
1

An Investigation Into Improving Runtime Performance in Evaluating a Mobile Ad-
Hoc Operational Scenario Using OPNET

G. Comparetto, M. Mirhakkak, D. Houser, B. Hung, N. Schult , R. Wade, All of The MITRE Corporation

Abstract--- Quantifying the end-to-end
performance of evolving DOD communication
networks is highly desired by the component and
network designers during all phases of the
development process. Analytical techniques, in-
lab testing and field demonstrations are all
necessary toward this end but all have limitations
in addressing this need. Simulation remains a
primary method with which to generate end-to-
end performance. However, simulation often
results in unacceptably long runtimes for these
types of networks. The purpose of this paper is
to report on the results generated in the second
year of a 2-year IR&D program to investigate
methods to improve simulation runtime
performance when simulating mobile ad-hoc
communication networks.

I. INTRODUCTION

The complexity of evolving DOD
communication networks continues to grow. At
the same time, the need to support the full range
of user platforms configured as ad-hoc
communication networks remains as a pivotal
requirement towards the development of a
seamless network-centric communications
infrastructure. Quantifying the end-to-end
performance for these networks continues to be
highly desired by the component and network
designers during all phases of the development
process. The complexity of such networks rarely
allows one to generate this performance
analytically through the application of closed-
form expressions. Additionally, in-lab testing
and field demonstrations have limitations in
terms of scalability and cost, leaving simulation
as a primary method with which to generate end-
to-end performance.

The simulation of ad-hoc communication
networks can be challenging from a runtime
performance standpoint. A variety of network
characteristics contribute to this including
mobility, offered traffic load, the number of
nodes, the traffic mix (i.e. voice, data, video),
support for multicast traffic, and the need to
account for terrain. We have been investigating
methods of improving runtime performance as
part of a 2-year internal research and

development effort. Our initial research in this
area began in September 2004 and was reported
at OPNETWORK 2005 and MILCOM 2005 [5].
The purpose of this paper is to complete our
report on the results generated from investigating
a variety of mechanisms to improve simulation
runtime performance of simulations of mobile
ad-hoc communication networks.

II. METHODOLOGY

In FY05, we accomplished the following:

1. Developed a baseline 114-node operational

scenario including 104 fixed and mobile
ground nodes and 10 Autonomous Air
Vehicles (AAVs). Two levels of offered
traffic loads were investigated - 39 kbps and
450 kbps. Each included a mix of data,
voice, and video. Over 90% of the offered
traffic was comprised of multicast traffic.

2. Developed a baseline node model that used
IEEE 802.11 at the MAC layer, Optimized
Link State Routing Protocol (OLSR) [3] to
support unicast routing, and Protocol
Independent Multicast – Sparse Mode (PIM-
SM) [4] to support multicast routing.

3. Generated runtime performance results
using our M&S Environment and End-to-
End M&S Testbed (EMAST) [1-2].

4. Generated and evaluated detailed profiling
data for the Baseline Scenario.

5. Quantified the degree of runtime
performance improvement achievable from
S/W compiler selection and the application
of hybrid simulation techniques.

The reader is referred to [5] for more detailed
descriptions of the baseline operational scenario,
node model, profiling data and runtime results
generated during the first year of this 2-year
IR&D effort.

In FY06, we extended our research in the
following areas:

1. Investigated the impact of existing features

available through the OPNET simulation
tool (e.g., packet copy, packet duplication,

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 06-0995

2

wireless domain, and dynamic receiver
groups).

2. Extended the profiling data based upon our
observations in order to identify other
“promising” areas on which to focus our
efforts.

3. Based on #2 above, investigated the impact
of (a) modifying the OLSR parameters set
and/or the routing table formation
algorithm(s), (b) increased mobility, (c) the
introduction of the Path Loss Matrix (PLM)
methodology, and (d) parallel processing.

III. IMPACT OF EXISTING FEATURES

AVAILABLE IN OPNET

Packet Copy Early in our research, we were
actively pursuing methods to decrease the
memory footprint of mobile ad-hoc
communication networks in addition to runtime.
Packet copy is a technique in OPNET to reduce
the memory footprint of a simulation by only
reproducing the header of a packet upon
implementing a copy command. We investigated
the performance impact of various Packet Copy
configurations. The improvements in memory
footprint for all cases were negligible, with a
slight increase in runtime for several
configurations. The runtime results are shown in
Figure 1. We discovered that the Packet Copy
technique is best applied if the packets are
broadcast, have a large number of named fields
and/or if there are nested packets – none of which
applied to our baseline scenario.

 Figure 1: Runtime Results Using Various
Configurations of Packet Copy

Packet Duplication Packet Duplication is a
technique in OPNET used to copy packets only
after successful completion of the Closure and
Channel Match radio pipeline stages.
Theoretically, this would avoid wasteful copy and

deletion of packets that fail Channel Match. We
investigated the performance impact of various
Packet Duplication configurations. The
improvements in memory footprint and
simulation runtime for all cases were negligible.
We discovered that the Packet Duplication
technique is best applied if the scenario is
comprised of multiple radio device types that
cause numerous Channel Match failures – again,
none of which applied to our baseline scenario.

Wireless Domain Wireless Domain is a technique
in OPNET to cache physical layer computation
results between a pair of geographically defined
regions to reduce simulation runtime. We
investigated OPNETs full-grid wireless domain
feature in which the entire geographical space of
the scenario is divided into an evenly divided
square N x N grid. Our study included four
experiments, N = 1, 10, 32, and 64 (6 seeds each
experiment). While the total memory footprint of
the simulation increased as the number of cells in
the grid increases, there was minimal impact on
overall accuracy in terms of completion rates. In
fact, the variation in seeds had more impact on the
results than did the actual grid size. In addition,
the experiments revealed no significant impact on
runtime or total number of events. Extensive
profiling results, detailed in [5], revealed that a
minimal amount (less than 2%) of the total
runtime is spent in the radio pipeline stages for
this scenario; hence, there is little room for
runtime improvement by attempting to optimize
the physical layer.

Dynamic Receiver Group Dynamic Receiver
Group is a technique in OPNET that allows the
user to define groups of receivers (using either
physical or logical definitions) that are eliminated
from traversing the radio pipeline thereby
resulting in reduced runtime. Due to the
combination of the insignificant improvement
with the wireless domain experiments achieved,
as noted above, and the profiling results of our
scenario which indicated such a small amount of
runtime being expended in the radio pipeline, we
concluded that it was not necessary to study the
impact of receiver groups with this scenario.

IV. EXTENDED PROFILING RESULTS

We set out to accomplish two goals using
profiling in FY06: (1) Quantify the impact on the
radio pipeline by using the Path Loss Matrix

3

(PLM) methodology1 [5] versus dynamic inline
TIREM processing, and (2) Utilize profiling to
support our investigation into improving runtime
by optimizing the OLSR route calculation
algorithms.

Quantify Radio Pipeline Impact of PLM, FS,
and LR In comparing inline Freespace (FS) path
attenuation (i.e., calculating path attenuation
within the OPNET simulation) with the offline
path loss matrix (PLM) technique, we learned in
FY05 [5] that FS resulted in a much longer
runtime than PLM, but with a much smaller
proportion of that runtime consumed by the
pipeline. We reasoned that this was due to an
increase in connectivity because of the lack of
terrain interference, which required less pipeline
attenuation processing, but substantially more
routing updates.

Since profile runs took on the order of 3 to 6
days, we used only low offered traffic load when
profiling. And building on the benchmark
profiling conclusions of the previous year [5], we
ran simulations to 1000 seconds rather than the
full 4500 seconds, to further reduce the runtime of
experiments. OPNET v11.0 was the primary
version for these runs for the sake of consistency.

Table 1 summarizes the experiments that were
profiled. To begin with, FS-Line of Site (FS-
LOS) varied slightly as compared to FS (no
occlusion). As expected, the results using
OPNET 11.0 showed that the dynamic inline
terrain methods (FS, TIREM3, LR) resulted in the
pipeline consuming a higher proportion of
runtime than the PLM. However, with OPNET
11.5 optimizations, TIREM 4 gave precisely the
reverse. Examining these 11.5 results in greater
detail, we identified an efficiency threshold
parameter implemented by OPNET (although not
documented) and assigned in the TIREM4
module. This parameter has the effect of
dropping packets whose path loss exceeds the
threshold.

Figure 2 provides additional detail regarding how
pipeline stages vary in relative runtime
consumption. As shown, the Closure
(dra_closure) and Power (wlan_power) stages
consume the greatest proportion of runtime.

Optimizing OLSR Route Calculation Algorithms

1 The PLM is created offline a-priori using
DTED terrain data and TIREM.

Our previous profiling results [5] revealed
OLSR’s proactive routing modules to be the top
consumers of simulation runtime. This year we
performed more detailed profiling to support our
investigation into improving runtime by
optimizing the OLSR route calculation
algorithms.

Table 1: Profiling Results Using The Path Loss
Matrix (PLM), Free Space (FS), TIREM, and
Longley Rice (LR)

Run 1 Run 2 Run 3 Average

PLM v11.0 -- 1.1% 1.2% -- 1.1%

PLM v11.5 -- 2.2% -- -- 2.2%

FS-LOS v11.0 -- 1.1% -- -- 1.1%

FS-LOS v11.0 YES 1.8% 1.8% 1.5% 1.7%

TIREM 3 v11.0 YES 1.9% 1.7% -- 1.8%

TIREM 4 v11.5 YES 0.5% 0.3% -- 0.4%

LR v11.0 YES 3.0% 2.9% 2.9% 2.9%

Run-Time in Pipeline
Path
Attenuation
Method

Opnet
Version

Inline
Terrain
Data?

 Run-Time Consumed by Pipeline By Path Attenuation Method

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

dra
_c

los
ure

wlan
_c

ha
nm

atc
h

wlan
_p

rop
de

l

wlan
_p

ow
er

dra
_in

ois
e

dra
_b

kg
no

ise

dra
_s

nr

wlan
_b

er

wlan
_e

rro
r

wlan
_e

cc

Pipeline Stages (wlan_txdel ommitted due to small contribution)

Pe
rc

en
t o

f R
un

-T
im

e

PLM (v11.0)
PLM (v11.5)
FS (Simple Earth LOS)
FS + Terrain
LR
TIREM3
TIREM4 (v11.5)

Figure 2: Relative Pipeline Stage Runtime For
Various Path Attenuation Configurations

 Sections of the OLSR route calculation routine
were profiled independently to compare each
optimization with the baseline and to previous
optimizations. This effort helped us to identify
the most time-consuming modules upon which to
focus our optimization efforts.

Table 2 shows the top ~60% of runtime consumer
modules resulting from profiling several
configurations developed to improve the OLSR
route calculation efficiency. These configurations
are based on the Breadth-First Search (BFS)
Algorithm and are referred to as Mod1,
Mod2ONI and Mod3ONI in Table 2. Additional
detail regarding the BFS algorithm and these
configurations can be found in [6].

4

The chart shows that in Mod1, 9% of runtime
occurs in the highlighted olsr_rte_calculate
routine, whereas in Mod2ONI, that time is
reduced to 6.3%2. This data confirms that the
most expensive module in the simulation has been
reduced to the third most expensive module after
optimizations were done.

Table 2: Top ~60% of Consumers Identified by
Profiling

 Mod1 Mod2ONI Mod3ONI

olsr_rte_calculate_route_table 9.0% 6.3% 6.6%
Inet_Cmn_Rte_Table_Entry_Add_Options 7.0% 7.7% 7.2%
olsr_rte_process_hello 6.4% 7.6% 7.2%
op_prg_list_access 4.4% 4.2% 4.3%
olsr_rte_neighborhood_topology_check 3.2% 2.6% 2.2%
olsr_rte_expired_two_hop_neighbor_entries_remove 2.7% 3.4% 3.1%
oms_ptree_entry_add 2.6% 2.9% 2.8%
olsr_rte_calculate_mpr_set 2.5% 2.9% 2.6%
inet_rtab_index_to_addr_convert 2.4% 1.4% 1.3%
olsr_rte_two_hop_addr_reachability_check 2.0% 2.1%
wlan_interrupts_process 2.0% 2.1% 2.1%
wlan_power_mod2_mt 1.9% 2.1% 2.1%
wlan_mac 1.6% 1.7% 1.7%
olsr_rte_calculate_reachability 1.5% 1.6% 1.4%
olsr_rte_calculate_degree 1.4% 1.5% 1.4%
oms_ptree_node_destroy 1.3% 1.5% 1.4%
ip_cmn_rte_table_entry_free_proc 1.3% 1.5% 1.3%
ip_rte_central_cpu 1.2% 1.3% 1.3%
ip_rte_central_cpu_packet_arrival 1.0% 1.1% 1.1%
ip_cmn_rte_table_entry_free 1.0% 1.1% 1.0%
ip_rte_packet_arrival 0.9% 0.9% 0.9%
wlan_physical_layer_data_arrival 0.7% 0.8% 0.8%
ip_rte_datagram_higher_layer_forward 0.6% 0.6% 0.7%
ip_pim_sm_mod1 0.5% 0.5% 0.5%

59.2% 57.1% 57.5%

Function Name Function Time (module only)

V. OLSR

Our detailed profiling information showed that
around 50% of the processing time was spent
performing route forwarding table calculations.
Unlike wired networks that summarize addresses
and produce a small number of entries in the
forwarding table at each node, MANETs require
an entry for each wireless interface and each
node’s table must be recalculated whenever there
is a slight change in the network.

The above observation encouraged us to look for
an efficient algorithm for calculating route
forwarding tables. The details of this algorithm
are reported in [6].

We conducted several experiments with different
versions of an efficient route forwarding table
calculation algorithm which is based on the
Breadth-First Search (BFS) Algorithm. The
results of this study are shown Figures 3 and 4.
As Figure 3 shows, we were able to reduce the
simulation run time by a maximum of 27%.
Figure 4 shows the completion rate for unicast,

2 This does not map directly to the absolute
simulation runtime improvement because these
values do not include time spent in the modules’
sub-function calls, or potential side-effects of the
modifications that might be realized in other
routines.

multicast, and combined traffic for all the BFS
configurations considered in this study.

Low Traffic

100.0%

80.1% 79.7%
73.0%

95.0% 94.3%
88.1%

0

20

40

60

80

100

120

140

160

180

mod1 mod2 mod2OP mod2ONI mod3 mod3OP mod3ONI

OLSR Scenario

Si
m

ul
at

io
n

El
ap

se
d

Ti
m

e
(m

in
.)

0%

20%

40%

60%

80%

100%

Figure 3: Simulation Runtime Results For
Various Configurations of the BFS Algorithm

0.00

0.20

0.40

0.60

0.80

1.00

1.20

mod
1

mod
2

mod
2O

P

mod
2O

NI

mod
3

mod
3O

P

mod
3O

NI

C
om

pl
et

io
n

Ra
te

Unicast
Multicast
Overall

Figure 4: Completion Rate Results For Various
Configurations of the BFS Algorithm

In addition to modifying the forwarding table
calculation algorithm, we investigated the impact
of several key OLSR protocol parameters had on
both simulation runtime and accuracy. These
parameters included Hello Interval, TC Interval,
Neighbor Hold Time, Topology Hold Time and
Duplicate Message Hold Time. The experiments
run are shown in Table 3 while the resulting
simulation runtime and completion rate results
are shown in Figures 5 and 6, respectively.

5

Table 3: Experiments Run To Investigate Impact Of OLSR Parameter Values On Runtime

Hello Interval TC Interval Neighbor Hold Time Topology Hold Time Duplicate Message Hold Time

OLSR_Test_0 2 5 6 15 30
OLSR_Test_0point5 2.83 7.07 8.49 21.21 42.43
OLSR_Test_1 4 10 12 30 60
OLSR_Test_1M 4 10 12 30 30
OLSR_Test_1point5 5.66 14.14 16.97 42.43 84.85
OLSR_Test_2 8 20 24 60 120
OLSR_Test_2point5 11.31 28.28 33.94 84.85 169.71
OLSR_Test_3 16 40 48 120 240

OLSR Study Runtime Results Average

105917
89394

47908 45220

25,366 18152 13392

0

20000

40000

60000

80000

100000

120000

OLS
R_Tes

t_0

OLS
R_Te

st_
0p

oin
t5

OLS
R_T

es
t_1

OLS
R_T

es
t_1p

oin
t5

OLS
R_Tes

t_2

OLS
R_Te

st_
2p

oin
t5

OLS
R_T

es
t_3

R
un

tim
e

(s
ec

)

Figure 5: Simulation Runtime Results for OLSR
Parameter Runs

OLSR Study Completion Rate Results Average

0.72
0.81 0.79

0.68

0.47
0.38

0.31

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

OLS
R_T

es
t_0

OLS
R_T

es
t_0

po
int

5

OLS
R_T

es
t_1

OLS
R_T

es
t_1

po
int

5

OLS
R_T

es
t_2

OLS
R_T

es
t_2

po
int

5

OLS
R_T

es
t_3

C
om

pl
et

io
n

R
at

e

Figure 6: Completion Rate Results for OLSR
Parameters Runs

As shown in Figure 5, modifying the OLSR
parameters can significantly influence runtime.
Our results indicated that the simulation runtime
scales with the OLSR Hello Interval. However,
the runtime improvement comes at the expense of
accuracy as shown in Figure 6. It would appear
that increasing the OLSR Hello Interval may only
be an option to improve runtime in special
situations such as trend analyses in which relative
performance (versus absolute performance) may
be adequate.

VI. IMPACT OF MOBILITY

Our goal here was to quantify the impact of
mobility on simulation runtime. To do this, we
modified our baseline scenario to significantly

increase the amount of mobility in the scenario.
We then made a number of runs and compared
the simulation runtime attained with the baseline
scenario. To our initial surprise, the additional
mobility did not result in a significant increase in
simulation runtime. Upon further reflection, this
should have been expected. The predominant
factor attributing to simulation runtime was
found to be the OLSR route formation
calculations based upon our profiling results.
Furthermore, based upon the results in the
previous section, the simulation runtime was
directly proportional to the OLSR parameter
Hello Interval which is a parameter that defines
the periodicity of the OLSR route formation
calculations. Since we used the same OLSR
parameters set values for both the Baseline
Scenario and the Highly Mobile Scenario, it is
logical that the simulation runtime would not
change significantly which is precisely what we
observed.

VII. IMPACT OF PLM METHODOLOGY

Originally, our path loss matrix was a part of the
power computations at the receiver (i.e., the
power stage of the radio pipeline). We studied
the impact of moving the PLM to the transmitter
closure computations. When moving the PLM to
closure, a threshold was also defined to be
consistent with OPNETs TIREM implementation
which was identified earlier. This threshold was
designed to eliminate receiver computations
(SNR, BER, etc) for links where the path loss
was large enough to prevent the signal from being
coherently received by the receiving terminal.
The study revealed a 6% increase in runtime
performance with little impact on completion
rates, when the path loss information was used in
the transmit portion of the pipeline stages.

6

We also quantified the impact of applying the
PLM methodology with the use of TIREM3 and
TIREM4 inline during the OPNET simulation
run. An experiment was set up in which we ran
the Baseline Scenario using the PLM
methodology or TIREM3 using OPNET 11.0.
These runs were then repeated using OPNET
11.5, with additional runs using TIREM4 (not
available until OPNET 11.5). The results
generated indicated that using TIREM (either
TIREM3 or TIREM4) resulted in an average
simulation runtime improvement of 14% relative
to the PLM methodology. This was surprising
since one of the drivers in developing the PLM
method several years ago was to improve
simulation runtime3. However, upon examining
the OPNET 11.5 TIREM-generated results in
greater detail, as mentioned earlier, we identified
the efficiency threshold parameter implemented
by OPNET to improve simulation runtime which
it does. However, care must be taken to verify
that the value assigned in OPNET is appropriate
for the specific scenario(s) being investigated
since it is not a user-assigned parameter and is
transparent to the user during simulation set-up.

Results were also generated comparing the
runtime performance impact of TIREM3 to
TIREM4, both using OPNET 11.5. The runtime
performance improvement observed with
TIREM4 was negligible compared to TIREM3.

Finally, we observed a simulation runtime
performance improvement of up to 24% when
comparing the TIREM3 OPNET 11.5 results to
the TIREM3 OPNET 11.0 results.

In conclusion, from a simulation runtime
performance standpoint, the results indicate that
the user should run either TIREM3 or TIREM4,
inline (i.e., as the OPNET simulation is running)
using OPNET 11.5 in order to achieve the best
runtime performance when terrain must be
accounted for in the path attenuation calculations.

VIII. PARALLEL PROCESSING

We are investigating the achievable gain in
simulation runtime using parallel processing.

3 The other driver was to provide a mechanism
with which to apply TIREM to OPNET
simulation for the calculation of path attenuation.
At the time that the PLM methodology was
developed, OPNET did not support a direct link
with TIREM.

Unfortunately, few existing OPNET process
models are designed to support multi-threaded
processing using a multi-processor computer
system. Nevertheless, since our profiling showed
about 50% of the run time is involved in
computation of forwarding tables by OLSR, we
decided to run all modules sequentially except for
MANET Route Manager and OLSR. Only these
two process models are configured to use multi-
threaded processing to take advantage of available
parallel processing hardware.

These process models were initially designed for
sequential processing only. To support multi-
threaded processing, these two process models
were enhanced by employing a serializing
mechanism to ensure critical sections of the code
are not run concurrently.

There are several code sections of MANET Route
Manager and OLSR that should not run
concurrently. These sections deal with creation of
a child process, creation of packets and data
structures, and any other operation that involves
changes to common memory locations. For this
type of code that should not be executed
concurrently, we used the mutual exclusion
(mutex) mechanism to serialize the code
execution and to ensure that at most one thread
accesses the code at a time.

When multiple threads running on multiple
processors are trying to access a section of critical
code, mutexes ensure only one will be granted
permission to proceed. The other threads must
wait for the active thread to complete the
execution before they can proceed.

OPNET uses a “parallel event execution time
window” during which events are considered
independent from each other and therefore can be
parallelized and be assigned to separate CPUs.
This window should be small enough to ensure
parallelized events can be executed on multiple
CPUs without affecting the final simulation
results.

We experimented with several time window
values expecting the parallel simulation run time
to be much lower than the run time for a
sequential simulation run for which all the
process models are configured to run sequentially
on one CPU. Unfortunately, for every parallel
simulation run that produced correct results, its
run time was slightly higher than the run time for
an equivalent sequential run.

7

IX. CLOSING REMARKS

The purpose of this paper was to report on the
results of our investigations to improve
simulation runtime performance of mobile ad-hoc
communication networks. We investigated a
number of existing features available in OPNET
including Packet Copy, Packet Duplication,
Wireless Domain, Dynamic Receiver Group, and
Hybrid Simulation. Unfortunately, none of these
techniques significantly improved runtime
performance due to two primary reasons: (1) they
were not applicable to wireless applications or (2)
they were developed to improve runtime perform
via optimizations in the OPNET radio pipeline
which, through detailed profiling analyses, was
shown to only contribute less than 3% toward the
total simulation runtime for our mobile, wireless
scenario.

We then extended our profiling analyses and
identified the important result that the route
formation calculations contributed to more than
50% of the total runtime and, more specifically,
OLSR’s proactive routing modules were the top
consumers of simulation runtime. We then
focused our effort toward improving the route
formation algorithms and achieved some success
in reducing simulation runtime - on the order of
27% improvement.

In related efforts, we are investigating the utility
of parallel processing and HLA techniques to
improve runtime performance; however, results to
date indicate that these techniques will only
achieve limited success due to the nature of
mobile, wireless networks which, using existing
techniques, precludes their partitioning onto
separate processing platforms and/or processors
for all but a very limited family of scenarios. In
closing, we recommend that future research be
focused on this specific area. That is, the
development of procedures and algorithms for
partitioning mobile, wireless networks such that
the use of multiple platforms via co-simulation
can be applied to significantly reduce simulation
runtime in Mobile Ad-Hoc Network (MANET)
applications.

REFERENCES

 [1] Comparetto, G., Lindy, E., Mirhakkak, M.,
and Schult, N., “Overview and Application of a

Modeling and Simulation Environment to
Support Protocol Performance Evaluations in
Mobile Communications Networks”, presented at
the 2004 International Conference on Modeling,
Simulation and Visualization Methods
(MSV'04), Las Vegas, NV, Paper # CIC2471,
21-24 June 2004.
[2] Comparetto, G., Schult, N., Mirhakkak, M.,
Chen, L., Wade, R., Duffalo, S., “An End-to-End
Modeling and Simulation Testbed (EMAST) to
Support Detailed Quantitative Evaluations of
GIG Transport Services”, accepted for
presentation at the 10th International Command
and Control Research and Technology
Symposium (ICCRTS), McLean, VA, 13-16
June 2005.
[3] T. Clausen (ed) and P.J acquet (ed).Optimized
link state routing protocol (OLSR), October
2003.RF C 3626.
[4] D. Estrin, D. Farinacci, A. Helmy, D. Thaler,
S. Deering, M. Handley, V. Jacobson, C. Liu, P.
Sharma, L. Wei, Protocol Independent
Multicast-Sparse Mode (PIM-SM): Protocol
Specification, June 1998, RFC 2362.
[5] “Improving Runtime and Memory Footprint
Performance in Large Scale Network
Simulations”, G. Comparetto, et. al., MILCOM
2005, Atlantic City, NJ, October 17–20, 2005
[6] “Optimizing Route Formation Algorithm to
Reduce Simulation Run-Time for Large Tactical
Networks”, M. Mirhakkak, et. al., Scheduled for
presentation at MILCOM 2006, Washington DC,
October 23-26, 2006

