
SERVICE-ORIENTED ARCHITECTURE (SOA) SERIES
Systems Engineering at MITRE

Leveraging Federal
IT Investment
Using SOA

Geoffrey Raines

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 08-1696

 Executive Summary—Leveraging Federal IT Investment Using SOA i

Executive Summary

Service-oriented architecture’s (SOA) value
proposition—SOA builds on computer engineer-
ing approaches of the past to off er an architectural
approach for enterprise systems, oriented around
the off ering of services on a network of consumers.
A focus of this service-oriented approach is on the
defi nition of service interfaces and predictable ser-
vice behaviors. A set of industry standards, collec-
tively labeled “Web Service” standards in this paper,
provide and implement the general SOA concept
and have become the predominant set of practical
tools used by enterprise engineers for current SOA
projects. Some Web Service standards have become
foundational and more widely adopted, while many
are still seeking broad industry or Government
acceptance.

SOA, as implemented through the common Web
Services standards, off ers Federal senior leadership
teams a path forward, given the diverse and complex
information technology (IT) portfolio that they have
inherited, allowing for incremental and focused
improvement of their IT support systems. With
thoughtful engineering and an enterprise point of
view, SOA off ers positive benefi ts such as:

• Language-neutral integration: Th e founda-
tional contemporary Web Services standards
use extensible markup language (XML), which
is focused on the creation and consumption of
delimited text. Regardless of the development
language that your systems use, these systems
can off er and invoke services through a common
mechanism. Programming language neutral-
ity is a key diff erentiator from past integration
approaches.

• Component reuse: Given current Web Service
technology, once an organization has built a
soft ware component and off ered it as a service,
the rest of the organization can then utilize that

service. With proper service governance, empha-
sizing topics such as service provider trust,
service security, and reliability, Web Services
off er the potential for aiding the more eff ective
management of an enterprise portfolio, allow-
ing a capability to be built well once and shared.
Multiple components can be combined to off er
greater capabilities in what is oft en termed
“orchestration.”

• Organizational agility: SOA defi nes building
blocks of soft ware capability in terms of off ered
services that meet some portion of the organiza-
tion’s requirements. Th ese building blocks, once
defi ned and reliably operated, can be recombined
and integrated rapidly.

• Leveraging existing systems: One common use
of SOA is to defi ne elements or functions of exist-
ing application systems and make them available
to the enterprise in a standard agreed-upon way,
leveraging the substantial investment already
made in existing applications. Th e most compel-
ling business case for SOA is oft en made regard-
ing leveraging this legacy investment, enabling
integration between new and old systems
components.

Th e benefi ts mentioned above will accrue only
as the result of comprehensive engineering and a
meaningful architecture at the enterprise level. SOA
as a service concept in no way eliminates the need
for strong soft ware development practices, require-
ments-based lifecycles, and an eff ective enterprise
architecture. While SOA done right off ers valuable
benefi ts, SOA without structured processes and
governance will lead to traditional large soft ware
system problems.

Choosing to initiate an enterprise-wide SOA brings
with it several key considerations for a senior leader-
ship team. SOA off ers a means to eff ectively leverage

ii Service-Oriented Architecture

decades of soft ware investment, while providing a
growth path for new capabilities. Portions of legacy
applications, which may have taken many years and
substantial resources to build, can be “wrapped”
and integrated into modern service frameworks,
incrementally leveraging signifi cant past invest-
ment, as resources allow. Web Services can provide
a technical underpinning for structuring portfolios
as a collection of discrete soft ware services, each
with a defi nable customer base, acquisition strategy,
performance levels, and a measurable operational
cost. However, in order to achieve these positive
outcomes, architectural activities, such as stan-
dards selection, security architectures, and service
cataloging, must occur at the enterprise level. A key
architectural activity is deciding whether a wholly
commercially based SOA approach is appropriate
under the specifi c circumstances and requirements;
it is not always the right choice.

Th e remainder of the paper focuses on a series of
conceptual topics important to a Federal senior
leadership team considering SOA, such as how SOA
compares to integration approaches of the past, how
component-based approaches have changed other
large industries, how component reuse can benefi t
the enterprise as a whole, how enterprise standards
can enable soft ware component interoperability
across an organization, and where the benefi ts of
SOA tend to accrue. Th e following topics are exam-
ined in more detail:

Integration—Enterprise application integration
(EAI) is a fi eld of study in computer science that
focuses on the integration of “systems of systems”
and enterprise applications. With the span of
attempted systems integration and data sharing
expanding in large organizations, the EAI engi-
neering discipline has become increasingly central
to senior leadership teams managing portfolios of
applications. SOA can be considered another impor-
tant step in the over 30 year history of EAI technolo-
gies. Th e various historical technologies have dif-
fered in the ease with which integration could occur
from a programmer’s point of view, underlying net-
work confi gurations (e.g., ports required to be open
on a network), the quantity of enterprise equipment
to operate, and general design approaches to fault
tolerance when failures occur.

Using components—Historic analogy with
integrated circuits—During the 1970s electronics
engineers experienced an architectural and design

revolution with the introduction of practical, inex-
pensive, and ubiquitous Integrated Circuits (ICs).
Th is revolution in the design of complex hardware
systems is informative for contemporary soft ware
professionals now charged with building enterprise
soft ware systems using the latest technologies of
Web Services in the context of SOAs. Like SOA,
the IC revolution was fundamentally a distributed,
multi-team, component-based approach to building
larger systems. Th rough the commercial market-
place, corporations successfully built components
that could be described, procured, and reused by
engineering teams distributed around the world.

Reuse—Reuse of a service diff ers from source code
reuse in that the external service is called from
across the network and is not compiled into local
system libraries or local executables. Th e provider
of the service continues to operate, monitor, and
upgrade the service, while the consumer of the ser-
vice still needs to trust the reliability and correctness
of the producer’s service. Th e consumer must be able
to fi nd the service and have adequate documenta-
tion accurately describing the behavior and interface
of the service. Performance of the service is still key.

Mature SOAs should measure reuse as part of a peri-
odic portfolio management assessment. Th e assess-
ment of reuse can be eff ectively integrated into the
information repository used for service discovery
in the organization, called the “enterprise catalog.”
Since changes to a service over time will require that
the service’s consumers be remembered and noti-
fi ed, it is a small step further to quantify the current
consumers for a service for the purposes of portfolio
management and reuse assessment.

Creating a generic reusable soft ware component for
a broad audience takes more resources (20 percent
to 100 percent more) than creating a less generic
point solution. Th e cost of reuse, therefore, shift s to
the service providers and benefi ts the consumers.
Consequently, as the enterprise decides to fund ser-
vice providers, there is great benefi t in maximizing
the number of consumers for an operational service.

Acquiring reuse—Many of the current trends in
performance-based contracting work well with the
acquisition of SOA services. For example, Offi ce
of Management and Budget (OMB), performance-
based service contracting (PBSC) is true to the
underlying spirit and architecture of an SOA’s
service, which focuses on the result of the service,

 Executive Summary—Leveraging Federal IT Investment Using SOA iii

not on specifying an implementation or “how” the
service’s work is to be done.

Reuse of services on an enterprise scale is a team
eff ort, but Government leadership has a singular
responsibility to strategically guide enterprise IT
expenditures. Planned acquisitions must match the
overall portfolio goals of the organization, and many
organizations are establishing review boards for this
purpose. If a service is meant to be reused as a com-
mon component for a series of programs or projects,
contract language and incentives must be explicitly
organized around that goal.

Enterprise standards—When many components
are being simultaneously developed by individual
teams, it becomes critical for the interface of a
provider’s service to match up to the “call” of a
consumer. Similarly, it helps everyone involved if
the interfaces across services have some commonal-
ity in structure and security access mechanisms.
Choosing and communicating a comprehensive set
of enterprise standards is a responsible approach to
aid in enterprise SOA integration.

Where SOA works best—Th e Web Service technol-
ogies commonly used today to implement SOA con-
cepts have certain design presumptions. Th ey work
best when the underlying network is robust, reliable,
and available. Th is is not to say that any defi ciency in
the underlying network can not be compensated for
by thoughtful engineering and the use of standard
queuing and buff ering communications methods.
However, employing these alternative approaches
to compensate for the underlying network will take
a project further from the mainstream commercial
implementations of Web Services.

Agility—When we discuss “agility” as it relates to
SOA, we are oft en referring to organizational agility,
or the ability to more rapidly adapt a Federal organi-
zation’s tools to meet their current requirements. An
organization’s requirements of IT might change over
time for a number of reasons, including changes
in the business or mission, changes in organiza-
tional reporting requirements, changes in the law,
new technologies in the commercial marketplace,
and attempts to combine diverse data sources to
improve the organization’s operational picture. Th e
larger promise of an enterprise SOA is that once a
suffi cient quantity of legacy-wrapped components
exists and is accessible on the IP wide area network

(WAN), the components can be re-assembled more
rapidly to solve new problems.

SOA’s benefi ciaries—Eff orts that benefi t the chief
information offi cer’s (CIO’s) enterprise, and look
good to the senior leadership team of an organiza-
tion, do not necessarily benefi t the small soft ware
projects in an agency. Transitioning a legacy appli-
cation to expose a set of Web Services, and putting
the services in place with a robust infrastructure
of redundant 24x7 reliable servers with full sup-
port as well as a service discovery mechanism, is
an expensive task, hopefully enabled by enterprise
level infrastructure eff orts. If, as a result of creat-
ing a good service, an individual project then picks
up many more consumers than it had previously,
then clearly the day-to-day demands on the project’s
IT infrastructure increase. Th e common result of
service success is higher local operational costs for
the project off ering a service. At the enterprise level,
this can be a signifi cant benefi t because it means
that more customers are reusing the same shared
services, instead of rebuilding them.

In summary, SOA is an enterprise eff ort, and the
local perspective of individual legacy projects
will not justify an enterprise SOA eff ort, but this
should not be allowed to stop the enterprise SOA
from occurring. Th e SOA benefi ts accrue largely
at the enterprise’s level in cost avoidance through
reuse, and increased data exchange and agil-
ity. Consequently, a corresponding investment is
required at the enterprise level, where the benefi t is
found.

For more information on SOA, see http://www.mitre.
org/soa.

http://www.mitre.org/soa

Table of Contents

SOA—Value Proposition 1

Drawing Parallels—Past Is Prologue 4

Reuse 6

Using SOA for Enterprise Integration 8

Enterprise SOA Standards 10

Where Does SOA Best Apply? 12

SOA-Based Agility 14

Reaping the Benefi ts of SOA 16

Conclusion 17

Acronyms 19

References 20

Additional Photo Credits 22

 Leveraging Federal IT Investment Using SOA 1

Leveraging Federal IT Investment
Using SOA

Geoffrey Raines

THE BIG PICTURE: SOA builds on computer engineering approaches of the past to offer an architec-
tural approach for enterprise systems, oriented around the offering of services on a network of consum-
ers. SOA, as implemented through the common Web Services standards, gives Federal senior leadership
teams a path forward, allowing for incremental and focused improvement of their IT support systems.

SOA—Value Proposition

Contemporary issues for Federal IT decision
makers—Similar to the nation’s Fortune 500
leadership, today’s Federal leadership teams oft en
fi nd themselves facing signifi cant IT investment
and portfolio challenges. Th ey have inherited a
computing infrastructure that is oft en not uniform
and whose technologies span the recent history of
computing. Th e IT infrastructures tend to have the
following characteristics:

• Diverse environments: Mainframe systems,
client/server systems, and multi-tier Web-based
systems sit side by side, demanding operations
and maintenance resources from a technology
marketplace in which the cost of niche legacy
technical skills continues to rise. Th e portfolio
of systems is generally written in a number of
diff erent soft ware development languages such
as COBOL, Java, assembly, Ada, and C, requir-
ing heterogeneous staff skill sets and experience
in a variety of commercial products, some of
which are so old that they no longer off er support
licenses.

• Complex business logic: Th e systems oft en con-
form to a set of complex business logic that has
developed over a number of years in response
to evolving legal requirements, Congressional
reporting mandates, changes in contractor
teams, and refi nement of business processes.
While some systems are new and robust, many

are brittle and hard to modify, relying on techni-
cal skills not common in the marketplace that
become increasingly more expensive. Th e main-
tenance tail on these systems is surprisingly high
and competes for resources with required new
functionality.

• Inconsistent interfaces: Interfaces between
systems have grown up spontaneously without
enterprise planning, over many years.1 Th e inter-
faces are the result of unique singular negotia-
tions between various parts of the organization
and have been designed using many varied
technologies during the organization’s IT history,
following no consistent design pattern. Recent
enterprise architecture eff orts have documented
the enterprise interfaces in diagrams that
resemble a Rorschach inkblot test.

• Limited sustainment budgets: Even without the
continuous downward pressure on IT budgets
brought by competing national requirements,
and the view that IT should be increasingly
viewed as a commodity, there are not enough
budget resources or human resources to recast
the portfolio of sys-
tems to be modern
and robust in one
action. “According
to analysts at
Forrester Research,
there are some
200 billion lines of
COBOL, the most

2 Service-Oriented Architecture

popular legacy program-
ming language, still in
use. Nor is it going away:
maintenance and modifi ca-
tions to installed soft ware
increase that number by
fi ve billion lines a year.
IBM meanwhile claims its
CICS mainframe transac-
tion soft ware handles more
than 30 billion transactions
per day, processes $1 tril-
lion in transaction values,
and is used by 30 million
people.” 2 Given budget
constraints, an incremen-
tal approach seems to be
required.

SOA’s value proposition—
SOA builds on computer
engineering approaches
of the past, to off er an
architectural approach for
enterprise systems, ori-
ented around the off ering

of services on a network of consumers. A focus of
this service-oriented approach is on the defi nition
of service interfaces and predictable service behav-
iors. A set of industry standards, collectively labeled
“Web Service” standards in this paper, are employed
to implement the general SOA concept, and have
become the predominant set of practical tools used
by enterprise engineers for current SOA projects.
Some Web Service standards have become founda-
tional and more widely adopted, while many are still
seeking broad industry or Government acceptance.

SOA, as implemented through the common Web
Services standards, off ers Federal senior leadership
teams a path forward, given the diverse and com-
plex IT portfolio that they have inherited, allowing
for incremental and focused improvement of their
IT support systems. With thoughtful engineering
and an enterprise point of view, SOA off ers positive
benefi ts such as:

• Language-neutral Integration: Web-enabling
applications with a common browser inter-
face became a powerful tool during the 1990s.
In the same way that HTML defi ned a simple
user browser interface that almost all soft ware
applications could create, Web Services defi ne

a programming interface available in almost all
environments. Th e HTML interface at the pre-
sentation layer became
ubiquitous because
it was easy to create,
being composed of
textual characters.
Similarly, the founda-
tional contemporary
Web Services stan-
dards use XML, which
again is focused on the
creation and consump-
tion of delimited text.
Th e bottom line is that
regardless of the development language your sys-
tems use, your systems can off er and invoke ser-
vices through a common mechanism. However,
note that XML does not by itself solve issues
with data’s semantic consistency across organi-
zations. Th e Rosetta Stone, an Egyptian artifact
that was instrumental in advancing our transla-
tion of ancient writing, has text that is made up
of three translations of a single passage.3 Th e
Stone allowed translators to understand text in
unknown languages by utilizing languages they
knew. Contemporary Web Service standards
provide a “Rosetta Stone” across programming
languages and soft ware development environ-
ments and can be leveraged for the purpose of
enterprise systems integration. Th e term Rosetta
Stone has become idiomatic as something that
is a critical key to a process of translation of a
diffi cult problem. SOA, as implemented through
Web Service standards, provides a common
enterprise integration technology for the mul-
tiple computing environments, and languages
that arise in the typical Federal IT portfolio.
Enterprise integration standards and their use in
a large SOA eff ort are discussed further below.

• Component reuse: Given current Web Service
technology, once an organization has built a
soft ware component and off ered it as a service,
the rest of the organization can then utilize that
service. Given proper service governance, includ-
ing items such as service provider trust, service
security, and reliability, Web Services off er the
potential for aiding the more eff ective manage-
ment of an enterprise portfolio, allowing a capa-
bility to be built well once and shared, in contrast
to sustaining redundant systems with many of

“After creating
islands of

automation
through

generations
of technology,

users and
business

managers are
demanding

that seamless
bridges be built
to join them.” 1

– David Linthicum

 Leveraging Federal IT Investment Using SOA 3

the same capabilities (e.g., multiple payroll,
trouble ticket, or mapping systems in one orga-
nization). Reuse, through the implementation of
enterprise service off erings, is further discussed
below.

• Organizational agility: SOA defi nes building
blocks of soft ware capability in terms of off ered
services that meet some portion of the organi-
zation’s requirements. Th ese building blocks,
once defi ned and reliably operated, can be
recombined and integrated rapidly. Peter Fingar
stated, “Classes, systems, or subsystems can be
designed as reusable pieces. Th ese pieces can
then be assembled to create various new appli-
cations.” 4 Agility, the ability to more rapidly
adapt a Federal organization’s tools to meet their
current requirements, can be enhanced by hav-
ing well-documented and understood interfaces
and enterprise-accessible soft ware capabilities.
Organizational agility, as enhanced by a consis-
tent enterprise-scoped SOA, is discussed below.

• Leveraging existing systems: One common use
of SOA is to encapsulate elements or functions
of existing application systems and make them
available to the enterprise in a standard agreed-
upon way, leveraging the substantial investment

already made. Th e most compelling business case
for SOA is oft en made regarding leveraging this
legacy investment, enabling integration between
new and old systems components. When new
capabilities are built, they are also designed to
work within the chosen component model. Given
the size and complexity of the installed Federal
application system base, being able to get more
value from these systems is a key driver for SOA
adoption. David Litwack writes, “Th e movement
toward Web Services will be rooted not in the
invention of radical new technology, but rather
in the Internet-enabling and re-purposing of the
cumulative technology of more than 40 years.
Organizations will continue to use Java, main-
frame and midrange systems, and Microsoft
technologies as a foundation for solutions of the
future.” 5

Th e benefi ts mentioned above, however, accrue only
as the result of comprehensive engineering and a
meaningful architecture at the enterprise level. SOA
and service concepts in no way eliminate the need
for strong soft ware development practices, require-
ments-based lifecycles, and an eff ective enterprise
architecture. While SOA done right off ers valuable
benefi ts, SOA without structured processes and

Digitization Age Integration Age

N
um

b
er

 o
f S

ys
te

m
s

In
vo

lv
ed

Span of Attempted Integration

Fewer

Many

Smaller Larger

1 Tier 2 Tier Multi-tiered

IPLAN

HUB

IP

IP

IP

Intel 8088
Client/Server

Web Enabled

EAI with
Integration

Hub

Enterprise
SOA

Cross
Enterprise

SOA

Figure 1: Integration Is Increasing In Scope and Complexity

4 Service-Oriented Architecture

governance will lead to traditional soft ware system
problems.

SOA—Why now?—SOA and its implementing
standards, such as the Web Services standards,
come to us at a particular point in computing
history. While several key improvements, such
as language neutrality, diff erentiate today’s Web
Service technologies, there has been a long history
of integrating technologies with qualities analogous
to Web Services, including a fi eld of study oft en
referred to as enterprise application integration
(EAI). One of the key trends driving the adoption of
Web Services is the increasing span of integration
being attempted in organizations today. Systems
integration is increasing both in complexity within
organizations and across external organizations.
We can expect this trend to continue as we combine
greater numbers of data sources to provide higher
value information. Ronan Bradley writes, “CIOs
oft en have diffi culty in justifying the substantial
costs associated with integration but, nevertheless,
in order to deliver compelling solutions to customers
or improve operational effi ciency, sooner or later an
organization is faced with an integration challenge.” 6
Figure 2 above depicts a few waypoints in the trend
toward increasing systems integration complexity.

Drawing Parallels—
Past Is Prologue

During the 1970s
electronics engi-
neers experienced
an architectural
and design revolu-
tion with the
introduction of
practical, inexpen-
sive, and ubiqui-
tous integrated
circuits (ICs). Th is
revolution in the
design of complex
hardware systems is informative for contemporary
soft ware professionals now charged with building
enterprise soft ware systems using the latest technol-
ogies of Web Services in the context of SOAs.

Like SOA, the IC revolution was fundamentally a
distributed, multi-team, component-based approach
to building larger systems. Th rough the commercial
marketplace, corporations built components for use

by engineering teams
distributed around the
world. Teams of engineers
created building blocks
in the form of IC compo-
nents that could then be
described, procured, and
reused.

Like soft ware services,
every IC chip has a
defi ned interface. Th e
IC interface is described
in several ways. First,
the chip has a defi ned
function—a predict-
able behavior that can
be described and pro-
vides some value for
the consumer. Next the
physical dimensions of the chip are enumerated. For
example, the number and shape of pins is specifi ed.
Further, the electronic signaling, timing, and volt-
ages across the pins are specifi ed. All these charac-
teristics make up the total interface defi nition for
the IC. Of course, soft ware services do not have an
identical physical defi nition, but an analogous con-
cept of a comprehensive interface defi nition is still
viable. Eff ective soft ware components also possess a
predictable and defi nable behavior.

Introducing and using ICs included the following
considerations:

• Who pays? Building an IC chip the fi rst time
requires a large expenditure of resources and
capital. Th e team who builds the IC spends
considerable resources. Th e teams who reuse
an IC instead of rebuilding it save considerable
time and expense. A chip might take $500K to
build the fi rst time and might be available for
reuse in a commercial catalog for $3.99. Th e
creation of the chip the fi rst time involves many
time-consuming steps, including requirements
analysis, behavior defi nition, design layout, pho-
tolithography, testing, packaging, manufacturing
and marketing.7 Th e team who gets to reuse the
chip instead of re-building it, saves both time
and dollars. At the time, designs of over 100,000
transistors were reported as requiring hundreds
of staff -years to produce manually.8

• Generic or specialty components? Given the
amount of investment required to build a chip,

What can we
learn from the

IC revolution of
the 1970s? How
can component-

based
architectures
change the

approach of an
entire industry?

 Leveraging Federal IT Investment Using SOA 5

designs were purposely scoped to be generic or
specifi c, with particular market segments and
consumer audiences in mind. Some chips only
worked for very specifi c problem domains, such
as audio analysis. Some were very generic and
intended to be used broadly, like a logic multi-
plexer. Th e bigger the market, and the greater the
potential for reuse, the easier it was for a manu-
facturer to amortize costs against a broader base,
resulting in lower costs per instance.

• Increased potential design scope: By combining
existing chips into larger assemblies, an engineer
could quickly leverage the power of hundreds of
thousands of transistors. In this way, IC reuse
expanded the reach of the average engineer,
allowing the engineer to leverage resources and
dollars spent far in excess of the local project
budget.

• Design granularity: Th e designer of an IC had
to decide how much logic to place in a chip to
make the chip most eff ective on the market-
place. Should the designer create many smaller
function chips, or fewer larger function chips?
Families of chips were oft en built with the inten-
tion of their functions being used as a set, not
unlike a library of soft ware functions. Oft en
these families of chips had similar interface
designs, such as consistent signal voltages.

• Speed of integration: As designers became
familiar with the details of component off erings
and leveraged pre-built functions, the speed at
which an “integrated” product, built of many
components, could come to market was substan-
tially increased.

• Catalogs: When the collection of potential ICs
off ered became large, catalogs of components
were then created, and classifi cation systems for
components were established. Catalogs oft en had
a combination of sales and defi nitive technical
information. Th e catalogs oft en had to point to
more detailed resources for the technical audi-
ences that they sold components to.

• Testing: Technical documents defi ned the
expected behavior of ICs. Components were
tested by both the manufacturer and the market-
place. Anomalous behavior by ICs became noted
in errata in technical specifi cations.

• Engineering support: IC vendors off ered
advanced technical labor support to customers in
the form of application engineers and other tech-

nical staff . Helping customers use the products
fundamentally supported product sales.

• Value chains: Value chains consume raw com-
ponents and produce more complex, value-added
off erings. ICs enabled value chains to be created
as collections of chips became circuit boards, and
collections of circuit boards became products.

• Innovation: ICs were put together in ways
not anticipated by their designers. Teams who
designed chips could not foretell all the possible
uses of the chips over the years. Componentized
logic allowed engineers to create innovative solu-
tions beyond the original vision of component
builders.

Did it work?—One
might ask, “Were
electrical engineers
successful with
this component-
based approach?”
Certainly the
marketplace was
populated by a very
large number of
off erings based in
some part on ICs.
Certainly many fortunes and value chains were
created. Th e cost eff ectiveness of the reuse approach
was validated by the fact that it became the predom-
inant approach of the electronics industry. In short,
electronic off erings of the time could not be built to
market prices if each chip, specifi cation, module, or
component had to be refabricated on each project.
Reuse, through component-based methods, enabled
by new technologies, led this revolution. Yet, the
transformation took a decade to occur.

SOA analogy—In many ways the IC chip revo-
lution described above is analogous to the eff ort
underway with Web Services today. Clearly Web
Service components have analogous interfaces
defi nitions, and defi ned and documented behaviors
that provide some benefi t to a potential consumer.
One can also reasonably expect that the team
producing the Web Service will incur substantial
expenses that consumers of the service will not.
For example, high reliability requirements for the
operation of a service and its server and network
infrastructure can be a new cost driver for the
provider. Historically, designing soft ware for reuse
generally drives the cost up by a factor of 1.15 to

6 Service-Oriented Architecture

2.0, and this may be an additional cost driver for a
provider.9 To continue the analogy, collections of
service off erings are becoming suffi ciently large to
require some librarian function to organize, catalog,
and describe the components. Many SOA projects
use a service registry such as universal description,
discovery, and integration (UDDI) for this purpose.
Enterprise integration engineers are realizing the
ability to more rapidly combine network-based
service off erings, and a new paradigm, sometimes
referred to a “mashup,” is demonstrating the speed
at which integration can now occur.10 Value chains
of data integration are already occurring in the mar-
ketplace. A data integrator can ingest the product of
multiple services and produce a service with cor-
related data of greater value. Finally, it is also safe to
say that service providers may be surprised at how
their services get integrated over time, and they
may be part of larger integration that they could not
have foreseen during the original design. (Also note
that this same component-based approach is now
being examined for genetics work as well. Th e same
interface defi nition, behavior, cataloging, and reuse
discussions are currently occurring, creating a new
genetic sub-fi eld known as synthetic genetics.11) In
summary, many aspects of the current SOA eff orts
follow similar component-based patterns, and many
of the benefi ts realized historically by the IC revolu-
tion will be potentially realized by SOA eff orts.

Reuse

Historic source code reuse—During the 1980s
many organizations, including the Department
of Defense (DoD), attempted to reuse source code
modules with little success. For example, during the
DoD’s focus on the Ada language, programs were
established to reuse Ada language functions and
procedures across projects.12 Th e basic reuse premise
outlines a process where a producer of a source code
module would post the source code to a common
shared area along with a description of its purpose
and its input and output data.13 At that point, staff
from another project would fi nd the code module,
download it, decide to invoke it locally in their
source code, and actually compile it into their local
libraries and system executables. As an example, the
Ada Quality and Style Guide states that, “One of the
design goals of Ada was to facilitate the creation and
use of reusable parts to improve productivity. To
this end, Ada provides features to develop reusable

parts and to adapt them once
they are available.” 14 For
example, Project A might
create a high-quality sorting
function, and Project B could
then compile that function
into their own soft ware
application.

Th ough well intentioned, the
actual discovery and reuse of
the source code modules did
not happen on a large scale
in practice. Reasons given for
the lack of reuse at the time
included lack of trust of mis-
sion-central requirements to
an external producer of the
source code, failure to show
a benefi t to the contractor
“reuser” implementing later
systems, inadequate descriptions of the behavior of
a module to be reused, and inadequate testing of all
the possible outcomes of the module to be reused.15
All in all, the barriers to reuse were high.

Service reuse—Th e danger in describing the use
of services as “reuse” is that the reader will assume
we mean the source code reuse model of the 1980s
described above. We don’t. In fact, the nature of ser-
vice reuse is closer to the model of the reuse of ICs
by electrical engineers described above, though still
having common issues of trust, defi ned behavior,
and expected performance. In plain terms, reuse in
the service context means not rebuilding a service,
but rather the using again, or invoking, of a ser-
vice built by someone else.

Th e enterprise as a whole saves resources every time
a project decides to reuse a current soft ware service,
rather than creating redundant services based on
similar underlying requirements and adding to an
agency’s maintenance portfolio. Since a system’s
maintenance costs oft en exceed the cost to build
them, over their lifetime, the enterprise saves not
only in the development and establishment cost of
a new service but also in the 20-plus-year main-
tenance cost over the service’s lifecycle. One web
vendor stated, “Web services reuse is everything: on
top of the major cost savings …, reuse means there
are fewer services to maintain and triage. So reuse
generates savings—and frequency of use drives
value in the organization.” 16 However, we should

Reuse is
a critical

characteristic of
the SOA value

proposition
for a large

organization,
but we have to
be careful how
we characterize

reuse.

 Leveraging Federal IT Investment Using SOA 7

not assume a straight-line savings, where running
one service is exactly half as costly as running two
services, because the cost of running a service is
also impacted by the number of service consumers.
Consolidation can make the remaining service more
popular, with a greater demand on resources.

Reuse of a service diff ers
from source code reuse in
that the external service
is called from across the
network and is not compiled
into local system libraries
or local executables. Th e
provider of the service con-
tinues to operate, monitor,
and upgrade the service as
appropriate. Th anks to the
benefi ts of contemporary
Web Service technologies,
the external reused service
can be in another soft ware
language, use a completely
foreign multi-tiered or
single-tiered machine archi-
tecture, be updated at any
time with a logic or patch
modifi cation by the service provider, represent 5 lines
of Java or 5 million lines of COBOL, or be mostly
composed of a legacy system written 20 years ago. In
these ways service reuse is very diff erent from source
code reuse of the past.

Some aspects of reuse remain unchanged. Th e
consumer of the service still needs to trust the reli-
ability and correctness of the producer’s service. Th e
consumer must be able to fi nd the service and have
adequate documentation accurately describing the
behavior and interface of the service. Performance
of the service is still key. ZDnet stated, “Converging
trends and business necessity—above and beyond
the SOA “vision” itself—may help drive, or even
force, reuse. SOA is not springing from a vacuum,
or even from the minds of starry-eyed idealists. It’s
becoming a necessary way of doing business, of
dispersing technology solutions as cost eff ectively as
possible. And, ultimately, providing businesses new
avenues for agility, freeing up processes from rigid
systems.” 17

Mature SOAs should measure reuse as part of
a periodic portfolio management assessment.18
Actional wrote, “Reuse is not only a key benefi t of

SOA, but also something that you can quantify. You
can measure how many times a service is being used
and how many processes it is supporting, thus the
number of items being reused. Th is enables you to
measure the value of the service. With a little work,
you can calculate the service cost savings for each
instance of reuse, including saved architecture and
design time, saved development time, and saved
testing time.” 19 Th e assessment of reuse can be
eff ectively integrated into the information repository
used for service discovery in the organization, the
enterprise catalog. Since changes to a service over
time will require that the service’s consumers be
remembered and notifi ed, it is a small step further
to quantify the current consumers for a service for
the purposes of portfolio management and reuse
assessment.

Reuse costs—Barry Boehm provided two useful
formulas when estimating the costs of soft ware sys-
tems reuse. One formula is from the provider’s point
of view, while the other is from the consumer’s.20

Provider-focused formula:

Relative Cost
of Writing for Reuse

(RCWR)
=

Cost of Developing
Reusable Asset

Cost of Developing
Single-Use Asset

Consumer’s formula:

Relative Cost
of Reuse (RCR) =

Cost to Reuse Asset

Cost to Develop
Asset from Scratch

Jeff ery Poulin examined large-scale SOA service
providers to estimate the value ranges for these
formulas in practice.22 His data shows that RCWR
ranges between 1.15 and 2.0 with a median of
1.2, while RCR ranges between .15 and .80 with a
median of .50. In other words, Paulin’s work sug-
gests that creating a generic reusable soft ware com-
ponent for a broad audience takes more resources
(15 percent to 100 percent more) than creating a less
generic point solution. Th e cost of reuse therefore
shift s to the providers and benefi ts the consum-
ers. Consumers spend less (median 50 percent less)
to reuse the service than to create their own. We
can see from these formulas that as the enterprise
decides to fund service providers, there is great ben-

“Certainly if you
were measuring

SOA success,
and you should
of course, then

an obvious
measure is

service reuse.”
—National Practice

Director for SOA,

Perfi cient, Inc.18

8 Service-Oriented Architecture

efi t in maximizing the number of consumers for an
operational service.

Acquiring reuse—Many of the current trends
in performance-based contracting sponsored by
the incumbent administration work well with the
acquisition of SOA services. For example, OMB
performance-based service contracting (PBSC) is
true to the underlying spirit and architecture of an
SOA’s service, which focuses on the result of the ser-
vice, not on specifying
an implementation or
“how” the service’s work
is to be done. As a con-
sumer of an SOA service
we care most about the
service’s interface and
its performance charac-
teristics. Similarly, PBSC
also focuses on the per-
formance characteristics
of the vendor’s service
to the Government. OMB states, “Th e key elements
of a PBSC performance work statement (PWS) are:
a statement of the required services in terms of out-
put; a measurable performance standard for the
output; and an acceptable quality level (AQL).” 23

OMB writes, “Performance-based contracting
methods are intended to ensure that required
performance quality levels are achieved and that
total payment is related to the degree that services
performed meet contract standards.” 24 Th e key
is that service outcomes are to be measured and
expectations are defi ned. OMB states further, “Th e
defi nitions of standard performance, maximum
positive and negative performance incentives, and
the units of measurement should be established
in the solicitation.” Both these ideas have a paral-
lel in an SOA service. As an SOA service provider,
one carefully defi nes the off ering to the enterprise.
Service performance requirements drive the quan-
tity of underlying infrastructure run by the service
provider and therefore drive the provider’s cost. If a
contract is craft ed to provide an SOA service to the
enterprise, the expected service levels will drive the
estimated cost of the service and should be consid-
ered carefully.

Reuse of services on an enterprise scale is a team
eff ort, but Government leadership has a singular
responsibility to strategically guide enterprise IT
expenditures. Oft en these decisions are guided by an

enterprise architecture (EA) eff ort. Planned acquisi-
tions must match the overall portfolio goals of the
organization, and many organizations are estab-
lishing review boards for this purpose. If a service
is meant to be reused as a common component
for a series of programs or projects, contract lan-
guage and incentives must be explicitly organized
around that goal. Goodwill or positive intentions
are not suffi cient. Portfolio management and scarce
resources will demand that Government staff rein in
desires of contractors or even project teams to create
redundant systems and services. Th e Government
must establish processes and organizations to assess
and enforce prohibitions against the creation of
redundant capability. Th is requires both technical
skills to understand potential architectural solutions
and contracting skills to structure existing Federal
Acquisition Regulation (FAR)-based contracting
tools with appropriate objective-driven language.
Given the trend for the expansion of attempted
integration as described above, redundancy of IT
capability will only become more visible over time.

Using SOA for Enterprise Integration

EAI is a fi eld of study in computer science that
focuses on the integration of “systems of systems”
and enterprise applications. Wikipedia states that,
“EAI is a response to decades of creating distributed
monolithic, single purpose applications leverag-
ing a hodgepodge of platforms and development
approaches. Attending to EAI involves looking at
the system of systems, which involves large-scale
inter-disciplinary problems with multiple, hetero-
geneous, distributed systems that are embedded
in networks at multiple levels.” 25 With the span of
attempted systems integration and data sharing
continually increasing in large organizations, the
EAI engineering discipline has become increasingly
central to senior leadership teams managing portfo-
lios of applications.

Th e fundamental EAI tenets are based on traditional
soft ware engineering methods, though the scale is
oft en considerably larger. While the traditional soft -
ware coder focused on the parameters that would be
sent to, and received from, a function or procedure,
the EAI engineer focuses on the parameters that are
exchanged with an entire system. Th e traditional
coder might have been writing 100 source lines of
code (SLOC) for a function, while the EAI engineer

 Leveraging Federal IT Investment Using SOA 9

might be invoking a system with a million SLOC and
several tiers of hardware for operational implementa-
tion. However, the overall request/response pattern
is the same, and the logic issues like error recovery
must still be handled gracefully in either case.

Overall, the EAI engineer is looking for the following
characteristics in an enterprise integration solution:

• Open architecture:
An open architecture,
independent of underly-
ing programming lan-
guages, and application
platforms. Th e archi-
tecture should focus
on allowing systems to
communicate in a loosely coupled fashion, allow-
ing any application or system to map its own
internal architecture to well defi ned external
interfaces. Ronan Bradley writes, “It is with the
introduction of ‘loosely coupled’ architectures
that SOA has emerged as a truly viable means of
delivering business and IT agility. In a loosely
coupled system, each service simply presents
a standard interface to a common infrastruc-
ture (the SOA itself). Implementation is hidden
behind this interface, and as a consequence ser-
vices can be swapped, adapted or reconfi gured
at will—hence the term loosely coupled; there is
no tight link between the service implementation
and the client requesting that service.” 26

• Layered model: Use of a layered model, with
hierarchy and modularity to support the com-
position of smaller services in the creation of
a larger and more fully functional service. Th e
invocation of one service may lead to the invoca-
tion of other services that execute parts of the
larger service request.

• Exploit standards implemented in COTS:
Maximize use of current and emerging
commercial-off -the-shelf (COTS) standards,
technologies, and products. Minimize cus-
tomization and modifi cation of commercial
products and focus research and development
activity on unique organization missions and
requirements. Services should be designed with
minimal dependence on vendor proprietary
implementations.

• Scale to global proportions: Th e architecture
of the EAI integration layer needs to support
graceful scaling to larger implementations

Web Services,
as a set of

implementing
standards for

SOA, offer
new value to
the engineer

attempting
large-scale
application
integration.

with increased service
capacity.

• End-to-end manage-
ment: Services must be
manageable, both in
terms of their own status
and performance, and in
their interactions with
other services. Using
contemporary virtual-
ization best practices,
they should provide the
means to be created,
operated, and deployed
in response to demand
and operational needs.

• Accommodate hetero-
geneity: Services must
accommodate diff erent
development models and
languages. Anne Manes wrote of Web Services,
“Th e fi rst and most obvious bell ringer is the
need to connect applications from incompatible
environments, such as Windows and UNIX, or
.NET and J2EE. Web services support heteroge-
neous integration. Th ey support any program-
ming language on any platform. One thing that’s
particularly useful about Web services is that you
can use any Web services client environment to
talk to any Web services server environment.” 27

• Accommodate continual asynchronous change:
Th e scope of the IT infrastructure for large
organizations ensures that there will always
be changes occurring in some services. It will
not be feasible to synchronize service changes
and still remain responsive to changing user
needs. Modifi cations to one service must not
break the connections to other applications. It
is unlikely that releases of new service builds
will be coordinated across service providers. Of
course, there will be a good deal of coordination
between service providers and their current list
of consumers.

• Allow decentralized operations and manage-
ment: Th ere will be many service providers in a
large organization. An enterprise solution should
support federation and interaction among the
diff erent parts comprising an end-to-end service
off ering.

• Integrated, layered security: Applications
require a robust security framework that

10 Service-Oriented Architecture

accommodates the full spectrum of security
services including authentication, authorization,
integrity, confi dentiality, and accountability.

SOA can be considered another important step in a
30-year history of EAI technologies. “SOA eliminates
the traditional ‘spaghetti’ architecture that requires
many interconnected systems to solve a single prob-
lem.” 28 SOA’s ability to run logic and functions from
across a network is not new. Recent examples include
Enterprise JavaBeans (EJB) by Sun Microsystems
Inc., Common Object Request Broker Architecture
(CORBA) by the Object Management Group, and
Component Object Model (COM), Distributed
Component Object Model (DCOM), and .NET from
the Microsoft Corporation. Th e various methods
have diff ered in the ease with which integration
could occur from a programmer’s point of view,
the methods for conveying runtime errors, ports
required to be open on a network, the quantity of
enterprise equipment to operate, and general design
approaches to fault tolerance when failures occur.

SOA as an integration concept, and Web Services
as a set of implementing standards, off er something
new to the EAI engineer. First and foremost, as
described above, SOA Web Service implementations
off er a language-neutral, platform-neutral means
to connect services and systems. DM Review stated,
“SOA provides the key to unlocking integration,

by providing an enterprise-
wide architectural approach
to bridging applications and
promoting a set of standards
for rich interoperability. It’s
only a matter of time before
this fl exible way of thinking
about applications makes
integration technology a
natural, fundamental aspect
of IT infrastructure.” 29

Web Services also ease a
signifi cant enterprise inte-
gration challenge by utiliz-
ing common communica-
tions ports for integration.
Individual Web Services
are accessed through web
servers, a common element
in contemporary IT infra-
structures. Th e key point here

“SOA is
currently

implemented
through a

complex set
of sometimes

overlapping
standards,

each supported
by different

large Industry
partners.”

is that the ports and protocols to access web servers
are usually already defi ned (e.g., port 80 HTTP),
and open across an organization, both in policy and
implementation. Th is means that the fi rewalls and
access control points are more likely to be friendly to
this type of data exchange, as compared to suggest-
ing that an organization open up a whole new set of
ports and protocols for integration.

Enterprise SOA Standards

Th e need for enterprise standards—SOA pro-
grams are most oft en enterprise-level endeavors
involving “teams of teams” who control “systems
of systems.”
Personnel expe-
rience ranges
from experts
in the organi-
zation’s data
sources and leg-
acy systems, to
EAI engineers
with exper-
tise in large-scale integration. Oft en teams in large
enterprises are physically dispersed. Th is makes the
ability to communicate the design and architecture
specifi cations of a component an important organi-
zational capability.

In this context, where many components are being
simultaneously developed by individual teams, it
becomes critical for the interface of a provider’s ser-
vice to match up to the call of a consumer. Similarly,
it helps everyone involved if the interfaces across
services have some commonality in structure and
access mechanisms. Th e worst case would be a situ-
ation where programmer teams had to have individ-
ual staff meetings to understand interface designs
with service providers every time they wanted
to invoke a new service. In that situation, agility
will slow to the speed of organizational dynamics,
instead of the speed of coding and testing processes.
Choosing and communicating a comprehensive set
of enterprise standards is a good approach to aid in
enterprise SOA integration.

Example enterprise standards—Enterprise
standards to support SOA fall into several general
categories, and a typical enterprise set might look
like the table below.

 Leveraging Federal IT Investment Using SOA 11

Th e current state of Web Service standards—
At this time, despite the few selected in the table
below, Web Service standards as a whole remain
in fl ux. InfoQ writes, “A fl urry of protocols, col-
lectively named WS*, have also been introduced as
extensions to SOAP30 (and in some cases WSDL)
to facilitate specifi c communication requirements
and scenarios. Th e categories of WS* are broad,
and it has reached a point where the sheer num-
ber of standards is so great that despite a core set
being implemented in many platforms, many in the

web service community are confused about which
standards they should care about, when and why.”

31 Consequently, while it is a valuable eff ort to select
a group of standards for enterprise integration as
shown in the table above, we can reasonably expect
many revisions to this list in the next fi ve years.
Th ese revisions will ripple through the commu-
nity of service providers that work to comply with
selected enterprise standards and the revisions will
have attendant development costs.

Web Services Related

URI Uniform Resource Identifi er (URI): Generic Syntax, January 2005

WSDL Web Services Description Language (WSDL) 1.1, W3C Note, 15 March 2001

SOAP Simple Object Access Protocol (SOAP) 1.1, W3C Note, 8 May 2000

HTTP Hypertext Transfer Protocol (HTTP) 1.1, June 1999. IETF RFC 2616

Network/Network Management Related

TCP Transmission Control Protocol (TCP), September 1981, IETF Standard 7/RFC 793

IP Internet Protocol (IP), September 1981. IETF Standard 5 with RFC’s 791/950/919/922/792/1112

SNMP Simple Network Management Protocol (SNMP), May 1990. IETF Standard 15/RFC 1157

Security Related

SAML v2.0 SAML 2.0 OASIS Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0,
OASIS Standard, 15 March 2005

PKI X.509 Public Key Infrastructure Certifi cate

PKI CRL X.509 Public Key Infrastructure Certifi cate and Certifi cate Revocation List (CRL) Profi le, April 2002. IETF RFC
3280.

WS-Security Web Services Security: SOAP Message Security 1.0 (WS-Security 2004), OASIS Standard, March 2004.

SSL v3.0 Secure Sockets Layer (SSL) Version 3.0

XACML eXtensible Access Control Markup Language (XACML) Version 2.0, OASIS Standard, 1 February 2005

OCSP Online Certifi cate Status Protocol (OCSP), RFC 2560, June 1999

Registry/Directory

UDDI v3.0.2 Universal Description, Discovery, and Integration Version 3.0.2 OASIS UDDI Spec, Dated 2004-Oct-19

LDAP v3.0 Lightweight Directory Access Protocol (v3): Technical Specifi cation; September 2002

Data Standards

XML Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation 04 February 2004

XSLT XSL Transformations (XSLT) Version 2.0, W3C Working Draft 4 April 2005

XPath XML Path Language (XPath) 2.0, W3C Recommendation 23 January 2007

Syndication

RSS v2.0 Really Simple Syndication (RSS) Version 2.0

Presentation Related

HTML HTML 4.01 Specifi cation, W3C Recommendation, revised, 24 Dec 1999

CSS CSS2:1998 Cascading Style Sheets, level 2 CSS2 Specifi cation, W3C Recommendation 12 May 1998

WSRP WSRP OASIS; OASIS Web Services for Remote Portlets Specifi cation, August 2003

JSR-168 JSR-168; Java Specifi cation Request (JSR) JSR-168, Portlet Specifi cation API, Final Release ballot, Version 1.0,
06 October 2003

12 Service-Oriented Architecture

Where Does SOA Best Apply?

Th e Web Service technologies commonly used today
to implement SOA concepts have certain design
presumptions. Th ey work best when the underly-
ing network is robust, reliable, and available. Web
Service standards have become an area of focus at
this point in computing history because it is now
conceivable to trust corporate networks in the con-
tinental United States to the task of running remote
services with reasonable success. Fundamentally,
Web Services allow the programmer to invoke code
and application logic across the network, with input
and output information. If the application under
development is central to the mission of the organi-
zation, the network has to be suffi cient to facilitate
communication between the service provider and
consumer. Th is is not to say that any defi ciency in
the underlying network cannot be compensated for
by thoughtful engineering and the use of standard
queuing and buff ering communications methods.
However, these approaches and standard design
patterns to compensate for the underlying network
will take a project further from the mainstream
commercial implementations of Web Services.
Several Federal projects work in environments
where the underlying network is not on par with
the CONUS corporate Internet, and those projects
assume greater risk in diverging from mainstream
standards in order to implement SOA. Web Services
assume a reasonable network.

Unreliable or low-
bandwidth net-
works—Th ere are
several characteristics
that are important
to defi ning the qual-
ity of the underlying
network. Th e network
can fail a Web Service
implementation for
several reasons such
as, but not limited to:

• Bandwidth: Insuffi cient bandwidth to carry
the large (and oft en ineffi cient) XML payloads
between service provider and consumer within
desired performance requirements.

• Reliability: Network components that lose a suf-
fi cient portion of the IP packets between a ser-

vice provider and consumer so that performance
requirements are not met.

• Intermittent communications: Sporadic com-
munication between the service provider and
consumer that turns what might have been a
rapid request/response pair into a form of buff -
ered asynchronous communications.

In these cases compensating soft ware designs can
be put in place to make up for the defi ciencies in
the underlying networks. Traditional methods to
compensate for poor communications include extra
error checking and error recovery logic, including
the ability to retransmit messages or parts of mes-
sages when needed, and the ability to queue com-
munications in buff ering architectures until one
of the parties can attend to it. For example, a web
server off ering standard HTTP on port 80 out of the
box will not perform all these compensating func-
tions. Th ese designs will take the engineer further
from the common commercial implementations of
Web Services and make the application of COTS
products less likely. In some extreme environments,
such as the forward edge of a battle fi eld, diverging
from commercial products will be required, and
that alone should not stop designers from being
service oriented. However, we must recognize
that as the soft ware system becomes less based on
industry standard approaches and patterns, and
becomes more of a one-off custom design solution
for one problem space, the risk profi le for the project
changes.

High reliability requirements—However, it’s
not just the extreme network cases in which Web
Services off er some concern. Mary Brandel astutely
points out that, “Before mission-critical Web
services applications enter the mainstream, reli-
able messaging will have to become less complex
and costly.” 32 As discussed above, Web Services are
being used as an integration tool by many organi-
zations, and consequently they are being directly
compared to many existing highly robust integra-
tion tools. For example, integration brokers are used
in the banking industry to transfer large sums of
money. Th is is an area where the soft ware cannot
get it wrong, and consequently the capabilities for
assured delivery and non-repudiation are mature.
Th ere are ongoing attempts by several of the Web
Services standards bodies to replicate these capabili-
ties in standards that hope to be broadly adopted
by industry. It is safe to say that given current Web

 Leveraging Federal IT Investment Using SOA 13

SD
Prof ess ion al

Works t ation

6000

PR O SD

SD

E SC

DL T

PR O LI A NT 8000

Consumer Service
Provider

H H H

S D S D

H

Firewall Firewall

SD

Catalyst
85 0 0 Pow er

Sup ply

0CISC O

YSTE M SS Power

Su ppl y

1

Switch Proc es s or
SE RIES

H

SD
Cat al y s t
8 5 0 0 Pow e r

Supp ly

0 CI S CO

YSTEMSS Power

Supply

1
S w it c hP r oc ess o r

SE RIES

H

Router Router

SDD EFIN ITY

034 SD DEF IN I TY

034 SDD EFI NITY

03 4
H H H

Switches

Service implementations, very high reliability deliv-
ery mechanisms are not suffi cient. Of course, as was
mentioned in the network discussion, thoughtful
engineering can compensate for these issues, but the
solutions become non-standard.

Real-time processing requirements—Given the
state of contemporary Web Service technologies,
real-time processing is a signifi cant challenge. Th ere
are several performance issues with Web Services
and the underlying premise of running services
across a network. Performance challenges can
include the marshaling of XML data, network prop-
agation delays, and the underlying security design
pattern especially in the area of services calling ser-
vices, or service chaining. And while the defi nition
of “real-time” can vary, the problems outlined below
aff ect most classes of real-time systems.

For example, several
large-scale projects
have reported that the
marshaling of data,
both in and out of
Web Service calls, and
rendering XML is a low-
performance activity.34

Converting organically
binary data into ASCII
formats for inclusion
in XML is prohibitively
slow for many real-time
applications. Anne
Manes writes, “XML is
tremendously versatile,
but it isn’t the most com-
pact or effi cient mecha-
nism for transferring

“You want to be
cautious when

trying to use
Web services

in situations
with stringent
requirements
for real-time

performance.”
—Anne Thomas

Manes 33

data. A SOAP message is much bigger than a com-
parable native binary message used with RPC, RMI,
CORBA, or DCOM. It also takes a lot more time to
process an XML message than a binary message.
Even with the best-performing implementations,
SOAP messaging can take 10 to 20 times longer
than RMI or DCOM.” 35

Web Service technologies share challenges that have
existed for years with large distributed systems. On
a contemporary IP network, the distance from a
service provider to a service consumer is measured
in “hops.” As shown in the inset fi gure, at each hop,
time is spent performing some action on a packet,
such as routing it, or inspecting its contents. Some
hops are fast (low latency), such as switches, while
some hops are very slow (high latency), such as fi re-
walls with content checking rules. Th irty or more
hops would not be unusual for a typical packet. In
total these hops add up to some network propaga-
tion delay from the point of view of the service-level
soft ware. Th e number and types of hops from the
provider to the consumer directly aff ects perceived
performance of the service.

Even though the service provider oft en cannot
control the wide area network (WAN), the ability to
eff ectively run a service is impacted by the service
provider’s location on the network topology. In the
commercial world, service providers pay extra fees
to host their servers a minimum number of hops
off of the main IP exchange points on the Internet.
Finally, also consider that the IP-based Internet is
dynamically routed. Th is means that from moment
to moment, and day to day, the path that the IP
packet must take will change. For all these reasons,
running services across a network can be risky for
real-time applications.

14 Service-Oriented Architecture

An oft en overlooked point is that performance of
each service provider is localized and unknown to
the consumer, moment to moment. For example,
a world event may cause thousands of end users to
start their browsers and cause a particular service
to be launched. All these service calls will come into
the same service at about the same time. Each end
user does not know that the same query might run
a hundred times faster at another moment, but due
to resource contention, the response will be momen-
tarily poor.
In this sense,
the con-
sumer does
not know,
moment to
moment, the
status of the
provider. Th ere are local and global load balancing
approaches that service providers put in place to
compensate for this issue, but overall it is another
reason why performance for real-time applications
can be unpredictable.

Security designs can induce signifi cant performance
delays. For example, if a service access requires PKI
validation, then a set of information exchanges must
occur between the provider and a credential holder.
Each of these exchanges occurs in the context of a
dynamically routed, multi-hop packet exchange as
described previously. In some enterprise designs,
a service calling a service (service chaining) can
initiate the same security information exchange.
Many real-time applications could not successfully
operate given the time required for all these security
exchanges.

Performance implications, such as those discussed
above, impact the design approach to services. For
example, if the overhead to invoke a service across
the network is substantial, between getting the
data to the service, and consulting security, then it
might make sense to have the service do more once
it is running. Th is is the basic discussion of service
granularity. Should you have a few bigger services or
many little services?

SOA-Based Agility

When we discuss “agility” as it relates to SOA, we
are oft en referring to organizational agility, or the

ability to more rapidly
adapt a Federal organiza-
tion’s tools to meet their
current requirements. SOA
World magazine explains,
“Th e goal of IT is to put
valuable systems in front
of our users in a timely
manner. Deploying and
redeploying in a short
time frame is essential to
achieving agility.” 36 Th e
organization’s require-
ments of IT might change
over time for a number of
reasons including changes
in the mission, changes in
organizational reporting
requirements, changes in
the law, new technologies
in the commercial market-
place, attempts to combine
diverse data sources to
improve the organization’s operational picture, and
many other reasons. Advocates of SOA assert that, as
compared to previous enterprise integration tech-
nologies, Web Services off er a more agile manner of
interconnecting systems, and improve an organiza-
tion’s ability to retool IT to support change.

Agility is most eff ectively discussed as a spec-
trum, not a true/false boolean value, and it can be
assessed as change over a period of time. Th e SOA
Infrastructure Blog recently stated, “Effi ciency is
optimizing for the known. Agility is optimizing for
the unknown (i.e., optimizing your future effi -
ciency)” 38 Many of the IT requirements an organi-
zation will fulfi ll in the next decade are not known
at this time. Also consider that systems have a habit
of living on for much longer than their original
creators anticipate. And while we cannot anticipate
all the requirements a soft ware system will someday
fulfi ll, or all the data sources the system will some-
day need to either consume or produce, it is safe to
say that working with defi ned, standards-based,
bounded components is easier than monolithic one-
off solutions.

An example of agility—Claiming that component-
based services off er more organizational agility
requires you to compare this approach to a pre-
vious method. For example, for the purposes of

“The fact of the
matter is that

the core benefi t
of SOA is agility.

If you have
agility, then you
have the ability
to change the
architecture as

the business
needs changes.”
—David Linthicum37

 Leveraging Federal IT Investment Using SOA 15

comparison, when considering a Web Service as
an integration method to exchange data between
systems, consider that many of the legacy interfaces
between Federal systems are one-off negotiated
point-to-point data exchanges. A common exchange
method is to send an ASCII fi le with uniquely
formatted data, at a pre-defi ned mutually agreed
non-peak time of day. Th is legacy point-to-point
interface between a data producer system and a data
consuming system is labor intensive to code, oft en
requires many staff meetings between both par-
ties to implement, probably does not use standard
representations for data, and oft en is not well docu-
mented. If the consuming system should decide to
move to another source for the data, the amount
of rework is substantial, and the speed of change
will not be rapid, and this approach could be fairly
tagged as less agile.

In contrast, an organization facing the same data
exchange requirements could establish and social-
ize a data format defi ned by standard XML. A
Web Service that off ers that defi ned XML can be
made operational through a web server and run
on a nearly 24x7 basis, using SOAP and HTTP. A
description of the service can be made available in
a service registry for the entire organization to use.
Finally, a service-level agreement (SLA), defi ning
organizational commitments to service perfor-
mance, can be developed and off ered to all potential
service consumers. With this overall approach a
better documented, standards-based interface is
created, and the organization as a whole can more
quickly make use of this data source.

Agility in an SOA
context is enhanced
by the following
characteristics:

• Architectural
commonality
among services:
Th is is best
enabled by having
a common set of
enterprise-defi ned
standards within
which to off er services as described above.
Th e worst case scenario requires the caller of a
service function to have to call each provider
and negotiate a one-off agreement or technical
explanation when trying to invoke a service.

• Ability to clearly defi ne a service interface:
Being able to defi ne the inputs, outputs, and
expected behavior and performance of a service
is crucial to helping consumer technical staff
rapidly invoke a service.

• Ability to fi nd a service: Services live on URI
endpoints on the IP network. It is inevitable that
during the lifetime of a service these endpoints
will change. A common method for sharing
information on off ered services is a service
registry. Th e community of consumers will
require some common means of sharing service
information.

Th e larger promise of an enterprise SOA is that once
a suffi cient quantity of legacy-wrapped components
exists, and is accessible on the IP wide area network
(WAN), the components can be reconnected more
rapidly to solve new problems. SOA World magazine
stated, “Marketing bologna aside, agility is directly
related to the time and eff ort required to create new
functions or to modify existing functions—and then
to re-release those functions to the customers.” 39
Well-defi ned SOA components allow programmers
to more rapidly assemble components, as com-
pared to one-off interfaces of the past. Russ Abbott
writes, “We tend to build systems hierarchically.
We formulate a top-level design that meets top-level
requirements and then determine what components
we need to implement it. We then decide how to
build the components in terms of sub-components,
etc. Th is approach doesn’t take advantage of existing
products and services except when we use standard
parts—and we do that too rarely.” 40

Probably Less Agile Probably More Agile

A point-to-point one-
off negotiated interface
between two specifi c
systems

A general standards-based
interface for a community

A user-formatted ASCII data
fi le

XML formatted data with a
schema

A custom data exchange
designed in the 1980’s by
staff who have retired

A Web Service standards-
based function call

A data exchange
understood by two
programmers at a time

A data exchange used
by 50 organizations with
published documentation
in a searchable registry

A custom data fi le
exchanged at 1:00 a.m.
when computer usage is low

A function available 24x7
on scaled redundant
servers

16 Service-Oriented Architecture

Federal organizational agility will have a lot to
do with the ease with which components can be
found and recombined over the next decade. Dion
Hinchcliff e blogs, “An important reason why the
Web is now the world’s biggest and most impor-
tant computing platform is that people providing
soft ware over the Internet are starting to understand
the law of unintended uses. Great websites no longer
limit themselves to just the user interface they
provide. Th ey also open up their functionality and
data to anyone who wants to use their services as
their own. Th is allows people to reuse, and re-reuse
a thousand times over, another service’s functional-
ity in their own soft ware for whatever reasons they
want, in ways that couldn’t be predicted. Th e future
of soft ware is going to be combining the services in
the global service landscape into new, innovative
applications.” 41

Reaping the Benefi ts of
SOA

A historic analogy—
Interstate 95 (I-95), a 1,927-
mile highway on the East
Coast of the United States,
was established by the
Eisenhower administration
with the Federal Highway
Act of 1956 as a key piece
of our national infrastruc-
ture.42 Th e highway, and
its considerable acquisition
and construction expense,
had two central purposes.
First, the highway was to
enable greater commerce,
supporting the more effi -
cient exchange of goods.
Second, it supported the
nation’s defense by more
effi ciently allowing the
movement of troops and
their supporting equip-

ment and supplies during the early Cold War. Th e
parallel road, Route 1, which was at several points
a single lane road and lined with small towns, was
an alternative route at the time. Analyses during the
late 1990s estimated that for every dollar spent on
I-95, seven dollars have been returned to the general

Who is the key
benefi ciary

of SOA? Do
individual legacy
software projects
benefi t, or does

the enterprise
as a whole

benefi t? Are the
interests of the

software Project
Leader and the
CIO the same?

economy, in addition to the improved national
defense characteristics that were provided. In retro-
spect I-95 seems to have been a good investment.

However, if in 1950 we took the approach of asking
any of the small 4,000-person towns along Route
1, would they pay for a fi ve- to ten-lane highway
and an off ramp
to their town,
most would fi nd
their local town
budgets orders
of magnitude
too small for
such a project,
and many might
not even want
to attempt it, as
nearby Route 1 was already suffi cient and in place.
Th e interests of the “enterprise” and of the local
towns did not necessarily align.

We can now more clearly estimate the economic
benefi ts that many of these towns have accumulated
since 1950 as a result of this large infrastructure
expenditure. And we can also see the enabling
eff ects of a more effi cient exchange of goods to the
larger economy. Infrastructure spending enabled
exchange on a larger scale with less “friction.”
Analogously, we expect that IT infrastructure
spending enables the agile exchange of information
in an SOA.

Similarly, eff orts that benefi t the CIO’s enterprise,
and look good to the senior leadership team of an
organization, do not necessarily benefi t the small
soft ware projects in an agency. Transitioning a
legacy application to include a set of Web Services,
and putting the services in place with a robust infra-
structure of redundant 24x7 reliable servers with
full support as well as a service discovery mecha-
nism, is an expensive task, hopefully enabled by
enterprise-level infrastructure eff orts. For example,
SOA with contemporary Web Service implementa-
tions is directly enabled by the quality of the under-
lying IP network, and the server redundancy of the
Web Service off erings. Real Web Service implemen-
tations oft en require multiple tiers of servers, such
as Web Servers, logic servers, and databases, to all
operate reliably to fulfi ll a mission.

If as a result of creating a good service, an individual
project then picks up many more consumers than it

 Leveraging Federal IT Investment Using SOA 17

had previously, then clearly the day-to-day demands
on the project’s IT infrastructure increase. Th e com-
mon result of service success is higher local opera-
tional costs. At the enterprise level, this is a benefi t
because it means that more customers are reusing
the same shared services instead of rebuilding them.
Th e leadership team should be pleased. But the
individual Federal soft ware system project leader
is likely to be on a fi xed budget that may have been
established well before the dynamic nature of the
SOA producer/consumer model was noticed. And
while a commercial corporation can be more nimble
in responding to rapid usage changes, Federal pro-
grams can be less quick to measure and respond to
such changes.

In summary, the local perspective of individual
legacy projects will not justify an enterprise SOA
eff ort, but this should not be allowed to stop the
enterprise SOA from occurring. Th e SOA benefi ts
accrue largely at the enterprise’s level in cost avoid-
ance through reuse, and increased data exchange
and agility. Consequently, a corresponding invest-
ment is required at the enterprise level, where the
benefi t is found.

Enterprise standards compliance—Another
interesting enterprise characteristic of SOA and I-95
is that both rely on standards compliance. Federal
funding is the chief motivator for compliance with
Federal standards for highways. “Th e American
Association of State Highway and Transportation
Offi cials (AASHTO) has defi ned a set of standards
that all new Interstates must meet unless a waiver
from the Federal Highway Administration (FHWA)
is obtained. Th ese standards have become more
strict over the years…. Th e dominant role of the
Federal government in road fi nance has enabled it
to achieve legislative goals that fall outside its power
to regulate interstate commerce. By threatening to
withhold highway funds, the Federal government
has been able to stimulate state legislatures to pass a
variety of laws.” 43

Standards compliance has obvious benefi ts for a
highway system and a set of enterprise services. As
discussed above, Web Services can be defi ned by
a set of industry standards that form a common
framework for implementation. One of the chief
concerns in this area are the standards and mecha-
nisms established for security. Consequently, estab-
lishing the standards and a governance mechanism
is a key part of implementing an enterprise SOA.

Agility is engendered by architecture commonality,
which eases reuse across a large organization.

SOA market models—
Senior leadership teams in
large organizations oft en
fi nd themselves consid-
ering the philosophi-
cal underpinnings and
organizational dynamics
of IT portfolio manage-
ment. In this fi nal analogy,
the SOA eff ort is discussed
as an example of a market
economy or a command
economy. In practice,
some mixture of the two
approaches is most oft en
needed. For example,
individual service provid-
ers, who have the deep-
est understanding of
their customers and data
sources, must be allowed
to off er the services that
make sense from their
market-oriented point of
view. Th ey can off er services that match their cus-
tomer’s needs, and they can enjoy the success of cor-
rectly matching customer requirements or endure
the consequences of forecasting incorrectly. Th e
enterprise CIO must also ensure from a command
point of view that the enterprise has a reasonable IT
portfolio, gaps in services capabilities are being fi lled
somewhere in the organization, and architectural
commonality is being preserved. Successful SOA
eff orts will support innovation by the participants,
while also ensuring a comprehensive set of reused
services and standards compliance. Th e challenge is
fi nding the balance.

Conclusion

SOA off ers Federal leadership teams a means to
eff ectively leverage decades of IT investment, while
providing a growth path for new capabilities.
Contemporary SOA technologies, such as the Web
Services standards, off er valuable new capabilities
such as language-neutral integration, yet still require
structured engineering processes and well-defi ned
acquisitions, and enterprise portfolio management.

Natural ecologies
and market

economies are
both examples

of what we
call innovative
environments.

The fundamental
principle is that
new things are
built on top of

existing things.
—Russ Abbott 45

18 Service-Oriented Architecture

Th e Science of Computer Programming journal
stated, “Executives of large organizations with sub-
stantial IT budgets learned the hard way that spend-
ing more is not the winning strategy. Some of them
realized that aft er a long string of staggering IT
investments plus their challenges, they must start to
control their IT portfolios.” 44 SOA provides a tech-
nical underpinning for structuring portfolios as a
collection of discrete services, each with a defi nable
customer base, acquisition strategy, performance
levels, and a measurable operational cost.

A key current challenge for many Federal organiza-
tions is the structuring of their IT portfolio around
a component-based service model and enforcing
suffi cient standards within their own organiza-
tional boundaries, which can be quite large. As the
span of attempted integration continues to grow,
the challenge of the next 10 years will be enabling
that integration model to bridge multiple external
organizations that undoubtedly will be using dispa-
rate standards and tools. Aft er the fi rst generation
of standards-based service integrations has passed,
and portfolios become defi ned, process driven, and
manageable, translation and brokering will be the
next set of key cross-enterprise services.

 Leveraging Federal IT Investment Using SOA 19

Acronyms
Acronym Defi nition

AASHTO American Association of State Highway and Transportation Offi cials

ASCII American Standard Code for Information Interchange

CSS Cascading Style Sheets

CICS Customer Information Control System

CIO Chief Information Offi cer

CORBA Common Object Request Broker Architecture

COM Component Object Model

COTS Commercial-Off-The-Shelf

CRL Certifi cate Revocation List

DCOM Distributed Component Object Model

DoD Department of Defense

EAI Enterprise Application Integration

EJB Enterprise JavaBeans

FHWA Federal Highway Administration

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IC Integrated Circuit

IP Internet Protocol

IT Information Technology

JSR Java Specifi cation Request

LDAP Lightweight Directory Access Protocol

OCSP Online Certifi cate Status Protocol

OMB Offi ce of Management and Budget

PBSC Performance-Based Service Contracting

PKI Public Key Infrastructure

PWS Performance Work Statement

SAML Security Assertion Markup Language

SLA Service-Level Agreement

SLOC Service Lines of Code

SNMP Simple Network Management Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

TCP Transmission Control Protocol

RCR Relative Cost of Reuse

RCWR Relative Cost of Writing For Reuse

RSS Really Simple Syndication

UDDI Universal Description, Discovery, and Integration

URI Uniform Resource Identifi er

WAN Wide Area Network

WS* Web Services Standards

WSDL Web Services Description Language

WSRP Web Services for Remote Portlets

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

XPath XML Path Language

20 Service-Oriented Architecture

References
1 David Linthicum, “Enterprise Application Integration,”

http://safari.oreilly.com/0201615835 November 12, 1999

2 Loosely Coupled, David Longworth, “Service reuse unlocks hidden value”
http://www.looselycoupled.com/stories/2003/reuse-ca0929.html 29 Sept. 2003

3 Wikipedia, “Rosetta Stone,”
http://en.wikipedia.org/wiki/Rosetta_stone 28 March 2008

4 Peter Fingar et al., “Next Generation Computing: Distributed Objects for Business,” SIGS Books & Multimedia, New York, 1996

5 Internet World Magazine, David Litwack, “Web Services Has the Biggest Hype Machine Behind it of any Technology Today. Here is
Why You Should Be Excited Anyway”
http://iw.com/magazine.php?inc=060102/06.01.02ebusiness1.html 1 June 2002

6 GDS InfoCentre, Ronan Bradley, “Agile Infrastructures”
http://gdsinternational.com/infocentre/artsum.asp?mag=184&iss=150&art=25901&lang=en 28 March 2008

7 Intel, “How Chips Are Made”,
http://www.intel.com/education/makingchips/preparation.htm 28 March 2008

8 Design World, Electronic Design, C. Panasuk, “Silicon Compilers Make Sweeping Changes in the VLSI,” Sept. 20 1984, pp. 67-74.

9 Jeff rey Poulin, “Th e ROI of SOA Relative to Traditional Component Reuse,” Logic Library, 2006

10 Programmable Web, “Mashup Dashboard,”
http://www.programmableweb.com/mashups 28 March 2008

11 International Genetically Engineered Machine Competition (IGEM), “Registry of Standard Biological Parts,”
http://parts.mit.edu/registry/index.php/Main_Page 28 March 2008

12 Department of Defense, Ada Joint Program Offi ce, “Ada 95 Quality and Style Guide,”
http://www.adaic.com/docs/95style/html/sec_8/ 28 March 2008

13 Boehm, B. W., et al. “An environment for improving soft ware productivity.” Computer, June 1984.

14 Ada Joint Program Offi ce

15 Will. Traez “Soft ware Reuse: Motivators and lnhibitors.” Proceedings of COMPCON S’87, 1987.

16 Progress Actional, “Web Services and Reuse”
http://www.actional.com/resources/whitepapers/SOA-Worst-Practices-Vol-I/Web-Services-Reuse.html 28 March 2008

17 Eric Roch, “SOA Service Reuse”
http://blogs.ittoolbox.com/eai/business/archives/SOA-Service-Reuse—14699 28 March 2008

18 ZDnet, Joe McKendrick, “Pouring cold water on SOA ‘reuse’ mantra”
http://blogs.zdnet.com/service-oriented/?p=699 30 August 2006

19 Eric Roch, “SOA Service Reuse”
http://blogs.ittoolbox.com/eai/business/archives/SOA-Service-Reuse—14699 28 March 2008

20 Progress Actional, “Web Services and Reuse”
http://www.actional.com/resources/whitepapers/SOA-Worst-Practices-Vol-I/Web-Services-Reuse.html 28 March 2008

21 Barry Boehm, DARPA Workshop, “Soft ware Reuse Economics”
http://sunset.usc.edu/GSAW/gsaw99/pdf-presentations/breakout-2/boehm.pdf 14 January 1997

22 Jeff ery Poulin, “Th e ROI of SOA Relative to Traditional Component Reuse,” Logic Library, 2006

23 Offi ce of Management and Budget, Offi ce of Federal Procurement, “Policy Performance-Based Service Acquisition,”
http://www.whitehouse.gov/omb/procurement/0703pbsat.pdf July 2003

 Leveraging Federal IT Investment Using SOA 21

24 Ibid.

25 Wikipedia, “Enterprise Application Integration,”
http://en.wikipedia.org/wiki/Enterprise_application_integration 28 March 2008

26 GDS InfoCentre, Ronan Bradley, “Agile Infrastructures,”
http://gdsinternational.com/infocentre/artsum.asp?mag=184&iss=150&art=25901&lang=en

27 Computer World, Anne Th omas Manes, “When to Use Web Services,”
http://www.computerworld.com/printthis/2004/0,4814,94886,00.html 16 August 2004

28 Ebiz, Dr. Chris Harding, “Achieving Business Agility through Model-Driven SOA”
http://www.ebizq.net/topics/soa/features/6639.html 29 January 2006

29 DM Review, Integration Consortium, “Integration Everywhere – How SOA is Altering the Direction of EAI - Th oughts from the EAI
Consortium”
http://www.dmreview.com/news/8229-1.html 4 March 2004

30 Note that SOAP is no longer considered an acronym. For more information, see
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/#L1153

31 InfoQ, Michele Leroux Bustamante, “Making Sense of all these Crazy Web Service Standards,”
http://www.infoq.com/articles/ws-standards-wcf-bustamante 16 May 2007

32 Computer World, Mary Brandel, “Message Received? Companies that require highly reliable Web services are building in their own
guarantees”
http://www.computerworld.com/action/article.do?command=viewArticleTOC&specialReportId=620&articleId=95221

33 Computer World, Anne Th omas Manes, “When to Use Web Services,”
http://www.computerworld.com/printthis/2004/0,4814,94886,00.html 16 August 2004

34 PushToTest, Frank Cohen, “Discover SOAP encoding’s impact on Web service performance”
http://www.ibm.com/developerworks/webservices/library/ws-soapenc/ 1 March 2003

35 Computer World, Anne Th omas Manes, “When to Use Web Services,”
http://www.computerworld.com/printthis/2004/0,4814,94886,00.html 16 August 2004

36 SOA World Magazine, Jeff Schneider, “SOA Web Services: Does Your SOA Achieve Agility?”
http://webservices.sys-con.com/read/143900_2.htm 10 November 2005

37 David Linthicum, “Real World SOA”
http://weblog.infoworld.com/realworldsoa/archives/2007/11/using_it_backlo.html?source=rss 28 March, 2008

38 SOA Infrastructure Blog, Dan Foody, “So what is SOA agility anyway?”
http://blogs.progress.com/soa_infrastructure/2007/08/what-is-agility.html 29 August 2007

39 SOA World Magazine, Jeff Schneider, “SOA Web Services: Does Your SOA Achieve Agility?”
http://webservices.sys-con.com/read/143900.htm 10 November 2005

40 Russ Abbott, “Putting Complex Systems to Work”
http://64.233.169.104/search?q=cache:wunzA2V5_l8J:cs.calstatela.edu/wiki/images/7/7e/Abbott.doc 28 March 2008

41 Social Computing Magazine, Dion Hinchcliff e, “Social Aggregators Emerge To Manage Digital Lifestyles”
http://web2.socialcomputingmagazine.com/ 28 March 2008

42 Wikipedia, “Interstate Highway System”
http://en.wikipedia.org/wiki/Interstate_Highway_System 28 March 2008

43 Ibid.

44 C. Verhoef, “Quantitative IT Portfolio Management”, Science of Computer Programming, Volume 45 Issue 1
http://www.cs.vu.nl/~x/ipm/ipm.pdf 28 March 2008

45 Russ Abbott, “Putting Complex Systems to Work”
http://64.233.169.104/search?q=cache:wunzA2V5_l8J:cs.calstatela.edu/wiki/images/7/7e/Abbott.doc 28 March 2008

22 Service-Oriented Architecture

Additional Photo Credits
Inset photos used under license from iStockPhoto.com

Except the following:

 Page 4: Rosetta Stone, Public Domain - Wikipedia

 Page 11: Black Box photo – used with permission of Performance Trends Inc.
http://www.performancetrends.com/

 Page 18: President Eisenhower with Clay Commission photo – courtesy of the Eisenhower Presidential Library and the National Park
Service – used with permission
http://www.eisenhower.utexas.edu/

MITRE
www.mitre.org

©2009 Th e MITRE Corporation
All Rights Reserved

Approved for Public Release
Distribution Unlimited
Case Number: 08-1696

Document Number: MTR080331

