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Detailed calculations demonstrate that the quantum capacitances of non-spherical, rod-like molec-
ular wires scale with their dimensions according to a linear law much like that obeyed by classical,
macroscopic spherical capacitors. Further, this linear “isoperimetric” scaling law leads to a partic-
ularly simple formula that relates a molecule’s electron affinity directly to its ionization potential
and its spatial dimensions.

PACS numbers: 31.10.+z,03.65.Sq,32.10.Hq,85.65.+h

I. INTRODUCTION

A fundamental problem of atomic and molecular quan-
tum mechanics is to determine the excitation energies
and electron detachment energies of atoms and molecules
from the nuclear charges and the dimensions of the sys-
tems. In the conventional quantum approach to this
problem, the relationship between the dimensions and
the energies is expressed indirectly through the complex,
computationally intensive solution of many-electron,
integro-differential quantum wave equations. However,
the results of such calculations, as described elsewhere
for atoms [1] and as described here for molecules, sug-
gest that there might be an alternate, simpler, direct
approach to connecting the dimensions of quantum sys-
tems and their energetics. This approach takes advantage
of the principles of electrostatics and a developing body
of evidence that atoms and molecules behave much like
macroscopic spherical capacitors, with their shapes and

FIG. 1: Structures for a sequence of oligomeric
polyphenylene-ethynylene (OPE) molecular wires of in-
creasing ring numbers nr and lengths L.

∗Electronic address: ellenbgn@mitre.org

their dimensions controlling their energies through their
capacitances.

Specifically, it is demonstrated in this paper that the
quantum capacitances of non-spherical, rod-like molecu-
lar wires vary or “scale” according to a linear law much
like that obeyed by classical spherical capacitors. Fur-
ther, this linear isoperimetric [2] scaling law for the
capacitances leads to a simple formula that relates a
molecule’s difficult-to-calculate electron affinity (EA) di-
rectly to its ionization potential (IP) and its spatial di-
mensions.

To those ends, we describe a detailed computational
exploration of the scaling of the quantum capacitances
with molecular dimensions for oligomeric polyphenylene
ethynylene (OPE) molecules. (See Fig. 1.) The results of
extensive density functional theory (DFT) calculations,
as presented in Fig. 2 and Table I, initially reveal that the
quantum capacitances [3–5] of the OPE molecular wires
scale as a logarithm of the molecules’ lengths.

However, as is also shown in Fig. 2, this unusual log-
arithmic capacitance scaling behavior, which required
thousands of hours of complex quantum mechanical com-
puter calculations to determine, can be reproduced to an
excellent approximation by a very simple formula from
the theory of isoperimetric inequalities [2] in classical
electrostatics:

C = 4πε0κ(abc)
1
3 + C0. (1)

Parameters a, b, and c are the semiaxial dimensions of an
ellipsoid that models the approximately ellipsoidal mean
contour of the electron distribution for the π-type highest
occupied molecular orbital (HOMO) of an OPE molecule.

In isoperimetric theory [2], the first term on the right
of Eq. (1) evaluates the classical capacitance of an iso-
lated spherical conductor with a volume equivalent to
that of the ellipsoidal HOMO or valence shell. Then, if
we define the isoperimetric “equivalent radius” of that
sphere as req = (abc)

1
3 , it follows that the OPE quantum

capacitances CI that are approximated by C from Eq. (1)
should be linear in req or nearly so. This is seen in Fig. 3.

The linear scaling of the capacitance with req also can
explain mathematically the logarithmic form of the scal-
ing with L. This is shown below in Section III.

Within Eq. (1), the slope of the scaling line in req is
written as 4πε0κ to emphasize the similarity of this linear
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FIG. 2: Capacitances CI (black diamonds) and CS (×’s) of
molecular wires from detailed quantum calculations are plot-
ted vs. the molecules’ lengths, along with scaled capacitances
(circles, squares, and pluses) from three quasi-classical ellip-
soidal models. Values plotted are given in Table I. Points for
CS are omitted for nr ≥ 2, because CS =CI in those cases.
Squares represent a model based upon a sphere, with its vol-
ume equivalent to that of a 3-axis ellipsoid having the approx-
imate mean dimensions of the HOMO. This reproduces the
unusual logarithmic scaling behavior of the quantum capaci-
tances (black diamonds).

capacitance scaling relation for a non-spherical molecule
to the one in classical electrostatics for a sphere [6] with
radius req. The scaling parameter κ may be interpreted
as a dielectric constant for the (N−1)-electron medium
surrounding an N -electron system’s valence shell [1] and
has the same value for all the OPE molecules. Constant
ε0 is the permittivity of free space.

The term C0 is the intercept of the scaling line in req

with the vertical, capacitance axis. This non-zero inter-
cept has no analog in a scaling relation for an isolated
classical conductor. However, for the quantum capaci-
tances of these molecules, as in the case of atoms [1],
the nonzero intercept may be understood as an effect
of capacitive coupling of the highest occupied orbital to
the lowest unoccupied orbital, which acts like a “virtual”
outer conductor, even for an isolated molecule or atom.

The demonstration below of Eq. (1) for the capaci-
tances of OPE molecules is a step by the authors to-
ward generalizing to neutral molecules a linear, quasi-
classical capacitance scaling relation that recently was
demonstrated [1] for neutral atoms. The linear relation
that applies to the atoms is similar in form to Eq. (1),
excepting that for atoms req is supplanted by 〈r〉a, the
mean radius of the highest occupied atomic orbital.

FIG. 3: Capacitances CI (black diamonds) from detailed
quantum calculations are plotted vs. the equivalent radii,
req = (abc)1/3, of the molecules, where a, b, and c are
the semiaxes of the molecules’ approximately ellipsoidal va-
lence electron distributions. As seen from the regression line
(dashes), CI is an approximately linear function of req, with
κ=slope/(4πε0)=0.979 from Eq. (1) and the slope of the line.

II. METHOD AND RESULTS

Figure 1 depicts the structures of a series of OPE
molecules with increasing numbers of rings nr and
lengths L, while Table I summarizes the results of our
DFT calculations of their structures, IPs, EAs, and ca-
pacitances. Following Iafrate et al. [3], as well as Gazquez
and Ortiz [4] and Perdew [5], the capacitance of an atom
or molecule may be evaluated

CI = 1/(I − A). (2)

Perdew [5] emphasized the scale independence of this
equation, which evaluates the capacitance for an N -
electron quantum system with total energy E(N), having
a first IP

I = E(N − 1) − E(N) (3)

and an EA

A = E(N) − E(N + 1). (4)

Here, the N -electron system is taken to be the lowest neu-
tral state. The value A of the electron affinity is negative
if an anion is not stable with respect to the corresponding
N -electron state, as for molecular wires with nr = 1, 1′.
(See Table I and Fig. 1.)

However, in a reassessment of Eq. (2), Sabin et al. [7]
argued that it should be corrected to read

CS = 1/
(
I − |A|

)
. (5)

That is, they asserted that the neutral-state capacitance
should be independent of the sign of A and the stability
of the lowest (N + 1)-electron anionic system.
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TABLE I: Comparison of Molecular Capacitance Results. Quantum capacitances CI and CS of polyphenylene molecular wires,
as determined from detailed DFT calculations, are reported as a function of the molecules’ lengths and compared with scaled
capacitances from three quasi-classical models. CI and CS were evaluated in units of fundamental positive charges per volt
(+e/V) via Eqs. (2) and (5) in the text, based upon the detailed DFT calculations by the authors. With +e/V as the unit
for capacitance and Angstroms for length, the permittivity of free space is ε0 = 5.526349 × 10−3 +e/V-Å. Values of CS are
omitted for nr ≥2, because A>0 and CS =CI in those cases. The scaling factors κ are set for the quasi-classical calculations
in columns 11 to 13 to force them to match the value of CI for nr =12.

No. Ellips- Length, Approximate Mean κ=0.963 κ=0.654 κ=0.335

Ringsa, oid L Semiaxes of HOMO (Å) I A CI CS 4πκε0(abc)
1
3 4πκε0(ab2)

1
3 Eqs. (6)

nr Geom. (Å) a b c = 〈h〉 (eV) (eV) (+e/V) (+e/V) (+e/V) (+e/V) (+e/V)

1 oblate 4.97 2.319 2.131 0.4997 9.19794 −1.50122 0.0935 0.1299 0.093b 0.102c 0.039
1′ prolate 7.61 3.647 2.134 0.5851 8.55674 −0.52193 0.1101 0.1245 0.111 0.116 0.061
2 prolate 11.87 5.770 2.134 0.6705 7.53935 0.17230 0.1357 0.135 0.135 0.076
3 prolate 18.77 9.219 2.133 0.6698 6.96467 0.88079 0.1644 0.158 0.158 0.097
4 prolate 25.67 12.668 2.133 0.6691 6.66747 1.26095 0.1850 0.176 0.175 0.118
5 prolate 32.57 16.120 2.133 0.6689 6.48157 1.50209 0.2008 0.190 0.190 0.137
6 prolate 39.46 19.565 2.133 0.6686 6.34086 1.67425 0.2143 0.203 0.203 0.156
7 prolate 46.36 23.014 2.133 0.6685 6.25273 1.78319 0.2237 0.214 0.214 0.174
8 prolate 53.26 26.462 2.133 0.6685 6.17859 1.87711 0.2325 0.224 0.224 0.191
9 prolate 60.15 29.910 2.133 0.6684 6.11564 1.95121 0.2401 0.234 0.234 0.209
10 prolate 67.05 33.360 2.133 0.6684 6.06637 2.01368 0.2467 0.242 0.242 0.225
11 prolate 73.95 36.807 2.133 0.6683 6.02178 2.06447 0.2527 0.250 0.250 0.242
12 prolate 80.85 40.257 2.133 0.6683 5.98638 2.10945 0.2579 0.258 0.258 0.258

aOne ring structure designated 1′ is ethynyl-benzene. See Fig. 1.
bIn column 11, formula used for nr =1 is 4πκε0(a2c)

1
3 .

cIn column 12, formula used for nr =1 is 4πκε0(a2b)
1
3 .

Eqs. (2) and (5) each differ by a factor of 1/e2 from the
ones actually written by Iafrate et al. and by Sabin et
al. This unit transformation assumes that EAs and IPs
are expressed in eV, as is common in tabulations [8] of
molecular electron detachment energies. Then, Eqs. (2)
and (5) yield capacitances in units of fundamental posi-
tive charges per volt, symbolized here as “+e/V”.

Making no a priori judgment on the relative merits
of Eqs. (2) and (5), we calculated the quantum capac-
itances of all the molecular wires using both formulas.
The results for CI and CS are presented, respectively, in
columns 9 and 10 of Table I. Of course, CI and CS are
identical, except where A < 0—i.e., for nr = 1, 1′. Thus,
for nr≥2 we omit the CS values and points from column
10 of the table and from Fig. 2. The results from quasi-
classical models for CI and CS appear in columns 11 and
12 of the table, respectively.

To obtain the capacitance results in Table I, for each
of the molecular wires with ring numbers nr =1 through
12, we used the Gaussian 98 (and later the Gaussian
03) quantum chemistry program [9] to perform separate,
detailed DFT calculations to determine the total energies
E(N − 1), E(N), and E(N +1) of the respective charge
states of interest—cation, neutral, and anion. For single-
ring structures, we determined these three total energies
for both benzene (C6H6), which we designate as nr =1,
and the benzene ethynylene molecule (C6H5−C≡C−H),
which we designate by nr = 1′.

For each value of nr, the calculations included a ge-
ometry optimization as part of the determination of the

lowest-energy neutral state, but then that same neutral-
state geometry was used in determining the lowest-energy
states for the corresponding cation and anion. From the
energies of these three states we determined the verti-
cal IPs and EAs, in accordance with Eqs. (3) and (4),
in order to evaluate Eq. (2) and Eq. (5) for the thirteen
molecules nr =1, 1′, 2, . . . , 12. These capacitance results
are presented in Table I and plotted versus molecular
length L in Fig. 2 and versus req in Fig. 3.

Because of the difficulty of calculating accurate EAs
for organic molecules, especially for the longer molecu-
lar wires, it was necessary to use a large basis set and
an accurate density functional method in performing the
total energy calculations. Following the work of Schaefer
and his collaborators [10, 11], as well as guidance from
colleagues [12, 13] on the best means for evaluating EAs
of organic molecules, we employed a large STO 6-31+G*
Gaussian basis and the accurate B3LYP density func-
tional. The geometry of the nuclear framework for each
neutral state was optimized in this basis set.

To avoid any computational artifacts in the results, we
also checked our computations by repeating them several
times. We used alternate density functionals (B3PW91),
basis sets (STO 6-31-G*), and software implementations
(the MacSpartan program [14]). However, these calcula-
tions all produced essentially the same molecular geome-
tries and also the same capacitance results within 3 or 4
per cent. We report in Table I and Fig. 2 results from
the B3LYP/6-31+G* DFT calculations, since these can
be repeated using both of the most commonly available
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commercial software tools, Gaussian and MacSpartan.
While the values of I and A from the DFT calcu-

lations might not be as accurate for the longer OPE
molecules, from assessments of DFT electron detachment
energies [10, 11] the results here should be reasonably
accurate for at least the shorter molecules we consider—
e.g., the one- to four-ring (nr=1-4) systems. Also, the
I’s and A’s determined here for these shorter molecules
are in good agreement with earlier published results [8],
where they are available. Thus, we have confidence in
the logarithmic and other trends reported in this pa-
per, since they already are evident in our results from
molecules with only nr=1-4, and results we calculated
for the longer molecules maintain those trends.

The molecular length L is the distance between the
terminal H atoms on an OPE molecule’s nuclear frame-
work. By contrast, the semiaxis parameters a, b, and
c in Table I approximate the mean dimensions of the
molecule by estimating the dimensions of its highest oc-
cupied molecular orbital. In this, we follow the reason-
ing of Froese, who used the mean radius of the high-
est occupied atomic orbital to represent the radius of an
atom [15]. We take the mean contour of the OPE HOMO
to enclose an approximately ellipsoidal region of space
extending above and below the plane of the molecule.
Then, as a simple estimator of the length, 2a, and the
width, 2b, of the π-type HOMO ellipsoid in a plane above
and parallel to that of the molecular wire, we use, re-
spectively, the length of its C-atom framework plus two
Froese C-atom radii (rC = 0.92 Å) and the width of the
C-atom framework plus two C-atom radii. Dimensions
of the C-atom frameworks were determined by DFT ge-
ometry optimizations, as part of our calculations of the
molecular IPs and EAs.

For each of the molecules we also determined a mean
half-thickness c = 〈h〉, where 〈h〉 =

∫ ∞
0

z|φa(x, y, z)|2dz/∫ ∞
0

|φa(x, y, z)|2dz is the mean height of the π-type DFT
HOMO φa at the middle of the molecule in the positive
z-direction perpendicular to the molecular plane. This
quantum calculation was performed for all the molecules
with nr even, then those values of 〈h〉 were interpolated
for nr odd and nr = 1′. For benzene (nr=1), though,
〈h〉 was determined above the position of a C atom, be-
cause the numerator and denominator of the expression
for 〈h〉 vanish above the center of the molecular plane.
Using these values of c provides a somewhat better 3-axis
ellipsoid model for the shapes of these molecules, as de-
termined by the shapes of their HOMOs. These are seen
in orbital contour plots to have the approximate overall
shapes of flattened ellipsoids, thicker in the middle and
thinner toward the ends and edges.

III. ANALYSIS

Analysis of the results presented in Fig. 2 and Table I
shows that they may be explained or rationalized in terms
of the isoperimetric model outlined in the introduction

to this paper. However, none of the many other quasi-
classical models we tried succeeded in doing so. This is
primarily because the L dependence of CI for the molec-
ular wires is fit by a logarithm to a high degree of con-
fidence (R2 = 0.9975), as are the identical values of CS

for nr≥2. This unusual logarithmic length scaling of the
capacitance does not conform to any of the usual models
from classical electrostatics [6, 16] or from prior investi-
gations of the quantum capacitance [7].

One might expect, for example, purely linear length
scaling of the capacitance, as is exhibited by macroscopic
cylindrical wires [6] or by macroscopic wires of any con-
stant cross section. Alternatively, one might expect the
molecular wire capacitances to scale much like those for
classical ellipsoids of revolution [7, 17–19]:

Coblate = 4πε0κ

√
a2 − b2

sin−1
(√

a2 − b2/a
) , nr = 1 (6a)

Cprolate = 4πε0κ

√
a2 − b2

ln
[(

a +
√

a2 − b2
)
/b

] , nr ≥ 1′. (6b)

However, if the capacitances for a sequence of molecular
wires were to scale simply like those of classical oblate
and prolate ellipsoids with the approximate dimensions
of the molecules, the capacitances would exhibit a quasi-
linear dependence upon L. This is shown by using the
values of a and b given in columns 4 and 5 of Table I
to evaluate Eqs. (6) in column 13 of the table. These
results all are scaled by κ = 0.335 to make Cprolate = CI

for nr = 12 and are plotted versus L as the +’s in Fig. 2.
Plainly, their nearly linear behavior in L does not match,
even qualitatively, the pronounced nonlinear behavior of
the quantum results (black diamonds and ×’s). Similar
comments apply to results from the classical formulas for
capacitors of a number of other likely shapes (e.g., three-
axis ellipsoid, truncated cylinder, chains of ellipsoidal
disks). These also scale nearly linearly in L and, thus,
are unsuccessful in fitting the quantum capacitances cal-
culated for the OPEs via DFT.

Instead, after many diverse efforts to account for the
OPE’s logarithmic scaling behavior of CI with L, we dis-
covered from detailed exploration of the theory of isoperi-
metric inequalities [2] that Eq. (1) provides a close empir-
ical match. In isoperimetric theory, Eq. (1) with C0=0,
or 4πε0req, gives the classical capacitance of a sphere with
the same volume as is enclosed by a non-spherical conduc-
tor, and that capacitance provides a lower bound to the
classical capacitance of the non-spherical conductor [2].
Here, 4πε0req provides a lower bound for the classical
capacitance of an ellipsoidal capacitor with approximate
mean semiaxial dimensions of the OPE HOMO.

The reason the scaling behavior for this lower bound
is exhibited by the molecule, instead of the behavior of
an ellipsoidal capacitor, could be that the nodal struc-
ture of the π-type HOMO reduces the effective “surface
area” on which positive charge can be distributed on each
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neutral molecule. Thus, the capacitance of each would be
less than might be expected from its otherwise ellipsoidal
valence negative charge distribution.

While this rationale is not certain, it is certain that
the lower bound 4πε0req accounts remarkably well for
the logarithmic scaling behavior with L exhibited by the
quantum capacitances of the OPE molecules. This is seen
in Fig. 2 and in the values of 4πε0req in column 11 of Ta-
ble I. The values from column 11 are plotted versus L as
the open squares in Fig. 2. These values all incorporate
the single empirically adjustable scaling factor κ=0.963,
which is set to ensure agreement with the CI value in
column 9 in just the nr=12 case. However, then all the
points from this 3-axis quasi-classical model are in strik-
ingly close correspondence with the quantum-derived CI

points (black diamonds), obtained using Eq. (2). Also,
the logarithmic fit (dashed line) to the quasi-classical
points is very strong (R2 = 0.9909) and in remarkable
agreement with the logarithmic fit (solid line) to the val-
ues of CI . Further, the value κ = 0.963 derived from
this ad hoc use of 4πε0req to fit the logarithmic scaling
in L agrees well with the value κ = slope/4πε0=0.97 de-
termined from the slope of the regression line in Fig. 3,
which formally fits CI to req.

The high degree of agreement of the logarithmic fits
depicted in Fig. 2, plus the strong linear fit of CI to
req shown in Fig. 3, justify the statements surrounding
Eq. (1) at the outset of this paper. Also, they permit
us to write CI ≈ 4πε0κ(abc)

1
3 + C0, where C0 = 0.0022

+e/V. Then, elimination of CI between this approximate
relation and Eq. (2) yields, after minor rearrangement:

A ≈ I − 1
4πε0κ(abc)

1
3 + C0

. (7)

This equation provides a mutual constraint upon the ion-
ization potentials, the electron affinities, and the mean
dimensions of the HOMO of a non-spherical, neutral
OPE molecular wire. It is the analog of a similar con-
straint that recently was demonstrated [1] for neutral
atoms. As in the case of the atoms, Eq. (7) shows
that positive values of the electron affinities A for the
molecules become smaller as the dimensions of their high-
est occupied orbitals or their dielectric constants become
smaller. Sometimes, as for the nr = 1, 1′ cases here, the
HOMO dimensions become so small that A is negative.

Taking C0≈0, we also evaluated Eq. (1) using only a 2-
degree-of-freedom ellipsoid of revolution model, wherein
we apply the constraints c = a for nr = 1, but c = b for
nr≥1′. This produces the values in column 12 of Table I.
Plotted as the open circles in Fig. 2, these quasi-classical
points also are in striking agreement with the quantum
results for nr≥2. However, they yield slightly too high a
capacitance estimate for the two single-ring systems, esp.
the oblate benzene molecule (nr =1). This is because, as
seen in the first two rows of columns 5 and 6 of the table,
the b parameter in the ellipsoid of revolution model over-
estimates the thickness of these two shorter molecules; it

fails to follow the flattening that is measured more ac-
curately in the 3-axis model by c = 〈h〉. Extending this
reasoning to interpret the even higher values produced by
CS in these cases, one might say that, in effect, Eq. (5)
overestimates the dimensions of the molecules even more.

As might be expected from Eq. (7), the flattening of
the HOMOs for the neutral states of the two shortest
molecular wires also corresponds to the values of their
EAs—i.e, their A values—becoming negative. For this
reason, when Eq. (5) discards the sign of A, the analysis
above suggests that it simultaneously discards geometric
information that is retained in the 3-axis model of the
molecule and in Eq. (2). In effect, CS attributes to ben-
zene a positive value of A that could be sustained only by
a molecule that is estimated to be much thicker or longer
than is reasonable and consistent with dimensional esti-
mates made for the still longer, prolate molecules. Thus,
regardless of which of the formulas, Eqs. (2) or (5), repre-
sents a quantum capacitance more rigorously, the former,
Iafrate et al. formula appears to exhibit greater sensitiv-
ity to the geometry of the neutral system. Also, values
calculated with that formula increase monotonically with
the system’s length, which is an intuitively satisfying be-
havior for a capacitance.

Finally, we show that the observed logarithmic form of
the scaling of the molecular wire capacitances with L can
be explained or rationalized in terms of their linear scal-
ing with req. From Table I, we observe that for most of
the OPE molecules a ≈ 1

2L, while b and c are nearly con-
stant. Thus, we may write req = (abc)

1
3 ≈ (bc/2)

1
3 (L)

1
3 .

That is, since the values of CI scale with req, as noted
above and seen in Fig. 3, they also must scale approxi-
mately with L

1
3 . Alternatively, because b and c are nearly

constant, we might view the capacitances for these molec-
ular wires as scaling approximately as the cube root of a
dimensionless length scaling parameter λ = L/[2(bc)

1
2 ].

Using this parameter, the inverse relationship between
the exponential function and the natural logarithm per-
mits the capacitance to be expanded in a Taylor series in
powers of ln(λ):

CI ≈ C0 + 4πε0κ(bc)
1
2 (λ)

1
3 (8a)

≈ C0 + 4πε0κ(bc)
1
2 exp

[1
3

ln(λ)
]

(8b)

≈ C0 + 4πε0κ(bc)
1
2
[
1 +

1
3

ln(λ) (8c)

+
1
18

ln2(λ) +
1

162
ln3(λ) + · · ·

]
.

In first order, the expansion Eq. (8c) establishes the
essential logarithmic dependence of CI on L = 2(bc)

1
2 λ

that is seen in Fig. 2. Also, via numerical evaluation
of the expansion, we have found that terms beyond the
purely logarithmic first order expansion account for only
33 per cent of the total, infinite order value of the ex-
pansion for the longest of the molecular wires considered
here. For the four shortest molecules, terms beyond first
order account for less than 15 per cent of the total values.
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By third order, for all the OPE molecules (nr = 1−12)
the expansion has converged within 4 per cent of the to-
tal values from Eq. (8a). Further, through all orders,
capacitance values from the expansion are fit very well
(R2 ≥ 0.994) by a regression function linear in ln(L).

A particularly simple physical interpretation for the
capacitance scaling follows from Eqs. (8) when they are
specialized to the ellipsoid of revolution model. Therein,
we take c = b and κ = 0.65, so that Eq. (8c) becomes
CI ≈ C0 +(4πε0κb)[1+ 1

3 ln(λ)+ · · · ]. The factor 4πε0κb
is recognized readily as the classical capacitance of a
sphere whose radius b is the half-width for a molecular
wire (i.e., the half-width for a benzene ring). This fac-
tor does not vary appreciably as the wires get longer.
Thus, physically, the other, non-linear factor (λ)

1
3 ≈

1 + 1
3 ln(λ) + · · · modulates the capacitance of that ap-

proximately benzene-sized spherical kernel to describe
the scaling of CI as the molecular wires and their va-
lence electron distributions get longer and more prolate.

IV. SUMMARY AND CONCLUSIONS

It has been shown that a simple, quasi-classical capac-
itance formula, Eq. (1), accounts for diverse aspects of
the scaling of the quantum capacitances of OPE molec-
ular wires with their dimensions. The formula is based
upon an isoperimetric [2] principle of classical electrostat-
ics that does not appear to have been applied in quantum
mechanics before. The isoperimetric formula fits both
the logarithmic scaling of the molecules’ quantum capac-
itances with their lengths and the linear scaling with their
equivalent radii req. Other capacitance formulas fail to
do so.

Equation (1) generalizes to at least some non-spherical
molecules the linear length scaling relation CI≈Csphere=
4πε0κ〈r〉a +C0, which applies to spheres in classical elec-
trostatics [6] and which has been observed [1] to govern
the quantum capacitances of atoms. Equation (1) also
helps reveal a previously unappreciated, simple relation-
ship, Eq. (7), that connects the electron affinity, the ion-
ization potential, and the dimensions of a molecular wire.

This reveals, too, the role of the scaling parameters and
HOMO dimensions in determining a molecular wire’s ap-
proximate “band gap,” (I−A), a quantity of importance
in molecular electronics [20]. Similarly, Eq. (7) shows
that the capacitance scaling parameters and the dimen-
sions of the valence electron distribution can determine
a molecule’s chemical “hardness” [21], according to

η ≡ I − A

2
≈ 1

2

(
1

4πε0κ(abc)
1
3 + C0

)
. (9a)

Thus, they also can have a role in determining its quan-
tum chemical potential [22], according to

µ ≈ −
(

I + A

2

)
≈ −I +

1
2

(
1

4πε0κ(abc)
1
3 + C0

)
. (9b)

The chemical hardness, η, and chemical potential, µ,
are quantities that are attributed much significance in
density functional theories [23]. Relationships are estab-
lished therein that describe the role of η and µ in gov-
erning a number of fundamental processes, such as the
energy response to charge transfer [21, 23]. The hard-
ness, in particular, has been applied to attempt to under-
stand a range of chemical properties and behaviors [24].
Through those established relationships involving η and
µ, plus Eqs. (9), the capacitance scaling parameters and
HOMO dimensions might be used to determine and to
interpret the characteristics of diverse phenomena.

Such insights would be based not just on the fact that
the hardness is half the reciprocal of the charge capac-
itance [25] or quantum capacitance, η = 1/2CI . They
would rely upon the demonstration here that molecules,
as well as atoms, appear to behave much like classical
spherical capacitors.

If it can be shown to extend to other molecules, this
principle, as embodied in Eqs. (1) and (7), also could
be of considerable value in simplifying difficult, time-
consuming calculations of molecular EAs. As for the
molecular wires, the energetics of large molecules could
be predicted from that of structurally similar, but smaller
molecules. This might point, as well, toward a still more
general electrostatics-like approach for determining the
energetics of atoms and molecules in terms of their shapes
and dimensions. Thus, capacitance scaling relations for
other molecules and for atoms are to be explored further
elsewhere.
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