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Abstract--- Quantifying the end-to-end 
performance of evolving DOD communication 
networks is highly desired by the component and 
network designers during all phases of the 
development process.  Analytical techniques, in-
lab testing and field demonstrations are all 
necessary toward this end but all have limitations 
in addressing this need. Simulation remains a 
primary method with which to generate end-to-
end performance.  However, simulation often 
results in unacceptably long runtimes for these 
types of networks.  The purpose of this paper is 
to report on the results generated in the second 
year of a 2-year IR&D program to investigate 
methods to improve simulation runtime 
performance when simulating mobile ad-hoc 
communication networks. 
 

I. INTRODUCTION 
 
The complexity of evolving DOD 
communication networks continues to grow.  At 
the same time, the need to support the full range 
of user platforms configured as ad-hoc 
communication networks remains as a pivotal 
requirement towards the development of a 
seamless network-centric communications 
infrastructure.  Quantifying the end-to-end 
performance for these networks continues to be 
highly desired by the component and network 
designers during all phases of the development 
process.  The complexity of such networks rarely 
allows one to generate this performance 
analytically through the application of closed-
form expressions.  Additionally, in-lab testing 
and field demonstrations have limitations in 
terms of scalability and cost, leaving simulation 
as a primary method with which to generate end-
to-end performance.   
 
The simulation of ad-hoc communication 
networks can be challenging from a runtime 
performance standpoint.  A variety of network 
characteristics contribute to this including 
mobility, offered traffic load, the number of 
nodes, the traffic mix (i.e. voice, data, video), 
support for multicast traffic, and the need to 
account for terrain.  We have been investigating 
methods of improving runtime performance as 
part of a 2-year internal research and 

development effort.  Our initial research in this 
area began in September 2004 and was reported 
at OPNETWORK 2005 and MILCOM 2005 [5].  
The purpose of this paper is to complete our 
report on the results generated from investigating 
a variety of mechanisms to improve simulation 
runtime performance of simulations of mobile 
ad-hoc communication networks.     
 

II. METHODOLOGY 
 
In FY05, we accomplished the following: 
 
1. Developed a baseline 114-node operational 

scenario including 104 fixed and mobile 
ground nodes and 10 Autonomous Air 
Vehicles (AAVs). Two levels of offered 
traffic loads were investigated - 39 kbps and 
450 kbps.  Each included a mix of data, 
voice, and video.  Over 90% of the offered 
traffic was comprised of multicast traffic. 

2. Developed a baseline node model that used 
IEEE 802.11 at the MAC layer, Optimized 
Link State Routing Protocol (OLSR) [3] to 
support unicast routing, and Protocol 
Independent Multicast – Sparse Mode (PIM-
SM) [4] to support multicast routing. 

3. Generated runtime performance results 
using our M&S Environment and End-to-
End M&S Testbed (EMAST) [1-2]. 

4. Generated and evaluated detailed profiling 
data for the Baseline Scenario. 

5. Quantified the degree of runtime 
performance improvement achievable from 
S/W compiler selection and the application 
of hybrid simulation techniques.  

 
The reader is referred to [5] for more detailed 
descriptions of the baseline operational scenario, 
node model, profiling data and runtime results 
generated during the first year of this 2-year 
IR&D effort. 
 
In FY06, we extended our research in the 
following areas: 
 
1. Investigated the impact of existing features 

available through the OPNET simulation 
tool (e.g., packet copy, packet duplication, 
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wireless domain, and dynamic receiver 
groups). 

2. Extended the profiling data based upon our 
observations in order to identify other 
“promising” areas on which to focus our 
efforts. 

3. Based on #2 above, investigated the impact 
of (a) modifying the OLSR parameters set 
and/or the routing table formation 
algorithm(s), (b) increased mobility, (c) the 
introduction of the Path Loss Matrix (PLM) 
methodology, and (d) parallel processing. 

 
III. IMPACT OF EXISTING FEATURES 

AVAILABLE IN OPNET 
 

Packet Copy Early in our research, we were 
actively pursuing methods to decrease the 
memory footprint of mobile ad-hoc 
communication networks in addition to runtime. 
Packet copy is a technique in OPNET to reduce 
the memory footprint of a simulation by only 
reproducing the header of a packet upon 
implementing a copy command.  We investigated 
the performance impact of various Packet Copy 
configurations.  The improvements in memory 
footprint for all cases were negligible, with a 
slight increase in runtime for several 
configurations.  The runtime results are shown in 
Figure 1.  We discovered that the Packet Copy 
technique is best applied if the packets are 
broadcast, have a large number of named fields 
and/or if there are nested packets – none of which 
applied to our baseline scenario.  
 

 Figure 1: Runtime Results Using Various 
Configurations of Packet Copy 
 
Packet Duplication Packet Duplication is a 
technique in OPNET used to copy packets only 
after successful completion of the Closure and 
Channel Match radio pipeline stages.  
Theoretically, this would avoid wasteful copy and 

deletion of packets that fail Channel Match.  We 
investigated the performance impact of various 
Packet Duplication configurations. The 
improvements in memory footprint and 
simulation runtime for all cases were negligible.  
We discovered that the Packet Duplication 
technique is best applied if the scenario is 
comprised of multiple radio device types that 
cause numerous Channel Match failures – again, 
none of which applied to our baseline scenario. 
 
Wireless Domain Wireless Domain is a technique 
in OPNET to cache physical layer computation 
results between a pair of geographically defined 
regions to reduce simulation runtime. We 
investigated OPNETs full-grid wireless domain 
feature in which the entire geographical space of 
the scenario is divided into an evenly divided 
square N x N grid.  Our study included four 
experiments, N = 1, 10, 32, and 64 (6 seeds each 
experiment).  While the total memory footprint of 
the simulation increased as the number of cells in 
the grid increases, there was minimal impact on 
overall accuracy in terms of completion rates.  In 
fact, the variation in seeds had more impact on the 
results than did the actual grid size.  In addition, 
the experiments revealed no significant impact on 
runtime or total number of events.  Extensive 
profiling results, detailed in [5], revealed that a 
minimal amount (less than 2%) of the total 
runtime is spent in the radio pipeline stages for 
this scenario; hence, there is little room for 
runtime improvement by attempting to optimize 
the physical layer. 
 
Dynamic Receiver Group Dynamic Receiver 
Group is a technique in OPNET that allows the 
user to define groups of receivers (using either 
physical or logical definitions) that are eliminated 
from traversing the radio pipeline thereby 
resulting in reduced runtime.  Due to the 
combination of the insignificant improvement 
with the wireless domain experiments achieved, 
as noted above, and the profiling results of our 
scenario which indicated such a small amount of 
runtime being expended in the radio pipeline, we 
concluded that it was not necessary to study the 
impact of receiver groups with this scenario. 

 
IV. EXTENDED PROFILING RESULTS 

 
We set out to accomplish two goals using 
profiling in FY06: (1) Quantify the impact on the 
radio pipeline by using the Path Loss Matrix 
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(PLM) methodology1 [5] versus dynamic inline 
TIREM processing, and (2) Utilize profiling to 
support our investigation into improving runtime 
by optimizing the OLSR route calculation 
algorithms.  
 
Quantify Radio Pipeline Impact of PLM, FS, 
and LR  In comparing inline Freespace (FS) path 
attenuation (i.e., calculating path attenuation 
within the OPNET simulation) with the offline 
path loss matrix (PLM) technique, we learned in 
FY05 [5] that FS resulted in a much longer 
runtime than PLM, but with a much smaller 
proportion of that runtime consumed by the 
pipeline.  We reasoned that this was due to an 
increase in connectivity because of the lack of 
terrain interference, which required less pipeline 
attenuation processing, but substantially more 
routing updates.  
 
Since profile runs took on the order of 3 to 6 
days, we used only low offered traffic load when 
profiling.  And building on the benchmark 
profiling conclusions of the previous year [5], we 
ran simulations to 1000 seconds rather than the 
full 4500 seconds, to further reduce the runtime of 
experiments.  OPNET v11.0 was the primary 
version for these runs for the sake of consistency. 
 
Table 1 summarizes the experiments that were 
profiled.  To begin with, FS-Line of Site (FS-
LOS) varied slightly as compared to FS (no 
occlusion).  As expected, the results using 
OPNET 11.0 showed that the dynamic inline 
terrain methods (FS, TIREM3, LR) resulted in the 
pipeline consuming a higher proportion of 
runtime than the PLM.  However, with OPNET 
11.5 optimizations, TIREM 4 gave precisely the 
reverse.  Examining these 11.5 results in greater 
detail, we identified an efficiency threshold 
parameter implemented by OPNET (although not 
documented) and assigned in the TIREM4 
module.  This parameter has the effect of 
dropping packets whose path loss exceeds the 
threshold.  
 
Figure 2 provides additional detail regarding how 
pipeline stages vary in relative runtime 
consumption.  As shown, the Closure 
(dra_closure) and Power (wlan_power) stages 
consume the greatest proportion of runtime. 
 
Optimizing OLSR Route Calculation Algorithms  
                                                           
1 The PLM is created offline a-priori using 
DTED terrain data and TIREM. 

Our previous profiling results [5] revealed 
OLSR’s proactive routing modules to be the top 
consumers of simulation runtime.  This year we 
performed more detailed profiling to support our 
investigation into improving runtime by 
optimizing the OLSR route calculation 
algorithms. 
 
Table 1: Profiling Results Using The Path Loss 
Matrix (PLM), Free Space (FS), TIREM, and 
Longley Rice (LR) 
 

Run 1 Run 2 Run 3 Average

PLM v11.0 -- 1.1% 1.2% -- 1.1%

PLM v11.5 -- 2.2% -- -- 2.2%

FS-LOS v11.0 -- 1.1% -- -- 1.1%

FS-LOS v11.0 YES 1.8% 1.8% 1.5% 1.7%

TIREM 3 v11.0 YES 1.9% 1.7% -- 1.8%

TIREM 4 v11.5 YES 0.5% 0.3% -- 0.4%

LR v11.0 YES 3.0% 2.9% 2.9% 2.9%

Run-Time in Pipeline
Path 
Attenuation 
Method

Opnet 
Version

Inline 
Terrain 
Data?
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Figure 2: Relative Pipeline Stage Runtime For 
Various Path Attenuation Configurations 
 
 Sections of the OLSR route calculation routine 
were profiled independently to compare each 
optimization with the baseline and to previous 
optimizations.  This effort helped us to identify 
the most time-consuming modules upon which to 
focus our optimization efforts.   
 
Table 2 shows the top ~60% of runtime consumer 
modules resulting from profiling several 
configurations developed to improve the OLSR 
route calculation efficiency.  These configurations 
are based on the Breadth-First Search (BFS) 
Algorithm and are referred to as Mod1, 
Mod2ONI and Mod3ONI in Table 2.  Additional 
detail regarding the BFS algorithm and these 
configurations can be found in [6]. 
 



4 

The chart shows that in Mod1, 9% of runtime 
occurs in the highlighted olsr_rte_calculate 
routine, whereas in Mod2ONI, that time is 
reduced to 6.3%2.  This data confirms that the 
most expensive module in the simulation has been 
reduced to the third most expensive module after 
optimizations were done. 
 
Table 2:  Top ~60% of Consumers Identified by 
Profiling 
 

 Mod1 Mod2ONI Mod3ONI

olsr_rte_calculate_route_table 9.0% 6.3% 6.6%
Inet_Cmn_Rte_Table_Entry_Add_Options 7.0% 7.7% 7.2%
olsr_rte_process_hello 6.4% 7.6% 7.2%
op_prg_list_access 4.4% 4.2% 4.3%
olsr_rte_neighborhood_topology_check 3.2% 2.6% 2.2%
olsr_rte_expired_two_hop_neighbor_entries_remove 2.7% 3.4% 3.1%
oms_ptree_entry_add 2.6% 2.9% 2.8%
olsr_rte_calculate_mpr_set 2.5% 2.9% 2.6%
inet_rtab_index_to_addr_convert 2.4% 1.4% 1.3%
olsr_rte_two_hop_addr_reachability_check 2.0% 2.1%
wlan_interrupts_process 2.0% 2.1% 2.1%
wlan_power_mod2_mt 1.9% 2.1% 2.1%
wlan_mac 1.6% 1.7% 1.7%
olsr_rte_calculate_reachability 1.5% 1.6% 1.4%
olsr_rte_calculate_degree 1.4% 1.5% 1.4%
oms_ptree_node_destroy 1.3% 1.5% 1.4%
ip_cmn_rte_table_entry_free_proc 1.3% 1.5% 1.3%
ip_rte_central_cpu 1.2% 1.3% 1.3%
ip_rte_central_cpu_packet_arrival 1.0% 1.1% 1.1%
ip_cmn_rte_table_entry_free 1.0% 1.1% 1.0%
ip_rte_packet_arrival 0.9% 0.9% 0.9%
wlan_physical_layer_data_arrival 0.7% 0.8% 0.8%
ip_rte_datagram_higher_layer_forward 0.6% 0.6% 0.7%
ip_pim_sm_mod1 0.5% 0.5% 0.5%

59.2% 57.1% 57.5%

Function Name Function Time (module only)

 
 

V. OLSR 
 
Our detailed profiling information showed that 
around 50% of the processing time was spent 
performing route forwarding table calculations.  
Unlike wired networks that summarize addresses 
and produce a small number of entries in the 
forwarding table at each node, MANETs require 
an entry for each wireless interface and each 
node’s table must be recalculated whenever there 
is a slight change in the network.  
 
The above observation encouraged us to look for 
an efficient algorithm for calculating route 
forwarding tables.  The details of this algorithm 
are reported in [6]. 
 
We conducted several experiments with different 
versions of an efficient route forwarding table 
calculation algorithm which is based on the 
Breadth-First Search (BFS) Algorithm.  The 
results of this study are shown Figures 3 and 4.   
As Figure 3 shows, we were able to reduce the 
simulation run time by a maximum of 27%.  
Figure 4 shows the completion rate for unicast, 

                                                           
2 This does not map directly to the absolute 
simulation runtime improvement because these 
values do not include time spent in the modules’ 
sub-function calls, or potential side-effects of the 
modifications that might be realized in other 
routines. 

multicast, and combined traffic for all the BFS 
configurations considered in this study.  
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Figure 3: Simulation Runtime Results For 
Various Configurations of the BFS Algorithm 
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Figure 4: Completion Rate Results For Various 
Configurations of the BFS Algorithm 
 
In addition to modifying the forwarding table 
calculation algorithm, we investigated the impact 
of several key OLSR protocol parameters had on 
both simulation runtime and accuracy.  These 
parameters included Hello Interval, TC Interval, 
Neighbor Hold Time, Topology Hold Time and 
Duplicate Message Hold Time.  The experiments 
run are shown in Table 3 while the resulting 
simulation runtime and completion rate results 
are shown in Figures 5 and 6, respectively. 
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Table 3: Experiments Run To Investigate Impact Of OLSR Parameter Values On Runtime 

  
Hello Interval TC Interval Neighbor Hold Time Topology Hold Time Duplicate Message Hold Time

OLSR_Test_0 2 5 6 15 30
OLSR_Test_0point5 2.83 7.07 8.49 21.21 42.43
OLSR_Test_1 4 10 12 30 60
OLSR_Test_1M 4 10 12 30 30
OLSR_Test_1point5 5.66 14.14 16.97 42.43 84.85
OLSR_Test_2 8 20 24 60 120
OLSR_Test_2point5 11.31 28.28 33.94 84.85 169.71
OLSR_Test_3 16 40 48 120 240
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Figure 5: Simulation Runtime Results for OLSR 
Parameter Runs 
 

OLSR Study Completion Rate Results Average

0.72
0.81 0.79

0.68

0.47
0.38

0.31

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

OLS
R_T

es
t_0

OLS
R_T

es
t_0

po
int

5

OLS
R_T

es
t_1

OLS
R_T

es
t_1

po
int

5

OLS
R_T

es
t_2

OLS
R_T

es
t_2

po
int

5

OLS
R_T

es
t_3

C
om

pl
et

io
n 

R
at

e

 
 

Figure 6: Completion Rate Results for OLSR 
Parameters Runs 
 
As shown in Figure 5, modifying the OLSR 
parameters can significantly influence runtime.  
Our results indicated that the simulation runtime 
scales with the OLSR Hello Interval.  However, 
the runtime improvement comes at the expense of 
accuracy as shown in Figure 6.  It would appear 
that increasing the OLSR Hello Interval may only 
be an option to improve runtime in special 
situations such as trend analyses in which relative 
performance (versus absolute performance) may 
be adequate. 
 

VI. IMPACT OF MOBILITY 
 
Our goal here was to quantify the impact of 
mobility on simulation runtime.  To do this, we 
modified our baseline scenario to significantly 

increase the amount of mobility in the scenario.  
We then made a number of runs and compared 
the simulation runtime attained with the baseline 
scenario.  To our initial surprise, the additional 
mobility did not result in a significant increase in 
simulation runtime.  Upon further reflection, this 
should have been expected.  The predominant 
factor attributing to simulation runtime was 
found to be the OLSR route formation 
calculations based upon our profiling results.  
Furthermore, based upon the results in the 
previous section, the simulation runtime was 
directly proportional to the OLSR parameter 
Hello Interval which is a parameter that defines 
the periodicity of the OLSR route formation 
calculations.  Since we used the same OLSR 
parameters set values for both the Baseline 
Scenario and the Highly Mobile Scenario, it is 
logical that the simulation runtime would not 
change  significantly which is precisely what we 
observed.  
 

VII. IMPACT OF PLM METHODOLOGY 
 
Originally, our path loss matrix was a part of the 
power computations at the receiver (i.e., the 
power stage of the radio pipeline).  We studied 
the impact of moving the PLM to the transmitter 
closure computations.  When moving the PLM to 
closure, a threshold was also defined to be 
consistent with OPNETs TIREM implementation 
which was identified earlier. This threshold was 
designed to eliminate receiver computations 
(SNR, BER,  etc) for links where the path loss 
was large enough to prevent the signal from being 
coherently received by the receiving terminal.  
The study revealed a 6% increase in runtime 
performance with little impact on completion 
rates, when the path loss information was used in 
the transmit portion of the pipeline stages. 
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We also quantified the impact of applying the 
PLM methodology with the use of TIREM3 and 
TIREM4 inline during the OPNET simulation 
run.  An experiment was set up in which we ran 
the Baseline Scenario using the PLM 
methodology or TIREM3 using OPNET 11.0.  
These runs were then repeated using OPNET 
11.5, with additional runs using TIREM4 (not 
available until OPNET 11.5).  The results 
generated indicated that using TIREM (either 
TIREM3 or TIREM4) resulted in an average 
simulation runtime improvement of 14% relative 
to the PLM methodology.  This was surprising 
since one of the drivers in developing the PLM 
method several years ago was to improve 
simulation runtime3.  However, upon examining 
the OPNET 11.5 TIREM-generated results in 
greater detail, as mentioned earlier, we identified 
the efficiency threshold parameter implemented 
by OPNET to improve simulation runtime which 
it does. However, care must be taken to verify 
that the value assigned in OPNET is appropriate 
for the specific scenario(s) being investigated 
since it is not a user-assigned parameter and is 
transparent to the user during simulation set-up.   
 
Results were also generated comparing the 
runtime performance impact of TIREM3 to 
TIREM4, both using OPNET 11.5.  The runtime 
performance improvement observed with 
TIREM4 was negligible compared to TIREM3. 
 
Finally, we observed a simulation runtime 
performance improvement of up to 24% when 
comparing the TIREM3 OPNET 11.5 results to 
the TIREM3 OPNET 11.0 results.   
 
In conclusion, from a simulation runtime 
performance standpoint, the results indicate that 
the user should run either TIREM3 or TIREM4, 
inline (i.e., as the OPNET simulation is running) 
using OPNET 11.5 in order to achieve the best 
runtime performance when terrain must be 
accounted for in the path attenuation calculations. 
 

VIII. PARALLEL PROCESSING 
 
We are investigating the achievable gain in 
simulation runtime using parallel processing.  
                                                           
3 The other driver was to provide a mechanism 
with which to apply TIREM to OPNET 
simulation for the calculation of path attenuation. 
At the time that the PLM methodology was 
developed, OPNET did not support a direct link 
with TIREM. 

Unfortunately, few existing OPNET process 
models are designed to support multi-threaded 
processing using a multi-processor computer 
system.  Nevertheless, since our profiling showed 
about 50% of the run time is involved in 
computation of forwarding tables by OLSR, we 
decided to run all modules sequentially except for 
MANET Route Manager and OLSR.  Only these 
two process models are configured to use multi-
threaded processing to take advantage of available 
parallel processing hardware. 
 
These process models were initially designed for 
sequential processing only.  To support multi-
threaded processing, these two process models 
were enhanced by employing a serializing 
mechanism to ensure critical sections of the code 
are not run concurrently. 
 
There are several code sections of MANET Route 
Manager and OLSR that should not run 
concurrently.  These sections deal with creation of 
a child process, creation of packets and data 
structures, and any other operation that involves 
changes to common memory locations.  For this 
type of code that should not be executed 
concurrently, we used the mutual exclusion 
(mutex) mechanism to serialize the code 
execution and to ensure that at most one thread 
accesses the code at a time. 
 
When multiple threads running on multiple 
processors are trying to access a section of critical 
code, mutexes ensure only one will be granted 
permission to proceed.  The other threads must 
wait for the active thread to complete the 
execution before they can proceed. 
 
OPNET uses a “parallel event execution time 
window” during which events are considered 
independent from each other and therefore can be 
parallelized and be assigned to separate CPUs.  
This window should be small enough to ensure 
parallelized events can be executed on multiple 
CPUs without affecting the final simulation 
results. 
 
We experimented with several time window 
values expecting the parallel simulation run time 
to be much lower than the run time for a 
sequential simulation run for which all the 
process models are configured to run sequentially 
on one CPU.  Unfortunately, for every parallel 
simulation run that produced correct results, its 
run time was slightly higher than the run time for 
an equivalent sequential run. 
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IX. CLOSING REMARKS 
 

The purpose of this paper was to report on the 
results of our investigations to improve 
simulation runtime performance of mobile ad-hoc 
communication networks.  We investigated a 
number of existing features available in OPNET 
including Packet Copy, Packet Duplication, 
Wireless Domain, Dynamic Receiver Group, and 
Hybrid Simulation.  Unfortunately, none of these 
techniques significantly improved runtime 
performance due to two primary reasons: (1) they 
were not applicable to wireless applications or (2) 
they were developed to improve runtime perform 
via optimizations in the OPNET radio pipeline 
which, through detailed profiling analyses, was 
shown to only contribute less than 3% toward the 
total simulation runtime for our mobile, wireless 
scenario.   
 
We then extended our profiling analyses and 
identified the important result that the route 
formation calculations contributed to more than 
50% of the total runtime and, more specifically, 
OLSR’s proactive routing modules were the top 
consumers of simulation runtime.  We then 
focused our effort toward improving the route 
formation algorithms and achieved some success 
in reducing simulation runtime - on the order of 
27% improvement.    
 
In related efforts, we are investigating the utility 
of parallel processing and HLA techniques to 
improve runtime performance; however, results to 
date indicate that these techniques will only 
achieve limited success due to the nature of 
mobile, wireless networks which, using existing 
techniques, precludes their partitioning onto 
separate processing platforms and/or processors 
for all but a very limited family of scenarios.  In 
closing, we recommend that future research be 
focused on this specific area.  That is, the 
development of procedures and algorithms for 
partitioning mobile, wireless networks such that 
the use of multiple platforms via co-simulation 
can be applied to significantly reduce simulation 
runtime in Mobile Ad-Hoc Network (MANET) 
applications.  
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