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Goals of the project.

e Create efficient robust multilevel DPG Maxwell solvers for high frequency wave propaga-
tion.
Approach: Integrate multilevel solver techniques with local adaptive refinement guided by
DPG error estimators.

e Simulate nonlinear optical effects in high power laser fiber amplifiers in collaboration with
AFRL.
Approach: Build a hierarchy of optical fiber models, from full-featured Maxwell system to
coupled mode approximations.

1 Research Accomplishments

1.1 Hierarchy of models

The basic configuration modeled consists of a fiber “core” region and outer regions. A schematic
of a standard double-clad step-index fiber can be seen in Figure 1. A physical fiber usually also
includes an outer polymer coating. In all considered configurations, there is a defined “core” region
where most of the energy is guided. In a fiber amplifier, the core is seeded by a continuous wave
input of highly coherent laser light, typically called the “signal”. Simply put, we are interested in
how the signal light is amplified by energy transfer from “pump” light while it propagates through
the fiber, through the process called “gain”.
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Figure 1: Schematic of a single-clad fiber amplifier; a double-clad amplifier would have an addi-
tional polymer coating around the cladding shown above.

We have been working with a hierarchy (see Figure 2) of progressively reduced models, which
we now shortly explain. Our suite of models begins with the Maxwell system for both pump and

DISTRIBUTION A: Distribution approved for public release.



‘ MAX: Full Maxwell model for pump & signal

1

‘ 3D Scalar envelope model

1

[ZD Beam propagation modelJ

1

‘ CMT: Coupled mode theory model ’

simulation time

simulation fidelity

Figure 2: Hierarchy of models

signal. Assume that the electromagnetic fields (signal and pump) are time harmonic of frequencies
ws and wy,, respectively. We postulate that the signal field £, H, and the pump field E,, H,,,
independently satisfy Maxwell equations, but are coupled through polarization terms, i.e.,

curl By — iwppoH, = 0, curl Hy + iwpeo By = —iw, b, ¢ e {s,p}, (1.1)

where ¢ is the electric permittivity and i is the vacuum magnetic permeability. All interactions
of light with matter are modeled through the polarization terms of the form
]32 = ﬁbg( _’é) + ﬁag(ESvﬁp)+ ﬁrg(E&EP) + ﬁth(557ﬁp)+
N— \ ~ / \ \ /

N J/

background active Raman thermal other optical
polarization gain gain effects nonlinearities

The linear background polarization is textbook material: 15; §(E,) = eo(n® — 1)E, where n is
the refractive index of the medium. We model the active gain polarization by PE(E, E,) =
—tegn(c/wy) gEg, where ¢ is the speed of light and g, = gg(ES, E ») 18 the active gain term that
depends on ES, E in some nonlinear fashion, depending on the medium.

Examples of g, we have in mind are expressed in terms of the irradiance I, = TL|E£|2 / poc.
Light of high irradiance can perturb the refractive index causing many interesting nonlinear effects
in optical fibers, such as in Example 1.1 below. However, of primary interest to us in the simulation
of fiber amplifiers is active gain, occurring in fibers whose core is doped with lanthanide rare-earth
metallic elements, such as Thulium (Tm) or Ytterbium (Yb) — see Example 1.2. They result in
much larger gain due to the pump light driving dopant ions to excited radiative states followed by
stimulated emission into signal photons.

Example 1.1 (Raman gain). As described in [16, 22], the nonlinear Raman gain can be modeled
using a measurable “bulk Raman gain coefficient” gr by

ge = Yogrlye, te{s,p} (1.2)

where 1), = —w,/ws, Ts =1, and £ € {s,p} \ {¢}, the complementary index of /. O

2
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Figure 3: A simulation from [16] using the MAX model

Example 1.2 (Ytterbium-doped fiber). Yb-doped fiber amplifiers are usually pumped at A, =976 nm
to move ions from a ground state (manifold 2 F /2) to an excited state (manifold 2Ky 2) 19, 17]. Af-
ter undergoing a rapid non-radiative transition to a lower energy state, the amplifier can lase around
As =1064 nm very efficiently. Denoting the ion population as Ny = Nexcited + Vground, the active
gain can be modeled by

. bv 9 bv
ge = UzmbNexcited - 0'2 bZ\fground = Ntotal [a_zmsg - 02 b(1 - 5)} (13)

where the excited ion fraction & = Nexcited/Niotar 1S calculated in terms of a radiative lifetime (7),
and absorption and emission cross sections (o2, 08™) as £ = /(™ + ™ + 771), where
¢ = 08P, [hw, 4+ 0T [hws, for e/a € {ems, abs} and wy = 27c/ Ay O

Using a gain function g, as in the above examples, with appropriate boundary conditions, we
have completed the description of the MAX Model, the top model in the hierarchy indicated in Fig-
ure 2. Our preliminary numerical experience with this model using Raman gain has been detailed
in [16] (see also Figure 3).

A starting point to obtain further simplified models is the elimination of FIK from (1.1), to
obtain the second order equation curl curl Eg — wgeougﬁg = wt?,uo.ﬁg for the electric field alone.
For ease of exposition, let us now focus only on the case of active gain polarization (although
other types of polarization terms can be similarly incorporated). Substituting B = ]%bg + ﬁ;g =

€o(n? — 1)1*7[ — iﬂu%ggﬁg, using ¢ = 1/, /€ofio, and simplifying, we get,

curl curl By — k2nEy + ikyngoEy = 0, (1.4)

where k; = wy/c is the wavenumber corresponding to the frequency w,. The next simplification
is to assume that the electric field qu can be expressed as qu(:1:, y,z) = Up(x,y,2)é,, ie., it is
linearly polarized in a fixed transverse direction, which is taken above to be the x-direction (where
¢, denotes the unit vector in the x-direction). Furthermore, since Eg has high frequency oscillations
along the z-direction, its variations along the transverse directions may be considered negligible.
It is therefore standard in optics to neglect grad div Ej. These assumptions imply that the vector
equation (1.4) becomes the following scalar Helmholtz equation for Uy,

— AU, — kin?Uy + ikeng Uy = 0. (1.5)

3
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Due to the high wave number ky, even this simplified problem is computationally intensive, so we
seek even further simplified models. All models other than the MAX model in Figure 2 are derived
from (1.5). The scalar envelope model is derived from (1.5) by assuming that U,(x,y, z) can be
expressed as A(z,y, z)e'”* for some 3 close to an effective propagation constant. This makes A
more slowly varying than U and leads to a tractable scalar 3D model. If one is further willing to
neglect J,. A, then it is possible to make a further simplification from 3D to a 2D model that can
solved for by stepping through the fiber, akin to a time stepping scheme. This is often called BPM,
or the Beam Propagation Method. We have experimented with all these models. The main focus,
however, has been on top and bottom models in Figure 2, namely the MAX model, and the CMT
(Coupled Mode Theory) model, which we now shortly describe.

The CMT model uses the transverse core modes of the fiber to construct an electric field ansatz.
These modes ;(z,y) are non-trivial functions that, together with their accompanying (positive)
propagation constants [3;, solve the eigenproblem

(Agy + k20 = B, (1.6)

where A, = 0., + 0,y denotes the transverse Laplacian. The guided modes decay exponentially
in the cladding region. There can only be finitely many such modes, which we index using | =
1,2,..., M. For step-index fibers, these modes are called the linearly polarized (LP) transverse
guided core modes [1]. The mode-based field ansatz is

(2,9, 2 ZA 2)pm(@,y)em. (1.7)

m=1

The ansatz (1.7) reduces the field computation to the computation of A;(z). If A,, is so slowly
varying in z that we neglect d*>A,,/dz>, then substituting (1.7) into (1.5) and simplifying using
the L? orthogonality of the modes, we find that A; satisfies the system of ordinary differential
equations (ODE)

A _ < W(Bm—B1)=
= D e Kim(A, L) Ap, 0<z<L, (1.8)
m=1
forl =1,..., M, where the mode coupling coefficient K, is given by
ks -
Kin(A 1) = 2—@/ s(Is(x,y, A), L) n(x,y)om(z, y)ei(z, y) dedy. (1.9)

Here (2, represents the fiber cross section having the constant longitudinal coordinate value of z.
Equation (1.8) when combined with an even more simplified model of pump irradiance /,,, are the
equations of the CMT model. More details on this and our preliminary computational experiences
with the CMT model can be found in [7].

1.2 Fast DPG Maxwell solvers for the MAX model

This and the next two subsections (§§1.2—1.2.2) summarize the work on higher order Discontinuous
Petrov-Galerkin (DPG) solvers for the MAX model, which is based on (1.1). To account for the
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thermal effects, the two sets of Maxwell equations are weakly coupled with the transient heat
equation as in [13]. The time scales for the heat and Maxwell equations differ by three orders
of magnitude and this dictates the overall structure of the final algorithm. We use the simplest
implicit Euler method to discretize the heat equation. The heat source is calculated from the energy
deposited by both pump and signal waves. In turn, the refractive index in the Maxwell system is
a function of the temperature. The weak coupling means that we freeze temperature when we
solve for the EM fields and we freeze EM fields when we solve for the temperature. Within the
single time step of the heat equation (milliseconds), the Maxwell equations reach a steady state
which explains why we can use the time-harmonic Maxwell equations. The pump/signal Maxwell
system is currently solved using simple iterations though more sophisticated nonlinear methods
are possible as well.

Next, we decsribe the Maxwell solver and discuss its three essential components. We begin
with a short description of mathematical foundations behind the DPG methodology in the next
few paragraphs, report on successful modeling of lasing using the Raman model in §1.2.2, and in
§1.2.3 outline the work on fast Maxwell solvers. The work consists of both numerical analysis and
advanced software development and the latter has so far proceeded within the OpenMP version of
the hp3D code. The discretization method we use for the Maxwell system is the specific variant of
the DPG method described next.

1.2.1 The ultraweak DPG method

The original development of the DPG method [3] took place within the context of ultraweak vari-
ational formulation. In time, we learned that the technology of broken test spaces and optimal
test functions can be applied within the framework of any well-posed variational problem but the
ultraweak DPG method remains special. There are at least three good reasons for that.

1. The most relaxed functional setting. Derivation of the ultraweak variational formulation
starts with the first-order system:

{ u€ D(A) (1.10)

Au=f  inL%(Q)

where u represents a group variable, A stands for the operator corresponding to the system of first-
order PDEs, and D(A) denotes the domain of the operator incorporating the BCs. For instance,
for the linear Maxwell equations, we have:

_|E A E| |iwe —curl| |E| |iwek — curlH

S| H|  |curl dwp | |H| |curlE +iwuH
and, in the case of perfect conductor boundary, D(A) := {(E,H) € L[?(Q) : A(E,H) €
L*(Q), nx E = 0on[} where L*(Q) := (L*(Q))" x (L*(Q))N. The ultraweak variational

formulation is obtained by multiplying both sides of the equation with a test function v € D(A*).
Integrating by parts and utilizing the boundary conditions, we obtain

(1.11)
(u, A*v) = (f,v) v &€ D(A%)
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2. Robust stability. With v controlled in the adjoint norm, termed the optimal test norm
Iv]|opt = ||A*Vv|| the bilinear form becomes a duality pairing, and the corresponding ideal Petrov-
Galerkin discretization with optimal test functions delivers L?-projection. Unfortunately, the ad-
joint norm is not localizable and cannot be used in DPG implementation. However, if the original
operator is bounded below with a constant 7,

[Aull = y[lull, we D(A) e AV =], ve DAY,

then the adjoint norm is equivalent to the localizable adjoint graph norm, ||v||3 = ||A*v|]* +
a?||v||*. As the adjoint and the adjoint graph norms are equivalent,

JANIE < A2+ Q2lMP, AN+ ) < (1 ; 7) A2,

the ideal DPG method corresponding to the adjoint graph test norm delivers an orthogonal pro-
jection in a norm equivalent to the L*-norm. Of particular importance are singular perturbation
problems with ~y being independent of the perturbation parameter. The DPG methodology delivers
then a robust discretization.

Finally, testing with the larger class of discontinuous or broken test functions, we obtain the
ultimate variational formulation in the form:

. .
{ ue L2(Q), 0 € Ha(ly) 0
(u, A*v) + (0, v)pr, = (f,v) v €& Hux ()

in appropriately defined space H4(I';) — see e.g., the general treatment in [6, Appendix]. The bro-
ken variational formulation retains optimal stability properties of unbroken ultraweak variational
formulation with the adjoint graph test norm in terms of original unknown field u. The extra un-
known — the trace U — lives on the mesh skeleton in the trace energy space corresponding to the
strong form of the operator, and it is controlled in the minimum energy extension norm:

la]l* = inf —[JAUI® + [JU]*.
u

UEHA(Qh), tl‘r*hU:

3. Optimal spectral properties. Being a minimum residual method, DPG always delivers a
Hermitian positive definite stiffness matrix even if the original differential operator is indefinite.
Therefore, the spectrum lies on the positive real axis. For wave propagation problems, the ultra-
weak DPG delivers stiffness matrices with best spectral properties [26]. The method has better
dispersion properties than standard Galerkin but it is more diffusive. Nevertheless, it is the least
diffusive version of the minimum residual methods.

1.2.2 Simulation of lasing using the Raman model

The coding challenges in simulating the MAX model for many wavelengths are manifold. As all
methods suffer from numerical pollution in the high-frequency regime [2], it is essential to control
such dispersion and diffusion errors. This comes at substantial computational cost, and it is here
that high-order (p > 5) elements are absolutely critical to the success of the simulation. On the
one hand, it is necessary to resolve each wavelength (e.g., at least two elements per wavelength);
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but then, polynomial order must be increased to control numerical pollution errors. As mentioned
previously, the ultraweak formulation suffers the least from numerical pollution effects among the
various DPG formulations. It is therefore the method of choice in our simulation efforts. We have
found that p = 5 is both sufficient and necessary to obtain accurate results up to 100 wavelengths
[16, 15], assuming few (2-4) elements per wavelength. Preliminary results point towards a need in
increasing p further as we approach 1000 wavelengths and more.

Additionally, we have employed many advanced techniques within the Ap3D framework, all
of which are critical in enabling the MAX model simulations. The code supports curvilinear
geometries—we use isoparametric elements of high order to capture the fiber geometry accurately;
the nature of the MAX model requires support of complex multiphysics variables, and in the case
of ultraweak DPG, we in fact make use of the entire exact sequence:

Temperature field: H'(Q,) Electromagnetic fluxes: H(curl, ;)
Heat flux: H(div,T'y) Electromagnetic fields:  L?*(Qp).

Furthermore, the code supports elements of “all shapes” [12]: tetrahedra, hexahedra, prisms, and
pyramids; after initially modeling the fiber core with prisms, we are now employing hexahedra
which enables fast integration via sum factorization, accelerating the simulation by more than an
order of magnitude [12, 15]. Further recent improvements to the hp3D framework included the
coding of flux variable routines to exploit the nature of interface variables that do not have degrees
of freedom in the interior of an element, as well as element-local static condensation routines
eliminating interior degrees of freedom from the linear system via a Schur complement technique
in parallel, leaving a much smaller global interface problem to be solved. For the global solve, we
have in place interfaces to state-of-the-art direct solvers (MUMPS, PARDISO), in addition to our
own multigrid preconditioned conjugate gradient solver described in §1.2.3. Lastly, the anisotropic
hp-adaptive capabilities of the code have not been exploited in the MAX model simulations yet,
but we are expecting to use them within the DPG framework to accurately capture local features
of the nonlinear solution, including TMI. The entire code is OpenMP enabled and has showed
near-optimal scalability on modern manycore architectures (e.g., Skylake (SKX) compute nodes).

E_x magnitude
1.1e-0402 04 06 08 1 1.2 1.4 1.6e+00
| | [ |

E_x magnitude
9.1e-06 040608 1 1214 1618 2 23et00
| =

(a) LPg1 mode. (b) LP1; mode.

Figure 4: LP modes propagating in weakly guiding step-index fiber.
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Within the described framework, we have been able to accurately simulate propagation of
various LP modes in single- and multi-mode weakly guiding step-index fibers. It has also been
validated that the energy of propagating modes is confined to the core as predicted by Helmholtz
analysis. To obtain correct results for multiple propagating modes, it was essential to model the
fiber end with a perfectly matched layer (PML) instead of simpler impedance boundary condition
[21, 16].

200

100

150><
E 100 g
40t
50F S , E— :
ignal Power I 20| Signal Power | | : I
— Pump Power J — Pump Power
%10 20 30 40 30 60 70 8 90 U 10 20 B0 40 30 60 70 80 90
Number of Wavelengths Number of Wavelengths
(a) Power in co-pumped configuration. (b) Power in counter-pumped configuration.

Figure 5: Signal and pump power along fiber with Raman gain.

The nonlinear Maxwell model with Raman gain has successfully been implemented, simulat-
ing the transfer of energy from the pump field to the signal field for about 80 wavelengths, as
shown in Figure 3 [16, 15]. With the MAX model, it is possible to model both co-pumped and
counter-pumped configurations (cf. Figure 5), a capability that many other models do not possess.
The temperature field and time-stepping from the heat equation has already been implemented,
but studying effects of the heating on the electromagnetic fields of the propagating modes is ongo-
ing work, and it will likely require considering substantially more wavelengths posing additional
coding challenges.

1.2.3 DPG multigrid preconditioners for /p-meshes

In three-dimensional wave problems, especially in the high-frequency regime, very fine discretiza-
tions are needed in order to control both the best approximation error and the pollution effect [2, 4].
This often leads to prohibitively large linear systems which are very hard to solve. For simulations
where the solution is localized, one can benefit from adaptive refinement strategies. The DPG
method, with its unconditional discrete stability and its built-in error indicator, is a very powerful
tool for such problems. In addition, the efficiency of the DPG adaptive method can be enhanced
by employing iterative solvers to drive the adaptive refinements. In particular, throughout the Ap-
adaptive procedure, one is not interested in a fully converged solution on every mesh but only in a
solution which is accurate enough to mark elements for refinement.

We have developed a novel adaptive geometric multigrid (MG) preconditioner for the Conju-
gate Gradient (CG) solver and we have integrated it within the adaptive process. Recall, that the
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use of the ultraweak formulation allows for the interior degrees of freedom to be eliminated in an
element-wise fashion, resulting in a linear system of significantly reduced size, that involves only
interface unknowns. With a special construction of inter-grid transfer operators based on Schur
complements, the preconditioner can operate on trace variables defined on the mesh skeleton. The
preconditioner has been successfully applied for the solution of large problems in acoustics and
electromagnetics, problems that where impossible to solve with direct solvers (see Figures 6 and 7).
A more detailed discussion on the construction can be found in [26] for the two dimensional acous-
tics problem . An extension to three space dimensions for both acoustics and Maxwell equations,
along with some theoretical convergence results can be found in [19].

W p=2 Wp=3 ([ p=4 @Wp=5

Figure 6: Acoustics: High frequency beam  Figure 7: Electromagnetics - Fichera ‘oven’
scattering from a cube. On the left: the hp adap-  problem. On the left: the h-adaptive mesh. On
tive mesh. On the right: the numerical pressure. the right: the z-component of the electric field.
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