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ABSTRACT

This paper describes a robust self localization algorithm
implemented on a network of acoustic sensors. The sen-
sors are severely constrained in both power and com-
putational performance. An acoustic ranging technique
employing a linear frequency modulated chirp is first
used to estimate the range between a pair of nodes.
The modulated acoustic chirp provides significant ben-
efits in increased range and the ability to separate direct
path and multi-path reflections. Localization was per-
formed in the network using a simple trilateration tech-
nique based on the estimated ranges to four known bea-
cons. The resulting algorithm is highly accurate under
very difficult conditions including significant multi-path
and high levels of background noise. The algorithm was
implemented and deployed on prototype hardware and
operated in real time under realistic operational condi-
tions.
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1. INTRODUCTION

Node location information is a critical need in many
applications for sensor networks. Unfortunately, the
nature of emerging small sensor platforms (low power,
low cost, severe resource constraints) and the environ-
ments where it is most desirable to deploy them (dense
cities, inside buildings, highly rugged terrain) preclude
the use of most localization solutions. Global Position-
ing System (GPS) receivers are simply too expensive to
include on every sensor node and don’t work in many
locations in any case.

Most techniques for solving this problem first make
some measurement relevant to a node’s physical loca-
tion. This can include radio signal strength (RSSI),' 3
range between a pair of nodes,>* 7 angle of arrival
to another node,* range to an unknown target,® etc.
These estimates are then converted into a map of the
relative positions of all the nodes again using a large va-
riety of methods.! %910 The primary reason for the
preponderance of localization techniques is to attempt
to correct for the large errors in the measurement step
of the process. For example, it is not uncommon to
see ranging errors equal to 50% or more of the distance
between a pair of nodes.! We believe that the reason

for the large measurement errors is due primarily to
multi-path reflections and to a lesser extent low signal
to noise ratios (SNR) corrupting the measurement.

In this paper we describe first a ranging algorithm
that can separate direct path and multi-path reflec-
tions and provides significant integration gain for im-
proved SNR. The resulting improvement in ranging per-
formance allows us to use a very simple localization
technique. The overall algorithm provides robust per-
formance under difficult conditions including high lev-
els of background noise and significant multi-path re-
flections. The remainder of this paper is organized as
follows: Section 2 describes the acoustic ranging algo-
rithm. Section 3 describes the trilateration algorithm
for converting a set of range estimates into a relative
position. Section 4 describes the experiment used to
evaluate the algorithm and shows its performance in
an operation scenario. Section 5 concludes the paper
and discusses future development plans.

2. RANGE ESTIMATION

A common method for estimating the range between a
pair of sensor nodes uses an acoustic pulse.® In this
technique a node first sends a radio message to a sec-
ond node. At the same time the first node activates
an attached speaker and outputs a short acoustic tone.
The second node receives the radio message and im-
mediately begins listening via an attached microphone.
When the second node hears the acoustic tone it mea-
sures the time difference between the receipt of the ra-
dio message and the start of the acoustic tone. Multi-
plying the time difference by the speed of sound pro-
vides an estimate of the range. A temperature sensor is
sometimes also employed to increase accuracy by cor-
recting for variations in the speed of sound with differ-
ent ambient temperatures.

This technique relies on accurate identification of the
start of an acoustic pulse which can be difficult in noisy
environments. Filters can be applied to reduce back-
ground noise,” but the potential for confusion is still
high. Futhermore, there is no way to distinguish be-
tween the direct path transmission of the pulse and any
echoes off of surrounding objects.

One way around this, commonly used in the radar
and sonar communities,!! is to use a modulated signal
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instead of a single acoustic tone. The particular modu-
lation we used was a linear frequency modulated (FM)
chirp since it has some useful properties that we discuss
below.

A linear FM chirp is a constant amplitude pulse with
a continuously varying frequency starting at f. — B/2
and ending at f. + B/2 where B is the bandwidth of
the chirp.

ag sin(27 f(t)) (1)
Where,
ft)=fe—B/2+ Bt/T (2)

Where T is the time duration of the chirp.

If we correlate a chirp with a time delayed version of
itself, we get the following.

x = apsin(2rf(t)) x apsin(2nf(t+ 7)) =

Fleos(2n(f(t) = (¢ +7)) -
cos(2n(f(0) + St 7)) (3)

Looking at the first term in (3) we see that this is a
sinusoid with a constant frequency of

f@) = f{t+7)=Br/T (4)

If we take the fourier transform of (3) therefore, we
will see delta functions at frequencies corresponding to
the time delay of the transmitted signal. Moreover, we
will see additional delta functions for any time delayed
echoes of the original signal. The correlation process
also provides significant SNR gain by integrating over
the entire duration of the chirp. Background noise will
not correlate with the reference signal significantly re-
ducing the likelihood of false detections.

We implemented the chirp on a modified Crossbow
mica2 mote. The modifications were the same as de-
scribed in.> The standard speaker on the Crossbow
mote can only generate a single tone at 4.3KHz. The
modification allowed us to generate a crude chirp span-
ning 3-4.5KHz. Time and frequency domain plots of
the generated chirp are shown in Figures 1 and 2.

A typical fourier spectrum after correlating a refer-
ence copy of the chirp with a received chirp is shown in
Figure 3. The peaks in the spectrum correspond to ar-
rival times of the original signal and echoes off of other
objects in the area. In this case the strongest signal is
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Figure 3. Fourier transform of received chirp correlated
with reference signal. Peaks indicate presence of delayed
chirp. Multiple peaks are due to reflections from surround-
ing objects.

the direct path, but this is not always the case. Occa-
sionally the strongest signal will be an echo, but this
technique still allows us to determine the arrival time
of the direct path signal.

To summarize the steps in the range estimation tech-
nique are:

1. Broadcast a radio message indicating that a range
estimation process is starting. At the same time
begin transmitting the acoustic chirp.

2. Nodes that receive the radio message immediately
begin collecting acoustic data for a predetermined
duration of time (approximately 1/3 longer than
the expected chirp duration).

3. Receiving nodes correlate the collected acoustic
data with a reference copy of the chirp stored in
memory.

4. Calculate fast fourier transform (FFT) of the cor-
related signal.

5. Locate peaks in the spectrum.

6. Convert peaks to range
r=B/Tf, (5)

Where f, is the frequency of a spectral peak.

3. LOCALIZATION

To demonstrate the utility of the new range estimation
algorithm we elected to employ a fairly simple localiza-
tion technique. We assume that we have four anchor
nodes located on the periphery of the network. These
anchor nodes have been told their locations. After ini-
tialization, the anchor nodes perform the range estima-
tion procedure in sequence and include their position
information in the radio message broadcast in step 1 of
the procedure.

After estimating the range to three or more anchors,
the rest of the nodes in the network can calculate their
positions via trilateration!?:

position = (AT A) "t AT

(6)

Where
2(z2 —x1) 2(y2 — 1)
A= 23 —x1) 2(ys —w1) (7)
2(x4 — 1) 2(ys —y1)
And

Where (x;,y;) is the location of anchor i and r; is the
range to anchor i.

In the cases where the range estimation algorithm
reports more than one possible range to a given anchor
(due the presence of multi-path echoes), we simply take
the shortest reported range as the most likely direct
path transmission.

4. EXPERIMENTAL RESULTS

To test the algorithm we first deployed two Crossbow
Mica2 motes in an outdoor parking lot and estimated
the range between them at several distances up to 35
meters. The results are shown in Figure 4. The ranging
algorithm was 100% successful at every distance with
an average error of less than 0.15 meters. We believe
the algorithm would be effective at significantly longer
ranges, but we did not have the opportunity to test
this.

Next we tested the overall localization error by de-
ploying four anchor nodes at the corners of a 7m x 7m
area indoors. A single node was then placed in the
interior of the area. The anchor nodes were told their
locations and the center node used this information and
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Figure 4. Ground truth range versus estimated range. Test
was performed outdoors in an open parking lot.
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Figure 5. Estimate localization versus ground truth in
noisy indoor environment with significant reverberation.

the estimated range to each of the anchor nodes to cal-
culate its relative position. The room where the test
occurred was only slightly larger than the deployment
area and was known to have significant reverberation
effects. This area was deliberately chosen to represent
a difficult environment with considerable multi-path re-
flections. The localization results are shown in Figure
5.

The average localization error is less than 0.5 meters.
This compares well with some of the best outdoor local-
ization schemes published to date® and to our knowl-
edge is the first time that results of this quality have
been demonstrated indoors or under conditions with
significant multi-path reflections.

5. CONCLUSIONS

We have demonstrated a robust self localization algo-
rithm operating under realistic conditions. The result-
ing algorithm is very effective at long range and in the
presence of significant multi-path reflections. This was
achieved by modifying traditional acoustic time of ar-
rival techniques to use a modulated signal instead of a
pure tone. Correlating the received signal with a stored
reference provides both integration gain (resulting in
increased range) and separation of direct path and de-
layed echoes. Future research will include modification
of the acoustic hardware to operate at ultrasonic fre-
quencies and/or modification of the acoustic chirp to
be more similar to background noise allowing for more
covert operation.
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