
MTR070028

MITRE TECHNICAL REPORT

Sensor Data & Analysis Framework (SDAF) Data
Warehouse

February 2007

Eddy Cheung, E549
Stephan Nadeau, E145
Don Landing, E145
Mark Munson, E543
Jennifer Casper E547

Sponsor: The MITRE Corp.
Dept. No.: E145 Project No.: 03MSR002-A7

The views, opinions and/or findings contained in this report are those of
The MITRE Corporation and should not be construed as an official
Government position, policy, or decision, unless designated by other
documentation.

Approved for Public Release; Distribution Unlimited
Case Number 07-0330

©2007 The MITRE Corporation. All Rights Reserved.

Center for Air Force C2 Systems
Bedford, Massachusetts

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 07-0330

 ii

MITRE Department

and Project Approval:

 Donald Landing

Project Approval:

 Stephan Nadeau

iii

Abstract
The Sensor Data & Analysis Framework (SDAF) Data Warehouse is part of the SDAF
project. As more and more sensors are producing volumes of data regarding objects that
change with respect to location and time, evaluating this stream of information in a timely
fashion requires the integration of current and historical data. The SDAF research project
seeks to investigate and understand various approaches to integrating streamed and historical
sensor data to support spatio-temporal queries. The SDAF Data Warehouse (SDAF DW)
effort experiments with different techniques to store and organize the historical sensor data
efficiently in a persistent data store.

In this paper, we will discuss the finding that to support spatial queries of objects relating to
location and time, it is best to partition the data by date/time. There are two advantages to the
approach. First, partition elimination keeps the number of partitions to search for a query to a
minimum. Second, as the size of the database grows, the number of partitions to search for the
same query remains the same, thereby keeping the response time relatively constant.

KEYWORDS: SDAF, Sensor Data and Analysis Framework, Moving Target indicator, MTI,
SMTI, GMTI, Data Warehouse

 v

Table of Contents
1 Overview 1

2 GMTI Data 1

3 Database Schemas 5
3.1 GMTI DWv4 Database Tables 7

3.2 SDAF DWv4 Database Tables 7

4 Partitioning of Database Tables 7
4.1 Benefits of Partitioning 7

4.2 Spatial Partition Pruning 8

4.3 Partitioning Schemes 8

4.4 Data Loading Schemes 10

5 Test Statistics 11
5.1 Automatic Partition Elimination Test 11

5.2 Manual Partition Elimination Test 12

6 Conclusion 13

7 Acknowledgement 14

 vi

List of Figures
Figure 2-1 NATOEX Packet Structure ..2

Figure 2-2 NATOEX Header Segment..4

Figure 2-3 NATOEX MTI Segment ..4

Figure 3-1 GMTI DWv4 Database Schemas...6

 vii

List of Tables
Table 3-1 Differences between GMTI DWv4 and SDAF DWv4 Database Schemas......................6

Table 4-1 Pros/Cons of Partitioning Schemes .. 10

Table 5-1 Automatic Partition Elimination Test... 12

Table 5-2 Manual Partition Elimination Test.. 13

 1

1 Overview
As Phase I of the experiment to store spatio-temporal data efficiently, Ground Moving

Target Indicator (GMTI) data in the NATOEX format is used. NATOEX is a GMTI data
format widely used in sensors, as well as trackers and visualization tools. A new GMTI
standard gaining popularity is STANAG 4607. The format is scalable to allow all types of
radar systems to use the format and tailor the data flow to the capabilities of the sensor and
the available communications channels. Smaller systems can use the basic capabilities of the
format to transmit only moving target reports. Larger, more capable systems can use the
same format for the moving target reports, and provide high range resolution data, and other
products of extended processing of the radar returns.

The GMTI data collected by a sensor for one mission (between four to eight hours) is
contained in a binary file. The one or more mission data files generated per day are loaded
into a database. In order to accommodate the dual demands of continuously ingesting new
data into a database, and at the same time making the database available for query
operations, the solution is to organize the database tables into partitions.

The information of most interest in the database is the location and detection time of each
moving target. To best support spatial queries of the kind “select all the targets within
distance X of location Y between time 1 and time 2”, the decision is to partition the tables by
date/time. We also partition the same data by mission for comparison.

In this paper, we will detail the steps in setting up the SDAF DW. We will also discuss
the reasoning behind how the data is organized. We will show the same data organized
differently can produce dramatic improvement in query response time.

2 GMTI Data
The GMTI data in NATOEX format consists of variable length packets. Each packet has

a 128-byte Header Segment plus zero or more Moving Target Indicator (MTI) Segments
(Figure 2-1). The maximum packet size cannot be more than 1472 bytes.

 2

Header Segment

(128 bytes)

Zero or more MTI Segments

(Maximum of (1472-128=1344) Bytes)

Figure 2-1 NATOEX Packet Structure

The Header Segment (Figure 2-2) contains the type of message, the number of
subsequent MTI segments in the packet and other information.

Field Field Name Subfield Name Subfield Type

Message Flags 4-bit flags H1 Message Indicator

Message Type 12-bit enumeration

H2 Radar Mode 8-bit enumeration

H3 Scan Flags 8-bit enumeration

Range Resolution 16-bit integer H4 Resolution

Cross-Range Resolution 16-bit integer

H5 Label 8x8-bit ASCII

characters

H6 Sequence Number 16-bit unsigned integer

H7 Target or Imagery Packet Count 16-bit unsigned integer

Point 1 - X 32-bit floating point

Point 1 - Y 32-bit floating point

Point 1 - Z 32-bit floating point

Point 2 - X 32-bit floating point

H8 Scan Area (Rectangular Format)

Point 2 - Y 32-bit floating point

 3

Point 2 - Z 32-bit floating point

Point 3 - X 32-bit floating point

Point 3 - Y 32-bit floating point

Point 3 - Z 32-bit floating point

Min Range 32-bit floating point

Max Range 32-bit floating point

Start Azimuth 32-bit floating point

Stop Azimuth 32-bit floating point

Aim Point - X 32-bit floating point

Aim Point - Y 32-bit floating point

Aim Point - Z 32-bit floating point

Dummy 32-bit floating point

Scan Area (Polar and Aim Point

Formats)

Dummy 32-bit floating point

H9 Scan Number 16-bit unsigned integer

H10 Service Request Number 16-bit unsigned integer

H11 Sensor Platform Time Stamp 64-bit unsigned integer

H12 Data Time Stamp 64-bit unsigned integer

Platform Type 8-bit enumeration H13 Sensor Platform ID

Platform Track Number 24-bit unsigned integer

X 32-bit floating point

Y 32-bit floating point

H14 Sensor Platform Position

Z 32-bit floating point

VX 32-bit floating point

VY 32-bit floating point

H15 Sensor Platform Velocity

VZ 32-bit floating point

H16 Sensor Platform Heading 32-bit floating point

H17 Topocentric Origin Latitude 32-bit floating point

 4

Longitude 32-bit floating point

Elevation 32-bit floating point

H18 Protocol Version Number 16-bit unsigned integer

H19 Byte Count 16-bit unsigned integer

Platform Type 8-bit enumeration H20 Sending Platform ID

Platform Track Number 24-bit unsigned integer

Figure 2-2 NATOEX Header Segment

Each MTI Segment (Figure 2-3) specifies information such as location, speed, and
heading for one target. No more than 42 target reports can be contained in a single packet.

Field Field Name Subfield Name Subfield Type

X 32-bit floating point

Y 32-bit floating point

M1 Target Location

Z 32-bit floating point

M2 Target Radial Velocity 32-bit floating point

M3 Target Radar Cross Section 32-bit floating point

M4 Target Classification 8-bit enumeration

M5 Radial Velocity Quality 8-bit unsigned integer

M6 Count 16-bit unsigned integer

Count 8-bit unsigned integer

Application 8-bit unsigned integer

M7 Truth Tag

Entity 16-bit unsigned integer

Range Error 16-bit unsigned integer M8 Error

Cross-Range Error 16-bit unsigned integer

Figure 2-3 NATOEX MTI Segment

 5

3 Database Schemas
Of all the information in a NATOEX packet, the target location and detection time in the

MTI segment are of most interest. The spatio-temporal nature of the data requires a database
management system that supports and facilitates the storage, retrieval, update, and query of
spatial features in a database. Oracle 10g Release 2 has matured spatial features and can
handle large amounts of data. It is the best available choice as the Database Management
System (DBMS) for the SDAF DW effort.

The format of the NATOEX data lends itself very nicely to a database schema with three
major tables: MISSION, MESSAGE, and DOT. The MISSION table contains the mission
ID, start time, end time, etc. The MESSAGE table contains packet header information. The
DOT table contains the target information. The geometric description (latitude, longitude) of
the spatial object (target) will be stored in a single row, in a single column of object type
SDO_GEOMETRY in the DOT table.

A table containing a spatial object data requires a spatial index for efficient access to the
data. This is because Oracle Spatial uses a two-tier query model to resolve spatial queries.
The primary filter permits fast selection of candidate rows to pass along to the secondary
filter. The secondary filter applies exact selection criteria to produce the result set. Oracle
uses the spatial index to implement the primary filter. In addition, Oracle does not require the
use of both primary and secondary filters. In some cases, just using the primary filter is
sufficient to produce the desired results.

The SDAF DW effort benefited from existing work establishing a Forensic GMTI Data
Warehouse (GMTI DW). The GMTI DW project stores GMTI data collected by disparate
sensors to support forensic analysis of intelligence and sensor data. Using the data and a set
of tools, the analyst can identify and annotate tracks, reconstruct an event, isolate and
identify patterns of behavior, etc. SDAF DW leveraged the GMTI DW database schemas
(Figure 3-1) and software tools in order to speed up development time and prevent
duplication of effort. The SDAF DW effort started with Version 3 of the GMTI DW schemas
and software. We updated to Version 4 when the GMTI DW was upgraded. The SDAF DW
Version 4 (SDAF DWv4) database schemas vary slightly from the GMTI DW Version 4
(GMTI DWv4) database schemas (Table 3-1). The only major difference is how to organize
data into partitions.

 6

Figure 3-1 GMTI DWv4 Database Schemas

Tables GMTI DWv4 SDAF DWv4

MISSION

MESSAGE

DOT LAT and LON columns are added to
hold latitude and longitude values of the
target

RAW_DATA A table to hold
NATOEX binary data

As the most important information of
the NATOEX packets is stored in the
database as columns, we decided there is
no need to store the binary data

Table 3-1 Differences between GMTI DWv4 and SDAF DWv4 Database Schemas

 7

3.1 GMTI DWv4 Database Tables

The GMTI DWv4 database consists of six major tables (Appendix A). The MISSION
table contains information about each mission. The MESSAGE table contains header
information of NATOEX packets. The DOT table contains information about ground moving
targets. The Radar Service Request (RSR) and RSR_REVISIT tables contain target data
information associated with RSR. The RAW_DATA table contains the original binary
NATOEX data.

3.2 SDAF DWv4 Database Tables
The SDAF DWv4 database consists of five major tables (Appendix B). The MISSION

table contains information about each mission. The MESSAGE table contains header
information of NATOEX packets. The DOT table contains information about ground moving
targets. The RSR and RSR_REVISIT tables contain target data information associated with
RSR.

4 Partitioning of Database Tables
Partitioning enhances database performance and scalability. A partition is a smaller, more

manageable piece of a table or index. Each partition of a table or index must have the same
logical attributes, such as column names, data types, and constraints. However, different
partitions can have separate physical attributes and tablespaces. Each row in a partitioned
table unambiguously belongs to a single partition. The partition key is a set of from one to 16
columns that determines the partition for each row. Oracle uses the partition key to decide in
which partition to put each row of data.

4.1 Benefits of Partitioning
The benefits of partitioning are many. Some of the more important ones are:

• Store data in different tablespaces on a partition-by-partition basis
• Store indexes in different tablespaces on a partition-by-partition basis

This allows the spread of I/O load associated with table or index accesses across multiple
disk drives and/or controllers.

• Search multiple table or index partitions in parallel
• Eliminate partitions from consideration based on a partition key

 8

The last bullet is one of the most important ways partitioning can enhance performance.
Partition elimination is the automatic exclusion of partitions that will not be participating in a
query. If a query includes a partition key as a predicate in the WHERE clause, Oracle will
automatically route the query to the partition or partitions that are associated with the query,
eliminating (and not searching) those partitions that will not have data included in the result
set. Partition elimination significantly reduces the amount of data and index information
searched to return results.

Another major reason for implementing partitioning is to accommodate the competing
demands of making the database available for query operations, and at the same time
allowing ingest of new data into the database on a continuous basis.

Ingesting data into a non-partitioned table requires the following steps:

1. Disable/delete current indexes
2. Ingest new data
3. Rebuild all the indexes

Depending on the size of the table, rebuilding all the indexes may take a long time.
Regardless, the existing data is not available for access by users during rebuild time. With
partitioning, on the other hand, only the partition with the newly inserted data is not
available. All other data partitions are online and ready for query operations.

4.2 Spatial Partition Pruning
Spatial partition pruning is another technique to enhance performance. In this case,

location values, such as latitude and longitude, determine how to group data into partitions.
Spatial partition pruning is similar to partition elimination, but it is based on location and a
partition key is not required on the input query line. At query time, an area-of-interest of the
query is compared to the Minimum Bounding Rectangle (MBR) of each partition. If they do
not overlap, spatial partition pruning will occur without searching the data associated with
that partition.

4.3 Partitioning Schemes
For the GMTI DWv4, the major tables are partitioned on mission ID. This means all the

data related to a mission is stored in one partition. For queries such as “retrieve information

 9

for a particular mission or a list of missions” will be very fast because Oracle needs to search
only one partition or only the relevant partitions, and eliminates all other ones.

For the SDAF DWv4, we decided to partition the MESSAGE and DOT tables on
date/time. The data is stored in one partition if all the data related to a mission is collected
within a single day. The data will be stored in multiple partitions if a mission spans over
multiple days. We based our decision on the fact that NATOEX data deals with target
location and time, and we feel most of the queries will be of the type “retrieve target
information within X meters of a location Y between date/time 1 and 2”. This type of query
eliminates all partitions that fall outside of the date/time specified, thereby speeds up the
query response time.

There are of course advantages and disadvantages to each approach, as listed below:

GMTI DWv4 SDAF DWv4

Fast response on queries based on
mission ID

Fast response on queries based on
date/time

A long mission that spans over multiple
days will create a very large partition

Data for a mission that spans multiple
days will be stored in multiple partitions

Data collected by different missions
(sensors) on the same day will be stored in
different partitions

Data collected by different missions
(sensors) on the same day will be stored in
one partition. This can be remedied by
partitioning the data on sensor/date/time

In order to achieve reasonable response
time in retrieving target information from
the DOT table, the MISSION and/or RSR
table must be queried first to manually
eliminate missions (partitions) that are not
needed in the result set. This can only be
done through a program and/or PL/SQL
procedure

Target information can be queried
interactively using standard tools such as
SQLPLUS with reasonable response time.
Partition elimination is done by Oracle
automatically

Need to create more indexes to support
query operations

Other than the required spatial indexes,
only primary key index is created for each
table

Can add partitions interactively Need to add partitions manually

 10

Table 4-1 Pros/Cons of Partitioning Schemes

4.4 Data Loading Schemes
Another important distinction between the two partition schemes is, with the GMTI

DWv4 method, incoming data is always loaded into a new partition. When data for a new
mission arrives, the data loading software generates a new unique Oracle sequence number
and assigns it to be the mission ID. The data is then loaded into a new partition using the
sequence number as part of its name. Because by definition each mission is unique, data for
each mission is loaded into its own partition.

With the SDAF DWv4 scheme, mission data from previous day may overlap data from
current day, or data from different sensors may exist for the same day. The data loading
software needs to make sure that it loads the data into the correct partition, and does not
overwrite any existing data. The exact mechanism is a little more complicated, but involves
the following steps for each method:

GMTI DWv4 loading steps:

1. Create temporary table
2. Load incoming data into the temporary table
3. Build all necessary indexes
4. Create new partition
5. Exchange data from temporary table into new partition
6. Destroy temporary table

SDAF DWv4 loading steps:

1. Create one or more temporary tables (if mission data spans more than one day)
2. If data exists in partitions that correspond to the temporary tables

a. Exchange data from partitions into temporary tables
b. Load incoming data into appropriate temporary tables

3. If data does NOT exist in partitions that correspond to the temporary tables
a. Load incoming data into appropriate temporary tables

4. Build all necessary indexes
5. Exchange data from temporary tables into partitions
6. Destroy temporary table(s)

 11

Even though the loading steps are more complicated for the SDAF DWv4, if most of the
mission files do not contain many overlapping data, the loading times for both should be
relatively similar.

5 Test Statistics
To see how different partitioning schemes would affect the performance of the databases,

we used a test suite of five SQL queries containing various spatial functions. The first four
queries return all the rows that interact with a given geometry object between two designated
times. The last query returns all the rows that are within a specified distance from a location
(in latitude/longitude), also between two time values. The test scripts (courtesy of Peter
Sylvester) are in Appendix C.

5.1 Automatic Partition Elimination Test
We ran the test suite on each database as it was loaded with increasing amount of data.

The assumption is the entire GMTI DWv4 will have to be searched to return the result set,
because it is not partitioned by date/time. The time it takes will also grow as the size of the
database increases. On the other hand, the SDAF DWv4 will minimize the number of
partitions it needs to search by automatically eliminating all partitions that fall outside of the
specified time values. In addition, the size of the database should not make a major
difference in the response time. The reason is even as the database is increasingly loaded
with more data, with automatic partition elimination provided by Oracle the number of
partitions to search remains the same. The only extra cost is the time it takes to eliminate
additional partitions. The following table shows the results.

Response Time

Number of rows
in DOT table

Test GMTI SDAF

1 14 secs 6 secs

2 13 secs 1 sec

3 12 secs 1 sec

4 14 secs 1 sec

51 millions

5 2 mins 4 secs 2 secs

90 millions 1 26 mins 20 secs 4 secs

 12

2 14 mins 48 secs 2 secs

3 4 mins 25 secs 2 secs

4 10 mins 44 secs 2 secs

5 22 mins 7 secs 3 secs

1 34 mins 14 secs 10 secs

2 33 mins 55 secs 2 secs

3 8 mins 48 secs 2 secs

4 23 mins 39 secs 2 secs

116 millions

5 41 mins 40 secs 3 secs

Table 5-1 Automatic Partition Elimination Test

5.2 Manual Partition Elimination Test
One way to speed up the response time for the GMTI DWv4 is to do manual partition

elimination. To do that, the five SQL queries had to be converted into PL/SQL procedures.
Inside each procedure, the RSR table is queried first to get the mission_id’s (i.e., partitions)
containing data for the time values specified. A second query executes on only those
partitions returned from the first query. We also added four more procedures to return
increasing larger amount of data to see the effect of larger result sets have on the response
time. For the SDAF DWv4, we added four more SQL queries to return more rows. The test
scripts are in Appendix D.

Response Time (174 million rows in DOT table)

Test GMTI SDAF Rows Returned

1 39 secs 10 secs 8,880

2 23 secs 2 secs 8,880

3 15 secs 2 secs 1,319

4 15 secs 2 secs 8,663

5 26 secs 3 secs 15,170

1 35 secs 33 secs 110,485

 13

2 29 secs 22 secs 110,485

3 20 secs 11 secs 15,838

4 21 secs 11 secs 107,743

5 33 secs 28 secs 190,698

1 2 mins 31 secs 1 mins 11 secs 215,925

2 2 mins 54 secs 36 secs 215,925

3 2 mins 42 secs 26 secs 30,896

4 4 mins 7 secs 24 secs 210,548

5 3 mins 10 secs 59 secs 373,529

1 2 mins 53 secs 1 mins 43 secs 411,291

2 2 mins 54 secs 2 mins 18 secs 411,291

3 3 mins 13 secs 1 mins 34 secs 57,236

4 2 mins 53 secs 2 mins 51 secs 401,041

5 3 mins 3 secs 2 mins 2 secs 709,621

1 2 mins 52 secs 2 mins 40 secs 530,029

2 2 mins 54 secs 2 mins 44 secs 530,029

3 2 mins 43 secs 1 mins 56 secs 72,240

4 2 mins 57 secs 2 mins 31 secs 516,968

5 3 mins 4 secs 3 mins 6 secs 908,943

Table 5-2 Manual Partition Elimination Test

6 Conclusion
The motivation for partitioning the SDAF DWv4 by date/time was to improve existing

GMTI storage techniques to meet the demanding needs of time critical applications. It is
based on the assumption that automatic partition elimination, an intrinsic capability provided
by Oracle, should work well in providing good response time. The outcome of the testing

 14

supported the assumption. The response time for the test suite of five spatial queries remains
relatively the same as the database grew from 51 to 116 million rows. The response time for
the SDAF DWv4 compared better than or equal to the GMTI DWv4 when the GMTI DWv4
included manual partition elimination and increased amount of data returned by each query.

 In addition, the partition scheme of the SDAF DWv4 provides for more flexible and
efficient query operations. Even though the loading steps are a little more complicated, the
loading time for similar data should be comparable to the other scheme. The only restriction
is that partitions have to be created ahead of time before data loading can take place. The
SDAF DWv4 setup is also a good example of leveraging from another project to cut down on
development time and effort, and at the same time deliver a quality product.

7 Acknowledgement
The SDAF DWv4 work borrowed heavily, both data schemas and software programs,

from the Forensic GMTI DWv4 project. We would like to thank Peter Sylvester, William
Dowling, and Curtis Brown for all their help.

 15

Appendix A:

GMTI DWv4 Database Tables:

MISSION Table:
 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 NAME NOT NULL VARCHAR2(2000)

 FILE_PATH NOT NULL VARCHAR2(2000)

 START_TIMESTAMP NOT NULL TIMESTAMP(6)

 END_TIMESTAMP NOT NULL TIMESTAMP(6)

 DOT_AREA MDSYS.SDO_GEOMETRY

 MESSAGE_COUNT NOT NULL NUMBER(38)

 DOT_COUNT NOT NULL NUMBER(38)

 LOAD_DATE NOT NULL DATE

 LOAD_TIME_MINS NOT NULL NUMBER(5,2)

 FINGERPRINT RAW(400)

MESSAGE Table:

 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 MESSAGE_ID NOT NULL NUMBER(38)

 FORMAT_ID NOT NULL NUMBER(3)

 TYPE_ID NOT NULL NUMBER(3)

 SCAN_NUMBER NOT NULL NUMBER(5)

 SCAN_FLAGS NOT NULL NUMBER(3)

 SEQUENCE_NUMBER NOT NULL NUMBER(5)

 RSR_NUMBER NOT NULL NUMBER(5)

 16

 PLATFORM_TYPE NOT NULL NUMBER(3)

 PLATFORM_ID NOT NULL VARCHAR2(12)

 DATA_TIMESTAMP NOT NULL TIMESTAMP(6)

 SCAN_AREA NOT NULL MDSYS.SDO_GEOMETRY

 DOT_AREA NOT NULL MDSYS.SDO_GEOMETRY

 DOT_COUNT NOT NULL NUMBER(38)

DOT Table:

 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 RSR_NUMBER NOT NULL NUMBER(5)

 DOT_ID NOT NULL NUMBER(38)

 MESSAGE_ID NOT NULL NUMBER(38)

 RADIAL_VELOCITY NOT NULL NUMBER

 CROSS_SECTION NOT NULL NUMBER

 CLASSIFICATION NOT NULL NUMBER(3)

 TRUTH_APPLICATION NOT NULL NUMBER(5)

 TRUTH_ENTITY NOT NULL NUMBER(5)

 RANGE_ERROR NOT NULL NUMBER(5)

 CROSS_SECTION_ERROR NOT NULL NUMBER(5)

 DATA_TIMESTAMP NOT NULL TIMESTAMP(6)

 LOCATION NOT NULL MDSYS.SDO_GEOMETRY

 SEGMENT_INDEX NOT NULL NUMBER(2)

RSR Table:

 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 17

 RSR_NUMBER NOT NULL NUMBER(5)

 START_TIMESTAMP NOT NULL TIMESTAMP(6)

 END_TIMESTAMP NOT NULL TIMESTAMP(6)

 DOT_AREA NOT NULL MDSYS.SDO_GEOMETRY

 SCAN_COUNT NOT NULL NUMBER(38)

 MESSAGE_COUNT NOT NULL NUMBER(38)

 DOT_COUNT NOT NULL NUMBER(38)

 MIN_REVISIT_SECS NOT NULL NUMBER

 MAX_REVISIT_SECS NOT NULL NUMBER

 AVG_REVISIT_SECS NOT NULL NUMBER

 STDDEV_REVISIT_SECS NOT NULL NUMBER

RSR_REVISIT Table:

 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 RSR_NUMBER NOT NULL NUMBER(5)

 BIN_SIZE NOT NULL NUMBER(3)

 BIN_SECS NOT NULL NUMBER(6)

 AVG_REVISIT_SECS NOT NULL NUMBER

 SCAN_COUNT NOT NULL NUMBER(38)

 MESSAGE_COUNT NOT NULL NUMBER(38)

 DOT_COUNT NOT NULL NUMBER(38)

RAW_DATA Table:

 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 MESSAGE_ID NOT NULL NUMBER(38)

 18

 DATA RAW(2000)

Appendix B:

SDAF DWv4 Database Tables:

MISSION Table:

 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 NAME NOT NULL VARCHAR2(2000)

 FILE_PATH NOT NULL VARCHAR2(2000)

 START_TIMESTAMP NOT NULL TIMESTAMP(6)

 END_TIMESTAMP NOT NULL TIMESTAMP(6)

 DOT_AREA MDSYS.SDO_GEOMETRY

 MESSAGE_COUNT NOT NULL NUMBER(38)

 DOT_COUNT NOT NULL NUMBER(38)

 LOAD_DATE NOT NULL DATE

 LOAD_TIME_MINS NOT NULL NUMBER(5,2)

 FINGERPRINT RAW(400)

MESSAGE Table

 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 MESSAGE_ID NOT NULL NUMBER(38)

 FORMAT_ID NOT NULL NUMBER(3)

 TYPE_ID NOT NULL NUMBER(3)

 SCAN_NUMBER NOT NULL NUMBER(5)

 SCAN_FLAGS NOT NULL NUMBER(3)

 SEQUENCE_NUMBER NOT NULL NUMBER(5)

 19

 RSR_NUMBER NOT NULL NUMBER(5)

 PLATFORM_TYPE NOT NULL NUMBER(3)

 PLATFORM_ID NOT NULL VARCHAR2(12)

 DATA_TIMESTAMP NOT NULL TIMESTAMP(6)

 SCAN_AREA NOT NULL MDSYS.SDO_GEOMETRY

 DOT_AREA NOT NULL MDSYS.SDO_GEOMETRY

 DOT_COUNT NOT NULL NUMBER(38)

DOT Table

 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 RSR_NUMBER NOT NULL NUMBER(5)

 DOT_ID NOT NULL NUMBER(38)

 MESSAGE_ID NOT NULL NUMBER(38)

 RADIAL_VELOCITY NOT NULL NUMBER

 CROSS_SECTION NOT NULL NUMBER

 CLASSIFICATION NOT NULL NUMBER(3)

 TRUTH_APPLICATION NOT NULL NUMBER(5)

 TRUTH_ENTITY NOT NULL NUMBER(5)

 RANGE_ERROR NOT NULL NUMBER(5)

 CROSS_SECTION_ERROR NOT NULL NUMBER(5)

 DATA_TIMESTAMP NOT NULL TIMESTAMP(6)

 LOCATION NOT NULL MDSYS.SDO_GEOMETRY

 SEGMENT_INDEX NOT NULL NUMBER(2)

 LAT FLOAT(126)

 LON FLOAT(126)

 20

RSR Table:

 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 RSR_NUMBER NOT NULL NUMBER(5)

 START_TIMESTAMP NOT NULL TIMESTAMP(6)

 END_TIMESTAMP NOT NULL TIMESTAMP(6)

 DOT_AREA NOT NULL MDSYS.SDO_GEOMETRY

 SCAN_COUNT NOT NULL NUMBER(38)

 MESSAGE_COUNT NOT NULL NUMBER(38)

 DOT_COUNT NOT NULL NUMBER(38)

 MIN_REVISIT_SECS NOT NULL NUMBER

 MAX_REVISIT_SECS NOT NULL NUMBER

 AVG_REVISIT_SECS NOT NULL NUMBER

 STDDEV_REVISIT_SECS NOT NULL NUMBER

RSR_REVISIT Table:

 Name Null? Type

 MISSION_ID NOT NULL NUMBER(38)

 RSR_NUMBER NOT NULL NUMBER(5)

 BIN_SIZE NOT NULL NUMBER(3)

 BIN_SECS NOT NULL NUMBER(6)

 AVG_REVISIT_SECS NOT NULL NUMBER

 SCAN_COUNT NOT NULL NUMBER(38)

 MESSAGE_COUNT NOT NULL NUMBER(38)

 DOT_COUNT NOT NULL NUMBER(38)

 21

Appendix C:

SQL Test 1:

select count(*) from

(

select d.message_id

from dot d

where

(d.data_timestamp>=to_date('27-FEB-06 07.34.05', 'dd-mon-yy hh24:mi:ss') and

d.data_timestamp<=to_date('27-FEB-06 13.00.27', 'dd-mon-yy hh24:mi:ss')) and

sdo_filter(d.location, SDO_geometry(

 2003,8307,NULL,

 SDO_elem_info_array(1,1003,3),

 SDO_ordinate_array(44.20,32.30, 44.30,32.365)) /* x_min,y_min,

x_max,y_max */

) = 'TRUE'

);

SQL Test 2:

select count(*) from

(

select d.message_id

from dot d

where

(d.data_timestamp>=to_date('27-FEB-06 07.34.05', 'dd-mon-yy hh24:mi:ss') and

d.data_timestamp<=to_date('27-FEB-06 13.00.27', 'dd-mon-yy hh24:mi:ss')) and

sdo_filter(d.location, SDO_geometry(

 2003,8307,NULL,

 22

 SDO_elem_info_array(1,1003,1),

 SDO_ordinate_array(44.20,32.30, 44.20,32.365, 44.30,32.365,

44.30,32.30, 44.20,32.30))

) = 'TRUE'

);

SQL Test 3:

select count(*) from

(

select d.message_id

from dot d

where

(d.data_timestamp>=to_date('27-FEB-06 07.34.05', 'dd-mon-yy hh24:mi:ss') and

d.data_timestamp<=to_date('27-FEB-06 13.00.27', 'dd-mon-yy hh24:mi:ss')) and

sdo_relate(d.location, SDO_geometry(

 2003,8307,NULL,

 SDO_elem_info_array(1,1003,1),

 SDO_ordinate_array(44.20,32.30, 44.30,32.365)), 'mask=anyinteract'

) = 'TRUE'

);

SQL Test 4:

select count(*) from

(

select d.message_id

from dot d

where

(d.data_timestamp>=to_date('27-FEB-06 07.34.05', 'dd-mon-yy hh24:mi:ss') and

 23

d.data_timestamp<=to_date('27-FEB-06 13.00.27', 'dd-mon-yy hh24:mi:ss')) and

sdo_relate(d.location, SDO_geometry(

 2003,8307,NULL,

 SDO_elem_info_array(1,1003,1),

 SDO_ordinate_array(44.20,32.30, 44.20,32.365, 44.30,32.365,

44.30,32.30, 44.20,32.30)), 'mask=anyinteract'

) = 'TRUE'

);

SQL Test 5:

select count(*) from

(

select d.message_id

from dot d

where

(d.data_timestamp>=to_date('27-FEB-06 07.34.05', 'dd-mon-yy hh24:mi:ss') and

d.data_timestamp<=to_date('27-FEB-06 13.00.27', 'dd-mon-yy hh24:mi:ss')) and

SDO_WITHIN_DISTANCE(d.location, SDO_geometry(

 2001,8307,NULL,

 SDO_elem_info_array(1,1,1),

 SDO_ordinate_array(44.20,32.30)), 'distance=10000'

) = 'TRUE'

);

 24

Appendix D:

PL/SQL Test 1:
DECLARE

mission_id rsr.mission_id%TYPE;
rsr_number rsr.rsr_number%TYPE;
sql_stmt VARCHAR2(500);
loop_cnt NUMBER;
rs NUMBER;

CURSOR rsrCursor IS
 select mission_id
 from rsr
 where
 (start_timestamp>=to_timestamp('27-FEB-06 07.34.05.123456789', 'dd-mon-yy
hh24:mi:ss.ff') and
 start_timestamp<=to_timestamp('27-FEB-06 13.00.27.123456789', 'dd-mon-yy
hh24:mi:ss.ff')) or
 (end_timestamp>=to_timestamp('27-FEB-06 07.34.05.123456789', 'dd-mon-yy
hh24:mi:ss.ff') and
 end_timestamp<=to_timestamp('27-FEB-06 13.00.27.123456789', 'dd-mon-yy
hh24:mi:ss.ff')) order by mission_id;

BEGIN

 sql_stmt := 'select count(*) from dot where mission_id in (';
 loop_cnt := 0;

 OPEN rsrCursor;

 LOOP
 FETCH rsrCursor into mission_id;
 EXIT WHEN rsrCursor%NOTFOUND;

 IF loop_cnt = 0 THEN
 sql_stmt := sql_stmt || mission_id;
 ELSE
 sql_stmt := sql_stmt || ',' || mission_id;
 END IF;

 25

 loop_cnt := loop_cnt + 1;

 END LOOP;

 CLOSE rsrCursor;

 sql_stmt := sql_stmt || ')' || ' and ' ||
 '(data_timestamp>=to_timestamp(''27-FEB-06 07.34.05.123456789'', ''dd-mon-yy
hh24:mi:ss.ff'') and ' ||
 'data_timestamp<=to_timestamp(''27-FEB-06 13.00.27.123456789'', ''dd-mon-yy
hh24:mi:ss.ff'')) and ' ||
 'sdo_filter(location, SDO_geometry(' ||
 '2003,8307,NULL,' ||
 'SDO_elem_info_array(1,1003,3),' ||
 'SDO_ordinate_array(44.20,32.30, 44.30,32.365))) = ''TRUE''';

 DBMS_OUTPUT.PUT_LINE(sql_stmt);
 EXECUTE IMMEDIATE sql_stmt into rs;
 DBMS_OUTPUT.PUT_LINE(rs);

END;
/

PL/SQL Test 2:
DECLARE

mission_id rsr.mission_id%TYPE;
rsr_number rsr.rsr_number%TYPE;
sql_stmt VARCHAR2(500);
loop_cnt NUMBER;
rs NUMBER;

CURSOR rsrCursor IS
 select mission_id
 from rsr
 where
 (start_timestamp>=to_timestamp('27-FEB-06 07.34.05.123456789', 'dd-mon-yy
hh24:mi:ss.ff') and
 start_timestamp<=to_timestamp('04-MAR-06 13.00.27.123456789', 'dd-mon-yy
hh24:mi:ss.ff')) or

 26

 (end_timestamp>=to_timestamp('27-FEB-06 07.34.05.123456789', 'dd-mon-yy
hh24:mi:ss.ff') and
 end_timestamp<=to_timestamp('04-MAR-06 13.00.27.123456789', 'dd-mon-yy
hh24:mi:ss.ff')) order by mission_id;

BEGIN

 sql_stmt := 'select count(*) from dot where mission_id in (';
 loop_cnt := 0;

 OPEN rsrCursor;

 LOOP
 FETCH rsrCursor into mission_id;
 EXIT WHEN rsrCursor%NOTFOUND;

 IF loop_cnt = 0 THEN
 sql_stmt := sql_stmt || mission_id;
 ELSE
 sql_stmt := sql_stmt || ',' || mission_id;
 END IF;

 loop_cnt := loop_cnt + 1;

 END LOOP;

 CLOSE rsrCursor;

 sql_stmt := sql_stmt || ')' || ' and ' ||
 '(data_timestamp>=to_timestamp(''27-FEB-06 07.34.05.123456789'', ''dd-mon-yy
hh24:mi:ss.ff'') and ' ||
 'data_timestamp<=to_timestamp(''04-MAR-06 13.00.27.123456789'', ''dd-mon-yy
hh24:mi:ss.ff'')) and ' ||
 'sdo_filter(location, SDO_geometry(' ||
 '2003,8307,NULL,' ||
 'SDO_elem_info_array(1,1003,3),' ||
 'SDO_ordinate_array(44.20,32.30, 44.30,32.365))) = ''TRUE''';

 DBMS_OUTPUT.PUT_LINE(sql_stmt);
 EXECUTE IMMEDIATE sql_stmt into rs;
 DBMS_OUTPUT.PUT_LINE(rs);

 27

END;
/

PL/SQL Test 3:
DECLARE

mission_id rsr.mission_id%TYPE;
rsr_number rsr.rsr_number%TYPE;
sql_stmt VARCHAR2(500);
loop_cnt NUMBER;
rs NUMBER;

CURSOR rsrCursor IS
 select mission_id
 from rsr
 where
 (start_timestamp>=to_timestamp('27-FEB-06 07.34.05.123456789', 'dd-mon-yy
hh24:mi:ss.ff') and
 start_timestamp<=to_timestamp('09-MAR-06 13.00.27.123456789', 'dd-mon-yy
hh24:mi:ss.ff')) or
 (end_timestamp>=to_timestamp('27-FEB-06 07.34.05.123456789', 'dd-mon-yy
hh24:mi:ss.ff') and
 end_timestamp<=to_timestamp('09-MAR-06 13.00.27.123456789', 'dd-mon-yy
hh24:mi:ss.ff')) order by mission_id;

BEGIN

 sql_stmt := 'select count(*) from dot where mission_id in (';
 loop_cnt := 0;

 OPEN rsrCursor;

 LOOP
 FETCH rsrCursor into mission_id;
 EXIT WHEN rsrCursor%NOTFOUND;

 IF loop_cnt = 0 THEN
 sql_stmt := sql_stmt || mission_id;
 ELSE
 sql_stmt := sql_stmt || ',' || mission_id;
 END IF;

 28

 loop_cnt := loop_cnt + 1;

 END LOOP;

 CLOSE rsrCursor;

 sql_stmt := sql_stmt || ')' || ' and ' ||
 '(data_timestamp>=to_timestamp(''27-FEB-06 07.34.05.123456789'', ''dd-mon-yy
hh24:mi:ss.ff'') and ' ||
 'data_timestamp<=to_timestamp(''09-MAR-06 13.00.27.123456789'', ''dd-mon-yy
hh24:mi:ss.ff'')) and ' ||
 'sdo_filter(location, SDO_geometry(' ||
 '2003,8307,NULL,' ||
 'SDO_elem_info_array(1,1003,3),' ||
 'SDO_ordinate_array(44.20,32.30, 44.30,32.365))) = ''TRUE''';

 DBMS_OUTPUT.PUT_LINE(sql_stmt);
 EXECUTE IMMEDIATE sql_stmt into rs;
 DBMS_OUTPUT.PUT_LINE(rs);

END;
/

PL/SQL Test 4:
DECLARE

mission_id rsr.mission_id%TYPE;
rsr_number rsr.rsr_number%TYPE;
sql_stmt VARCHAR2(500);
loop_cnt NUMBER;
rs NUMBER;

CURSOR rsrCursor IS
 select mission_id
 from rsr
 where
 (start_timestamp>=to_timestamp('27-FEB-06 07.34.05.123456789', 'dd-mon-yy
hh24:mi:ss.ff') and
 start_timestamp<=to_timestamp('14-MAR-06 13.00.27.123456789', 'dd-mon-yy
hh24:mi:ss.ff')) or

 29

 (end_timestamp>=to_timestamp('27-FEB-06 07.34.05.123456789', 'dd-mon-yy
hh24:mi:ss.ff') and
 end_timestamp<=to_timestamp('14-MAR-06 13.00.27.123456789', 'dd-mon-yy
hh24:mi:ss.ff')) order by mission_id;

BEGIN

 sql_stmt := 'select count(*) from dot where mission_id in (';
 loop_cnt := 0;

 OPEN rsrCursor;

 LOOP
 FETCH rsrCursor into mission_id;
 EXIT WHEN rsrCursor%NOTFOUND;

 IF loop_cnt = 0 THEN
 sql_stmt := sql_stmt || mission_id;
 ELSE
 sql_stmt := sql_stmt || ',' || mission_id;
 END IF;

 loop_cnt := loop_cnt + 1;

 END LOOP;

 CLOSE rsrCursor;

 sql_stmt := sql_stmt || ')' || ' and ' ||
 '(data_timestamp>=to_timestamp(''27-FEB-06 07.34.05.123456789'', ''dd-mon-yy
hh24:mi:ss.ff'') and ' ||
 'data_timestamp<=to_timestamp(''14-MAR-06 13.00.27.123456789'', ''dd-mon-yy
hh24:mi:ss.ff'')) and ' ||
 'sdo_filter(location, SDO_geometry(' ||
 '2003,8307,NULL,' ||
 'SDO_elem_info_array(1,1003,3),' ||
 'SDO_ordinate_array(44.20,32.30, 44.30,32.365))) = ''TRUE''';

 DBMS_OUTPUT.PUT_LINE(sql_stmt);
 EXECUTE IMMEDIATE sql_stmt into rs;
 DBMS_OUTPUT.PUT_LINE(rs);

 30

END;
/

PL/SQL Test 5:
DECLARE

mission_id rsr.mission_id%TYPE;
rsr_number rsr.rsr_number%TYPE;
sql_stmt VARCHAR2(500);
loop_cnt NUMBER;
rs NUMBER;

CURSOR rsrCursor IS
 select mission_id
 from rsr
 where
 (start_timestamp>=to_timestamp('27-FEB-06 07.34.05.123456789', 'dd-mon-yy
hh24:mi:ss.ff') and
 start_timestamp<=to_timestamp('19-MAR-06 13.00.27.123456789', 'dd-mon-yy
hh24:mi:ss.ff')) or
 (end_timestamp>=to_timestamp('27-FEB-06 07.34.05.123456789', 'dd-mon-yy
hh24:mi:ss.ff') and
 end_timestamp<=to_timestamp('19-MAR-06 13.00.27.123456789', 'dd-mon-yy
hh24:mi:ss.ff')) order by mission_id;

BEGIN

 sql_stmt := 'select count(*) from dot where mission_id in (';
 loop_cnt := 0;

 OPEN rsrCursor;

 LOOP
 FETCH rsrCursor into mission_id;
 EXIT WHEN rsrCursor%NOTFOUND;

 IF loop_cnt = 0 THEN
 sql_stmt := sql_stmt || mission_id;
 ELSE
 sql_stmt := sql_stmt || ',' || mission_id;
 END IF;

 31

 loop_cnt := loop_cnt + 1;

 END LOOP;

 CLOSE rsrCursor;

 sql_stmt := sql_stmt || ')' || ' and ' ||
 '(data_timestamp>=to_timestamp(''27-FEB-06 07.34.05.123456789'', ''dd-mon-yy
hh24:mi:ss.ff'') and ' ||
 'data_timestamp<=to_timestamp(''19-MAR-06 13.00.27.123456789'', ''dd-mon-yy
hh24:mi:ss.ff'')) and ' ||
 'sdo_filter(location, SDO_geometry(' ||
 '2003,8307,NULL,' ||
 'SDO_elem_info_array(1,1003,3),' ||
 'SDO_ordinate_array(44.20,32.30, 44.30,32.365))) = ''TRUE''';

 DBMS_OUTPUT.PUT_LINE(sql_stmt);
 EXECUTE IMMEDIATE sql_stmt into rs;
 DBMS_OUTPUT.PUT_LINE(rs);

END;
/

