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ABSTRACT 

One of the most challenging problems in dealing with IP in large FPGA and SoC de-
signs is the growing number of different interfaces required to connect components to-

gether.  Using common interfacing leads to greater productivity and lends itself to more 
automation in design and verification.  This paper demonstrates common interfacing 
techniques used on a large scale FPGA-based communications system developed at 

MITRE.   This approach can be applied to 3rd party IP as well as internally developed 
IP as it leverages the Open Core Protocol International Partnership (OCP-IP) standard 
in addition to XML-based code generation techniques. A real-world design example is 

shown to demonstrate these concepts. 

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 09-0207



SNUG 2009                                                                             2           Applied Common Interfacing Techniques using OCP 

Approved for Public Release; Distribution Unlimited Case Number: 09-0207 

 

Table of Contents 

1. Acknowledgements   ........................................................................................................................ 3

2. Introduction   .................................................................................................................................... 4

3. Component-based Design   ............................................................................................................... 4

3.1. Introduction to Component-based Design   ...................................................................................... 4

3.2. Common Interfacing   ....................................................................................................................... 4

3.3. OCP-IP   ........................................................................................................................................... 4

4. Common Interfacing Using OCP   ................................................................................................... 5

4.1. Navigating the OCP-IP Specification   ............................................................................................. 5

4.2. OCP Signals   ................................................................................................................................... 5

4.2.1. Basic Signals   ............................................................................................................................... 5

4.2.2. Basic Signal Encodings   ............................................................................................................... 5

4.2.3. Sideband Signals   ......................................................................................................................... 6

4.3. OCP Compliance   ............................................................................................................................ 6

4.4. OCP Profiles   ................................................................................................................................... 6

4.4.1. The System Profile   ...................................................................................................................... 6

4.4.2. The Memory Profile   .................................................................................................................... 7

4.4.3. The Dataflow Profile   ................................................................................................................... 8

4.4.4. Profile Choices   ............................................................................................................................ 8

4.5. VHDL Interface Definitions   ........................................................................................................... 8

4.5.1. Dataflow Source Interface   .......................................................................................................... 8

Dataflow Source Master Interface   ........................................................................................................ 8
Dataflow Source Slave Interface   ........................................................................................................... 9

4.5.2. Memory Interface   ........................................................................................................................ 9

Memory Master Interface   ...................................................................................................................... 9
Memory Slave Interface   ........................................................................................................................ 9

4.5.1. System Interface   .......................................................................................................................... 9

System Master Interface   ........................................................................................................................ 9
System Slave Interface   .......................................................................................................................... 9

5. Digging Deeper into OCP   ............................................................................................................ 10

5.1. Protocol vs. Interface   .................................................................................................................... 10

5.2. Using XML   ................................................................................................................................... 10



SNUG 2009                                                                             3           Applied Common Interfacing Techniques using OCP 

Approved for Public Release; Distribution Unlimited Case Number: 09-0207 

 

5.3. Automatic generation for synthesis and simulation   ..................................................................... 10

6. Test Waveform Description   ......................................................................................................... 12

6.1. Overview   ...................................................................................................................................... 12

6.2. Implementing a Serial Transport with OCP   ................................................................................. 13

6.3. Dataflow Using a FIFO Model   ..................................................................................................... 14

7. Conclusions   .................................................................................................................................. 16

8. References   .................................................................................................................................... 16

9. Index   ............................................................................................................................................. 16

Table of Figures 
Figure 1 System OCP Profile   ................................................................................................................... 6
Figure 2 System OCP Profile States   ......................................................................................................... 7
Figure 3 Memory OCP Profile   ................................................................................................................. 8
Figure 4 Dataflow OCP Profile   ................................................................................................................ 8
Figure 5 FPGA Partitioning   ................................................................................................................... 11
Figure 6 Components of the Test Waveform   ......................................................................................... 12
Figure 7 Subsystems of the Test Asset   ................................................................................................... 12
Figure 8 Simulation Infrastructure   ......................................................................................................... 13

Table of Tables 

Table 1 Basic OCP Interface Signals   ....................................................................................................... 5
Table 2 MCmd Signal Encoding   .............................................................................................................. 5
Table 3 SResp Signal Encodings   .............................................................................................................. 6
Table 4 Sideband OCP Interface Signals   ................................................................................................. 6

1.  Acknowledgements 
I would like to give credit to John Bradley and Karl Wagner of MITRE for their contributions to this work.  This paper 

presents their work as a foundation to work I have contributed to on the HDR-RF program.  I have referenced their pub-
lished work at the end of the paper and I highly encourage the reader to refer to these references for more perspective on 
the topic.  I would also like to thank Jose Torres for his leadership and support. 



SNUG 2009                                                                             4           Applied Common Interfacing Techniques using OCP 

Approved for Public Release; Distribution Unlimited Case Number: 09-0207 

 

2.  Introduction 
The MITRE Programmable Radio Technology (PRT) Laboratory is tasked with developing strategies for efficient reuse 

of FPGA-based software-defined radio (SDR) waveforms.  The PRT laboratory has developed a High Data Rate-Radio 
Frequency (HDR-RF) Test Waveform for the purpose of ensuring that the modem hardware platforms developed by multi-
ple contractors for the HDR-RF program have adequate computing resources to implement the operational waveform when 
it becomes available. 

One of the concepts used to aid in the rapid deployment of this system on multiple hardware platforms is the common 
interfacing approach used for component development based on a set of well-defined Open Core Protocol International 
Partnership (OCP-IP) profiles.  This paper describes this concept in detail. 

3.  Component-based Design  

3.1. Introduction to Component-based Design 
In component-based design, complex systems are broken down into simpler components.  Each component can be de-

signed in isolation and then integrated into a larger system.   The platform-specific aspects of the system such as host inter-
face and platform transport are factored out of the component design.  This distinction between communication and func-
tion is an important attribute of component-based design. The communication infrastructure connects to the components 
using OCP interfaces so porting to a new hardware platform is a matter of creating gaskets or adapters which wrap the 
platform-specific interfaces with OCP. 

3.2. Common Interfacing 
One of the most important aspects of component-based design is common interfacing.  Common interfacing allows 

components to be connected in a structured, well-defined manner which minimizes the number and types of interfaces 
supported.  This may sound restrictive, but it is not unusual to find several different types of very similar interfaces in a 
large system.  Standardizing on these interfaces makes component design and verification easier.   

For designs that use third-party or legacy IP, there is a choice to be made with respect to their interfaces.  If the set of 
common interfaces is chosen properly, then it should be fairly straightforward to create gaskets or adapters for these non-
OCP interfaces.  Adapting non-OCP interfaces to a common set of OCP interfaces is also beneficial for IP-reuse. 

3.3. OCP-IP 
The OCP specification is a standard which unambiguously defines interfaces and the associated protocol that operates 

on that interface.  For any given interface, each signal is selected from the standard and assembled into an interface defini-
tion (or profile).  The master/slave relationship is defined and the initiator/target functionality is understood because these 
are part of the specification.  In addition to the interface definition, there is the issue of compliance.  OCP compliance is a 
set of validation steps designed to make sure that the implementation meets the OCP specification such that there are no 
unintended consequences when two components are interconnected.  Guaranteeing OCP compliance can be difficult, but no 
more so than standard verification practices, and there are commercial tools which automate some compliance checking. 
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4.  Common Interfacing Using OCP 
This section provides guidance to navigating the OCP specification with some examples. 

4.1. Navigating the OCP-IP Specification 
The Release 2.2 of the Open Core Protocol specification is an arduous 340 page document, therefore, it is recommended 

that a first time user should fully understand the sections in Part I which include theory of operation, signals and encoding, 
and protocol semantics as well as some details on configuration files and timing before attempting an implementation.   
This will provide the foundation necessary to understanding the finer details of OCP covered in Part II such as profiles and 
the associated timing diagrams. 

The most important chapter in Part II is Chapter 11, OCP Profiles.  This chapter addresses the biggest benefit to the 
OCP specification.  An OCP profile eliminates any ambiguity in the interface definition and isolates the design intent from 
the implementation details.  Chapter 12 on OCP Core Performance addresses the common questions raised about shared IP. 

4.2. OCP Signals 
Part I, Chapter 3 (titled “Signals and Encoding”) of the OCP Specification is a detailed list of all the choices available 

for selecting interface signals.  All of the profiles in the following discussion are comprised of a small subset of the entire 
list of signals available in the OCP Specification.  While there are numerous features available by implementing the entire 
set of signals and capabilities (OCP Specification, Chapter 3, Tables 1-14), these features were not required for the targeted 
application, see Table 1-Table 4 below.   The first set of signals fall into the dataflow category (Table 1). These are the 
signals that do the bulk of the work in the interface.  The second set comes from the Sideband Signals section (Table 4) and 
comprise a few optional signals implementers may find useful. 

4.2.1. Basic Signals1

Signal Name 
 

Width Driver Function 
Clk 1 Varies Clock input 
MCmd 3 Master Encoding of the transaction action requested by the master 
MData Configurable Master Write Data 
MAddr Configurable Master Explicit transfer address—not used by all profiles 
SCmdAccept 1 Slave Slave accepts the transfer 
SData Configurable Slave Read Data 
SResp 2 Slave Transfer response 

Table 1 Basic OCP Interface Signals 

4.2.2. Basic Signal Encodings2

MCmd[2:0] 
 

Command Mnemonic Request Type 
0 0 0 Idle IDLE (none) 
0 0 1 Write WR Write 
0 1 0 Read RD Read 
0 1 1 ReadEx RDEX Read 
1 0 0 ReadLinked RDL Read 
1 0 1 WriteNonPost WRNP Write 
1 1 0 WriteConditional WRC Write 
1 1 1 Broadcast BCST Write 

Table 2 MCmd Signal Encoding 
 
 

                                                           

1 Timing diagrams for these signals can be found in the OCP Specification[4]. 
2 We only implemented IDLE, WR, and RD from this list. 
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SResp[1:0] Response Mnemonic 
0 0 No response NULL 
0 1 Data valid/accept DVA 
1 0 Request failed FAIL 
1 1 Response error ERR 

Table 3 SResp Signal Encodings 

4.2.3. Sideband Signals 
Signal Name Width Driver Function 
MReset_n 1 Master Master reset, active low 
SInterrupt 1 Slave Slave interrupt, typically to the system controller 
SError 1 Slave Slave error 
Status Configurable Core Core status information 

Table 4 Sideband OCP Interface Signals 

4.3. OCP Compliance 
OCP compliance is the topic of Part III of the OCP Specification.  Before an interface can be OCP compliant, its inter-

face profile must be OCP compliant.  Profile compliance is an important concept because it sets the foundation for what 
makes the interface hold together.  Compliance issues are a side effect of a specification which is highly configurable and 
some subtle nuances of the specification can be difficult to appreciate on first reading. 

Once the profile is correctly specified, the interface can be checked for compliance.  In practice most of the issues of 
compliance will come out during verification and validation of the functionality, however, compliance checking is a good 
idea if you’re going to publish or release your profile. 

4.4. OCP Profiles 
This section outlines examples of the three OCP profiles used on the HDR-RF program.  The System Profile was chosen 

to provide a generalized method for controlling and coordinating components.  The Memory Profile provides a generalized 
memory access method which can be used for simple memory-mapped control registers or connecting components to an 
external memory controller.  And finally the Dataflow Profile is used to provide a streaming-type data interface for high-
performance, low-latency, low overhead connection between components. 

4.4.1. The System Profile 
The System Profile is designed to provide the necessary control and status interface to a component.  This is a generic 

interface that allows control over the state of the component in a generalized way to handle interrupts and error status.  The 
Memory Profile, covered in the next section, is used for cases where the component requires programmable parameters 
and/or detailed status information. 

 

 

 

 

 

 

Figure 1 System OCP Profile 
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The System Profile is designed such that each system component implements the slave interface and a system controller 
implements a master interface for each instantiated component.  This is a simple point-to-point connection and requires 
very few actual wires to implement.   

 

 

 

 
 

 

 

 

 

 

The System Profile states are based on those used for the software components in the Software Communications Archi-
tecture (SCA [8]).  This association between OCP and SCA is not strictly necessary however, it proved to be useful.  The 
system controller instructs each component to transition to its next state via encodings on the mData bus and it can query 
the status by reading the state back on the sData bus.  For an embedded system with exception handling capability, the out-
of-band signals Status, sInterrupt, and sError are provided and are optional. 

A typical transaction on this interface would start with the master asserting mData and mCmd.  The slave would then as-
sert sCmdAccept, sResp, and possibly sData.  The transaction is complete as soon as the master receives sCmdAccept. 

4.4.2. The Memory Profile 
The Memory Profile provides a more full-featured interface designed to provide the signals necessary to access a com-

ponent which has some type of memory.  Both read and write accesses are provided and the memory address has its own 
signal.  The component could implement either master or slave interfaces, or both.  The memory could be internal to the 
component, external to the component, or even external to the device. 

A typical transaction on this interface starts with mCmd, mAddr, and optionally mAddrSpace, mDataInfo, and mData.  
The slave responds with sCmdAccept, sResp, and optionally sData and sDataInfo.  Note there is no out-of-band handshake 
with this profile.  Unused optional signals may be tied off. 

 

 

 

 

 

 

 

Figure 2 System OCP Profile States 
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4.4.3. The Dataflow Profile 
The Dataflow Profile is a high performance data path with minimal overhead. 

 

 

 

 

 

 

 

 

The master asserts mCmd and mData (mDataInfo is optional) and the slave throttles the transactions with sCmdAccept.  
In the case where a component has no need for flow control, its sCmdAccept may be tied high.  With this profile, there are 
only writes and no explicit address information is provided.  Typical uses for this type of interface include connecting proc-
essing components in a complex DSP pipeline.  The mCmd signal is essentially a ‘data valid’ indicator from the master. 

4.4.4. Profile Choices 
 In the HDR-RF implementation, the maximum width of MData and SData is set using the constants 

OCP_M_DATA_WIDTH and OCP_S_DATA_WIDTH , respectively (defined in a VHDL package).  A generic is used to 
define how many of these bits are valid on each MData or SData for each specific interface.  It is left up to the implementer 
to make sure these data widths are matched properly.  With this approach, the infrastructure remains agnostic to the actual 
width used so each interface is truly common.  Components are either written to adapt to the data width given or they im-
pose a constraint on the number of valid data bits.  In the latter case generic infrastructure components have been written to 
handle the resizing of the data.  Synthesis typically removes any unconnected bits so there’s no real penalty for defining an 
arbitrarily large maximum data bus width. 

4.5. VHDL Interface Definitions 

4.5.1. Dataflow Source Interface 

  type DataFlowSourceMasterInterfaceType is record 
    mCmd         : std_logic_vector( 2 downto 0 ); 
    mData        : std_logic_vector( OCP_M_DATA_WIDTH-1 downto 0 ); 

Dataflow Source Master Interface 

    mDataInfo3

    mBurstLength
    : std_logic_vector( OCP_M_DATA_INFO_WIDTH-1 downto 0 ); 

4

    mReqLast
 : std_logic_vector( OCP_BURST_LENGTH_WIDTH-1 downto 0); 

5

                                                           

3 This field is optional. 
4 This field is reserved for future use. 
5 This field is currently unused. 

     : std_logic; 
    mReset_n     : std_logic; 
  end record; 

Figure 3 Memory OCP Profile 
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Figure 4 Dataflow OCP Profile 
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  type DataFlowSourceSlaveInterfaceType is record 
    sCmdAccept   : std_logic; 
    sThreadBusy  : std_logic; 
  end record;  
 

Dataflow Source Slave Interface 

4.5.2. Memory Interface  
Memory Master Interface 

  type MemoryMasterInterfaceType is record 
    mCmd         : std_logic_vector( 2 downto 0 ); 
    mAddr        : std_logic_vector( OCP_M_ADDR_WIDTH-1 downto 0 ); 
    mAddrSpace6

    mDataInfo

   : std_logic_vector( OCP_M_ADDR_SPACE_WIDTH-1 downto 0 ); 
    mData        : std_logic_vector( OCP_M_DATA_WIDTH-1 downto 0 ); 

6    : std_logic_vector( OCP_M_DATA_INFO_WIDTH-1 downto 0 ); 
    mReset_n     : std_logic; 
  end record; 

Memory Slave Interface 
  type MemorySlaveInterfaceType is record 
    sData        : std_logic_vector( OCP_S_DATA_WIDTH-1 downto 0 ); 
    sDataInfo6    : std_logic_vector( OCP_S_DATA_INFO_WIDTH-1 downto 0 ); 
    sResp     : std_logic_vector( 1 downto 0); 
    sCmdAccept   : std_logic; 
  end record; 

4.5.1. System Interface  
System Master Interface 

  type SystemMasterInterfaceType is record 
    mCmd        : std_logic_vector( 2 downto 0); 
    mData       : std_logic_vector( OCP_SYS_DATA_WIDTH-1 downto 0); 
    mReset_n    : std_logic; 
  end record; 

System Slave Interface 
  type SystemSlaveInterfaceType is record 
    sCmdAccept   : std_logic; 
    sData        : std_logic_vector( OCP_SYS_DATA_WIDTH-1 downto 0); 
    sResp        : std_logic_vector(1 downto 0); 
    sError       : std_logic; 
    sInterrupt   : std_logic; 
    status       : std_logic_vector( OCP_SYS_STATUS_WIDTH-1 downto 0 ); 
  end record; 

                                                           

6 This field is optional 
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5.  Digging Deeper into OCP 

5.1. Protocol vs. Interface 
While OCP provides a description of each interface signal and the protocol each component must use to transfer data, it 

does not provide an interpretation for what that data means.  The OCP specification is there to provide a convenient means 
to define both the interface definition and the protocol used for communication on that interface.  The OCP specification 
does not attempt to address what meaning of the data itself.  Once the interface and protocol issues are out of the way, the 
discussion about what the component is doing can move up a level of abstraction making the design easier to understand. 

OCP is a point to point interface definition language.  OCP interfaces reduce the problem of connecting two like com-
ponents to what can be thought of as a simple function call.  The meaning of the data that goes across the interface, how-
ever, is left up to each component.  OCP does not attempt to define how the data should be interpreted by each component. 

Another aspect of the interface is performance.  In communications systems, parallelism is an important method used to 
achieve high throughput.  Properly balancing clock rate and resources to achieve the desired performance is necessary.  
Therefore, components with different levels of parallelism will likely need to be connected together.  This typically re-
quires a straightforward gasket component. 

5.2. Using XML 
Writing a large amount of code by hand is both tedious and error-prone.  Common Interfacing provides opportunities for 

automating more of the design process to reduce errors and increase productivity.  The HDR-RF program has developed a 
set of tools to automate this instantiation and interconnection process based on a convenient XML schema.  Since most of 
the designs start in MATLAB, a MATLAB script is used to generate an XML design description.  A PERL script is then 
used to generate netlists, source code, and testbenches from this XML.   The scripts are configured to interconnect either 
VHDL or SystemC models for the components in various configurations for different testing scenarios.  The SPIRIT Con-
sortium has a very similar goal with their IP-XACT specification, however, their undertaking is considerably more com-
prehensive than ours. 

5.3. Automatic generation for synthesis and simulation 
A working XML schema provides the necessary information from which netlists and environments for simulation and 

synthesis are generated.  Since modelling is such an important part of the development process, either high-level SystemC 
models or synthesizable VHDL may be included when running system simulations.  This not only provides flexibility when 
components may not have a working implementation, but it allows for architectural exploration and a speedup in large 
scale simulations by allowing the appropriate level of detail for a given simulation. 

The code generator can also construct a completely specified component declaration and instantiation template as a 
starting point for the component implementer.  Device partitioning is a simple a matter of grouping components in the GUI 
and the scripts generate the resulting netlist.  This also allows for more platform independence since the components can be 
easily rearranged for a given target platform and its associated resources. 
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Figure 5 FPGA Partitioning 
 

Figure 5 shows the tool flow from a graphical representation of the components (in this case using MATLAB).  The user 
selects the component grouping that makes sense for the target FPGAs.  From this, the component boundary for each 
FPGA is defined and an XML representation is generated by the graphical tool.  From this XML, PERL scripts parse the 
XML and produce an FPGA RTL top level design for each FPGA as well as an RTL testbench.  All of this code is easily 
generated because the interfaces are well defined.  The one piece of manual effort required at this point is to take the RTL 
top level and stitch it into the specific FPGAs chosen for the deployment.  It is possible to use templates for this part of the 
process, however, each target FPGA device needs an appropriate template created by hand. 
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6.  Test Waveform Description 

6.1. Overview 
The HDR-RF Test Waveform program at MITRE provides a working example of common interfacing in a deployed 

system.  The details of this system can be found in reference [3]; refer to this paper for more details.  Using the techniques 
outlined in this paper, the HDR-RF Test Waveform program realized the benefits of portability, reusability, and automation 
that common interfacing enabled. 

One of the platforms chosen to host the HDR-RF Test Waveform consists of 15 user-programmable FPGAs on multiple 
cards in a commercial 6U VME chassis.  This system isn’t necessarily similar to the platform on which the final waveform 
will be deployed, so portability is very important.  Furthermore, managing this many designs is very cumbersome in a tradi-
tional FPGA design flow.  The following diagram shows the components needed in the test waveform. 

 

Figure 6 Components of the Test Waveform 
 

The entire test asset that makes up the test waveform is shown below.  This is a block diagram of the system that shows 
the FPGAs in context. 

 

Figure 7 Subsystems of the Test Asset 
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The simulation infrastructure used to support development of this system is shown in the next figure. 

 

 

 

 

 

 

 

Figure 8 shows only two FPGAs, however, the deployed system supports simulating all 12 of the main FPGAs in a simi-
lar fashion.  Note the remaining 3 FPGAs are on the transceiver board.   The FPGAs in this application use serial meshes 
for chip-to-chip communication.  The on-board connections consist of multiple copper links while the board-to-board in-
terconnect uses multiple fibre-optic connections.  These interconnects are not shown in the component diagram (Figure 
6) because they are platform-specific and are dependent on the specific deployment.  They are, however, an important 
part of the system.  Once the waveform has been partitioned into multiple FPGAs, these transport components are 
added.  The next section takes a look at this platform-specific transport as an example of using OCP to seamlessly insert 
chip-to-chip communications without altering the waveform’s function. 

6.2. Implementing a Serial Transport with OCP 
As mentioned earlier, the HDR-RF waveform uses a Dataflow OCP Profile to move data between components.  If we 

need to break a connection between two components to partition the design into multiple FPGAs, then it makes sense to use 
the Dataflow OCP Profile so the transport can be simply dropped in. 

In this case, we chose to use the Xilinx Aurora IP for this chip-to-chip interconnect because it handles multiple channel 
bonding, very low overhead on top of its native 8b/10b encoding, has provisions for flow control, and its available for the 
devices on the platform.  The Xilinx Aurora IP does not, however, have a native OCP interface7

The Xilinx CORE Generator code generator for Aurora creates one specific instance of the hundreds of configuration 
combinations available.  Their code generator does not create a parameterized block.  If you’re trying to support a handful 
of different Aurora configurations you have to run the generator multiple times and manage all of the generated code.    To 
solve this problem a code generator was written (in Python) which takes a subset of Aurora configurations needed to sup-
port a given deployment platform and runs Xilinx CORE Generator for you to create the necessary files, wraps these files 
in a VHDL module and dumps the code into a directory where the implementation tools can compile and link the design.  
This Python program also implements some workarounds for problems in Xilinx’s generated code which doesn’t compile 
properly in some cases.  What the Python program does and how it does it is a topic for another paper.  The script has been 
used to generate working Aurora cores for both Virtex-2 Pro and Virtex-5 devices.  And the nice thing about this approach 

. 

The Xilinx Aurora interfaces uses something they call Local-Link which is a fairly straightforward parallel connection 
to the Aurora IP and it maps very easily into the Dataflow OCP Profile outlined above.  Like most IP, Aurora has some 
control and status registers that the user might want access to.  For this, we implemented a Memory interface and a System 
interface for control.  

                                                           

7 It is the author’s hope that IP vendors will see the benefits to using OCP and widely adopt it in the 
industry. 

Figure 8 Simulation Infrastructure 
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is that we can move the IP from one platform to another and the waveform code doesn’t change because the interfaces are 
the same for each platform. 

6.3. Dataflow Using a FIFO Model 
The easiest way to treat the Aurora core is using a FIFO model.  On the transmit side data a master pushes into a FIFO 

and the Aurora core sends over the link.  When the FIFO can no longer accept data, the slave asserts flow control and the 
upstream components have to handle the backpressure.  On the receive side, the Aurora core takes its received data from 
the link and pushes it into a FIFO where the receive master attempts to send it to its connected slave.  If the downstream 
components assert flow control, then the receive FIFO will back up until it has to assert flow control over the link to back-
pressure its corresponding transmitter.  All of this flow control is handled by the Aurora core when it is configured for full-
duplex operation.  Things get a bit trickier when the Aurora doesn’t have a full-duplex link.  This is yet another detail not 
presented in this paper. 

The transmit FIFO has a very simple interface which is synchronous to its input side: 

tx_fifo_data: Parallel data to be transmitted by the Aurora core 
         (connected directly to the TX FIFO input) 
tx_fifo_rfd:  Transmit FIFO is ready for more data 
tx_fifo_nd:   Tells the FIFO that new data is present on tx_fifo_data  

 

This is the combinatorial logic needed to connect the FIFO to the Transmit Dataflow OCP Slave Interface: 

in_proc : process(tx_fifo_rfd, dfTxMasterIn) 
  begin 
    if (tx_fifo_rfd = '1'  

and to_integer(unsigned(dfTxMasterIn.mCmd)) = OCP_CMD_WRITE) then 
      tx_fifo_nd                      <= '1'; 
      dfTxSlaveOut.sCmdAccept         <= '1'; 
      dfTxSlaveOut.sThreadBusy        <= '0'; 
    else 
      tx_fifo_nd                      <= '0'; 
      dfTxSlaveOut.sCmdAccept         <= '0'; 
      dfTxSlaveOut.sThreadBusy        <= '1'; 
    end if; 
  end process in_proc; 
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The receive FIFO has a similarly simple interface which is synchronous to its output side: 

rx_fifo_data: Parallel data received by the Aurora core 
        (connected directly to the RX FIFO output) 
rx_fifo_rdy:  Receive FIFO has data 
rx_fifo_ack:  Tells the RX FIFO to pop the head of the FIFO 

 

This is the combinatorial logic needed to connect the FIFO to the Receive Dataflow OCP Master Interface: 

out_proc : process(dfRxSlaveIn, rx_fifo_rdy) 
  begin 
    if (dfRxSlaveIn.sCmdAccept = '1') 

   and (rx_fifo_rdy = '1') 
   and (dfRxSlaveIn.sThreadBusy = '0') then 

      rx_fifo_ack <= '1'; 
    else 
      rx_fifo_ack <= '0'; 
    end if; 
 
 
    if (rx_fifo_rdy = '1') then 
      mCmd        <= std_logic_vector(to_unsigned(OCP_CMD_WRITE, mCmd'length)); 
    else 
      mCmd        <= std_logic_vector(to_unsigned(OCP_CMD_IDLE, mCmd'length)); 
    end if; 
  end process out_proc; 

 

Notice that these processes are combinatorial.  This was a conscious decision made to keep the complexity of the inter-
face down and reduce latency.  The data is registered at the FIFO boundary so all we are doing here is adding about one 
LUT worth of logic to the control signals.  This is one of those design choices you make when creating your OCP profiles.  
In practice this has worked well and does not create problems with timing closure.  It is fairly trivial to add a pipelined 
repeater component into the dataflow stream to increase throughput on large designs where components cannot be placed 
adjacent to one another. 
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7. Conclusions 
Common interfacing is a technique essential for rapid prototyping but it applies equally well as a disciplined approach to 

system design.  The OCP-IP Specification provides the necessary set of common definitions needed to unambiguously 
define any interface and gives the designer flexibility to accommodate a software and hardware protocol on top of that 
interface.  This paper has shown a working example of these concepts on a multiple-FPGA implementation of a complex 
HDR-RF Test Waveform.  Furthermore, a method for using XML as a tool for automating the synthesis and simulation 
environments needed to successfully deploy the system demonstrates the versatility of this approach. 
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