
Approved for Public Release; Distribution Unlimited Case Number: 09-0207

Applied Common Interfacing Techniques using OCP

Erich C. Whitney

The MITRE Corporation
Bedford, MA, USA

www.mitre.org

ABSTRACT

One of the most challenging problems in dealing with IP in large FPGA and SoC de-
signs is the growing number of different interfaces required to connect components to-

gether. Using common interfacing leads to greater productivity and lends itself to more
automation in design and verification. This paper demonstrates common interfacing
techniques used on a large scale FPGA-based communications system developed at

MITRE. This approach can be applied to 3rd party IP as well as internally developed
IP as it leverages the Open Core Protocol International Partnership (OCP-IP) standard
in addition to XML-based code generation techniques. A real-world design example is

shown to demonstrate these concepts.

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 09-0207

SNUG 2009 2 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

Table of Contents

1. Acknowledgements .. 3

2. Introduction .. 4

3. Component-based Design ... 4

3.1. Introduction to Component-based Design .. 4

3.2. Common Interfacing ... 4

3.3. OCP-IP ... 4

4. Common Interfacing Using OCP ... 5

4.1. Navigating the OCP-IP Specification ... 5

4.2. OCP Signals ... 5

4.2.1. Basic Signals ... 5

4.2.2. Basic Signal Encodings ... 5

4.2.3. Sideband Signals ... 6

4.3. OCP Compliance .. 6

4.4. OCP Profiles ... 6

4.4.1. The System Profile .. 6

4.4.2. The Memory Profile .. 7

4.4.3. The Dataflow Profile ... 8

4.4.4. Profile Choices .. 8

4.5. VHDL Interface Definitions ... 8

4.5.1. Dataflow Source Interface .. 8

Dataflow Source Master Interface .. 8
Dataflow Source Slave Interface ... 9

4.5.2. Memory Interface .. 9

Memory Master Interface .. 9
Memory Slave Interface .. 9

4.5.1. System Interface .. 9

System Master Interface .. 9
System Slave Interface .. 9

5. Digging Deeper into OCP .. 10

5.1. Protocol vs. Interface .. 10

5.2. Using XML ... 10

SNUG 2009 3 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

5.3. Automatic generation for synthesis and simulation ... 10

6. Test Waveform Description ... 12

6.1. Overview .. 12

6.2. Implementing a Serial Transport with OCP ... 13

6.3. Dataflow Using a FIFO Model ... 14

7. Conclusions .. 16

8. References .. 16

9. Index ... 16

Table of Figures
Figure 1 System OCP Profile ... 6
Figure 2 System OCP Profile States ... 7
Figure 3 Memory OCP Profile ... 8
Figure 4 Dataflow OCP Profile .. 8
Figure 5 FPGA Partitioning ... 11
Figure 6 Components of the Test Waveform ... 12
Figure 7 Subsystems of the Test Asset ... 12
Figure 8 Simulation Infrastructure ... 13

Table of Tables

Table 1 Basic OCP Interface Signals ... 5
Table 2 MCmd Signal Encoding .. 5
Table 3 SResp Signal Encodings .. 6
Table 4 Sideband OCP Interface Signals ... 6

1. Acknowledgements
I would like to give credit to John Bradley and Karl Wagner of MITRE for their contributions to this work. This paper

presents their work as a foundation to work I have contributed to on the HDR-RF program. I have referenced their pub-
lished work at the end of the paper and I highly encourage the reader to refer to these references for more perspective on
the topic. I would also like to thank Jose Torres for his leadership and support.

SNUG 2009 4 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

2. Introduction
The MITRE Programmable Radio Technology (PRT) Laboratory is tasked with developing strategies for efficient reuse

of FPGA-based software-defined radio (SDR) waveforms. The PRT laboratory has developed a High Data Rate-Radio
Frequency (HDR-RF) Test Waveform for the purpose of ensuring that the modem hardware platforms developed by multi-
ple contractors for the HDR-RF program have adequate computing resources to implement the operational waveform when
it becomes available.

One of the concepts used to aid in the rapid deployment of this system on multiple hardware platforms is the common
interfacing approach used for component development based on a set of well-defined Open Core Protocol International
Partnership (OCP-IP) profiles. This paper describes this concept in detail.

3. Component-based Design

3.1. Introduction to Component-based Design
In component-based design, complex systems are broken down into simpler components. Each component can be de-

signed in isolation and then integrated into a larger system. The platform-specific aspects of the system such as host inter-
face and platform transport are factored out of the component design. This distinction between communication and func-
tion is an important attribute of component-based design. The communication infrastructure connects to the components
using OCP interfaces so porting to a new hardware platform is a matter of creating gaskets or adapters which wrap the
platform-specific interfaces with OCP.

3.2. Common Interfacing
One of the most important aspects of component-based design is common interfacing. Common interfacing allows

components to be connected in a structured, well-defined manner which minimizes the number and types of interfaces
supported. This may sound restrictive, but it is not unusual to find several different types of very similar interfaces in a
large system. Standardizing on these interfaces makes component design and verification easier.

For designs that use third-party or legacy IP, there is a choice to be made with respect to their interfaces. If the set of
common interfaces is chosen properly, then it should be fairly straightforward to create gaskets or adapters for these non-
OCP interfaces. Adapting non-OCP interfaces to a common set of OCP interfaces is also beneficial for IP-reuse.

3.3. OCP-IP
The OCP specification is a standard which unambiguously defines interfaces and the associated protocol that operates

on that interface. For any given interface, each signal is selected from the standard and assembled into an interface defini-
tion (or profile). The master/slave relationship is defined and the initiator/target functionality is understood because these
are part of the specification. In addition to the interface definition, there is the issue of compliance. OCP compliance is a
set of validation steps designed to make sure that the implementation meets the OCP specification such that there are no
unintended consequences when two components are interconnected. Guaranteeing OCP compliance can be difficult, but no
more so than standard verification practices, and there are commercial tools which automate some compliance checking.

SNUG 2009 5 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

4. Common Interfacing Using OCP
This section provides guidance to navigating the OCP specification with some examples.

4.1. Navigating the OCP-IP Specification
The Release 2.2 of the Open Core Protocol specification is an arduous 340 page document, therefore, it is recommended

that a first time user should fully understand the sections in Part I which include theory of operation, signals and encoding,
and protocol semantics as well as some details on configuration files and timing before attempting an implementation.
This will provide the foundation necessary to understanding the finer details of OCP covered in Part II such as profiles and
the associated timing diagrams.

The most important chapter in Part II is Chapter 11, OCP Profiles. This chapter addresses the biggest benefit to the
OCP specification. An OCP profile eliminates any ambiguity in the interface definition and isolates the design intent from
the implementation details. Chapter 12 on OCP Core Performance addresses the common questions raised about shared IP.

4.2. OCP Signals
Part I, Chapter 3 (titled “Signals and Encoding”) of the OCP Specification is a detailed list of all the choices available

for selecting interface signals. All of the profiles in the following discussion are comprised of a small subset of the entire
list of signals available in the OCP Specification. While there are numerous features available by implementing the entire
set of signals and capabilities (OCP Specification, Chapter 3, Tables 1-14), these features were not required for the targeted
application, see Table 1-Table 4 below. The first set of signals fall into the dataflow category (Table 1). These are the
signals that do the bulk of the work in the interface. The second set comes from the Sideband Signals section (Table 4) and
comprise a few optional signals implementers may find useful.

4.2.1. Basic Signals1

Signal Name

Width Driver Function
Clk 1 Varies Clock input
MCmd 3 Master Encoding of the transaction action requested by the master
MData Configurable Master Write Data
MAddr Configurable Master Explicit transfer address—not used by all profiles
SCmdAccept 1 Slave Slave accepts the transfer
SData Configurable Slave Read Data
SResp 2 Slave Transfer response

Table 1 Basic OCP Interface Signals

4.2.2. Basic Signal Encodings2

MCmd[2:0]

Command Mnemonic Request Type
0 0 0 Idle IDLE (none)
0 0 1 Write WR Write
0 1 0 Read RD Read
0 1 1 ReadEx RDEX Read
1 0 0 ReadLinked RDL Read
1 0 1 WriteNonPost WRNP Write
1 1 0 WriteConditional WRC Write
1 1 1 Broadcast BCST Write

Table 2 MCmd Signal Encoding

1 Timing diagrams for these signals can be found in the OCP Specification[4].
2 We only implemented IDLE, WR, and RD from this list.

SNUG 2009 6 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

Slave

Master

m
R

es
et

_n

m
D

at
a

m
C

m
d

C
lk

sC
m

dA
cc

ep
t

sD
at

a

sR
es

p

sE
rr

or

sI
nt

er
ru

pt

St
at

us

SResp[1:0] Response Mnemonic
0 0 No response NULL
0 1 Data valid/accept DVA
1 0 Request failed FAIL
1 1 Response error ERR

Table 3 SResp Signal Encodings

4.2.3. Sideband Signals
Signal Name Width Driver Function
MReset_n 1 Master Master reset, active low
SInterrupt 1 Slave Slave interrupt, typically to the system controller
SError 1 Slave Slave error
Status Configurable Core Core status information

Table 4 Sideband OCP Interface Signals

4.3. OCP Compliance
OCP compliance is the topic of Part III of the OCP Specification. Before an interface can be OCP compliant, its inter-

face profile must be OCP compliant. Profile compliance is an important concept because it sets the foundation for what
makes the interface hold together. Compliance issues are a side effect of a specification which is highly configurable and
some subtle nuances of the specification can be difficult to appreciate on first reading.

Once the profile is correctly specified, the interface can be checked for compliance. In practice most of the issues of
compliance will come out during verification and validation of the functionality, however, compliance checking is a good
idea if you’re going to publish or release your profile.

4.4. OCP Profiles
This section outlines examples of the three OCP profiles used on the HDR-RF program. The System Profile was chosen

to provide a generalized method for controlling and coordinating components. The Memory Profile provides a generalized
memory access method which can be used for simple memory-mapped control registers or connecting components to an
external memory controller. And finally the Dataflow Profile is used to provide a streaming-type data interface for high-
performance, low-latency, low overhead connection between components.

4.4.1. The System Profile
The System Profile is designed to provide the necessary control and status interface to a component. This is a generic

interface that allows control over the state of the component in a generalized way to handle interrupts and error status. The
Memory Profile, covered in the next section, is used for cases where the component requires programmable parameters
and/or detailed status information.

Figure 1 System OCP Profile

SNUG 2009 7 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

The System Profile is designed such that each system component implements the slave interface and a system controller
implements a master interface for each instantiated component. This is a simple point-to-point connection and requires
very few actual wires to implement.

The System Profile states are based on those used for the software components in the Software Communications Archi-
tecture (SCA [8]). This association between OCP and SCA is not strictly necessary however, it proved to be useful. The
system controller instructs each component to transition to its next state via encodings on the mData bus and it can query
the status by reading the state back on the sData bus. For an embedded system with exception handling capability, the out-
of-band signals Status, sInterrupt, and sError are provided and are optional.

A typical transaction on this interface would start with the master asserting mData and mCmd. The slave would then as-
sert sCmdAccept, sResp, and possibly sData. The transaction is complete as soon as the master receives sCmdAccept.

4.4.2. The Memory Profile
The Memory Profile provides a more full-featured interface designed to provide the signals necessary to access a com-

ponent which has some type of memory. Both read and write accesses are provided and the memory address has its own
signal. The component could implement either master or slave interfaces, or both. The memory could be internal to the
component, external to the component, or even external to the device.

A typical transaction on this interface starts with mCmd, mAddr, and optionally mAddrSpace, mDataInfo, and mData.
The slave responds with sCmdAccept, sResp, and optionally sData and sDataInfo. Note there is no out-of-band handshake
with this profile. Unused optional signals may be tied off.

Figure 2 System OCP Profile States

Slave

Master

m
C

m
d

C
lk

sC
m

dA
cc

ep
t

sD
at

a

m
A

dd
r

m
D

at
aI

nf
o

m
A

dd
rS

pa
c

e m
D

at
a

sD
at

aI
nf

o

sR
es

p

m
R

es
et

_n

release

release

release

 start start stop

 test initialize

Inactive

Test

Configure

Active

release

stop,
initialize

start

SNUG 2009 8 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

4.4.3. The Dataflow Profile
The Dataflow Profile is a high performance data path with minimal overhead.

The master asserts mCmd and mData (mDataInfo is optional) and the slave throttles the transactions with sCmdAccept.
In the case where a component has no need for flow control, its sCmdAccept may be tied high. With this profile, there are
only writes and no explicit address information is provided. Typical uses for this type of interface include connecting proc-
essing components in a complex DSP pipeline. The mCmd signal is essentially a ‘data valid’ indicator from the master.

4.4.4. Profile Choices
 In the HDR-RF implementation, the maximum width of MData and SData is set using the constants

OCP_M_DATA_WIDTH and OCP_S_DATA_WIDTH , respectively (defined in a VHDL package). A generic is used to
define how many of these bits are valid on each MData or SData for each specific interface. It is left up to the implementer
to make sure these data widths are matched properly. With this approach, the infrastructure remains agnostic to the actual
width used so each interface is truly common. Components are either written to adapt to the data width given or they im-
pose a constraint on the number of valid data bits. In the latter case generic infrastructure components have been written to
handle the resizing of the data. Synthesis typically removes any unconnected bits so there’s no real penalty for defining an
arbitrarily large maximum data bus width.

4.5. VHDL Interface Definitions

4.5.1. Dataflow Source Interface

 type DataFlowSourceMasterInterfaceType is record
 mCmd : std_logic_vector(2 downto 0);
 mData : std_logic_vector(OCP_M_DATA_WIDTH-1 downto 0);

Dataflow Source Master Interface

 mDataInfo3

 mBurstLength
 : std_logic_vector(OCP_M_DATA_INFO_WIDTH-1 downto 0);

4

 mReqLast
 : std_logic_vector(OCP_BURST_LENGTH_WIDTH-1 downto 0);

5

3 This field is optional.
4 This field is reserved for future use.
5 This field is currently unused.

 : std_logic;
 mReset_n : std_logic;
 end record;

Figure 3 Memory OCP Profile

Slave

Master

m
R

es
et

_n

m
C

m
d

(W
rit

e)

C
lk

sC
m

dA
cc

ep
t

m
D

at
a

m
D

at
aI

nf
o

Figure 4 Dataflow OCP Profile

SNUG 2009 9 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

 type DataFlowSourceSlaveInterfaceType is record
 sCmdAccept : std_logic;
 sThreadBusy : std_logic;
 end record;

Dataflow Source Slave Interface

4.5.2. Memory Interface
Memory Master Interface

 type MemoryMasterInterfaceType is record
 mCmd : std_logic_vector(2 downto 0);
 mAddr : std_logic_vector(OCP_M_ADDR_WIDTH-1 downto 0);
 mAddrSpace6

 mDataInfo

 : std_logic_vector(OCP_M_ADDR_SPACE_WIDTH-1 downto 0);
 mData : std_logic_vector(OCP_M_DATA_WIDTH-1 downto 0);

6 : std_logic_vector(OCP_M_DATA_INFO_WIDTH-1 downto 0);
 mReset_n : std_logic;
 end record;

Memory Slave Interface
 type MemorySlaveInterfaceType is record
 sData : std_logic_vector(OCP_S_DATA_WIDTH-1 downto 0);
 sDataInfo6 : std_logic_vector(OCP_S_DATA_INFO_WIDTH-1 downto 0);
 sResp : std_logic_vector(1 downto 0);
 sCmdAccept : std_logic;
 end record;

4.5.1. System Interface
System Master Interface

 type SystemMasterInterfaceType is record
 mCmd : std_logic_vector(2 downto 0);
 mData : std_logic_vector(OCP_SYS_DATA_WIDTH-1 downto 0);
 mReset_n : std_logic;
 end record;

System Slave Interface
 type SystemSlaveInterfaceType is record
 sCmdAccept : std_logic;
 sData : std_logic_vector(OCP_SYS_DATA_WIDTH-1 downto 0);
 sResp : std_logic_vector(1 downto 0);
 sError : std_logic;
 sInterrupt : std_logic;
 status : std_logic_vector(OCP_SYS_STATUS_WIDTH-1 downto 0);
 end record;

6 This field is optional

SNUG 2009 10 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

5. Digging Deeper into OCP

5.1. Protocol vs. Interface
While OCP provides a description of each interface signal and the protocol each component must use to transfer data, it

does not provide an interpretation for what that data means. The OCP specification is there to provide a convenient means
to define both the interface definition and the protocol used for communication on that interface. The OCP specification
does not attempt to address what meaning of the data itself. Once the interface and protocol issues are out of the way, the
discussion about what the component is doing can move up a level of abstraction making the design easier to understand.

OCP is a point to point interface definition language. OCP interfaces reduce the problem of connecting two like com-
ponents to what can be thought of as a simple function call. The meaning of the data that goes across the interface, how-
ever, is left up to each component. OCP does not attempt to define how the data should be interpreted by each component.

Another aspect of the interface is performance. In communications systems, parallelism is an important method used to
achieve high throughput. Properly balancing clock rate and resources to achieve the desired performance is necessary.
Therefore, components with different levels of parallelism will likely need to be connected together. This typically re-
quires a straightforward gasket component.

5.2. Using XML
Writing a large amount of code by hand is both tedious and error-prone. Common Interfacing provides opportunities for

automating more of the design process to reduce errors and increase productivity. The HDR-RF program has developed a
set of tools to automate this instantiation and interconnection process based on a convenient XML schema. Since most of
the designs start in MATLAB, a MATLAB script is used to generate an XML design description. A PERL script is then
used to generate netlists, source code, and testbenches from this XML. The scripts are configured to interconnect either
VHDL or SystemC models for the components in various configurations for different testing scenarios. The SPIRIT Con-
sortium has a very similar goal with their IP-XACT specification, however, their undertaking is considerably more com-
prehensive than ours.

5.3. Automatic generation for synthesis and simulation
A working XML schema provides the necessary information from which netlists and environments for simulation and

synthesis are generated. Since modelling is such an important part of the development process, either high-level SystemC
models or synthesizable VHDL may be included when running system simulations. This not only provides flexibility when
components may not have a working implementation, but it allows for architectural exploration and a speedup in large
scale simulations by allowing the appropriate level of detail for a given simulation.

The code generator can also construct a completely specified component declaration and instantiation template as a
starting point for the component implementer. Device partitioning is a simple a matter of grouping components in the GUI
and the scripts generate the resulting netlist. This also allows for more platform independence since the components can be
easily rearranged for a given target platform and its associated resources.

SNUG 2009 11 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

Figure 5 FPGA Partitioning

Figure 5 shows the tool flow from a graphical representation of the components (in this case using MATLAB). The user
selects the component grouping that makes sense for the target FPGAs. From this, the component boundary for each
FPGA is defined and an XML representation is generated by the graphical tool. From this XML, PERL scripts parse the
XML and produce an FPGA RTL top level design for each FPGA as well as an RTL testbench. All of this code is easily
generated because the interfaces are well defined. The one piece of manual effort required at this point is to take the RTL
top level and stitch it into the specific FPGAs chosen for the deployment. It is possible to use templates for this part of the
process, however, each target FPGA device needs an appropriate template created by hand.

SNUG 2009 12 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

6. Test Waveform Description

6.1. Overview
The HDR-RF Test Waveform program at MITRE provides a working example of common interfacing in a deployed

system. The details of this system can be found in reference [3]; refer to this paper for more details. Using the techniques
outlined in this paper, the HDR-RF Test Waveform program realized the benefits of portability, reusability, and automation
that common interfacing enabled.

One of the platforms chosen to host the HDR-RF Test Waveform consists of 15 user-programmable FPGAs on multiple
cards in a commercial 6U VME chassis. This system isn’t necessarily similar to the platform on which the final waveform
will be deployed, so portability is very important. Furthermore, managing this many designs is very cumbersome in a tradi-
tional FPGA design flow. The following diagram shows the components needed in the test waveform.

Figure 6 Components of the Test Waveform

The entire test asset that makes up the test waveform is shown below. This is a block diagram of the system that shows
the FPGAs in context.

Figure 7 Subsystems of the Test Asset

SNUG 2009 13 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

The simulation infrastructure used to support development of this system is shown in the next figure.

Figure 8 shows only two FPGAs, however, the deployed system supports simulating all 12 of the main FPGAs in a simi-
lar fashion. Note the remaining 3 FPGAs are on the transceiver board. The FPGAs in this application use serial meshes
for chip-to-chip communication. The on-board connections consist of multiple copper links while the board-to-board in-
terconnect uses multiple fibre-optic connections. These interconnects are not shown in the component diagram (Figure
6) because they are platform-specific and are dependent on the specific deployment. They are, however, an important
part of the system. Once the waveform has been partitioned into multiple FPGAs, these transport components are
added. The next section takes a look at this platform-specific transport as an example of using OCP to seamlessly insert
chip-to-chip communications without altering the waveform’s function.

6.2. Implementing a Serial Transport with OCP
As mentioned earlier, the HDR-RF waveform uses a Dataflow OCP Profile to move data between components. If we

need to break a connection between two components to partition the design into multiple FPGAs, then it makes sense to use
the Dataflow OCP Profile so the transport can be simply dropped in.

In this case, we chose to use the Xilinx Aurora IP for this chip-to-chip interconnect because it handles multiple channel
bonding, very low overhead on top of its native 8b/10b encoding, has provisions for flow control, and its available for the
devices on the platform. The Xilinx Aurora IP does not, however, have a native OCP interface7

The Xilinx CORE Generator code generator for Aurora creates one specific instance of the hundreds of configuration
combinations available. Their code generator does not create a parameterized block. If you’re trying to support a handful
of different Aurora configurations you have to run the generator multiple times and manage all of the generated code. To
solve this problem a code generator was written (in Python) which takes a subset of Aurora configurations needed to sup-
port a given deployment platform and runs Xilinx CORE Generator for you to create the necessary files, wraps these files
in a VHDL module and dumps the code into a directory where the implementation tools can compile and link the design.
This Python program also implements some workarounds for problems in Xilinx’s generated code which doesn’t compile
properly in some cases. What the Python program does and how it does it is a topic for another paper. The script has been
used to generate working Aurora cores for both Virtex-2 Pro and Virtex-5 devices. And the nice thing about this approach

.

The Xilinx Aurora interfaces uses something they call Local-Link which is a fairly straightforward parallel connection
to the Aurora IP and it maps very easily into the Dataflow OCP Profile outlined above. Like most IP, Aurora has some
control and status registers that the user might want access to. For this, we implemented a Memory interface and a System
interface for control.

7 It is the author’s hope that IP vendors will see the benefits to using OCP and widely adopt it in the
industry.

Figure 8 Simulation Infrastructure

SNUG 2009 14 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

is that we can move the IP from one platform to another and the waveform code doesn’t change because the interfaces are
the same for each platform.

6.3. Dataflow Using a FIFO Model
The easiest way to treat the Aurora core is using a FIFO model. On the transmit side data a master pushes into a FIFO

and the Aurora core sends over the link. When the FIFO can no longer accept data, the slave asserts flow control and the
upstream components have to handle the backpressure. On the receive side, the Aurora core takes its received data from
the link and pushes it into a FIFO where the receive master attempts to send it to its connected slave. If the downstream
components assert flow control, then the receive FIFO will back up until it has to assert flow control over the link to back-
pressure its corresponding transmitter. All of this flow control is handled by the Aurora core when it is configured for full-
duplex operation. Things get a bit trickier when the Aurora doesn’t have a full-duplex link. This is yet another detail not
presented in this paper.

The transmit FIFO has a very simple interface which is synchronous to its input side:

tx_fifo_data: Parallel data to be transmitted by the Aurora core
 (connected directly to the TX FIFO input)
tx_fifo_rfd: Transmit FIFO is ready for more data
tx_fifo_nd: Tells the FIFO that new data is present on tx_fifo_data

This is the combinatorial logic needed to connect the FIFO to the Transmit Dataflow OCP Slave Interface:

in_proc : process(tx_fifo_rfd, dfTxMasterIn)
 begin
 if (tx_fifo_rfd = '1'

and to_integer(unsigned(dfTxMasterIn.mCmd)) = OCP_CMD_WRITE) then
 tx_fifo_nd <= '1';
 dfTxSlaveOut.sCmdAccept <= '1';
 dfTxSlaveOut.sThreadBusy <= '0';
 else
 tx_fifo_nd <= '0';
 dfTxSlaveOut.sCmdAccept <= '0';
 dfTxSlaveOut.sThreadBusy <= '1';
 end if;
 end process in_proc;

SNUG 2009 15 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

The receive FIFO has a similarly simple interface which is synchronous to its output side:

rx_fifo_data: Parallel data received by the Aurora core
 (connected directly to the RX FIFO output)
rx_fifo_rdy: Receive FIFO has data
rx_fifo_ack: Tells the RX FIFO to pop the head of the FIFO

This is the combinatorial logic needed to connect the FIFO to the Receive Dataflow OCP Master Interface:

out_proc : process(dfRxSlaveIn, rx_fifo_rdy)
 begin
 if (dfRxSlaveIn.sCmdAccept = '1')

 and (rx_fifo_rdy = '1')
 and (dfRxSlaveIn.sThreadBusy = '0') then

 rx_fifo_ack <= '1';
 else
 rx_fifo_ack <= '0';
 end if;

 if (rx_fifo_rdy = '1') then
 mCmd <= std_logic_vector(to_unsigned(OCP_CMD_WRITE, mCmd'length));
 else
 mCmd <= std_logic_vector(to_unsigned(OCP_CMD_IDLE, mCmd'length));
 end if;
 end process out_proc;

Notice that these processes are combinatorial. This was a conscious decision made to keep the complexity of the inter-
face down and reduce latency. The data is registered at the FIFO boundary so all we are doing here is adding about one
LUT worth of logic to the control signals. This is one of those design choices you make when creating your OCP profiles.
In practice this has worked well and does not create problems with timing closure. It is fairly trivial to add a pipelined
repeater component into the dataflow stream to increase throughput on large designs where components cannot be placed
adjacent to one another.

SNUG 2009 16 Applied Common Interfacing Techniques using OCP

Approved for Public Release; Distribution Unlimited Case Number: 09-0207

7. Conclusions
Common interfacing is a technique essential for rapid prototyping but it applies equally well as a disciplined approach to

system design. The OCP-IP Specification provides the necessary set of common definitions needed to unambiguously
define any interface and gives the designer flexibility to accommodate a software and hardware protocol on top of that
interface. This paper has shown a working example of these concepts on a multiple-FPGA implementation of a complex
HDR-RF Test Waveform. Furthermore, a method for using XML as a tool for automating the synthesis and simulation
environments needed to successfully deploy the system demonstrates the versatility of this approach.

8. References
[1] J. Bradley, K. Wagner, “Automating FPGA-Based System Implementation with Common Interfac-

ing,” SDR Forum Technical Conference, 2008.
[2] K. Skey, J. Bradley, and K. Wagner, “A Reuse Approach for FPGA-Based SDR Waveforms,”

MILCOM 2006, October 2006.
[3] J. Torres, “The HDR-RF Test Waveform – An Innovative Risk Reduction Product for FPGA-

Based SATCOM Modems”, MILCOM 2008, November 2008.
[4] Open Core Protocol Specification, Release 2.2, OCP International Partnership,

http://www.ocpip.org, January 2007.
[5] IP-XACT v1.4: A Specification for XML Meta-data and Tool Interfaces, The SPIRIT Consortium,

http://www.spiritconsortium.org, March 2008.
[6] LogiCORE IP Aurora v2.9, UG061 (v2.9), Xilinx, http://www.xilinx.com, March 2008.
[7] Virtex-5 LogiCORE Aurora v2.9 User Guide, UG353 (v2.9), Xilinx, http://www.xilinx.com,

March 2008.
[8] Software Communications Architecture, http://sca.jpeojtrs.mil

9. Index
Dataflow Profile ... 8

HDR-RF ... 4

Memory Profile .. 7

OCP-IP ... 4

PRT ... 4

SDR ... 4

System Profile ... 6

XML ... 10

http://www.ocpip.org/�
http://www.spiritconsortium.org/�
http://www.xilinx.com/aurora�
http://www.xilinx.com/aurora�
http://sca.jpeojtrs.mil/�

	Acknowledgements
	Introduction
	Component-based Design
	Introduction to Component-based Design
	Common Interfacing
	OCP-IP
	Common Interfacing Using OCP
	Navigating the OCP-IP Specification
	OCP Signals
	Basic Signals0F
	Basic Signal Encodings1F
	Sideband Signals
	OCP Compliance
	OCP Profiles
	The System Profile
	The Memory Profile
	The Dataflow Profile
	Profile Choices
	VHDL Interface Definitions
	Dataflow Source Interface
	1TDataflow Source Master Interface
	1TDataflow Source Slave Interface

	Memory Interface
	Memory Master Interface
	Memory Slave Interface

	System Interface
	System Master Interface
	System Slave Interface

	Digging Deeper into OCP
	Protocol vs. Interface
	Using XML
	Automatic generation for synthesis and simulation
	Test Waveform Description
	Overview
	Implementing a Serial Transport with OCP
	Dataflow Using a FIFO Model
	Conclusions
	References
	Index

