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Abstract

This project focused on the development of a systematic framework and a set of unifying principles
and approaches to advance our understanding of complex ensemble systems and ability to control
their collective behavior. The motivation was driven by the applications in rapidly expanding and
emerging transdisciplinary domains, such as quantum control, neurostimulation, chronobiology,
and robotics, wherein engineers, experimentalists, and clinical practitioners exert exogenous inputs
(e.g., electromagnetic pulses, electrical microsimulation, and light protocols) to excite, perturb
and, furthermore, optimally control the activity or the spatiotemporal structure of an ensemble
system consisting of a large number of dynamical units towards scientific or therapeutic endpoints.
The major challenge concerning this class of problems was that one cannot send control signals
to individual systems in the ensemble, but only to the ensemble as a whole. This project (1)
established new methods for examining fundamental properties, such as ensemble controllability,
to understand the theoretical limits of the extent to which ensemble activity and dynamic structures
can be perturbed with an exogenous input; and (2) developed effective computational methods
for solving optimal control problems involving ensemble systems and networks. The research
substantially advanced our understanding of complex ensemble systems and directly contributed
to new developments in control and systems theory, which supports the research mission of the
AFOSR. It also broadened seminal applications by enabling tractable methods for optimal control
designs in brain stimulation, circadian biology, atom cooling, information encoding, and nanoscale
chemical cyber-physical computing devices, for which the ability to control the time evolution and
dynamic structures, e.g., synchrony, of ensemble systems is fundamental.

Accomplishments and New Findings

Through the funding support period, 8 journal and 9 peer-reviewed conference papers have been
published or accepted for publications (see Publication List). Owing to the multidisciplinary na-
ture of the research, these papers appeared in leading scientific journals and international con-
ference proceedings across disciplines including control theory and engineering, applied mathe-
matics, physics, and bioengineering. The significant achievements and new findings through the
support of this grant award are summarized below.

1 Symmetric Group Methods for Controllability Analysis

We developed a novel and effective algebraic approach to examine controllability of bilinear sys-
tems based on the theory of symmetric group. The central idea was to map Lie bracket operations
of the vector fields governing the system dynamics to permutation multiplications on a symmetric
group, so that controllability and the controllable submanifold can be characterized by permuta-
tion orbits [1]. This new finding further enabled a visualization of controllability analysis over an
undirected graph and facilitated the design of efficient graph search algorithms to compute con-
trollability [2]. The developed methodology revealed the relationship between controllability of
a system and connectivity of the associated graph, which rendered a transparent way to under-
stand controllability over graphs. The method was directly applicable to characterize the degree of
controllability and reachability of systems defined on compact Lie groups and on graphs, such as
quantum networks, multi-agent systems, and Markov chains.
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(a) Graph Representation of Controllability on SO(5) (b) Graph Representation of Controllability on SO(20)

Figure 1: Graph Representation of Controllability.

1.1 Interpreting Controllability over Symmetric Groups

To illustrate the idea, we consider the bilinear system defined on a compact, connected Lie group.
Let (;; € s0(n) be the matrix whose ij'" entry is —1 and ji'" entry is 1 foreachi,j = 1,...,n
and 7 # j, thenthe set B = {€;; : 1 < i < j < n} forms a basis of so(n), which is of the
dimension n(n — 1)/2. We call B the standard basis of so(n).

Definition 1 Let P(B) denote the power set of B, and define the map « : P(B) — S, by
{Qil,ju Qiz,jz? cey Qim,jm} — (Zm7]m) e (ig,jg) . (2'17]'1), where (Zk,]k), k’ = 1, oo, M, den0tes
the cyclic notation of permutations.

Theorem 1 The control system defined on SO(n) of the form

m

X(t) = [Zuk(tmm] X(t), X(0)=1I, (1)

where 5, € F = {Qijy,- o Qi } C Bowithl < 4, < jp < nfork =1,...,m, are
elements of the standard basis of so(n), is controllable if and only if there is a subset S C F such
that (S) is an n-cycle.

1.2 Computing Controllability of Bilinear Systems over Graphs

The notion of examining controllability through permutation cycles illuminates the interpretation
of controllability on graphs. In particular, the Lie algebra structure of so(n) allows us to associate
each system modeled as in (1) with an undirected, unweighted graph for visualizing “the degree” of
controllability of the system on SO(n) through connectivity of the graph. We create two examples
to demonstrate this nontrivial idea.

Example 1 Consider the system on SO(5), X (t) = S w(t) Qi X (1), X(0) = 1. Let
F = {Q;41: 1 <i < 4} denote the set of control vector fields evaluated at the identity matrix I.

3
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The iterated Lie brackets of elements in F give

[Q12, Qa3] = g, [Qoz, Q3a] = Qaa, [Q34, Qus] = s,
[9127 924] [9127 [9237 Q34]] = 9147
[ ]
[ ]

Q237 Q35 [9237 [9347 Q45]] = Q25’
Qia, Qos] = [Cha, [$his, [sa, Qas]]] = Qus,

and thus this system is controllable on SO(5) by the the Lie algebra rank condition (LARC).
Mapping the above Lie brackets to permutations on the symmetric group S5 of 5 letters under the
map ¢ defined in Definition 1, this controllability result can be visualized on an undirected graph
I' = (V, E) through its graph connectivity, where V' = {1,2,3,4,5} is the set of vertices and £
denotes the set of edges, as shown in Figure 1(a).

Example 2 Consider a system on SO(20) in the form of (1) governed by the control vector fields,
]:. - {91,87 91,177 Ql,lg’ 92747 92767 Q2,177 Q3,77 Q3,127 Q4,107 947147 957187 96,16’ Q77207 98,207 99,177
Q12,18 3,15, Qa0 -

The graph representation I' = (V, ) of this control system can be constructed and is shown in
Figure 1(b), where the set of vertices V' = {1,...,20} and the edges E = {(¢, j) : Q;; € F}. The
graph I consists of three disjoint connected subgraphs I'; = (Vi, Ey), I's = (V4, Es), and '3 =
(Vs, E3), where Vi = V\{11, 13,15}, F; = {(1,8), (1,17), (1, 19), (2,4), (2,6), (2,17), (3, 7),
(3,12),(4,10), (4,14), (5,18), (6,16), (7,20), (8,20), (9,17), (12,18), (14,20)}, Vo = {13,15},
Ey = {(13,15)}, V5 = {11}, and E5 = @. Because I is not connected, and thus this system
is not controllable. The controllable submanifold is identified by the sets of vertices Vi, V5, V3
of the connected subgraphs, which is the integral manifold of the involutive distribution A =
span{€Q;; X : 4,5 € Vi} @ span{€;;X : 4, j € V2}. The connected components I';, i = 1,2, 3, can
be efficiently computed using graph search algorithms, e.g., the depeth first search algorithm [3].
Note that using the LARC to examine controllability of this system of dimension 190 requires
generating a large number of Lie brackets, which is computationally expensive. Our new method
for computing controllability over graphs using permutations provides an efficient and transparent
way to understand the degree of controllability for bilinear systems.

1.3 Controllability of Systems on Euclidean Groups

We extended the symmetric group method to study broader classes of bilinear systems, including
systems defined on non-compact Lie groups, e.g., on the special Euclidean group, SE(n). The
main idea for analyzing controllability of systems on SE(n) was to (1) decompose the system on
SE(n) into the rotational and translational components, and (2) map Lie bracket operations of the
vector fields governing the system dynamics to permutation multiplications on a symmetric group,
so that controllability and the controllable submanifold can be characterized in terms of the orbits
resulting from the symmetric group S, action on a finite set containing n elements.

Decomposition of the System on SE(n). Consider the system defined on SE(n) of the form,

A1 0] = (S % 5]+ Swo ) S ]) [ 0]

(x(0), X(0)) = (0, 1), 2)
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where €; ;. € B is a basis element of so(n), e, is the k;-th standard basis vector of R", and
us(t), v (t) € R are piecewise constant control functions forall s = 1,... ,myand [l =1,...,ms.
Because SE(n) contains SO(n) and R™ as Lie subgroups, the system in (2) can be decomposed
into two subsystems on SO(n) and R”, respectively, as

X(t) = ius(t)Qisjs X(t), X(0)=1I, (3)
H) = S w0 | 20+ ulten,  #(0) =0, @

representing the rotational and translational dynamics of the system in (2), respectively. We then
derived the necessary and sufficient controllability condition for the system defined on SE(n) by
analyzing its rotational component on SO(n) and translational component on R”.

Theorem 2 A system defined on SE(n) as in (2) is controllable if and only if its rotational compo-
nent in (3) and translational component in (4) are controllable on SO(n) and R", respectively.

Note that controllability of the rotational component modeled in (3), a system defined on SO(n),
was characterized in terms of the length of permutation orbits [1].

2 Computational Optimal Ensemble Control
2.1 Iterative Methods for Optimal Control of Nonlinear Ensemble Systems

Optimal control of bilinear systems has been a well-studied subject in the area of mathematical
control. However, due to the lack of principled control strategies, solving emerging optimal control
problems involving an ensemble of nearly identical bilinear systems remains a grand challenge.
Through this grant support, we developed an iterative method to effectively and systematically
solve optimal ensemble control problems. Our main idea was to represent the nonlinear ensemble
system as a time-varying linear ensemble system at each iteration and then solve the resulting liner
problem in an iterative manner. We examined the convergence of the developed iterative procedure
and posed optimality conditions for the convergent solution to converge to the optimal solution of
the original nonlinear problem. We also demonstrated the applicability of this method through
the design of optimal pulses for broadband excitation of a population of nuclear spins in nuclear
magnetic resonance spectroscopy and imaging [2,4,5].

Specifically, we considered the quadratic optimal control problem involving a nonlinear en-
semble system with a fixed-endpoint or a free-endpoint constraint. We derived the convergence
conditions of the iterative algorithm for both cases [4, 5] based on the fixed-point theorem by con-
structing a contractive iterative procedure. For the optimal control problem with a fixed-endpoint
constraint, controllability of the system is required and the eigenvalues of the control weight matrix
have to be sufficiently large in order to guarantee the contraction, and thus the convergence. For
the case in which a free-endpoint constraint is posed, in addition to the condition on the magnitude
of the eigenvalues of the control weight matrix as in the fixed-endpoint problem, special relations
between the entries of the contraction matrix are required to guarantee convergence [5]. A practical
pulse design problem in magnetic resonance is illustrated below in Example 3.

5
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Figure 2: (a) The optimal ensemble control that steers an ensemble of Bloch systems with w €
[—1,1] from Xo(w) = (0,0, 1)7 to a neighborhood of X4(w) = (1,0,0)”. The weighted matrix
R = I3. (b) The final states X (20, w) for 81 spin systems (blue) with their frequencies uniformly
spaced within [—1, 1] following the control displayed in (a).

Example 3 (Broadband Excitation of Two-Level Systems) Designing an optimal pulse that ex-
cites a collection of two-level systems is an essential control task that enables various applications
in quantum science and technology [6,7]. The dynamics of a two-level system obeys the Bloch
equations, which forms a bilinear control system evolving on a sphere, given by

Ty 0 —w u Ty

d

a To| = w 0 —U2 ol , (5)
T3 —U; U2 0 T3

where X = (11, 79, 73)" denotes the bulk magnetization of the spins, w denotes the Larmor fre-

quency of the spins, and u; and u, are the radio-frequency (RF) fields applied on the y and the z

direction, respectively [8]. A typical problem in quantum control is to develop a broadcast con-

trol field, the so-called broadband pulse, driving an ensemble of systems as modeled in (5) with

w € [wy,ws] from the equilibrium state X (0,w) = Xo(w) = (0,0,1)" as close as possible to a

desired excited state, e.g., X (w) = (1,0,0)" at a specified time ¢, with minimum energy [6].
We apply the iterative method describegl above [5] to design a broadband excitation (7 /2) pulse

L[ty T

that minimizes the cost functional J = 5 [/ u" (t) Ru(t)dt+Jg, where v = (uy, uy)", the terminal

cost Jp = f_ll[X(tf,w) — Xa(w)|T[X (tf,w) — Xg(w)] dw, and t; = 20. Figure 2(a) shows the
derived broadband pulse with R = I3, the 3 x 3 identity matrix. The performance, interpreted by
the z-components of the final states, is displayed in Figure 2(b). The iterative algorithm converges
in 207 iterations given the stopping criterion || X #+1) — X®)| < 10~*, without requiring any
numerical optimization.

3 Exact Broadband Excitation of Two-Level Systems

Designing accurate and high-fidelity broadband pulses is an essential component in conducting
quantum experiments across fields from protein spectroscopy to quantum optics. However, con-
structing exact and analytic broadband pulses remains unsolved due to the nonlinearity and com-
plexity of the underlying spin system dynamics. Through this grant support, we established a
nontrivial dynamic connection between nonlinear spin and linear spring systems and show the sur-
prising result that such nonlinear and complex pulse design problems are equivalent to designing

6
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controls to steer linear harmonic oscillators under optimal forcing (see Figure 3). We further de-
rived analytic broadband 7/2 and 7 pulses that perform exact, or asymptotically exact, excitation
and inversion over a defined bandwidth, and also with bounded amplitude [9]. This development

opens up avenues for pulse sequence design and lays a foundation for understanding the control of
two-level systems.

0 w4 w2 3m4  n
t

Figure 3: Exact excitation of single spins. (a) The minimum-energy control u /2 steering the spring
from Xy = (0,0) to X;/o = (7/2,0), with (b) the corresponding trajectories of the spring (red)
and spin (black) forw = 3 and T" = .
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