also been demonstrated 
that LiDAR is useful for characterizing the surface roughness of alluvial fan regions2.  This paper addresses the question 
of whether a similar approach can be used to improve mineral mapping and characterizing mechanical properties of 
rocks via spectral remote sensing. We will explore the hypothesis that surface roughness derived from LiDAR returns is 
correlated with the mineral composition derived from VNIR/SWIR (0.4 µm to 2.5 µm) hyperspectral imagery. 

2. MATERIALS AND METHODS 
A total of 14 passes were made over and to the west of the Cuprite mining district in southwest Nevada, spanning 

an area of approximately 108 square kilometers from an altitude of 2.23 kilometers above sea level.  Cuprite 
encompasses an area of hydrothermally altered and unaltered exposed rocks.  Previous studies3-8 of this site have 
identified silicified regions of predominantly quartz with minor alunite (KAl3(SO4)2(OH)6), kaolinite (Al2Si2O5(OH)5), 
and calcite (CaCO3); opalized areas containing alunite, disseminated opal (SiO2⋅nH2O), calcite replacing opal, and 
kaolinite; and argillized regions of primarily kaolinite with montmorillonite ((Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2⋅nH2O) 
and minor opal. The area of interest for this study is the alluvial fan around the two alunite-rich mounds near 37° 31’ 
28.79” N, 117° 12’ 44.61” W, which is to the west of the US-95 road.   The mean elevation of the site is 1.55 kilometers 
above sea level.   

                                                           
* Contact information: (703) 983-6880, mwest@mitre.org 
† Contact information: (703) 735-2793, Ronald.G.Resmini@nga.mil or rresmini@gmu.edu 

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 09-0278



 2 

D2X is a digital SLR camera that was used for capturing high spatial resolution true color imagery.  The LiDAR system 
operates with a wavelength of 1.064 µm.  

 

 
Figure 1 Mosaic of Nikon true color imagery (left) over the area of interest (outlined on the map).  (Map credit: © 

2004 DeLorme (www.delorme.com) Topo USA®.) 
 

One data set covering the area of interest was chosen from each of the two sensors.  The ground sampling distances 
(GSD) at the relative altitude above the ground for each sensor was approximately 1 meter for LiDAR and 0.68 meter for 
MaRS.  The entire flight line covered an area of 5.4 square kilometers, while the region of interest covered only 1.5 
square  kilometers.  Therefore, spatial subsets of LiDAR and MaRS imagery were created over the region of interest to 
reduce processing time.  

MaRS data were converted from radiance to reflectance using in-scene information and a simplified sensor 
model9 where the at-sensor radiance in the ith band, Li, was approximated by a simple gain, G, multiplied by the target 
reflectance, ρi,  and added to an offset term, P, 
 

PGL ii += ρ .                                                                             (1) 
 

The offset, P, or “path radiance”, is estimated by finding the band-minimums for the entire datacube. In-scene regions of 
interest (ROI’s) of the alunite mounds and the United States Geological Survey (USGS) spectrum for alunite10 were used 
to estimate the multiplicative gain term, G.  The ROI’s were selected based upon previous mineral mapping work by 
Resmini et al.11 and the USGS12. The radiance data were then converted to reflectance by inverting Equation (1) to solve 
for the target reflectance, ρi, 
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Attempts to use the physics-based algorithm FLAASH13 failed due to the presence of clouds overhead at the time of the 
data collection.  

Linear spectral mixture analysis14,15,16 of the MaRS reflectance imagery was then performed using the 2.0 µm – 2.5 
µm region of the spectrum, which is a “fingerprint” region of the solar reflective spectrum for minerals.  The model used 
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for this analysis assumes that each pixel is an areal mixture of the dominant minerals such that the pixel reflectance is 
simply a weighted sum of the reflectance of each constituent spectral endmember (wavelength dependence implied) 

 

 

ρimage = α j
j

∑ ⋅ ρ j + E ,                                                                      (3) 

 
where αj is the relative abundance of the material with reflectance ρj, and E is the RMS error between the model and the 
data. Furthermore, the model is constrained such that αj is positive for all j and the endmembers sum to 1. Spectral 
endmembers were selected from the scene that closely matched spectra from a previous USGS study cited above. The 
results were saved as single-band fraction plane images scaled to the relative abundance of each mineral used for the 
mixture analysis.   

Surface roughness was computed from the LiDAR imagery, where roughness is defined as the standard deviation 
of the height distribution in the neighborhood of each pixel17.  Like the abundance fraction planes from the spectral 
mixture analysis, the surface roughness results were saved as single-band gray-scaled images. The fraction plane and 
roughness images were then georeferenced and layer-stacked.  Scatter plot analysis was used to qualitatively evaluate the 
correlation between the LiDAR and HSI products. 
 

3. RESULTS AND DISCUSSION 
 False color composites of the region of interest were generated from the MaRS and LiDAR imagery to provide a 

general overview of the material distribution around the alunite mounds, as shown in Figure 2.  The alluvial flow 
channels are very distinct in the LiDAR intensity image, fanning out from West to East, which is the direction of 
descending altitude from the alunite mounds.  The color space distribution in the MaRS SWIR false color image 
suggests that the composition in the region can be represented by a small (3-5) endmember spectral mixture model.  
Iterative in-scene user-selected endmember linear unmixing converged on a 3-endmember mixture model.  The three 
endmembers were matched to the USGS mineral library and identified as alunite, montmorillonite, and kaolinite-
smectite (a.k.a. “kaosmec”).  The fraction planes and RMS image are shown in Figure 3. 

 Figure 4 shows a false-color RGB image of the stacked fraction planes overlaid on a digital surface model 
generated from the LiDAR image.  The fusion of hyperspectral and LiDAR data provides a useful means for visualizing 
the distribution of material and hydrology.   Alunite typically occurs in the environment as massive structures18, which 
are easily identifiable in this scene as large mounds. Note that the deep channels in the alluvial fan correlate to a high 
abundance of the montmorillonite, which is a clay mineral of altered volcanic ash.  The more elevated regions are 
composed of kaolinite and smectite, which are also clay minerals formed by the weathering and hydrothermal alteration 
of silicates.   

The brighter material in the alluvial fan regions observed in the Nikon context (Figure 1) and the LiDAR intensity 
images (Figure 2) correspond to the montmorillonite spectral detections. This relative brightness is consistent with the 
assumption of small grain sizes in the alluvial channels, as compared to darker regions19.  However this does not bear out 
in the LiDAR surface roughness products. Clay minerals are comprised of fine particles on the order of 1 micrometer. 
Therefore, they would not be expected to exhibit much in the way of surface roughness as measured by LiDAR with a 1 
meter GSD.  This appears to be the case when examining the absolute and local surface roughness LiDAR products, as 
shown in Figure 5.   

Absolute and local surface roughness differ only in that the slope is removed from the absolute surface roughness 
to calculate the local roughness.  Thus the local surface roughness captures the vegetation (seen as speckles throughout 
the scene), the sides of the deep channels, and areas of high roughness on the alunite mounds.  At a LiDAR resolution of 
1 meter, there may be only a weak correlation between the mineral abundance and surface roughness, as evidenced by 
the seemingly random distribution of points in the scatter plots shown in Figure 6, Figure 7, and Figure 8.  The 
distribution functions of absolute and local surface roughness values appear to be unimodal (Figure 9), while the 
distribution functions of mineral abundances appear to be bimodal (Figure 10), with purest abundances being that of 
alunite.  
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Figure 2 False color composites derived from MaRS (left) and LiDAR (right).  The MaRS image is formed from a combination of 
three spectral bands: 2.43 µm (red), 2.35 µm (green), and 2.16 µm (blue).  The LiDAR image is the intensity of return signal scaled to 
the Rainbow color map. 
 

 
Figure 3 Fraction planes and their associated mineral spectra used for unmixing the hyperspectral data. 
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Figure 4 False color RGB image formed by three fraction planes overlaid on a digital surface model.  The height is exaggerated by a 
factor of 3.  Each color corresponds to the abundance of a particular mineral: alunite (red); montmorillonite (green); and kaolinite-
smectite (a.k.a. “kaosmec”) (blue). 
 

 
Figure 5 Absolute (left) and local (right) roughness.  Note that the speckles, particularly in the local roughness image, are due to 
vegetation. 
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Figure 6 Alunite abundance plotted against the local and absolute roughness.  The dotted line indicates the boundary between pure 
alunite and everything else in the scene. 
 

 
Figure 7 Montmorillonite abundance versus surface roughness.   
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Figure 8 Kaolinite-smectite abundance versus surface roughness. 
 
 

 
Figure 9 Distributions of the absolute (left) and local (right) surface roughness values measured over the entire area of interest.   
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Figure 10 Distribution of the abundances for alunite (top), montmorillonite (middle), and kaolinite-smectite (bottom).  The alunite is 
strongly bimodal, while the montmorillonite and kaolinite-smectite distributions are weakly bimodal with large regions of overlap. 
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4. CONCLUSIONS 
Fusion of LiDAR and HSI products is useful for geological analysis, particularly for visualization of 

geomorphology and hydrology. Results of this analysis suggest that there may be a correlation between mineral content 
and surface roughness.  However, the LiDAR resolution (~1 m GSD) is too coarse to extract surface properties of clay 
minerals in the alluvial fan from this data collection. The methods and procedures demonstrated in this analysis may be 
used on other data sets to more rigorously test the hypothesis. 

Though it was not demonstrated in this particular experiment, the relation between surface roughness and mineral 
composition can provide valuable information about the mechanical properties of rocks and soils.  Future aerial surveys 
should take into consideration flight parameters required to obtain the optimal ground sampling used by both LiDAR and 
hyperspectral imaging systems.  The fusion of LiDAR elevation data and multi- and hyperspectral classification results 
is in and of itself a valuable tool for imagery analysis and should be explored further. 
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