
Applying Architecture Tradeoff Assessment Method
(ATAM) As Part Of Formal Software Architecture

Review

Christopher Byrnes and Ioannis Kyratzoglou

The MITRE Corporation
202 Burlington Road

Bedford, MA -1730-1420 USA
{cb, ioannis}@Mitre.org

Abstract. In preparation for a customer’s Software System Critical Design
Review (CDR); we concluded that an assessment approach based on a hybrid
version of the Software Engineering Institute’s (SEI) Architecture Trade-Off
Analysis Method (ATAM) would be a good approach for an assessment of this
software architecture. This paper will provide ideas on how to apply the SEI’s
ATAM method within the context of a formal software Critical Design Review
(CDR) of a large scale complex software system. .

Keywords: ATAM, software architecture, CMM, SEI, UML, NR-KPP.

1 Background

MITRE and Government support engineers were requested to assess the software
architecture for a customer’s project in preparation for a CDR. The focus of this
assessment was to investigate at how well system requirements were being designed
with particular attention on a number of architecture quality attributes such as,
configurability, scalability, modularity, reliability and interoperability. Particular
attention was focused on the interoperability and extensibility of the system since it is
intended to be enhanced significantly in the future. We concluded that an assessment

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 07-0094

2 Christopher Byrnes and Ioannis Kyratzoglou

approach based on a hybrid version of the SEI’s ATAM would be optimum for this
assignment based on our experience in applying ATAM to other projects. The time
and resources available for the assessment were limited, so our hybrid approach
maximized the use of the available assessment resources and software architecture
documentation being prepared for this CDR

The Process - ATAM Phases

The ATAM defines four major phases numbered 0 – 3. The activities associated
with each phase were tailored to address the CDR needs. The activities are described
in greater detail in the subparagraphs below. Briefly, an ATAM (as documented in
[1]) Phase 0 consists of an assessment team overview presentation of the proposed
software architecture approach and presentation of the initial set of questions. Phase
0 laid the groundwork for the ATAM's Phase 1 and Phase 2, leading to a software
architecture assessment report produced during Phase 3.

1.1 Phase 0

During Phase 0, MITRE and Government read the required contract (e.g.,
Statement of Work), the associated requirement documents and the schedule. The
team extracted the related paragraphs that identity the architecture qualities and the
types of products that will be presented by the contractor during the CDR. The first
item will ensure that we are working within the legal bounds of the contract and the
latter will provides us an idea of the products and the architecture presentation style.
The next step was to work with the program manager to influence the contents of the
CDR material. In parallel, we were preparing the assessment checklists. Using these
assessment checklists as our guide, we were able to propose tailored CDR documents
and a CDR agenda that will fit the SW Assessment checklist framework.

Typical checklists included a standard ATAM questionnaire; software quality
assessment; net-centric checklist for NESI compliance, data management; information
assurance, Internet Protocol version 6 (IPv6); DoD Architecture Framework
(DoDAF) architecture questionnaire; software best practices; programming models;
software framework. The lists served as a backbone for further exploration and
questioning. We were also able to get a feel from the users what are the most
important mission capabilities and most important architecture quality attributes
matched against them.

1.2 Phase 1

Phase 1 covered development of ATAM “business drivers” (which the application
domain stakeholders and customer believe are important) and the identification of
software architecture approaches. The hybrid approach to ATAM would mean
mostly simplifying the software architecture and presentations. We would still go

 3

through the same 9 ATAM steps, but with less formality than what is described in the
SEI’s ATAM reference. Other ATAM reports that MITRE has participated in during
the past have shown the ATAM to be a very "heavyweight" approach; the assessment
of this project by necessity of the resource limitations and schedule demands had to
be more of a “lightweight” assessment.

The 9 ATAM steps followed in this assessment are shown below in Table 1.

Table 1 – ATAM Steps

Step Action
1 Present ATAM; done at a project Design Technical Exchange Meeting

(TEM) prior to this CDR.
2 Develop Business Drivers on how this is likely to evolve both during its

Spiral 1 and future Spirals. Done at Design TEM.
3 Present architecture details on how existing project software components are

part of a software architecture and interact with each other. Also done at
Design TEM.

4 Identify software architecture approaches, which could be provided by
existing design products and some of the Unified Modeling Language (UML)
[2] related questions discussed later. Also done at Design TEM.

5 Generate ATAM Software Architecture Quality Attribute Tree, which is what
would be looked at in more detail prior in Phase 2 of the ATAM.

6 Analyze Software Architecture Approaches; where the information provided
in steps #3 to #5 would be reviewed.

7 Provide Software Architecture Modification Scenarios, where some of the
UML scenarios and the anticipate architecture modification scenarios would
be applied to this software architecture.

8 Another change to Analyze SWA Approaches; where we see how well the
architecture held up to likely change scenarios. Note in this hybrid approach,
this ATAM step was skipped.

9 Present ATAM Results both to the project’s managers and during the CDR.

1.3 Phase 2

In Phase 2 we analyzed the various software architecture products, particularly the
architecture usage and modification “scenarios” that developer’s use of UML should
be producing. One such candidate scenario for software architecture modifications
that might be applied is based on the introduction of a Net-Ready Key Performance
Parameter (NR-KPP). During the TEM, the ATAM team talked with the developers,

4 Christopher Byrnes and Ioannis Kyratzoglou

system users and other stakeholders about which scenario(s) we would use in this
ATAM Phase 2 to assess the robustness of the software architecture.

During the ATAM team’s meeting with these stakeholders, we were able to

conduct Phases 0 and 1 of the ATAM, covering steps #1 - #6 in the ATAM list shown
above. The ATAM “business drivers” shown in step #2 above were established by
the system users as “exit criteria” for the CDR and come directly from the Statement
Of Work (SOW). The following is list of these exit criteria.

• NR-KPP providing a Net Centric design (data sharing, enterprise services)
• Open Software Architecture design (layered design, defined interfaces,

Standards)
• Integration model(s) for legacy and new code and COTS products
• Contractor’s design has the following attributes:

o Flexibility (e.g.., compatible with other systems)
o Scalability (e.g. Number of links)
o Modularity (e.g.., Top Level / Module(s) Framework Architecture)
o Interoperability (External I/Fs, standards)
o Extensibility (e.g.., growth/changes)
o Consistenty (e.g.., easy to use consistent HMI)
o Portability (e.g.., Linux, Windows NT platforms)
o Reliability
o Producible

The software architecture (SWA) presentation from developers called for in step

#3 of Table 1 above was highly successful, as the developers had carefully
documented this current software architecture from top-down and user scenarios. In
addition to setting the stage from the ATAM, this SWA presentation also prepared the
ATAM team and other stakeholders for the CDR by familiarizing them with the
extensive design products.

The developers also did a thorough job in covering their software architecture

approaches of step #4 in Table #1 above by carefully going over each of the main
components in the software architecture. The important ATAM quality attributes as
shown as the (SOW) Quality Attributes shown in Table #2 above. The ATAM
software architecture modification scenarios (used in step #7 of Table #1 above) were
reviewed and prioritized during a stakeholder caucus during the first day of the
Design TEM held concurrent with this ATAM; a prioritized list of likely SWA
changes were established among these stakeholders.

1.4 Phase 3

Phase 3 follows up on the work during on-site with the system’s stakeholders and
developers to produce the final ATAM report for the customer. During the
presentation of the system’s software architecture by the developers (steps #3 and #4
from Table #1 above) the ATAM change scenarios described above were verbally

 5

discussed with the developer’s engineers, with their likely impact on the software
architecture noted. Based on these answers and a review of these software
architecture products, the ATAM team arrived at some preliminary conclusions that
assess the software architecture (shown below in Table #3):

Table #3 – ATAM Conclusions

• The developer’s use of UML is generally good and consistent with good
UML design practices (such as those established in [3]). While extensive,
it is possible to trace through most of this system spiral’s software
architecture, and the developer’s presentations at the CDR should be
understandable to most system stakeholders.
The developer’s use of UML as part of an ov• erall software architecture is
generally understandable; with nearly all UML diagrams carefully noted
and annotated to document assumptions and special cases in the threads of
behavior (see [4] for a general discussion on using UML as part of a
software architecture in this application domain).
The developer’s use of IBM/Rational Rose and R• equisite Pro Computer-
Aided Software Engineering (CASE) tools is very careful and thorough,
but is also very hierarchical with minimal opportunities for commonality
or Web Service (WS) development across system components explored.
The connections between the system-level notations (such as for the “N• -
tier” architectures being used) and the software architecture notations
used within UML could be difficult to follow. This was particularly true
for the DoDAF “views” being developed.
There is very limited “net-centricity” in th• e current software architecture.
Adding the NR-KPP may prove to be difficult and expensive, and this
software architecture has limited current support for net-centric notions.
The developer’s decision to extensive reuse code in a number of th• e
current components may make any future large scale architectural changes
beyond the current spiral difficult and expensive to implement.

2 Available Software Architecture Products

Part of the ATAM preperation work done prior to the first step was to see what
available documents could be provided by the developers. Table #4 below lists the
document artifacts required to conduct the evaluation. The documents should be
available in both paper and electronically; with columns on the right side indicating
which were on contract and available to the ATAM team.

Table #4 – Software Evaluation Required Documents

Document Description On
Contract

Available

Concept of Operations (CONOPS) Yes Yes
Technical Requirements Document (TRD) Yes Yes

6 Christopher Byrnes and Ioannis Kyratzoglou

Software Test Plan (STP) Yes No
System Requirements Specification (SRS) Yes Yes
Interface Requirements Specification (IRS) Yes Yes
Interface Control Document (ICD) Yes Yes
Requirements Traceability Matrix (RTM) Yes Yes
System Subsystem Design Description

(SSDD)
Yes Yes

Interface Design Document (IDD) Yes Yes
Software Design Description (SDD) Yes Yes
Software Development Plans (SDP/IMS) No No
Capability Maturing Model Integrated

(CMMI) assessment reports
No No

Note that in some cases documentation that in retrospect could have been useful

(su

Table #5 – Software Design Artifacts

ch as the SPG and CMMI reports) were not contractually available. Based on prior
discussions with the developers and the software architecture introductory
presentations made to the ATAM team, we learned that the developers were making
extensive use of Rose and Requisite Pro (RP) CASE tools. The ATAM team’s prior
use of these particular tools on other projects has shown that the various CASE tool
consistency checking and metrics reports can be a useful means to assessing the
consistency and completeness of a project, including reports related to the software
architecture. So the ATAM team asked the contractor (if contract allows it) make
available the following information shown below in Table #5 in electronic form:

Artifact Description On

Co t ntrac
Available

Rational Rose Architecture Design Data (or Data) No No
Rational Rose Reports (e.g., Consistency Reports) No No
RP attribute and other metrics reports No No

While the developers were able to provide the standard output from their Rose and

RP

3 Application of ATAM Questions

The SEI's ATAM defines a checklist of questions that the software architects
should answer during the ATAM discussions, with final answers due at the CDR.
The checklist has ~14 major questions shown in Table #6 below:

 CASE tools as part of the software architecture (embedded within Microsoft Word
and PowerPoint documents), the ATAM and other stakeholders team at the Design
TEM did not have any electronic access, and the developers have no plans to provide
such access by the time of CDR. Given the size and complexity of this design and
architecture, this makes browsing the information harder.

 7

Table #6 – ATAM Overall Questions

Question Response

1 What are the driving
architectural constraints, and

These are all fully documented
at the start of eac

where are they documented?
h component, and

are summarized in the main SSDD.
2 What component types are

defined?
There seem to be different

“component” types in different
types of s ftware architecture
dia e is no apparent

o
grams; ther

unifying idea of a component in this
software architecture.

3 are
de

pa

What component instances
fined by the architecture?

The software architecture is not
rticularly Object-Oriented (OO),

but there were software architecture
diagrams that showed where
multiple instances of software
modules and programs were in use.

4 How do components
co

 the N-tier
sommunicate and synchronize?

Specific layers in
ftware architecture and a

dedicated component define such
services.

5 What are the system
partitions?

Generally along traditional
component boundaries.

6 What are the styles of
ar

nections to the rest of the

chitectural approaches? arc
A mixture of N-tier software
hitecture and UML-based class

diagrams. DoDAF is handled
separately (and often with very
loose con
software architecture).

7 nstitutes the system
in

define the
y

What co
frastructure? s

Lower level tiers
stem infrastructure, but

commonality is hard to find with all
the legacy modules in use.

8 What are the system
interfaces?

A series of fairly complete IDDs.

9 What is the process/thread
m

ts have a
deodel of the architecture?

A few componen
fined thread model, but in (too)

many cases a singled threaded
model of control and data remains
from legacy code.

10
ecture? consistently used.

What is the deployment model
of the archit

UML deployment diagrams are

11 What are the system states and
modes?

Higher level components came
with standards that defined major

8 Christopher Byrnes and Ioannis Kyratzoglou

modes, which were also further
captured in both the HMI mockups
and UML use case mini-
specification alternative control
flows.

12 What variability points are
included in the architecture?

r cases, variability would
ha

For a few major software
architecture variations there are
specific hooks for when new
functionality is enables. Some
components also have IDDs that
describe the initialization files. But
in othe

ve to be custom coded in the
future.

13 How far along is the
architecture's development?

Did not get a chance to run Rose
“consistency checking” reports that
would verify this, but the software
architecture looks fairly complete
for new services. But legacy code is
only partially described.

14 What is the documentation
tre

documentation tree is fully
ee (such as for new users and

developers)?
d

The
scribed.

4 ATAM Quality Attributes

Table oftware architecture
qu ty as utes and concerns from table #2 earlier.

#7 below shows an ATAM-based summ
sessment attrib

ary of the s
ali

 9

Table #7 – ATAM Summary For System’s Software Architecture

Quality
Attribute

Concerns Description Importance
/ Difficulty

Flexibility compatible
with other
systems

As noted earlier, the software
architecture is flexible in terms of
allowing users to configure about
any combination of links up to its
statically set limit. But adding
support for links beyond the
currently anticipated set looks
difficult due to a history of legacy
code the predates some of the
newer ones.

High /
High

Scalability Number of
links supported arc

As noted earlier, the software
hitecture scales fairly well up

to a pre-defined number of
simultaneous connections. After
that, the software architecture
looks very brittle to supporting
scales larger that that.

Medium
/ Medium

Modularity Framework
Architecture

The software architecture is
based on the existing set of
components extending or adding
any of these with any sort of WS-
based modules would be a major
change.

H
High /

igh

Interoperab
ility

With External
I/Fs

The software architecture
anticipates the incorporation of
some known external interfaces
(as a replacement of much of one
of the current components), but
this could be a major change to the
system.

High /
Medium

10 Christopher Byrnes and Ioannis Kyratzoglou

Quality
Attribute

Concerns Description Importance
/ Difficulty

Extensible accommodate
growth and
changes in future
increments

The software architecture does
not have any sort of performance
engineering model for covering
the “200% growth” factors in key
performance attributes, so how
this would be done is unknown

Medium
/ High

Consistency easy to use
consistent HMI

The software architecture (with
a few variations across different
components) tended to use UML
consistently. There was consistent
usage of HMI mockups for each
major function.

High /
Low

Portability Linux, NT
platforms

A low-level I/O interface layer
is defined in the N-tier software
architecture; but there was not any
use of common portability
services.

Low /
Medium

Reliability ensure
compliance and
provide metrics
on progress to
meet availability

The ATAM team did not see
any evidence of a reliability
baseline for the software
architecture as a whole or the
various software components
within it. Also did not see any
evidence of Rose or RP custom
reports being used for metrics
collections.

High /
High

Producible produce different
configurations of
the final system
to satisfy
operational
conditions

The software architecture did
have hooks in it for different
configurations, but there seems to
be an assumption that the different
deployments are largely
transparent to the software.

Medium
/ Medium

 11

5 Risks in System’s Software Architecture

This is a summary of the major risks identified by the use of ATAM in this
system’s software architecture:

• The developer’s use of RP CASE tools is very careful and thorough, but is

also very hierarchical with minimal opportunities for commonality or WS
development across components explored.
The connections between the system-level not• ations (such as for the “N-
tier” architectures being used) and the software architecture notations
used within UML could be difficult to follow. It was difficult to see these
N-tiers elsewhere in the software architecture, such as in the DoDAF
views or the UML use cases
There is very limited “net-ce• ntricity” in the current software architecture.
Adding the NR-KPP may prove to be difficult and expensive, and this
software architecture has limited current support for net-centric notions.
The developer’s decision to extensive reuse code in a number of th• e
current components may make any future large scale architectural changes
beyond the current spiral difficult and expensive to implement.
Being spread out over so many files made the software archit• ecture and
specific portions within it (such as the RTM) hard to browse and search.
Lack of anything resembling any UML “activity” or “collaboration• ”
diagram in these SSDDs tended to reinforce the hierarchical description of
the use cases and made more abstract behaviors (that spanned multiple
use case alternatives) harder to see.
Too many assumptions about single • threaded components and services.

• The data layouts of some of the packets being exchanged could be hard to
follow in some of the (legacy) tabular formats used.

6 Conclusions

We found the ATAM a useful method for assessing a software architecture against
known quality criteria established by the contract and the stakeholders. By fitting a
hybrid version of the ATAM into existing deliverable products and meeting
schedules, we were ably to apply this method with minimal changes to ongoing
development and presentation plans. The same detailed familiarization approaches
called for by the ATAM were also useful as a general preparation step for the CDR,
as it allowed stakeholders to focus on areas of greatest interest to them. There were a
number of both documentation and process improvements that this system (or other
systems) could make in the future to allow software architecture products to be made
more readily available for similar types of assessments.

12 Christopher Byrnes and Ioannis Kyratzoglou

References

1. Clements, C., Kazman, R., Klein, M.: Evaluating Software Architectures. Addison-Wesley,
Boston (2002)

2. Object Management Group (OMG): Unified Modeling language (UML) v1.5 Specification
(2003)

3. Quatrani, T.: Visual Modeling With Rational Rose and UML. Addison-Wesley, Boston
(2002)

4. Byrnes, C.: Requirements and Design Approach for a High-Reliability System. In: Firesmith,
D. (ed.) Proceedings of Fifth International Workshop on Requirements for High Assurance
Systems (RHAS 05), IEEE, New York, 2005

 13

	1.3 Phase 2

