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I. Abstract 

The Intersecting Operations simulation model was developed to derive a set of separation standards 

for converging or intersecting runway operations to statistically mitigate airborne collision risk. 

This simulation incorporates synthetic trajectory models that capture both the variability of 

observed flight trajectories and the effects of environmental parameters. Through repeated Monte 

Carlo trials, the simulation derives the relationship between a given spacing metric and the relative 

likelihood of an airborne collision. An analyst may use this method to develop a strategy that 

mitigates unacceptable risk by ensuring that aircraft avoid situations more likely to result in a 

midair collision. 

II. Introduction 

he Intersecting Operations (IO) model provides a novel quantitative method to assess airborne collision risk at 

or near the intersection of runways, or their extended centerlines in the case of converging runways. This 

approach uses data-driven trajectory models that allow for the Monte Carlo simulation of aircraft operations on a 

pair of runways. The statistical trajectory models previously introduced in “Data Driven Modeling for the 

Simulation of Converging Runway Operations”
1
 are adapted to allow for the generation of random trajectories for 

specified environmental conditions. This adaptation ensures that the resulting trajectories better match the observed 

behavior of aircraft at a particular airport. This paper introduces the design of the Intersecting Operations simulation, 

describes the development of trajectory models, and provides a notional case study for the application of the IO 

model to derive a risk mitigation strategy.
 
 

 

III. Background 

The Federal Aviation Administration (FAA) is chartered to ensure the efficient and safe use of the National 

Airspace System (NAS). Efficient use of air space in proximity to major metropolitan airports is essential to meet 

the demands of today’s NAS. This air space, the terminal environment, has the most dense air traffic in the NAS. 

The FAA ensures safety throughout the NAS by instituting regulations and standards for commercial and private 

aircraft operators and Air Traffic Control (ATC) services that ensure a consistent and high level of safety. Risks with 

more serious consequences are guarded against with stricter safety thresholds, ensuring that such events occur less 

frequently. The target level of safety (TLS) defines the maximum allowable probability of a given risk event 

occurring (either per operation or per operational hour, as appropriate). The FAA Safety Management System 

(SMS) manual categorizes risks by their severity and prescribes a TLS for each risk category.
2
 

 

Midair collisions (MAC) are among the most severe events, and must be prevented through the use of the highest 

safety levels. The SMS manual considers the severity of MAC events to be “catastrophic,” a category reserved for 
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incidents likely to result in aircraft hull loss and multiple fatalities.
2
 MACs are so severe that a near midair collision 

(NMAC), defined as a loss of separation of less than 500 feet between airborne aircraft,
3
 is itself considered a 

“hazardous” event that must be prevented at a high level of safety. Prevention of NMAC events also ensures the 

avoidance of midair collisions. 

 

The terminal environment presents an elevated risk of NMAC events: a 2011 study found that 59% of the 

reported NMAC events over a ten year period occurred in the airport environment.
4
 As previously mentioned, 

NMACs are considered hazardous events, for which the SMS requires a TLS of one-in-ten-million (P(event) ≤ 10
-7

). 

However, the terminal airspace presents an additional NMAC risk: in airspace above 5,000 feet an Air Traffic 

Controller (ATCO) can mitigate potential NMAC events by instructing one aircraft to descend and the other aircraft 

to climb. In the terminal area, however, the close proximity to the ground prevents one of the aircraft from being 

able to descend, making vertical separation more difficult. The SMS manual provides no explicit TLS for NMACs 

in the terminal airspace. Consequently, we conservatively apply the TLS of a catastrophic event: one-in-one-billion 

(P(event) ≤ 10
-9

).
2
 

 

 Certain intersecting or converging runway pairs may present a high risk of NMAC events. Strategies based on 

the spacing or timing between these two converging aircraft streams can establish sufficient aircraft separation and 

mitigate these safety risks. To ensure that operational policy decisions meet the FAA safety standards required by 

the SMS, the risk of NMACs must be properly quantified. The FAA has recognized that certain runway pairs could 

have these high risks and the Air Traffic Organization Safety has requested that the Center for Advanced Aviation 

System Development (CAASD), a Federally Funded Research and Development Center (FFRDC) operated by the 

MITRE Corporation, investigate methods to mitigate potential NMACs in high-risk areas. 

 

 FAA Order 7110.65U, section 3-9-8 defines the rules for aircraft during converging and intersecting runway 

operations. It mandates that ATCOs adequately separate departing aircraft from aircraft using an intersecting or 

converging runway by ensuring that the departure does not begin take-off roll until one of the following conditions 

are met
5
: 

 

The preceding aircraft has departed and passed the intersection, has crossed the departure runway, 

or is turning to avert any conflict… A preceding arriving aircraft is clear of the landing runway, 

completed the landing roll and will hold short of the intersection, passed the intersection, or has 

crossed over the departure runway.
5
 

 

The rules address the requirements for safe operations when departures take off from one runway while arrivals 

land on a converging runway. However, if the arriving aircraft initiates a missed approach procedure at the same 

time a departure takes off from a converging runway, the resulting intersecting flight paths create an airborne 

collision risk. This risk is not explicitly addressed by the aforementioned rules and presents a hazard to the safe 

conduct of arrival-departure operations. Missed approaches occur in approximately one-in-one-thousand flights and 

are difficult to predict because of their infrequent occurrences. Further, they exhibit highly variable flight behavior 

relative to arrivals. Due to the rarity of missed approach events, it is difficult for ATCOs to accurately estimate a 

release time for departures so as to ensure it does not arrive at an intersection at the same time as an arrival, should 

the arrival execute a last-minute missed approach maneuver. For this reason, mitigation strategies may aid ATCOs 

in ensuring that the TLS is met when missed approach and departure flight paths intersect. One mitigation strategy is 

the Arrival Departure Window (ADW), shown in Figure 1. This strategy defines a region, or window, along the 

arrival approach such that a departure may be released only if no arrival occupies this window. The IO model is 

capable of determining the boundaries of the ADW for a given airport configuration and would provide a useful tool 

to aid ATCOs to reliably control converging arrival-departure operations even in the event of missed approaches. 
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Figure 1. Application of an Arrival Departure Window operation. On the left, an arriving aircraft is within the ADW 

boundaries, so the departure is held. On the right, no arriving aircraft is within the ADW, so the departure may be 

released. 

  

The IO model is not restricted to examining only ADW cases. The simulation can examine any combination of 

arrivals, departures, and missed approaches on intersecting or converging runways. Depending on the specific 

scenario, different spacing or timing metrics may be used to mitigate collision risk. 

 

IV. Modeling Approach 

The IO simulation model provides a capability for producing data-driven and repeatable safety analyses that 

quantify the safety risk at intersecting or converging runways. A key feature of this simulation is its use of data to 

inform its analysis. Available radar data, comprising hundreds of thousands of flights, are processed to create 

statistical trajectory models that accurately represent the aircraft operational performance. These models additionally 

capture the effect of environmental parameters (e.g. wind and temperature) on the aircraft trajectories. The 

simulation incorporates these trajectory models into an operational environment that determines how the risk of 

airborne collision depends on various operational parameters.  

A. Data Sources, Filtration and Processing 

The empirical data utilized in trajectory development come from an amalgamation of official FAA data sources 

made available to the MITRE Corporation. Positional flight radar data are gathered through the National Offload 

Program (NOP) which is comprised of the Automated Terminal Radar System (ARTS)
*
 and Standard Terminal 

Automation Replacement System (STARS)
†
 facilities. These facilities provide historical track data in the enroute 

and terminal environment at a four second update rate. This data are joined with Airport Surface Detection 

Equipment, Model X (ASDE-X)
‡
 radar data, which provide a more accurate estimate of aircraft position in the 

terminal environment, particularly at or near the ground, at an update rate of one second. A MITRE product known 

as Threaded Track performs mixed curve smoothing algorithms to combine these overlapping radar data sources 

into a single estimated trajectory. These interpolated flight trajectories are joined with environmental and flight 

metadata. These flight metadata include runway geometries and elevations sourced from the National Flight Data 

                                                           
*
 ARTS versions IIE and IIIE are currently operating in the NAS. Version IIE systems are designed to support up to 

two sensors, each capable of processing as many as 256 simultaneous radar tracks. Version IIIE systems are 

designed to support up to 15 sensors and as many as 10,000 simultaneous radar tracks. URL: 

http://www.faa.gov/air_traffic/technology/tamr/arts/ 
†
 STARS facilities are replacing current ARTS facilities and synchronize data from as many as 16 radar sensors. 

These systems are designed to support up to 1,350 simultaneous tracks over distances as far as 60 miles away.
6
 

‡
 ASDE-X combines “surface movement radar located on the air traffic control tower or remote tower, 

multilateration sensors, ADS-B (Automatic Dependent Surveillance-Broadcast) sensors, the terminal automation 

system, and aircraft transponders” to track aircraft within a five mile radius.
7
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Center (NFDC).
*
 The environmental data are derived from various sources, including the National Weather 

Service’s Automated Surface Observing Systems (ASOS)
†
 data source and the National Oceanic and Atmospheric 

Administration’s Rapid Update Cycle (RUC)
‡
 zero-hour predictions.  

 

These data, consisting of more than two years of air traffic across the NAS, are stored and processed using 

Apache™ Hadoop®. This open source software uses distributed processing across a computer cluster to enable 

efficient analysis of large datasets. This distributed system reduces the necessary time to obtain desired subsets of 

the data. For instance, an analyst may wish to select only flights from a specific airport, or only flights of a certain 

type of aircraft; because the dataset is large, these tasks can be accomplished in less time using a distributed file 

system as compared to a traditional relational database. 

 

 Before a trajectory model can be created for a specific aircraft type, it is necessary to obtain a representative 

dataset of aircraft trajectories. For aircraft types that are less common in the NAS, it may be necessary to use all 

available observed trajectories within the dataset. For common aircraft types, however, it may not be worthwhile to 

include every observation in the analysis. When obtaining only a subset of the available data, it is important to 

ensure that this sample exhibits the full range of flight behaviors of the full dataset and is drawn from a variety of 

environmental conditions. For this reason, our samples were selected from airports across the NAS over different 

days throughout the year. 

 

These samples are further filtered for erroneous data that may be an artifact of radar bias introduced during 

trajectory smoothing. Each flight operation of interest (i.e. arrival, departure, or missed approach) is identified and 

isolated for further data filtration. Missed approaches are identified by flagging flights that align with a runway and 

descend at least 500 feet, and then climb at least 450 feet over a period of at least one minute, followed by a turn of 

at least 90 degrees before landing. The point of lowest approach during the execution of the missed approach is 

identified as the estimate of the missed approach point. In the absence of operator flight data, this method for 

approximating the missed approach point is our closest approximation of the actual event. Once these steps have 

been completed, each sample is bundled and stored to be later used for trajectory modeling. 

B. Trajectory Model Development 

 

1. Data-Driven Trajectory Models Using Principal Component Analysis 

 

To obtain reliable simulation results, simulated aircraft behavior must reflect actual aircraft behavior. As 

described above, MITRE maintains a large amount of historical radar track data of domestic flights. A simple 

approach to ensure accuracy of simulated behavior would be to have the simulation randomly sample from these 

available historical trajectories. However, the number of available observations is insufficient for the large number 

of repeated trials required by the Monte Carlo simulation. 

 

The use of an analytic model of aircraft trajectories allows for the creation of an infinite number of unique 

trajectories, avoiding the shortcomings of empirical sampling. A common approach to aircraft trajectory modeling is 

to use an underlying physics model combined with aircraft performance specifications, and environmental 

parameters to predict an aircraft’s position. Randomness in such a model can be achieved by applying some amount 

of random variation to the input, the output, or both. 

 

As noted by Eckstein,
1
 such models are not always able to capture the full amount of variability exhibited by 

actual aircraft trajectories. Instead, the author proposes the use of a data-driven model using Principal Component 

                                                           
*
 NFDC is an FAA compendium of current and historical aeronautical information of the physical description, 

geographical position, and operational characteristics for all components within the NAS. URL: 

https://nfdc.faa.gov/xwiki/bin/view/NFDC/NFDC+Mission 
†
 ASOS provides ground weather observations from more than 900 weather stations located at metropolitan and 

regional airports throughout the NAS. URL: http://www.srh.noaa.gov/jetstream/remote/asos.htm 
‡
 RUC is a high frequency weather forecast prediction algorithm that assimilates an amalgam of weather reporting 

data sources to determine the best zero to multi-hour forecast estimate.
8
 

https://nfdc.faa.gov/xwiki/bin/view/NFDC/NFDC+Mission
http://www.srh.noaa.gov/jetstream/remote/asos.htm
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Analysis (PCA). PCA performs an orthogonal basis transformation on a multivariate dataset. The resulting 

transformed variables are called principal components. This transformation is accomplished as follows: 

 

     
 

where X is the original dataset
*
 (oriented such that there is a row for each observation and a column for each 

variable), C is the transformed data, and M is the new basis matrix. PCA chooses this new basis such that each 

principal component captures as much of the variability of the data as possible while still being orthogonal to all 

preceding components. It can be shown that this is accomplished by choosing the columns of M to be the 

eigenvectors of the covariance matrix X
T
X, arranged in descending order of the corresponding eigenvectors.

†,9
 

 

PCA has several useful properties. First, the principal components are all linearly uncorrelated with one another. 

Additionally, PCA is often used to reduce the dimensionality of a dataset while retaining as much information as 

possible.
9
 As presented above, C has the same dimensions as X, and no information has been lost. Suppose however, 

that only the first N components are retained, and the rest are discarded. The formula for this truncated 

transformation is given by: 

 

       

 

where MN is the truncated basis matrix obtained by the first N columns of M, and CN contains the truncated 

representation of the data using only the first N principal components. Geometrically, this corresponds to a 

projection of the multivariate data onto a lower dimensional hyperplane. If the columns of X are linearly 

independent this transformation necessarily losses some amount of the original information. The geometric 

interpretation of these loses is the difference between the original data points and their projections. Recall that each 

succeeding principal component captures less of the total variation of the dataset than all preceding components. As 

a consequence, the truncated principal component representation has minimized the amount of information lost by 

the reduction in dimensions. More precisely, the choice of the truncated basis has minimized the sum of squared 

errors between the original data and its projection.
9
 

 

The amount of information lost in this dimensional reduction depends on the amount of correlation between 

different variables of the multivariate dataset. In the worst case, if all dimensions of X are linearly uncorrelated with 

one another, then PCA provides no additional benefit, and the truncated transformation is equivalent to retaining 

only those dimensions with the most variance. In practice, however, there is often a significant amount of correlation 

between different variables of a dataset, allowing for the vast majority of the variability to be obtained in a much 

smaller number of principal components. 

 

Before PCA can be applied to trajectory modeling, it is necessary to obtain a dataset that describes the empirical 

aircraft trajectories in a consistent manner. For the purposes of our analysis, only three possible aircraft operations 

are allowed: a departure, an arrival, or a missed approach. Because the trajectories of these three operations are very 

distinct from one another, trajectories are grouped into separate datasets for each operation. Different aircraft types 

may have very different performance characteristics that lead to distinct trajectories. Therefore, the data are 

additionally segregated by aircraft type. In order to make consistent comparisons between observations, a common 

reference time was necessary. This reference time was chosen to be the throttle up time
‡
 for departures; the touch 

down time for arrivals; and the moment of missed approach initiation for missed approaches. 

 

The departure trajectory models from Eckstein
1
 consisted of observed groundspeeds at one second intervals 

relative to this reference time to define a “speed profile” for each empirical trajectory. If all departures are assumed 

                                                           
*
 In this discussion of PCA, the dataset X is assumed to have a mean of zero. Mean centering the data before 

applying PCA ensures that this condition is met. 
†
 In practice, the principal components can typically be computed more quickly using the Singular Value 

Decomposition (SVD) of the data. However, the eigenvalue decomposition method described here is traditionally 

associated with PCA and provides a more intuitive explanation of the process.
9
 

‡
 “Throttle up time” is defined as the moment at which the aircraft begins its rapid acceleration for takeoff. 
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to be positioned at the runway threshold at the throttle up time, then this speed profile is sufficient to reconstruct the 

lateral trajectory of the aircraft if it were to travel straight along the extended runway centerline. Because the speed 

of an aircraft at a given point in time is highly correlated with its speed one second before and one second after, 

PCA is well suited to reduce the number of dimensions of the dataset without losing much of the underlying data. 

For the example trajectory model in Eckstein
1
 only 20 principal components were necessary to capture 99.5% of the 

total variability of a 180 variable data set. 

 

After PCA had been applied to these speed profiles, the author fit separate distributions to the observed values of 

each component. To create a random trajectory, an independent random sample was taken from each of these 

distributions. These randomly generated principal component values were then converted back into the full 

dimensional space of the trajectory by applying the inverse of the truncated basis matrix: 

 

      
 

 

 

where SN is a 1xN vector of the randomly drawn sample of principal components, and V is the resulting speed 

profile. Although each principal component was generated independently, multiplying by the matrix MN
T
 ensures 

that the resulting variables in V exhibit the proper linear correlation between one another. 

 

The use of PCA results in a model that accurately captures the full variability exhibited by empirical trajectories. 

Such models are data-driven and require no assumptions regarding aircraft performance parameters. As an 

additional benefit, these models greatly reduce the dimensionality of the dataset: to generate a single speed profile of 

180 variables, only 20 random numbers must be generated. This dimensional reduction allows for efficient trajectory 

generation. Since the Monte Carlo simulation relying on these trajectories requires a large number of repeated trials, 

an efficient method of generating trajectories is necessary in order to produce meaningful analysis in a timely 

manner. 

 

2. Modeling Environmental Conditions 

 

As mentioned above, the PCA trajectory models used by Eckstein
1
 have two primary advantages: they are able 

to accurately capture the full amount of variability exhibited in observed trajectories; and they can be generated in a 

computationally efficient manner. As outlined by the author, these models capture only the straight-line trajectory of 

the aircraft by describing the speed profile, while our simulation requires trajectories to additionally represent the 

vertical behavior of aircraft. The PCA trajectory modeling methodology is easily extended to accommodate this 

need by simply doubling the dimensionality of the original dataset by capturing both ground speed and altitude at 

each second. After this increase in dimensionality, we now retain 30 principal components to account for 99.5% of 

the total variability of the data. 

 

Environmental conditions provide a more challenging modeling problem. Different aspects of the environment 

in which an aircraft operates may affect the trajectory of that aircraft. For instance, atmospheric conditions, 

especially wind and temperature can have a significant impact on aircraft performance. All else being equal, a 

departing aircraft experiencing a strong headwind will be able to climb faster than the same aircraft with a tailwind; 

similarly, colder air, due to its higher density, also enables aircraft to gain altitude more quickly. 

 

Within a single trial of the Monte Carlo simulation, the two aircraft are generated independently of one another. 

However, the environmental conditions between two aircraft at the same airport at the same time should be 

consistent.
*
 If one aircraft is flying in cold weather and is therefore able to climb quickly, the other aircraft should be 

experiencing the same low temperature and therefore also be more likely to climb quickly. 

 

Eckstein
1
 proposes that such environmental conditions can be appended as additional variables in the dataset on 

which PCA is performed. In this approach, when random trajectories are generated a random environment for that 

trajectory is simultaneously created. Each environmental variable that is generated is a linear combination of the 

                                                           
*
 Consistency of the winds experienced by each aircraft is dependent on the runway geometry. The wind speed and 

direction must be consistent between the two aircraft, but depending on the orientation of the two runways, a 

headwind experienced by one of the aircraft might correspond to a crosswind to the other aircraft, or vice versa. 
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randomly sampled independent principal component distributions. Under this approach, it is not possible to directly 

create a trajectory for a desired environment. Instead, to ensure that the two trajectories are consistent with one 

another, each data model must be iteratively sampled until a matching pair of trajectories is found such that their sets 

of environmental parameters are sufficiently similar to one another. 

 

While this repeated sampling approach is feasible, it comes at a significant computational cost. In order to find 

two trajectories with matching environmental conditions, it may be necessary to generate many trajectories. 

Moreover, this approach merely ensures that the environmental conditions between the two trajectories match each 

other; it does not ensure that the distribution of generated conditions match that of the given airport. If we instead 

require that the environmental conditions of each trajectory must match a randomly observed environment from the 

given airport, this repeated sampling method becomes less efficient. Additionally, if we wish to condition on more 

environmental parameters, this approach becomes even more computationally expensive. 

 

3. Regression-PCA Hybrid Trajectory Models 

 

To better account for the effects of environmental conditions, we extend the work of Eckstein
1
 by combining the 

PCA approach with linear regression. These hybrid models enable the direct generation of random trajectories for a 

specific environment. 

 

The regression-PCA hybrid begins by using the same dataset as used by the repeated sampling method of the 

previous section. However, in this new approach the environmental conditions, while recorded for each observed 

trajectory, are not included in the PCA decomposition. The principal components created here are the same as those 

from the original PCA method before environmental variables were considered. In the original approach we 

proceeded by fitting distributions to each component. Instead, we now regress each principal component on the 

desired environmental variables. A distribution is then fit to the observed residuals of this regression model which is 

illustrated in Figure 2. 

 
Figure 2. Illustration of the Regression-PCA hybrid approach. On the right, the observed values of a principal component 

are regressed on an environmental variable, such as wind or temperature. On the left, a distribution is then fit to the 

residuals. 

To generate a random trajectory for a specific environment, the predicted value of each principal component is 

computed by substituting the desired environmental variables into the multiple linear regression model associated 

with that component. Random residuals for each component then are drawn independently from the fitted 

distributions. Each random principal component is simply the sum of the predicted value and the residual. As before, 

we convert from the lower dimensional principal components back into the original dimensional space of the 

trajectories by multiplying this vector of components by the transpose of the truncated basis matrix (MN
T
). 

 

Environmental

P
ri

n
ci

p
al

 C
o

m
p

o
n

en
t

Residual

P
ro

b
ab

ili
ty



 

American Institute of Aeronautics and Astronautics 
 

 

8 

Computationally, this method is much quicker than the repeated sampling method. Within the full simulation, 

the repeated sampling method took over 50 times as long as the regression-PCA approach to create the same number 

of trajectories. The assumptions made by this new approach are similar to those of the sampling method: both 

methods assume linear correlation between the variables being modeled and ignore higher order relationships 

between variables. In the repeated sampling method, the PCA basis ensures the proper linear correlation between the 

environmental variables and the other dimensions. In that approach, all output variables are simply different linear 

combinations of the same set of randomly generated principal components. In the new hybrid approach, the multiple 

linear regression models enforce the proper linear correlation between the environmental variables and the other 

dimensions. 

 

One problem that may arise from the use of these hybrid models is the potential for over extrapolation. The 

multiple linear regression models used to capture the effects of environmental variables may not provide accurate 

predictions for input variables far outside the scope of observed values. In such a case, these errant predictions 

would result in the generation of principal component values far beyond their normal bounds, leading to unusual or 

unrealistic trajectories. To avoid this problem, we restrict the input regression variables to their observed ranges. At 

simulation runtime, if a trajectory is needed for an environment outside of this range, the extreme input variable is 

replaced by the nearest allowable value. If simulated conditions are frequently outside the bounds of the 

observations used to create the trajectory, then the model may not accurately capture the behavior of aircraft at this 

airport. To minimize this occurrence, it is important to create trajectory models from observations having a large 

variety of environmental conditions. 

 

  
Figure 3. Comparison of altitude profiles under different environmental conditions. 

Figure 3 above illustrates how the regression-PCA hybrid model produces trajectories consistent with our 

intuition regarding the impact of wind and temperature on aircraft trajectories. The same aircraft departure model 

was randomly sampled 100 times each for two different environmental scenarios: a low temperature, high headwind 

scenario; and a moderate temperature, no wind scenario. Although there is still much variability within each 

scenario, there is a clear trend in which trajectories created for the strong headwind, low temperature environment 

exhibit faster rates of climb than those for the mild environment. 

 

Adoption of the regression-PCA hybrid approach allows for the inclusion of additional environmental 

parameters without having a noticeable impact on the speed of trajectory generation. Runway elevation was 

included as an environmental variable, since the elevation of the airport can have a significant impact on the density 

of air, particularly for high altitude airports. For longer runways, an aircraft may takeoff with more weight, which 
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could cause the aircraft to take longer to achieve rotation.
*
 To account for this phenomenon, runway length was also 

added as an environmental variable. 

 

The final regression parameter used by the model is the missed approach distance. This variable is defined as the 

distance to the runway threshold at which the given arriving aircraft initiates a missed approach maneuver. As 

previously mentioned, all trajectory models consist of speed and altitude profiles. In order for the simulation to 

determine the position of the aircraft, it is necessary to give the trajectory some initial reference point. For 

departures, the aircraft is assumed to be at the runway threshold at the first second of the trajectory. For missed 

approaches, there needs to be an analogous reference point for the model. To achieve this, the missed approach 

distance is used as a regression parameter for the model. In addition to providing a mechanism for placing the 

aircraft within the simulation, this approach also allows for the simulation to match the observed distribution of 

missed approach distances for the runway under examination. This helps ensure that the simulation better models the 

particular behavior of aircraft using that runway. 

 

4. Advantages of Regression-PCA Hybrid Trajectory Models 

 

Regression-PCA hybrid trajectory models provide many advantages. Relying only on observed behavior, data-

driven models require no underlying knowledge of aircraft performance. These hybrid models accurately 

approximate the distribution of observed trajectories. Figure 4 below shows how the randomly generated trajectories 

of one aircraft model closely match the characteristics of observed trajectories. 

 

 
Figure 4. Comparison of observed ground speed profiles to a random sample from the trajectory model. 

Additionally, hybrid models allow for the creation of trajectories tailored to specific environmental conditions. 

This feature enhances the accuracy of the resulting trajectories by better emulating airport-specific behavior. 

Moreover, regression-PCA hybrid models can create these tailored trajectories in a computationally efficient 

manner. 

C. Simulation Design 

The strength of the IO model emerges by incorporating high fidelity trajectory models into a simulation structure 

that efficiently evaluates interactions between aircraft and accurately quantifies risk. This simulation provides a 

data-driven repeatable analysis of a specific scenario. The IO model consists of a Monte Carlo simulation in which a 

single pair of aircraft – one for each runway – is randomly generated for each trial. After a sufficient number of 

trials, it is possible to determine the relationship between certain input parameters and the risk of separation loss 

between the two aircraft. Due to the high level of safety for airborne collision risk, the IO model requires a large 

number of iterations to adequately characterize this relationship. 

 

The simulation framework sets the scenario to be evaluated and the structure of the simulation. Case-specific 

inputs are collected to realistically represent the scenario environment. The simulation initialization phase 

determines the operational trade space and establishes a strategy for placing aircraft in relation to one another to best 

inform a given risk mitigation strategy. Trajectories are then generated and placed in a common coordinate frame. 

Each iteration of the simulation computes the closest point of approach between the two aircraft. This distance – 

                                                           
*
 Rotation occurs when the nose of the aircraft lifts off the ground during takeoff. 
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along with the various input parameters of the given trial – are recorded as output from the simulation. Further 

statistical analysis of this output is used to determine a risk mitigation strategy. 

 

For the remainder of the Simulation Design section we assume that the scenario under investigation is a risk 

analysis of departures and missed approaches on converging runways, mitigated by the adoption of an ADW. For an 

overview of ADWs refer to the description beginning on page 2 within the Introduction.  

 

5. Operational Framework 

 

The development of a robust operational framework is integral to effectively evaluating a specific scenario. Each 

simulation run compares two independently generated operations at converging or intersecting runways. Since the 

trajectory models are constrained to the terminal environment, all operations take place in proximity to a common 

airport. The three types of modeled operations are departures, arrivals, and missed approaches. The IO model allows 

any combination of these operations, but each combination may require unique modeling parameters or analysis 

techniques. 

 

Treating each operation as independent provides a conservative estimate of collision risk. In actual operations, 

pilots may see and avoid other aircraft and controllers may intervene to prevent the aircraft from crossing paths. 

These factors are difficult to quantify and are not directly handled within the simulation. For scenarios involving 

missed approaches (such as an ADW study), there may not be sufficient time after the point of missed approach for 

either the pilot or ATC to prevent a collision. For such analyses, treating operations as independent is not overly 

conservative. 

 

6. Simulation Inputs 

 

One of the fundamental inputs to the simulation is the definition of an adverse event, referred to as a Test 

Criteria Violation (TCV). Typically, we define a TCV as having occurred when two aircraft come within 500 feet of 

one another. This definition of TCV is consistent with the definition of NMAC events provided on page 2 within the 

Introduction. Closely associated with the definition of a TCV is the choice of a TLS. Since our TCV definition is 

usually chosen to capture NMACs in the terminal airspace, we apply a TLS of a probability of 10
-9

.
*
 The choice of 

TLS will not affect the actual simulation structure but allows for an initial estimation of the necessary mitigation 

strategy as the simulation progresses based on the completed runs. 

 

The choice of TLS may also affect the number of Monte Carlo iterations necessary to satisfactorily complete the 

safety analysis. Termination of the simulation occurs if the simulation determines that its results are sufficient to 

accurately estimate a risk. A more detailed discussion of this process is provided in the Interaction Evaluation 

section below. To ensure that the simulation terminates, a number for the maximum amount of simulation runs is 

set. 

 

Since the IO model seeks to provide a safety analysis that captures the unique characteristics of specific airports, 

the simulation attempts to incorporate as many relevant case-specific details as possible. Accurate runway 

information is necessary to provide the coordinate frame for the simulation analysis. NFDC resources provide 

accurate geographic positions of runway surfaces and additional characteristics such as headings and displaced 

thresholds. Runway lengths and elevations are necessary for trajectory generation and threshold locations, while 

headings determine trajectory placement and orientation. The intersection point of the extended runway centerlines 

is then calculated using geospatial formulas. This intersection point serves as the origin of a common Cartesian 

coordinate system in which both trajectories are placed. 

 

To simulate a scenario unique to a particular airport, operational details for existing runways are collected 

through a combination of flight plan data and radar analysis. These sources include Threaded Track
†
 and the 

                                                           
*
 Refer to page 2 in the Introduction for a discussion of this choice of TLS. 

†
 For a description of Threaded Track, refer to the description on page 3 in section IV.A. Data Sources, Filtration 

and Processing. 
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Enhanced Traffic Management System (ETMS).
*
 Radar analysis is used to determine the fleet mix

†
 for each 

runway. Other key operational inputs detail the behavior of missed approaches. The frequency of missed approaches 

may differ from one runway to the next. Similarly, the distribution of distances from runway threshold at the point 

of missed approach initiation is unique to a given runway. The simulation uses the observed missed approach 

behavior of the actual runway to determine these parameters. 

 

Trajectory models lack a lateral component, so heading change characteristics are necessary to allow simulated 

aircraft to turn as the aircraft gains altitude. In the simplest case, a maximum allowable heading change is identified 

and a truncated normal distribution is sampled to determine heading changes. Alternatively, observed radar data of a 

given runway or procedure may be used to determine an empirical distribution of heading changes. 

 

For the trajectory models, environmental parameters are necessary to create trajectories representative of certain 

wind and temperature conditions. ASOS reports over an entire year at the given airport provide an empirical 

distribution of winds and temperatures. These meteorological conditions are generally dependent on the time of day. 

Because more operations are conducted during the day than overnight, each ASOS report is weighted by a factor 

proportional to the number of operations conducted during the time of day of that report. Airports often change 

which runways are in use in response to the prevailing winds. For this reason, the wind distribution for which a 

given configuration may be used is not the same as the distribution of all winds observed at that airport. To account 

for this fact, we place limits on the allowable headwinds, crosswinds, and tailwinds of each runway. These limits are 

separate parameters of the simulation and can be changed as appropriate. If a given ASOS report violates one of 

these limits for either runway, it is omitted from the sample used by the simulation. 

 

For all the input parameters, in some cases there may not be sufficient empirical data for an existing operation or 

proposed operation. In these cases, input parameters may use data from a similar scenario or designed by the user to 

model a hypothetical operation. The combination of all of these input parameters provides a detailed 

characterization of an operation, allowing the simulation to best model the given scenario. 

 

7. Simulation Initialization 

 

Utilizing the operational parameters for a given scenario, the IO model determines how trajectories are placed in 

relation to each other in order to characterize each specific operational combination. The simulation requires an 

independent variable to explore the possible interactions since each iteration of the simulation is a forced pairing of 

two operations. For an ADW, we wish to explore the relative likelihood of an airborne collision given the position of 

the missed approach aircraft at the moment the departure is released. The independent variable in this case is the 

missed approach aircraft’s distance from the runway threshold at the departure’s throttle-up time. During the 

simulation, the missed approach positions are selected randomly from a uniform distribution within the simulation 

bounds. Over enough repeated trials, it is possible to determine the relationship between the position of the missed 

approach aircraft at the time of the departure release and the probability of a TCV. 

 

The approach for an ADW analysis may be extended to other types of analysis. For some operational 

combinations, a time delay or a distance stagger might be used to relate the two operations. Different scenarios or 

operational concepts may require a different simulation technique. It is important that the independent variable span 

all of the areas where a safety risk exists. In most cases it is best to identify an operational concept where a variable 

can be isolated and controlled to mitigate risk. 

 

 

8. Flight Trajectory Generation 

 

Once the simulation structure is set, the trajectories are generated. By selecting randomly from the fleet mix for 

each runway, random aircraft pairings are created. For each simulation run, both aircraft must experience the same 

wind and temperature. A random wind and temperature observation is sampled from the environmental data and 

passed to the trajectory models to create a pair of tracks. 

                                                           
*
 http://www.fly.faa.gov/Products/Information/ETMS/etms.html 

†
 The term “fleet mix” refers to the proportion of traffic represented by each aircraft make and model. 



 

American Institute of Aeronautics and Astronautics 
 

 

12 

 

To produce large scale simulations, speed and computational efficiency quickly become issues. Generating a 

single set of parameters and trajectories for each run is very inefficient. To address this concern, large batches of 

simulations are created. Batches can be scaled based on the computation power of the system running the 

simulation. Generally each batch contains tens of thousands of tracks and parameter sets. The parameter sets contain 

trajectory pairing, weather data, missed approach points, heading changes, and track placement, which all are 

randomly generated. The trajectory models then generate random trajectory sets to meet each scenario while 

evaluating each model as few times as possible. For each batch run, all information necessary to analyze the 

interaction of the two aircraft has been generated and exists in a completely random sequence. This randomness is 

important if later a subset of analysis is needed; random ordering also allows for analysis of the convergence of a 

risk estimation. Next, the simulation needs to place each pair of tracks in a common coordinate frame and analyze 

interactions. Since the data for each run have already been created, the simulation distributes the work using parallel 

processing, further increasing computational efficiency. 

 

9. Interaction Evaluation 

 

To analyze the interaction of each operational pair, the trajectories must be applied to the same coordinate frame 

in space and time. All positions are relative to the intersection of the two runway headings. Departures start their roll 

at the runway origin. Arrivals are placed relative to the runway by extending their estimated approach glideslope 

with a reported threshold crossing height. Missed approaches are placed by the distance from runway threshold at 

the time of their missed approach point. To time the two trajectories relative to one another, a common timeline is 

constructed such that the reference time (i.e. throttle-up time, touchdown time, or missed approach time) of the first 

aircraft occurs at time zero. The timing of the second aircraft is determined by the independent variable. In the 

example of an ADW, the missed approach trajectory timing is chosen to ensure that at time zero the aircraft’s 

distance to the runway threshold is exactly the value selected by the independent variable. 

 

 Each track is applied in the coordinate frame using speed, heading, and altitude to update their position as a 

function of time. Heading changes are incorporated as departures gain altitude or as missed approaches climb after 

missed approach initiation. Using interpolation for position and time the two-dimensional and three-dimensional 

closest points of approach are calculated for each pair of tracks. The simulation then prepares the results for output. 

The most important outputs are the basic parameters used to generate the tracks (including the independent variable) 

and the observed closest point of approach. Many additional metrics are available as output for analysis in post-

processing. Often, speeds on approach and through the intersection are captured for analysis of outlier behavior. At 

the end of each batch of simulations all outputs are written to a text file. Following the simulation, the results are 

further analyzed to derive a risk mitigation strategy. 

 

10. Simulation Output Analysis 

 

After the simulation has terminated, the results are analyzed to quantify the effect that one or more independent 

variables have on the likelihood of a TCV. This analysis seeks to determine the risk mitigations necessary to meet 

the required TLS. By modeling the effect an independent variable has on the probability of a TCV, we can 

determine the necessary restrictions to place on that variable in order to achieve the necessary TLS. To illustrate the 

simulation output analysis, we use the ADW concept as an example of a risk mitigation strategy. 

 

The goal of an ADW is to determine when it is safe to release a departure, given the position of an arrival on a 

converging runway. In order to accomplish this goal, the output of the Intersecting Operations model includes the 

independent variable: the position of the missed approach at the time of the departure’s release. The desire is to 

model the distribution of these initial missed approach distances for cases that resulted in a TCV. This distribution 

can be used to determine the necessary dimensions of the ADW to achieve a desired TLS.  

 

We begin the risk calculation by including the likelihood that a departure would encounter a missed approach 

during actual operations. Because each iteration of the simulation has a missed approach, this probability represents 

each iteration’s likelihood of occurring. The probability of a missed approach within normal arrival operations is 

usually on the order of one-in-one-thousand arrivals. This probability will be expressed as: 

 

 (  ) 



 

American Institute of Aeronautics and Astronautics 
 

 

13 

 

Next we account for the probability that a given simulation iteration resulted in a TCV. This probability is 

estimated using the rate of observed TCVs per run of the simulation. Each iteration is preconditioned by the 

likelihood of an arrival executing a missed approach. This conditional probability is expressed as: 

 

 (                                   )    (      ) 
 

The product of these two probabilities yields: 

 

 (  )   (      )   (       ) 
 

 Because the arrival runway is converging, we assume that there is no operational risk of a TCV unless the 

arriving aircraft performs a missed approach. It follows therefore that the preceding probability also represents the 

likelihood of a TCV occurring within normal operations: 

 

 (   )   (       )   (  )   (      ) 
 

We must mitigate additional risk if the probability of a TCV, as shown above, is greater that the TLS. An ADW 

provides a mechanism for mitigating this additional risk. The following probability describes the likelihood that a 

given TCV occurred where the missed approach aircraft was outside of the bounds of the ADW at the time of 

departure release: 

 

 (                   ) 
 

The probability of a TCV occurring when an ADW is applied is given by: 

 

 (            )    (  )   (      )   (                   )  
 

In order to achieve the target level of safety, the following condition must hold: 

 

 (            )       

 

or equivalently: 

 

 (                   )   
   

 (  )   (      )
 

 

This inequality provides the basis for determining the necessary boundaries of the ADW to achieve the TLS 

which we refer to as the risk mitigation term. A distribution is fit to the initial missed approach distances that 

resulted in TCVs. The risk mitigation term is evenly applied as quantiles on the upper and lower extremes of the 

distribution. This provides the leading and trailing edges of an ADW. 

 

11. Simulation Convergence 

 

A benefit of Monte Carlo simulation is that iterations can be continuously run until the results achieve a desired 

level of convergence. The IO model terminates when it estimates that its results have sufficiently converged. The 

preceding section demonstrated how a risk mitigation strategy can be derived from the simulation output. The output 

of the IO model describes the likelihood of a TCV as a function of the simulated independent variable. Quantiles of 

a distribution fit to this output provide the necessary bounds of a risk mitigation strategy. 

 

 The IO model periodically estimates these bounds based on the results of completed iterations. By examining 

the evolution of a given quantile over the course of the simulation, the IO model determines if the quantile is 

converging. The simulation computes the standard deviation of these quantile estimates over the last 70% of the 

previous iterations. This standard deviation characterizes the precision of the quantile estimates. 
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 Additional simulation batches will continue to run until this convergence metric is sufficiently small or the 

maximum number of simulations is reached. The simulation can also dynamically adjust batch sizes depending on 

the degree of convergence of the quantile estimates. 

V. Notional Case Study 

This notional case study demonstrates the experimental design and workflow for the IO model. This example 

analyzes a single set of converging operations; however, a holistic case study would examine all of the impacts of 

possible interactions within an airport’s desired configuration. The following section starts by illustrating the setup 

of the theoretical case; it describes the configuration, as well as the operational and environmental inputs utilized by 

the IO model. We then discuss how the simulation progresses under the provided inputs. Furthermore, we describe 

how simulation outputs are utilized to develop a controller mitigation strategy. In this case, an Arrival Departure 

Window is evaluated for the example scenario. 

A. Case 

This case study evaluates an example case of a departure interaction with a converging missed approach. Both 

runways are 7,000 feet in length and are positioned orthogonally. The runway configuration for this case study is 

illustrated in Figure 5. Aircraft trajectories are allowed a maximum heading change of 5 degrees. The intersection 

point of the arrival runway’s extended centerline with that of the departure runway, lies over the departure runway’s 

surface. This configuration presents the common scenario where the arriving aircraft would not interact with the 

departing aircraft if the arriving aircraft lands safely. The probability of a missed approach represents the risk to the 

departing aircraft. For the theoretical case presented here, we approximate the missed approach rate to be one-in-

one-thousand. 

 

 
Figure 5. Runway geometries for notional airport 
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Figure 6. Percentage of fleet mix by aircraft type 

The fleet mix for the case is representative of that of a 7,000 foot runway within the NAS. Figure 6 provides a 

histogram of the ten most frequent aircraft types. The DH8A is a prominent aircraft type in this analysis; this is a 

small propeller aircraft which has significantly different performance from other more common jets in the NAS. The 

DH8A’s markedly different performance profile from other aircraft can have a distinct effect on the outcome of the 

simulation. Due to the effects of performance variation by aircraft, empirical data for the fleet mix is used whenever 

possible. Controllers may wish to restrict an operation based on an aircraft type. 

B. Environmental Data 

The theoretical case study uses environmental data associated with the weather observed in the east coast region 

of the NAS. Winds are mild, with 91% of observations below 15 knots. The airport’s altitude lies at 20 feet above 

mean sea level and temperatures fluctuate between -4 and 30 degrees Celsius. Figure 7 shows the temperatures over 

the course of a calendar year. Figure 8 provides a wind rose describing the wind directions and magnitudes of the 

observed winds.  

 

 

 
Figure 7. Local temperature range in a calendar year (°C) 
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Figure 8. Local range of winds in a calendar year 

To be representative of real-world airport operations, the IO model limits extreme wind speeds. The restrictions 

for this case are set to 25 knots of maximum head wind, 8 knots of maximum tail wind and 20 knots of maximum 

cross wind. While operations may occur outside of these bounds, the intent is to ensure that the simulation operates 

within nominal conditions in which the runway configuration is likely to occur. 

C. Simulation 

The IO model is a Monte Carlo simulation that requires numerous iterations to converge to a statistically 

significant result. Within the analysis presented in this paper, the goal is to find the bounds of the ADW. Therefore, 

convergence of the lower and upper bounds of the Arrival-Departure Window is determined over the course of the 

simulation. To evaluate if additional simulations will change the ADW dimensions; the evolution of the bounds is 

observed for the last 70 percent of the simulation. The bounds are said to sufficiently converge once the standard 

deviation of the bounds becomes small enough; signaling a sufficient degree of precision. To estimate the bounds 

within a tenth of a nautical mile we require that the standard deviation be within five hundredths of a nautical mile. 

To better illustrate this concept, consider Figure 9 below. 

Wind 
Speed (kts)
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Figure 9. Illustration of simulation convergence over time 

Figure 9 depicts the simulation evolution of an Intersecting Operations model run with 1 million model 

iterations. The horizontal axis provides iteration count. The vertical axis represents the distance in nautical miles 

with respect to arrival runway threshold. Positive values indicate distances measured before the runway threshold as 

the arrival was approaching, while negative values are distances measured after the runway threshold. The bounds of 

the ADW are evaluated at frequent intervals during the simulation and are depicted within the figure. The upper line 

represents the value of the approximated ADW’s upper bound, and the lower line represents the approximated 

ADW’s lower bound. At the start of the simulation, with a relatively small number of TCVs observed, the 

confidence in the fitted distribution is low. As the simulation continues, additional information on quantity and 

characteristics of TCVs is collected. The Arrival-Departure Window bounds stabilize and the standard deviation of 

the bounds decreases. The above depiction of the ADW does not constitute the final proposed bounds. This 

evaluation is done with a preliminary distribution fit. The goal is to determine if there exists enough simulation data 

to accurately provide parameter analysis during post processing. The final analysis incorporates the capabilities of 

the analyst utilizing statistical tools to provide a thorough evaluation of the risk environment.  

  

Standard Deviation < 0.05
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D. Simulation Output Analysis 

Once the simulation completes a sufficient number of iterations and precisely estimates Arrival-Departure 

bounds, the ADW is calculated using simulation outputs. Simulation output data that the analyst needs to derive an 

ADW include: (1) total number of iterations completed during simulation, (2) total number of iterations that resulted 

in a Target Criterion Violation (these two numbers are needed to calculate the probability of a TCV), and (3) a set of 

arriving aircraft locations filtered for arriving and departing aircraft which came within 500 feet of each other. The 

analyst fits a theoretical distribution to (3) and determines the ADW bounds as described within the post-processing 

section. A distribution fit to the simulation output from the case study is presented in Figure 10. 

 

 
Figure 10. Histogram and fitted distribution of simulated TCVs (NM) 

Table 1. Summary statistics of simulation output 

  
 

The best fit to the TCV dataset of missed approach locations at the time of a departure is provided by the 

Johnson SL distribution. The Shapiro-Wilk goodness-of-fit test produces a p-value of 0.76, as seen in Table 1. 

Comparing this value to our significance level of 0.05, we fail to reject the null hypothesis that the dataset of 

arriving aircraft locations is coming from the Johnson SL distribution. We proceed by evaluating the distribution 

ADW

Summary Statistics

Mean 0.48907

Standard Deviation 0.27549

Standard Error Mean 0.00864

Upper 95% Mean 0.50602

Lower 95% Mean 0.47212

N 1017

Quantiles: Uncentered and Unscaled

Percentile Quantile

0.0004916 -0.27904

0.9995084 1.55811

Shapiro-Wilk Goodness-of-Fit Test

W Prob<W

0.998827 0.7609

Note: Ho = The data is from the Johnson 

SL distribution. Small p-values reject Ho.
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quantiles that correspond to the percentiles found from the risk equation. The positions of the quantiles represent the 

lower and upper bounds of the ADW. 

 

The number of iterations completed in the theoretical case was 1,000,000. The number of simulations that 

resulted in a Target Criterion Violation was 1,017. The assumed missed approach rate was one-in-one-thousand. The 

Target Level of Safety was 10
-9

. Solving for the risk mitigation term results in the following: 

 

   

 (  )   (      )
  

    

       
     

         

         

 

The lower bound of the ADW is given by the quantile representing half of this probability, 4.916
-4

. The ADW 

upper bound is similarly determined by the quantile representing a probability of (1-4.916
-4

). The distances 

corresponding to these two quantiles are 0.28 NM after the arrival runway threshold and 1.56 NM before the arrival 

runway threshold. The resulting ADW is depicted in Figure 11. 

 

 
Figure 11. Illustration of case study arrival departure window 

VI. Conclusion 

It has been shown that the IO model is an effective method for assessing the risk of terminal airspace NMAC 

events for operations with intersecting or converging runways. This model accurately allows for analysts to ensure 

that a consistent target level of safety is met for these operations through the calibration of various risk mitigation 

strategies, such as an Arrival Departure Window. Regression and Principal Component Analysis are used to create a 

trajectory model that characterizes the spectrum of flight variability in speed and altitude for given environments. 

When the trajectory model is applied to a specific case, the simulated flights accurately represent the speed and 

altitude of local traffic, making these models effective for simulating terminal airspace NMAC risk events. 
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The notional case study presented in this paper illustrates the application of the IO model to an analysis of 

departures and missed approaches on converging runways. The development of mitigation strategies designed to 

prevent terminal airspace NMAC events is an ongoing effort within CAASD. 

VII. Acknowledgments 

The authors would like to thank Adric Eckstein for providing peer review of this paper. Additionally, for Adric 

Eckstein and Joe Clements for developing the initial flight trajectory modeling construct that allows for this work to 

be possible. We would also like to thank John Lebron, Gregory Chesterton and Shweta Mulcare for their guidance 

and copy-editing throughout the writing process.  

VIII. Release Statement 

Approved for Public Release; Distribution Unlimited. 13-2900 ©2013-The MITRE Corporation. All rights 

reserved.  

 

  



 

American Institute of Aeronautics and Astronautics 
 

 

21 

IX. References 

 
1Eckstein, A., “Data Driven Modeling for the Simulation of Converging Runway Operations,” Fourth International 

Conference on Research in Air Transportation (ICRAT), ICRAT, Budapest, Hungary, 2010, pp. 3-10. 
2Federal Aviation Administration, Air Traffic Organization. (2005, May 24). Air Traffic Organization, Safety Management 

System Manual. Retrieved July 6, 2013, from Federal Avaiation Document Library: 

http://www.faa.gov/air_traffic/publications/media/atosmsmanualversion2-1_05-27-08_final.pdf  
3Federal Aviation Administration. (2013, March 7). Aeronatical Information Manual. Retrieved July 6, 2013, from 

http://www.faa.gov/air_traffic/publications/atpubs/aim/aim0706.html 
4Kunzi, F., and Hansman, R. J. (2011). Mid-Air Collision Risk and Areas of High Benefit for Traffic. AIAA Aviation 

Technology, Integration, and Operations Conference. Virginia Beach, VA: AIAA. Retrieved from 

http://www.avidyne.com/downloads/products/ads-b/MIT.Kunzi.MidAirs.pdf 
5Federal Aviation Administration, Air Traffic Organization Policy, “Order JO 7110.65U,” FAA, 2012. Federal Aviation 

Administration Document Library [online document database], URL: http://www.faa.gov/documentlibrary/media/order/atc.pdf 

[cited 26 July 2013]. 
6 Federal Aviation Administration, “Press Release – ‘STARS’ Shines in Cincinnati FAA Deploys Cornerstone of Air Traffic 

Modernization in Cincinnati,” 2005, June 30, http://www.faa.gov/news/press_releases/news_story.cfm?newsId=6643&print=go  
7Federal Aviation Administration. (2010). Fact Sheet – Airport Surface Detection Equipment, Model X (ASDE-X). 

Washington, D.C.: Federal Aviation Administration. http://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=6296 
8Benjamin, S.G., D. Devenyi, S.S. Weygandt, K.J. Brundage, J.M. Brown, G.A. Grell, D. Kim, B.E. Schwartz, T.G. 

Smirnova, T.L. Smith, and G.S. Manikin, 2004: An hourly assimilation/forecast cycle: The RUC. Monthly Weather Review., 

132, 495-518 (Feb. issue). http://ruc.noaa.gov/pdf/MWR-RUC-1hcyc-Sept03-final.pdf  
9Liang, Y. C., Lee, H.P., Lim, S. P., Lin, W. Z., Lee, K. H., and Wu, C. G., “Proper Orthogonal Decomposition and Its 

Applications – Part I: Theory,” Journal of Sound and Vibration, Vol. 252, No. 3, 2002, pp. 527-544. 

http://www.faa.gov/documentlibrary/media/order/atc.pdf
http://www.faa.gov/news/press_releases/news_story.cfm?newsId=6643&print=go
http://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=6296
http://ruc.noaa.gov/pdf/MWR-RUC-1hcyc-Sept03-final.pdf

	Abstract
	Introduction
	Background
	NMAC_def
	TLS_for_TA_NMAC
	ADW_Discussion
	Modeling_Approach
	Threaded_Track_Description
	Notional_Case_Study
	Conclusion
	Acknowledgments
	References

