Blast Loading and Assessment: Sense & Test (BLAST) Enabling Capability & Ongoing D&I Research into mTBI

A brief to/for: NAVAL CIED Knowledge Network (NCKN)

OF NAVAL RESEARCH

Office of Naval Research

ONR Has Six Science & Technology Departments

F

N

H

Warfighter Performance Dept

R

ONR 34 Warfighter Performance Department Head **Dr. Terry Allard, SES**

Deputy CAPT John Schmidt, PhD

ONR 341 Human & Bioengineered Systems Division Head Dr. John Tangney, SES

C

Office of Naval Researcy

Science & Techno

ONR 342 Warfighter Protection & Applications Division Head

CAPT John Schmidt, PhD

Future Naval Capabilities:

CAPABLE MANPOWER

• FORCE HEALTH PROTECTION

Basic Biomedical Science

Biophysics

F

Stress Physiology

Naval Biosciences

Undersea Medicine (NNR)

Noise Induced Hearing Loss

N

ONR 343 Research Protections Division Head

Dr. Tim Singer

H

Funding at ONR

http://www.onr.navy.mil/About-ONR/~/media/Navy%20and%20Marine%20Strategy%20Plans/Naval-Strategic-Plan-2009.ashx

А

R

E

S

C

F

N

4

R

А

C

Force Health Protection A Continuum of Care

Advanced Forward (Point-of-Injury) Care

- Hemostatic Agents
- Pharmacologic Resuscitation
- Rapid Blood Typing & Pathogen Detection
- TBI detection & Treatment
- Hypoxia Mitigation

Pre-Deployment Care & Prevention

Hearing Loss Prevention & Treatment

N

- PTSD Prevention & Mitigation
- M&S for Improved PPE
- Submariner Health

En Route and Automated Care

- Closed Loop Fluid & Ventilation System
- Non-pulmonary Oxygenation
- Critical Care System

Post-Deployment Care, Treatment, and Restoration

- Wound Healing/Repair
- AFIRM: Armed Forces Institute of Regenerative Medicine

The FY13 Portfolio Force Health Protection

Blast TBI Mitigation Efforts

Computational Modeling

- Predictive ModelingBlast & Acceleration
- Forces
- Physiologically-relevant
- Operationally-relevant
- Validated

Models of Head and Cervical Spine

SEMPer Fi Land

Therapies and Treatments

- Targeted Hypothermia
- Perfluorocarbons
- •Reduce Metabolism
- •Effective in Cardiac Arrest
- •Effecting in preliminary animal studies

<u>Blast Load and Assessment:</u> <u>Sense and Test (BLAST)</u>

N

8

BLAST Program

...will integrate "operational exposure to blast" data using lightweight self-powered sensors...

N

...for the development of a deployable algorithm that will produce binary Go/No-Go output...

...with "cognitive evaluation data" using novel objective measurement devices...

н

...in order to provide operational and cognitive rationale to stand down or return to the field following blast events.

BLAST Program

R

N

BLAST Program

Mapping Blast Exposure to Impairment

Cognitive impairment increases with both blast intensity and repetition in a complex, non-linear fashion.

R

E

F

N

11

C

R

Technical Support Working Group (TSWG)

Low-Level Repeated Blast (LLRB) Brain Injury Criteria

LLRB Exposure Criteria

Exposure criteria will ultimately be applicable to: • Enemy Attacks (SINGLE, LARGE EXPOSURE)

Use of Explosives (REPEATED, MODERATE-LEVEL EXPOSURE)

> Weapons Back-Blast (REPEATED, LOW-LEVEL EXPOSURE)

Repeated exposure to Blast will result in injury in proportion to:

- Number of exposures
- Exposure frequency
- Magnitude of each event

13

<u>Incapacitation Prediction for</u> <u>Readiness in Expeditionary Domains:</u> an <u>Integrated Computational Tool</u> (I PREDICT)

Proposed Enabling Capability for FY16

I PREDICT

...is a software tool based on human physiology, response to injury and operationallyrelevant injury criteria...

...to provide an integrated human model for medical response planning, injury prevention and treatment CoAs, and PPE validation and testing *in silico*

Virtual testing via a digital human will save time, save money, and provide methods of injury avoidance.

I PREDICT

INTEGRATE PRIOR INVESTMENTS

- ONR (EMW & FHP FNCs, STTR)
- NAVAIR (Injury Models)
- Army (WIAman)
- Air Force (HE-MAP)
- Academia (e.g. Univ of Iowa, JHU/APL)
- Industry (e.g. SwRI, CC)

LEVERAGE INJURY EPIDEMIOLOGY

- Combat Trauma Registry
- Joint Theater Trauma Registry
- JTAPIC
- Dismounted Injuries Analysis
 Team
- Naval Health Safety Center

 Injury Surface Mapping Program (TSWG)

N

R

5

FILL GAPS

- Tissue response to high strain rate events
- Model of practical injury effects
 - Immediate incapacitation
 - Short-term disability
 - Injury effects over time, under TC3, etc.

CONDUCT MODEL Validation, Verification & Accreditation

- Validation against animal and human tissue
- Validation of predictions against new epidemiological data

R

16

С

Discovery & Invention: *Micro-Cavitation as a Mechanism of Neuronal Injury*

OFFICE OF NAVAL RESEARC¹A

Cavitation is Destructive

BLAST

Tence & Techn

Naval Researce

Mantis or Pistol Shrimp produce cavitations with their high speed claws. Microbubble collapse helps smash the prey's shell.

Cavitation can tear apart steel propellers

Cavitations formed by lithotripters destroy kidney stones

Primary Blast Pressure Wave Generation Can Lead to Cavitation

19

R

Office of Naval Research

cience & Techn

С

Large-scale molecular dynamics simulations
 Interaction of shock waves with lipid bilayer
 Systematic study of shock wave induced bubble collapse

N

Elucidating Mechanisms: Shockwaves and Micro-Cavitation

N

Define the threshold shockwave parameters that lead to elucidation of the coupling mechanisms 2D & 3D Neuron + Astrocyte cultures
 Generate micro-cavitation bubbles
 Real-time cellular and subcellular responses

mechanical deformation
morphological changes
altered membrane potential
loss of neurites, axonal shearing
production of neurotransmitters
cytoskeleton reorganization,
necrotic cell death & apoptosis

Protection Against Cavitation

Naval Researc

ffice of

Physiologically-realistic
3D *in-vitro* cultures
Spatial and temporal changes in neuronal viability & morphology
Neuroprotective effects of mild hypothermia

Diffuse Axonal Injury
Axonal Swelling
Apoptosis
Necrosis/Degeneration

N

Back-Up

N

E

C

F

22

C

R

R

E

S

Future Naval Capabilities Program

