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1.0  SUMMARY 
In this technical report, we capture the research effort into two deficiencies encountered while 
implementing Secure Boot for a secure system. The first deficiency discovered is that OpROMs 
fail to load on a system that has custom Secure Boot keys in its key variables and has removed all 
manufacturer keys from the key variables. The second deficiency is that, by design, Secure Boot 
does not validate the digital signatures of certificates within the Secure Boot key variables in stand-
ard Public Key Infrastructure (PKI) certificate hierarchy operation. The technical details of each 
deficiency are detailed further within this report. Additionally, this report expands upon the re-
search methodology applied to each deficiency. With the insights gained from our research, we 
make informed findings and recommendations on how to mitigate each deficiency. Lastly, within 
this technical report, we present best practices on how to implement Secure Boot within a secure 
system.  
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2.0  INTRODUCTION 

2.1  Introduction 
Universal Extensible Firmware Interface (UEFI) is the standard interface platform that replaces 
legacy basic input/output system (BIOS) in modern computer hardware. UEFI provides hosts com-
puters additional capabilities over legacy BIOS, one of which is Secure Boot. Secure Boot, when 
enabled, provides a firmware-based boot integrity verification process that ensures the system is 
operating in a known state and running known software after the boot cycle. This process is defined 
and governed by the UEFI 2.8 Errata A specification published by the UEFI Forum. The UEFI 
Forum is comprised of the world’s foremost researchers in academia, eminent computer scientists, 
and technology industry leaders from more than 250 member companies, working to develop and 
maintain the full suite of the UEFI and ACPI specifications. In this technical report, we aim to 
detail our research into the two deficiencies highlighted within Secure Boot implementation within 
secure systems. The paper begins by exploring the deficiencies identified. Next, details the re-
search methodologies. Lastly is a discussion of conclusions and recommendations regarding both 
deficiencies. 

2.1.1  Extensible Firmware Interface Files 
UEFI uses a specific data type, known as Extensible Firmware Interface (EFI) files, to facilitate 
the execution of applications and drivers. An application is software that boots an operating sys-
tem, whereas a driver provides the UEFI access to a device controller. EFI files use the Portable 
Executable Common Object File Format (PE/COFF) for their structure. The digital signature of 
the EFI file is embedded directly within the file itself. The PE header of the EFI file contains an 
array of data directory pointers, the 5th of which is the pointer to a list of certificates, any of which 
may contain a digital signature. The digital signatures within an EFI are in Microsoft Authenticode 
digital signature format. When an EFI file is signed, it ignores specific fields within the PE format, 
as indicated in the figure below. Since the Authenticode hash process ignores the certificate list 
storing the embedded signature, this does not affect the hash value of the EFI file it is hashing. In 
theory, multiple sources of authority can sign an EFI. In certain cases, a secure system vendor 
might want to be the only Secure Boot signing authority for a system they develop. 



Approved for Public Release; Distribution Unlimited. 
3 

 

 
Figure 1. EFI File Embedded Certificate Layout 
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Figure 2. PE File Format and Authenticode Signature Format 
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2.1.2 3rd-party Option Read-Only Memory 
An important concept related to this research effort is 3rd-party Option Read-Only Memory 
(OpROM). OpROM firmware can reside either within the UEFI BIOS or on a 3rd-party device 
(i.e., an expansion card). When initialized, the system loads the OpROM into memory and registers 
the 3rd-party device with the UEFI BIOS. EFIs for the 3rd-party devices reside within the structure 
of their associated OpROMs, and these are the executable elements that perform the registration. 
OpROMs referenced within this paper are strictly UEFI OpROMs and not legacy BIOS OpROMs. 
Legacy BIOS OpROMs are firmware that works with the Personal Computer Advanced Technol-
ogy (PC-AT) system architecture. PC-AT is the system architecture of the majority of computers 
before the release of the UEFI specification. Legacy BIOS OpROMs did not work with Secure 
Boot and were not used when the issues calling for this research were encountered. Also note, 
these are 3rd-party OpROMs, which means that the OpROM resides on an expansion card or device 
that was not manufactured by the platform OEM, and thus the firmware of the OpROM was de-
veloped by a 3rd-party. For purposes of this paper, consider that the first party is the OEM, 2nd-
party is the equipment owner, and 3rd-party is an optional add-in equipment manufacturer. 
 

2.1.3 Secure Boot Integrity Validation Process 
Secure Boot provides system boot integrity validation by performing validation of the embedded 
digital signature within an EFI file. Additionally, Secure Boot can validate an EFI before execution 
by comparing it with a known hash value of the EFI file. If Secure Boot is enabled and either of 
these mechanisms fails to validate the EFI file, then it will not be allowed to execute. UEFI firm-
ware has four authenticated variables that can store either PKI certificates or hash values used to 
validate the EFIs. In Secure Boot, an authenticated variable is a UEFI variable that requires addi-
tional authentication data to be validated prior to being updated. Only with the appropriate authen-
tication data can Secure Boot variables be updated. The following provides further details on the 
Secure Boot authenticated variables: 
 

• Enrolled in the PK variable is a Distinguished Encoding Rules (DER) formatted X.509 
certificate (PKpub), which has a corresponding RSA-2048 or greater private key (PKpriv) 
stored by the platform vendor. The PKpriv digitally signs UEFI payloads that update the 
PK variable or the KEK variable. 

• The KEK is not a single X.509 certificate but a signature database variable that can store 
one or more DER formatted X.509 certificates. Vendors of widely distributed bootable 
software or firmware have hardware manufacturers deploy their certificates within the 
KEK. Microsoft is one such example of an operating system vendor that works with 
manufacturers to deploy their public KEK certificate widely so most systems can boot 
Windows with ease if Secure Boot is enabled. The PKpriv is used to digitally sign UEFI 
payloads that update the PK variable or the KEK variable. 

• Signatures Database (db): The db stores the DER formatted X.509 certificates used to 
validate the signature of bootable firmware and software. Additionally, the db can store 
hash values of EFI files, which also can perform EFI execution validation. Like the 
KEK, the db is a signature database variable. The KEKpriv or PKpriv is used to digitally 
sign UEFI payloads that update the db variable. 
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• Forbidden Signatures Database (dbx): The dbx is a signature database variable that for-
bids the execution of EFIs. The dbx variable can store DER formatted X.509 certificates 
or EFI file hashes. If an EFI attempts to execute using a certificate or hash contained in 
the dbx, then execution of that EFI is halted. The KEKpriv or PKpriv is used to sign UEFI 
payloads that update the db variable digitally.  

There are two mechanisms in which the Secure Boot system can validate EFIs. 
1. EFI signature validation: KEKpriv or dbpriv creates an embedded digital signature within 

an EFI file. Upon boot, validation of an EFI file embedded digital signature will be per-
formed using the KEKpub or dbpub X.509 certificates. If either validates the digital signa-
ture, the EFI is allowed to continue execution. 

2. EFI file hash validation: A hash of the EFI is generated and checked against the hash 
values that are in either the KEK signature database or the db signature database. If the 
hash value is in either signature database variable, the EFI file is allowed to continue ex-
ecution. 

EFIs are also explicitly compared to the dbx as well. If an EFI is signed by a certificate or its hash 
value is in the dbx, the EFI is not allowed to execute. During the boot process, EFI files are exe-
cuted from their respective devices with the OS EFIs launched from the hard drive boot sector and 
OpROMs from the device firmware. Any EFI that has a valid signature or hash is allowed to boot. 
Otherwise, the system boot continues without that device or OS enabled. Prohibiting invalid EFIs 
from booting ensures that only approved and trusted software is executed during bootstrap.  
By using Secure Boot, an administrator can guarantee that a device, if allowed to boot, has booted 
into a known state using known and trusted EFI images validated by their signature or hash value, 
which are approved by a recognized authority. Secure Boot based system integrity protects the 
system from attacks where the bootable software or firmware in the boot chain has been covertly 
or unintentionally modified to perform unanticipated actions or replaced with malware or unknown 
bootable artifacts. 

2.1.4 Problem Discussion 

2.1.4.1 3rd-party OpROMs Deficiency 
Secure Boot does not preclude systems from being booted by industry-standard software loads, 
such as Windows or Red Hat Enterprise Linux, as long as the manufacturer loaded certificates are 
present in the Secure Boot variables. Keeping manufacturer certificates and hashes in the signature 
database variables would allow an attacker to boot the system into an alternate or vulnerable state, 
allowing manipulation of the machine and resident data in unanticipated ways. 
In secure systems, it is recommended to delete manufacturer deployed certificates and hashes from 
the Secure Boot variables. After removal, certificates, and hashes that are generated by the secure 
system vendor are added to the relevant Secure Boot variables. By doing this, the secure system 
vendor can ensure that a system with Secure Boot enabled only boots software or firmware ap-
proved and signed by that vendor. The replacement of the certificates and hashes prevents a mali-
cious user from purposely altering the system or a misguided administrator from mistakenly mak-
ing unauthorized or unwise changes. 
Following this guidance is an excellent approach to increasing the security posture of secure de-
vices. However, it does not account for 3rd-party OpROMs containing EFI drivers for 3rd-party 
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system devices. In this scenario, the removal of factory certificates and hashes (to prevent the 
booting of images not signed by the secure system vendor) prevents the EFI drivers from these 
OpROMs from being executed. In many cases, this renders the associated system devices unusable 
by the secure system. This problem was discovered on a secure system development effort, by 
removing the factory certificates and hashes from the Secure Boot KEK and db variables of a test 
system and subsequently attempting system boot. Removal of the manufacturer certificates and 
hashes resulted in the system failing to load several Hardware (HW) device OpROMs. These in-
cluded OpROMs for Small Computer System Interface (SCSI) based hard drives attached to a 
Redundant Array of Independent Disks (RAID) controller and non-motherboard Network Inter-
face Cards. The result was that these devices were unavailable for use after system boot.  
Further exasperating this issue is the lack of transparent methodologies by which to resign or gen-
erate hashes of the EFI drivers contained within these 3rd-party OpROMs.  Device manufacturers 
package the EFI drivers into their associated OpROMs and offer no clear or consistent methodol-
ogy for extraction and resigning when clearing Secure Boot variables of manufacturer certificates 
and EFI hashes. Simply put, the 3rd-party manufacturers rely on the presence of established soft-
ware vendor’s Secure Boot certificates to sign their OpROMs 

2.1.4.2 Secure Boot Certificate Hierarchy Deficiency 
An issue unrelated to the 3rd-party OpROMs was encountered during Secure Boot implementation 
on a secure system when replacing the values of the PK, KEK, and db. Based on the UEFI speci-
fication of Secure Boot, it was interpreted that the PK, KEK, and db form a PKI validation hierar-
chy, each validating its respective child before the certificates in those Secure Boot variables can 
be used. Upon replacement of the PK, while keeping the hardware manufacturers' certificates in 
the KEK and db signature database variables, it was found that the manufacturer certificates could 
still be used to validate signed EFIs. According to our interpretation of Secure Boot operation 
within the UEFI specification, this should have been prevented as the PK certificate did not sign 
the KEK and db certificates. When this issue was first encountered, it was incongruent with our 
interpretation of the Secure Boot specification and thus raised questions about the compliance of 
UEFI implementations within hardware vendors. Later in this document, we will discuss how the 
initial deficiency discovery ended up being based on our misinterpretation of the UEFI specifica-
tion.  
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Secure Boot Research 
The Secure Boot research project was undertaken to find more information about the breadth of 
issues that exist while attempting to implement Secure Boot within a secure system. Through our 
research methodology, we plan to understand the deficiencies as discussed and to develop a path 
forward to improve UEFI specification and industry standards when implementing their UEFI 
compliant solutions for secure systems. 
Since the two deficiencies discovered were unrelated, we decided to separate each problem into 
its own research effort. By decoupling the problems, it allowed us to work them in parallel and to 
limit any blockers during research and testing. In sections 3.1.1 and 3.1.2, we expand on our re-
search approach for each of the deficiencies in greater detail. 
It is of note that while we did separate the Secure Boot deficiencies into separate research efforts, 
there were three related areas of interest examined to inform the outcome of our research. These 
areas were deficiencies of Secure Boot operation and specification and Hardware Vendors Secure 
Boot implementation. With the information gathered from these sources, we hope to come to a 
better understanding of exactly how Secure Boot operates so we can make informed recommen-
dations on how to best implement Secure Boot within a secure system. 

3.1.1  3rd-Party OpROM Deficiency Research Methodology 
When considering the problem of 3rd-party OpROMs not booting under a custom Secure Boot 
policy, it was essential to clearly state the problem and understand as much as possible regarding 
how OpROMs are loaded during boot. From this stance, we were able to establish a defined test 
procedure replicating the problem. Using controlled server hardware that is class equivalent to 
secure systems, we created test procedures that emulate the removal of manufacturer loaded Secure 
Boot certificates replacing them with in-house generated Secure Boot certificates. Once we were 
able to replicate the OpROM boot issue, we sought to find a solution that allows OpROMs to boot 
without having the manufacturer certificates loaded in the KEK or db signature database variables. 
We took two different approaches to the development of a solution in the hopes of generating a 
proof-of-concept before the end of the research effort. In APPENDIX A, we have listed all of our 
testing procedures for flashing firmware onto PCI devices. Also, we have a test procedure for 
booting a device using a custom Secure Boot policy to test if firmware signed by us could be 
successfully booted. Lastly, with the body of knowledge gained, we generated a set of best prac-
tices related to Secure Boot implementation within a secure system.  

3.1.2 Secure Boot Certificate Hierarchy Deficiency Research Methodology 
When considering the Secure Boot certificate hierarchy deficiency, we saw the end goal of this 
research area slightly differently than that of the OpROM issue. Where the OpROM issue osten-
sibly resulted in a proof-of-concept solution, the research around this deficiency could only result 
in guidance to system hardware manufacturers. Our methodology on researching the certificate 
hierarchy issue started similar to the OpROM issue but diverged when it came to replicating the 
issue and best-practices creation. The approach taken was to fully understand how Secure Boot 
certificates validate one another by reading UEFI specification documentation and through inter-
actions with the system hardware manufacturers. Once understood, we consulted with secure sys-
tem vendors to see if they had encountered this problem and determine what their solution if any, 
might be. Lastly, with the body of knowledge gained, we planned to compile our findings and 
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provide them back to the system hardware manufacturers and Air Force Research Laboratory 
(AFRL) as part of this final technical report. 
 

3.1.3 Secure Boot Operation and Specification Research Methodology 
In our research, it was critical to understand the raw fundamentals of how Secure Boot operates. 
Understanding how Secure Boot works is the foundation of our findings and recommendations for 
Secure Boot implementation within secure systems. A body of knowledge was built by researching 
the Secure Boot specification, Microsoft Secure Boot implementation guidance, and UEFI tech-
nical forums. These materials helped us gain a complete understanding of Secure Boot EFI vali-
dation operations, Secure Boot key structure, EFI file structure, OpROM structure, and Secure 
Boot variable authentication.   

3.1.4 Commercial Vendor Research Methodology 
Supplementing the knowledge gathered from the UEFI specification, we worked with commercial 
vendors involved in the specification and implementation of Secure Boot. Both deficiencies 
needed information from the vendors to establish informed findings and solutions. We worked 
with Dell, Hewlett Packard Enterprise (HPE), and Microsoft. Microsoft was involved because they 
were heavily involved in authoring and contributing to the UEFI specification. Microsoft also pro-
vides a widely distributed certificate for hardware vendors to include as a default KEK and db 
certificate within the Secure Boot system. This allows Microsoft signed EFI images to boot with 
little effort in when enabling Secure Boot on a system. Also, Microsoft maintains a service in 
which 3rd-party developers can submit their EFI files to them to be digitally signed. Since we were 
concerned with OpROM signing in this research effort, an attempt to reach out to Microsoft was 
made. 
Dell was involved since they are a major server hardware producer for secure systems that utilize 
Secure Boot functionality. Both of the Secure Boot deficiencies were first encountered on a Dell 
PowerEdge R640 server during secure system development. The research effort had access to a 
Dell PowerEdge R740 server, which offers the Secure Boot capability through its UEFI architec-
ture. Using this server, we can replicate the exact deficiencies that were encountered while devel-
oping the secure system (See APPENDIX A for Secure Boot test procedures). Also, we worked 
directly with Dell's technical support to get direct answers to our deficiency questions. 
HPE was contacted since they are also a major server hardware producer for secure systems. HPE 
also constructs its servers to the UEFI specification and offers the Secure Boot capability. One 
pivotal intent during the research was to compare the Secure Boot capability of comparable secure 
system hardware to frame our best-practices and recommendations more abstractly. There should 
not be a limit on what platform vendor is chosen as long as they remain UEFI compliant. On this 
project, we also investigated and ran test procedures (See APPENDIX A for Secure Boot test 
procedures) against an HPE DL380 server. The HPE DL380 offered similar UEFI capabilities as 
the Dell PowerEdge R740, so it was a good measure of how different UEFI architectures were 
implemented. Additionally, HPE technical support made themselves available to us to ask detailed 
questions about the Secure Boot deficiencies, as well. 
Table 1 lists the commercial vendors that were contacted to further our knowledge of Secure Boot 
and how it operates in their systems. 
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Table 1 Commerical Vendor Research Summary 

Vendors Method of Research 

Hewlett Packard Enterprise 
(HPE) 

Multiple discussions via conference call with HPE 
engineers and emails were exchanged as well. Addi-
tional research was performed utilizing and HPE 
DL380 server. 

Dell 

Multiple discussions via conference call with Dell 
technical support and emails were exchanged with 
their engineers. Additional research was performed 
utilizing and Dell PowerEdge R740 server. 

Microsoft 

Attempts were made to contact Microsoft technical 
support via phone and email, but we received no re-
sponse. Microsoft provided research material primar-
ily through its publicly accessible technical support 
web pages, as listed in the Reference section (7.0). 
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4.0 RESULTS AND DISCUSSION 

4.1 Research Results Summary 
In this section, we present the results of our research into the two primary Secure Boot deficiencies 
introduced in Section 2.0. The information gathered from UEFI specification, commercial vendors, 
and secure system vendors, as part of our research methodology is presented. 

4.1.1 Secure Boot Operational Behavior 
This section provides detail on the operation and behavior of Secure Boot. As not to repeat the 
information about Secure Boot operation presented in the Introduction (Section 2.0), this section 
is meant to provide additional detail into areas that help build the foundation for our results and 
recommendations going forward. 

4.1.1.1 Secure Boot Modes 
Secure Boot has different operating modes in which Secure Boot operations behave differently. 
The two primary modes we are concerned with are Setup Mode and User Mode. Setup mode ef-
fectively means that Secure Boot is not enforcing any validation behavior and has turned off au-
thentication of Secure Boot key variables. User Mode is when Secure Boot is in EFI image vali-
dation enforcing mode and has enabled authentication of any operation that attempts to overwrite 
a Secure Boot key variable. 

4.1.1.2 Authenticated Variables and Signature Databases 
In the introduction, we introduced the Secure Boot variables that are at the core of both deficien-
cies, the PK, the KEK, the db, and dbx. Through reading the UEFI specification, we learned more 
about the structure of the Secure Boot variables and how they operate. All of the Secure Boot key 
variables are authenticated variables. This means that to overwrite Secure Boot certificates if Se-
cure Boot is in User Mode, the payload containing the new certificates must be signed by a higher 
tier Secure Boot private key. The following is the Secure Boot digital signature hierarchy for over-
writing Secure Boot variables: 

• PK: Overwriting the PK variable while in User Mode requires that the old PK private key 
signs the payload containing the new PK certificate. 

• KEK: Overwriting the KEK signature database variable while in User Mode requires that 
the current PK private key signs the payload containing the new KEK signature database. 

• db: Overwriting the db signature database variable while in User Mode requires that the 
payload containing the new db signature database is signed by the current KEK private 
key or PK private key. 

• dbx: Overwriting the dbx signature database variable while in User Mode requires that 
the payload containing the new dbx signature database is signed by the current KEK pri-
vate key or PK private key. 

The KEK, db, and dbx are all signature database variables. Signature databases are a versatile 
Secure Boot construct that can contain many different forms of signature types. The signatures 
described here are not digital signatures, but data that can be of any of the forms within the UEFI 
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signature type specification. Signatures are aggregated into lists, and the signature database vari-
able can contain many signature lists, each with its own type. The aggregate of signature lists al-
lows the KEK, db, and dbx to contain both DER-formatted X.509 certificates and hash values. In 
the UEFI Specification 2.8, section 32.4.1 goes into greater detail about how signature databases 
are formatted and lists all the types of signatures that are allowed within the signature data. 

4.1.1.3 OpROMs 
‘Table 2 Recommended PCI Device Driver Layout’ contains the recommended OpROM header 
from the UEFI specification v2.8, Table 135. ‘Figure 4.1 OpROM Header of an actual OpROM 
file’ contains a hex dump of the header from an actual OpROM file from Dell. Each section of the 
OpROM header is labeled to its corresponding section in the OpROM header table. While inspect-
ing OpROM data in various drivers downloaded from Dell and HPE, different versions of the 
Peripheral Component Interconnect (PCI) Expansion ROM (PCIR) Data Structure were encoun-
tered. In Table 3, items 16 and 17 have the values 0x0018 and 0x00, respectively. These values 
correspond to version 2.2 of the PCIR Data Structure. A different file was encountered during our 
research that matched version 3.0 of the PCIR Data Structure. The values in items 16 and 17 in the 
version 3.0 PCIR data structure were 0x001c and 0x03, respectively. The significance of different 
versions impacts how a digital signing solution would be implemented. Specific implementations 
would require that a developer thoroughly inspect all OpROM headers to ensure as EFI data is 
being extracted, the proper location within the OpROM is being inspected based on the PCI version 
number. 
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Table 2 Recommended PCI Device Driver Layout 
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Figure 3. OpROM Header of an actual OpROM file 

 

4.1.2 Microsoft Secure Boot Key Deployment 
Per Microsoft Secure Boot online documentation, Microsoft works with hardware vendors to en-
sure that their certificates are deployed as default values in the KEK and db signature database 
variables on vendor hardware. Deploying in this way assists with the boot of Microsoft and OEM 
hardware booting if Secure Boot is enabled. Microsoft provides a service where they digitally sign 
OEM firmware with their dbpriv key so the firmware can boot with the Microsoft dbpub certificate.. 
Controlling the PKI chain would be accomplished through the removal of default manufacturer-
provided certificates, replacing them with ones provided by the secure system vendor.   
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4.1.3 Hardware Vendor Results 
 

Table 3 Hardware Vendor Findings 

Vendors Findings 

Hewlett Packard Enter-
prise (HPE) 

HPE has proprietary boot software that functions simi-
larly to Secure Boot and was not investigated due to its 
proprietary nature. Their proprietary boot solution was 
specific to their hardware and did not involve Secure 
Boot functionality. HPE has no current method of resign-
ing OpROMs that come from 3rd-party device manufac-
turers. However, HPE does have the ability to generate 
hash values of pre-loaded EFIs found on the server. Addi-
tionally, HPE provides access to a UEFI Command Line 
Interface (CLI) that can manipulate Secure Boot authenti-
cated variables. 

Dell 

Dell has no current method of resigning OpROMs that 
come from 3rd-party device manufacturers. Dell has a 
way to generate hash values of pre-loaded EFIs found on 
the on GEN 14 or later servers. Dell’s solution is to have 
the server boot into a Secure boot discovery mode. Boot-
ing, in this manner, allows the server to discover pre-
loaded EFIs, calculate their hash values, and add them to 
the db signature database variable.  

Microsoft 
Microsoft was unresponsive to questions and was unable 
to provide support to our Research into Secure Boot vul-
nerabilities.   

 
 

4.1.4 Secure Boot Deficiency Results 

4.1.4.1 3rd-Party OpROMs 
The first deficiency discussed was the inability to re-sign 3rd party OpROMs with a custom key 
when Secure Boot certificates and hashes deployed by the HW manufacturer are removed. The 
research was done into how OpROMs could be loaded when Secure Boot is enabled, and a custom 
Secure Boot key chain is used. The procedures for testing candidate solutions for resigning 
OpROMs reside in Appendix A. The research was performed using a Dell PowerEdge R740 server 
and HPE DL380 server with OpROMs that were downloaded off of their respective websites. The 
OpROMs we experimented with were for a RAID controller on both manufacturers' system. The 
Dell RAID controller is the PERC H730P adapter. The HPE RAID controller is the HPE Smart 
Array P408 adapter. The UEFI specification contains a layout for the recommended data structure 
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of OpROMs. However, since the UEFI specification does not specify or maintain the OpROM 
data structure format, there could be cases where a UEFI-compatible OpROM may not have the 
structure designated in the UEFI specification. The OpROM data structure is maintained in the 
PCI Firmware Specification, the latest version of which is 3.2.  The PCI Device Driver Layout 
structure allows the individual Portable Executable/Common Object File Format (PE/COFF im-
ages (EFI files)) to be found and extracted from an OpROM. Through extensive experimentation 
using our test procedures in Appendix A, we attempted to create a proof-of-concept where we 
extracted EFI data, resigned it, and then repackaged it back into the OpROM structure. Ostensibly 
this should work since the signature data width is constantly given a designated digital signature 
algorithm. Unfortunately, we were unable to produce a bootable solution where a repackaged 
OpROM was able to boot under a customer Secure Boot certificate chain. We had difficulty in 
determining the exact location within the OpROMs where we would need to overwrite the EFI 
embedded digital signature bytes. We believe it is possible to develop a tool that can automatically 
parse OpROMs for EFI data and applying a digital signature in the correct location within the EFI 
data, but we were unable to develop this tool under this current research effort. 
An alternative solution would be adding the hash values of the EFIs within approved OpROMs to 
the db. Hashes are an acceptable means of validating a bootable piece of software or firmware 
within Secure Boot. Hash values of bootable EFIs can be stored in the db variable. Dell and HPE 
both have methods to calculate hash values of pre-loaded EFIs and add them to the db variable. 
This means that if an OpROM has EFIs within, they can be hashed by UEFI firmware functional-
ity, and those hashes enrolled into the db variable of Secure Boot. HPE granted our research team 
access to their firmware engineering staff to gain a deeper understanding of how they handle 3rd-
party device firmware signing. The HPE firmware engineering team offered to provide access to 
a tool their team uses to dissect an OpROM and sign any interior PE/COFF image files (EFI files). 
Access to this tool was not available until after we had concluded this research effort. 

4.1.5 Attempts to sign OpROMs 
Throughout this research effort, many attempts to manually sign the OpROMs were explored. Had 
they been successful, this would have provided the first step towards a solution. Specifically, we 
sought to unpackage UEFI capsules (the packages containing OpROMs and are used to install 
OpROMs), sign the individual OpROMs, and repackage the UEFI capsule. Doing this would have 
allowed removal of all manufacturer certificates from Secure Boot key variables without rehashing 
the system. Ultimately, we were able to unpackage the OpROMs from the UEFI capsule, but any 
attempts to sign or reinsert the OpROMs failed. An alternative solution would be to put the hashes 
of the extracted OpROMs into the db and load the original OpROM from the vendor. Most UEFI 
platforms come with a boot option to access the UEFI shell. The UEFI shell is a direct command-
line interface to the capabilities UEFI provides. Unfortunately, we were unable to perform the 
OpROM hash enrollment through the UEFI BIOS or in the UEFI shell. The HPE DL380 server 
that we used during testing allowed EFI hashes to be added to the db, but we were unable to extract 
an OpROM and present it to the UEFI BIOS such that it would add the hash to the db. Also, we 
could not manually insert a hash into the db or add one via the UEFI shell since this is not an 
allowed feature of hash enrollment within Secure Boot. The Dell server that used in testing did not 
have a UEFI shell option, and there was no mechanism to insert a hash into the db manually as 
well. 
Some 3rd-party tooling exists aimed at working with EFI images, and a specific tool does exist that 
is intended to overwrite the digital signature of an EFI file. This tool is called sbsigntool and is 
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available through the Ubuntu apt package manager. We attempted to sign OpROMs using sbsign-
tool. The sbsigntool can sign an EFI image with a either KEKpriv or dbpriv keys from the Secure 
Boot keychain, have Secure Boot recognize the signature, and load the EFI image. This tool can 
detect signatures it applies, signs over top of them, and verify that a public certificate can be used 
to validate the signature on the image. While this tool functions for EFI files, it was not effective 
in overwriting the digital signatures within OpROMs. 
Attempts at creating an OpROM resigning proof-of-concept were also made using tools from the 
tianocore/edk2 project on GitHub. Tianocore is an Intel reference implementation of the UEFI 
specification. Tianocore is frequently used by firmware developers to test if what they are creating 
is UEFI compliant. Initially, we tried the Rsa2048Sha256Sign.py script from EDK 2 to resign an  
OpROM. The tianocore wiki claims that this script is used to sign EFI images; however, we found 
this script did not apply the signature onto the file in the correct location, and its output did not 
match the output from sbsigntool. Additionally, this tool is unable to detect a signature that is 
placed onto a file, despite having a decode feature. This tool was able to sign any file that was 
provided, though attempts to re-sign a file using this tool would prepend the signature to the pre-
viously signed file, resulting in a file with two signatures. 
Another tool that was experimented with was EfiRom, also a part of the tianocore/edk2 project on 
GitHub. EfiRom is used to create a UEFI capsule from EFI images and OpROMs. Basic validation 
of input files is performed, and OpROMs extracted from a UEFI capsule passed this validation, 
indicating that the extraction process is correct. When this tool adds an EFI image to the UEFI 
capsule, it prepends an OpROM header to the image, with each input file appended together into 
a final UEFI capsule. However, when examining an OpROM from a vendor, there is extra un-
known data around the OpROM data within the vendor firmware file. Without a way to extract 
and modify the unknown data to mesh correctly with the signed OpROM data, we are unable to 
use this tool to create signed UEFI capsules. 

4.1.5.1 Secure Boot Certificate Hierarchy 
The other Secure Boot deficiency was that the PKI hierarchy within the Secure Boot certificates 
did not appear to be validated upon import or use of the KEK or db. Verification of the removal 
of the PKI chain has been performed on Dell PowerEdge R740 and HP DL380 servers.  Initially, 
the issue was found on a Dell PowerEdge R640 platform. The test procedures to replicate this 
deficiency can be seen in section Appendix A. After discussing this issue further with the HPE 
firmware engineering team, they have clarified an aspect of the Secure Boot specification that we 
had misinterpreted. While Secure Boot does validate certificates that are imported into the authen-
ticated variables, it does it in a slightly different way than the widely fielded PKI infrastructure 
most professionals use. Validation is not performed upon the use of the certificates in the Secure 
Boot variables, but upon the enrollment of the Secure Boot variable certificate and hash payloads. 
For Secure Boot to enroll new certificates and hash values in a variable, the payload providing the 
certificates and hash values must be signed by the proper tier private key. The following is a sum-
mary of which private key associated with each Secure Boot certificate must be used to sign the 
corresponding enrollment payload: 

• PK Certificate Enrollment: The prior PK private key must sign the UEFI certificate 
payload if the PK variable is not currently empty. Otherwise, the payload can be un-
signed. 
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• KEK Certificate or Hash Enrollment: The PK private key must sign the UEFI certifi-
cate payload to the KEK signature database variable. 

• db Certificate or Hash Enrollment: The PK private key or KEK private key must sign 
the UEFI certificate/hash payload to the db signature database variable. 

• dbx Certificate or Hash Enrollment: The PK private key or KEK private key must sign 
the UEFI certificate/hash payload to the dbx signature database variable. 

These UEFI payloads are the validated elements, not the certificates themselves. Further analysis 
of the portion of the UEFI specification that details the SetVariable() function provided a clearer 
understanding that the Secure Boot key hierarchy is about authenticating payloads used to update 
the Secure Boot variables rather than providing a digital signature chain within the variable data 
directly. Specifically, the status codes in section 8.2.1 of the UEFI specification have a code called 
EFI_SECURITY_VIOLATION. This code is raised if the payload provided in the SetVariable() 
function does not pass the validation check carried out by the firmware. In conclusion, our inter-
pretation of the Secure Boot certificate validation was incorrect given our PKI validation assump-
tions; thus, this is not an issue within Secure Boot. We feel this could result in a “gotcha” moment 
for secure system developers looking to understand the operation of the Secure Boot key hierarchy. 
PKI is presented as being part of the root of trust within Secure Boot. While it does provide pro-
tection to the variable write access, it does not protect in the way web-based PKI certificate vali-
dation operations occur. The following figure shows the format of UEFI authenticated variable 
input data, which can be used to update the PK, KEK, db, or dbx variables. 

 
Figure 4. UEFI Authenticated Variable Data Format 

The signature used to validate the incoming data is generated by a private key from a higher tier 
Secure Boot register. The only time the data is validated is when this data format is used to update 
a Secure Boot register, not upon use. See the following flow diagram to see which Secure Boot 
certificate is used to validate Secure Boot variable input data. 
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Figure 5. Secure Boot Variable Authentication Flow 

Conversely, the PKI validation used in SSL on the internet uses a hierarchy of certificates to en-
sure a certificate on the net is validated by a trusted entity on the internet. See the following fig-
ure that shows how this validation is achieved. 

 
Figure 6. SSL PKI Chain of Trust Certificate Validation 

Each time a certificate in SSL is used it will verify that the issuer signature is valid against the 
issuer’s public X.509 certificate. 
The language within the UEFI specification could be improved to make this clearer to the uniniti-
ated reader. 

4.2 Secure Boot Analysis 
This section discusses the impacts of a Secure Boot enabled system from development to deploy-
ment. 

4.2.1 Impacts during development 
Identifying and developing a method of resigning OpROMs within a secure system platform may 
be quite time and budget consuming. Since we did not come to a proof-of-concept for an abstract 
way of doing this for all OpROMs, it would require custom tooling to be created by the secure 
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system developers to be able to accomplish this. The same impact applies if the secure system 
developers attempt an OpROM hashing solution. That being said, once the method of either of 
these is found, vendor tooling could notionally be generated to reduce the impact of future OpROM 
support. Though it should be of note that such a solution would likely be a risk against future 
platform or vendor updates that are proprietary. 

4.2.2 Operational impacts 
The most significant impact of Secure Boot setup, deployment, and maintenance would be found 
in the maintenance phase due to required downtime to replace Secure Boot certificates and hashes 
in the Secure Boot variables. If a secure system relies on verifying OpROMs through embedded 
digital signatures, certificates would need to be replaced due to certificate expiration. This could 
be mitigated by giving certificates a long expiration period. If a secure system relies on the hash 
enrollment solution for verifying OpROMs, each time a piece of firmware is upgraded, the entire 
hash signature database would need to be overwritten in the Secure Boot db variable. Downtime 
can be mitigated by having an adequate system failover structure wherein Secure Boot certificates 
expiration dates are staggered. Firmware updates were not added as an operational impact because 
these updates are already part of assumed downtime structure in existing secure system mainte-
nance. 

4.2.3 Organizational impacts 
Since the organization deploying the secure system does not need to maintain the keys, certificates, 
or hashes for Secure Boot, there is no perceived impact to an organization deploying a secure 
system. There is an impact on the secure system vendor as they must maintain a PKI solution that 
maintains Secure Boot keys for the various models of secure systems they manufacture as well as 
meeting the security requirements for each customer. 

4.3 Analysis of the technical aspects of a Secure Boot Implementation 
4.3.1 Summary of improvements 
System boot integrity is more secure through proper setup, deployment, and maintenance of the 
Secure Boot system on a UEFI enabled platform. The guidance for the use of this capability re-
quires the removal of all pre-loaded Secure Boot keys and that they are replaced with secure system 
vendor-generated PKI keys, certificates, and hashes. This eliminates the risk of tampering during 
shipment & secure system procurement and prevents commercial organizations (i.e., HW manu-
facturers) having their keys exposed, thus giving adversaries the ability to boot a malicious boot-
able software element on a secure system. It also prevents unwise or malicious boot actions per-
formed by a system administrator by preventing them from booting into an alternate state using 
non-vendor supplied media. 
Secure Boot allows EFI hashes to be used to validate bootable elements. In specific servers, it has 
been shown that EFI hashes can be generated and enrolled in the db if they are pre-loaded onto the 
system. Manufacturer loaded Secure Boot certificates, and hashes should first be removed from 
the PK, KEK, and db, and then using mechanisms on the hardware, regenerate the hash values of 
the loaded OpROMs. 

4.3.2 Disadvantages and limitations 
Development of new secure systems could be impacted if development teams are not experienced 
in UEFI system boot concepts, or lack the appropriate tools to perform PKI signature generation 
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of UEFI boot elements. This research effort forced our team to dig into the depths of Secure Boot 
specification to understand even some of the more basic concepts related to Secure Boot key man-
agement. Without that knowledge, the replacement of manufacturer keys with certificates main-
tained by the secure system developer could result in misinterpretation and misunderstanding of 
how the key and certificate material is validated. Additionally, the lack of accessible and reliable 
Secure Boot signing tools for OpROMs limits the effectiveness of development teams if they need 
to use 3rd-party PCI devices critical to the operation of their secure system. At this time, there 
appears no reliable and readily available way to sign OpROMs that come with these PCI devices. 
Thus, it becomes quite problematic to boot them upon system startup when Secure Boot is enabled. 

4.3.3 Alternatives and trade-offs considered 
Alternatives to Secure Boot were not considered.  
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5.0 CONCLUSION 
The research into Secure Boot demonstrates issues prevalent on multiple vendor platforms. The 
PKI chain, when removed and replaced, does not allow for an operating system to boot due to the 
inability to load OpROMs, and thus hard drives on RAID controllers would not likely be present. 
The removal can also affect other 3rd-party PCI devices such as network interface cards as well. 
Any device with an unsigned or invalid signature OpROM fails to load under the circumstance 
mentioned. These issues can be reproduced on multiple commodity hardware platforms. At this 
time, our research was unable to produce a proof-of-concept of a way to resign OpROMs to they 
can boot with a custom Secure Boot policy. We believe it is possible that a tool to resign OpROMs 
can be created, but requires additional investigation into the PCI firmware specification. It is pos-
sible to hash all OpROMs that are loaded into the system and enroll these hashes into the db Secure 
Boot variable. This hash enrollment offers a solution to the OpROM issue but comes with limita-
tions as detailed in section 6.1.2. 
The second issue encountered ended up being our misinterpretation of how the PKI chain within 
Secure Boot validates certificate and hash enrollment into authenticated variables. That being said, 
the UEFI specification could have made it more evident in the PK, KEK, db, and dbx enrollment 
sections how the variable authentication functions. This was only clearly stated in the SetVaria-
ble() function definition of the specification. The Secure Boot section of the specification relating 
to variable enrollments is quite general when it states how values are authenticated. The chain of 
keys in Secure Boot is meant to validate UEFI payloads for child certificate and hash value enroll-
ment. This does not mean the data within the payload needs to be signed by the parent key, instead 
the UEFI payload containing update values for the child Secure Boot variable. The signing of the 
UEFI payload protects the Secure Boot variables from erroneous or malicious modification. Also, 
the payload validation allows more certificates and hash values to be added to the variables than 
just the ones being created by the secure system vendor, as long as the secure system vendor ap-
proves them with their private key. The validation structure maintains the same level of security 
since it still requires the secure system vendor PKI solution to sign the certificates and hashes 
being added to a Secure Boot authenticated variable (PK, KEK, db, or dbx). 
Outreach to stakeholders is ongoing, with updates occurring daily. Nteligen has had modest suc-
cess with getting in contact with secure system vendors  thus far, and continue to reach out until a 
full understanding of each vendor’s usage of Secure Boot is determined.  
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6.0 RECOMMENDATIONS 
 

6.1.1 General Recommendations 
If possible, we recommended that all secure systems should use secure system vendor-generated 
PKI certificate and hash material in Secure Boot authenticated variables for a given secure system 
deployment. At this time, if 3rd-party OpROMs hinder the operation of a secure system in this 
setup, it is recommended to use the EFI hash value enrollment solution to shed reliance on manu-
facturers deployed Secure Boot certificates.   
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APPENDIX A – SECURE BOOT TEST PROCEDURES 

The following appendix provides test procedures used to replicate the Secure Boot deficiencies we 
identified. In combination with that, we have provided test procedures that explain how to reset 
the Dell and HPE server hardware back to a known good state as the procedures can involve over-
writing firmware. If we don’t have these procedures, the system could be in an invalid state ahead 
of executing a new test. 
Additionally, we have provided test procedures detailing how to test a Secure Boot deficiency 
solution candidate against a specified server. 

A.1 Test Procedures to Reproduce Secure Boot Deficiencies
The test procedures below reproduce the Secure Boot deficiencies on the Dell PowerEdge R740 
and HPE DL380 servers. To research the deficiencies, a RAID controller was used as an exemplar 
3rd-party device within a server that wouldn’t boot if Secure Boot is enabled. 

A.1.1 Secure Boot Deficiency Reproduction Requirements
The verification points (VP) below identify when the proper state of the test procedure has been 
reached to state if the Secure Boot deficiency has been reproduced accurately.  

Verification Points 
Each VP maps to a requirement. The requirement is a test plan concept we incorporated into the 
structure of the procedures used to reproduce the Secure Boot deficiencies. In a traditional test 
plan, each requirement is a contract requirement captured in a Requirements Traceability Verifi-
cation Matrix (RTVM). For this research effort, we created two requirements that represent the 
end state of when a Secure Boot deficiency is reproduced. Each ID number should be associated 
with the RTVM ID for each requirement, but since we do not have an RTVM for this effort, we 
left these blank. The VP number is referenced within each Secure Boot deficiencies reproduction 
procedure, indicating at which step the procedure should have reproduced the deficiency. 
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Table A-1 Requirement to Verification Objective 

VP ID Requirement Verification 
1. N/A Verify the trusted operating 

system or bootable software 
boots correctly. 

Should not be able to boot into an unsigned 
bootloader. 

2. N/A Verify that bootable devices 
are unavailable. 

Should not be able to boot into unsigned de-
vices. 
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A.1.2. Secure Boot Certificate Hierarchy Deficiency Reproduction Procedure 
 The following table contains procedures on how to reproduce the Secure Boot deficiency where 
the Secure Boot certificate structure does not validate according to specification. 
 

Table A-2 Secure Boot Certificate Hierarchy Deficiency Reproduction Procedure 

# Steps/
Test 

Description Comment 

1.  Step Test Machine (Secureboot):  
Install CentOS 
 

 

2.  Step Test Machine (Secureboot):  
Verify all default certs are 
available on PK, KEK, and 
db. 
 

In the case of non-default configuration, re-
vert all Secure Boot keys to the default con-
figuration. 

3.  Step Local Machine:  
Generate the PK, KEK, and 
db private keys and self-
signed certificates 

$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN=SecBoot PK/" -keyout PK.key -out 
PK.crt -days 3650 -nodes -sha256 -outform 
PEM 
 
$ openssl x509 -in PK.crt -out PK.cer -out-
form DER 
 
$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN=SecBoot KEK/" -keyout KEK.key 
-out KEK.crt -days 3650 -nodes -sha256 -out-
form PEM 
 
$ openssl x509 -in KEK.crt -out KEK.cer -
outform DER 
 
$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN=SecBoot DB/" -keyout DB.key -
out DB.crt -days 3650 -nodes -sha256 -out-
form PEM 
 
$ openssl x509 -in DB.crt -out DB.cer -out-
form DER 
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The dbx is not created in this process since a 
list of invalid EFI binaries has not been con-
sidered yet. Once this research has been per-
formed, the generation of the forbidden signa-
ture database is the equivalent of creating the 
DB above. 
 

4.  Step Local Machine: 
Create writable media that can 
be read by the secure system 
firmware. 
 

Usually, this is FAT32.  
Media types must be allowed by the secure 
system deployment environment. 

5.  Step Test Machine (Secureboot):  
Verify Secure Boot is disabled 
 

1. Turn on UEFI enabled PC 
2. Enter BIOS 
3. Ensure Secure Boot is disabled (if not, 

disable, reboot, and start from step 1) 
 

6.  Test Test Machine (Secureboot):  
Load PK into UEFI 
 

1. Delete the pre-loaded PK certificate 
2. Import the generated PK certificate from 

the media 
3. Reboot   
4. Enter UEFI BIOS 
5. Enable Secure Boot 
6. Reboot 
 

7.  VP 1 Test Machine (Secureboot):  
Verify the trusted operating 
system or bootable software 
boots correctly 
 

Expected: Should not be able to boot into un-
signed bootloader 
Actual: Able to boot into the operating system 
 
UEFI BIOS allows you to boot into boot-
loader with Microsoft PK missing. 

  



Approved for Public Release; Distribution Unlimited. 
29 

A.1.3 Third-party OpROM Deficiency Reproduction Procedure
 The following table contains procedures on how to reproduce the Secure Boot deficiency when 
OpROMs are not signed by the enabled KEK or db certificates and fail to load during boot. 

Table A-3 Third-party OpROM Deficiency Reproduction Procedure 

# Steps/
Test 

Description Comment 

1. Step Test Machine (Secureboot): 
Install CentOS 

2. Step Test Machine (Secure boot): 
Verify all default certs are 
available on PK, KEK, and 
db. 

In the case of non-default configuration, re-
vert all signatures to the default configura-
tion. 

3. Step Local Machine:  
Generate the PK, KEK, and 
db private keys and self-
signed certificates 

$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN=SecBoot PK/" -keyout PK.key -out 
PK.crt -days 3650 -nodes -sha256 -outform 
PEM 

$ openssl x509 -in PK.crt -out PK.cer -out-
form DER 

$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN= SecBoot KEK/" -keyout KEK.key 
-out KEK.crt -days 3650 -nodes -sha256 -out-
form PEM

$ openssl x509 -in KEK.crt -out KEK.cer -
outform DER 

$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN= SecBoot DB/" -keyout DB.key -
out DB.crt -days 3650 -nodes -sha256 -out-
form PEM 

$ openssl x509 -in DB.crt -out DB.cer -out-
form DER 
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The dbx is not created in this process since a 
list of invalid EFI binaries has not been con-
sidered yet. Once this research has been per-
formed, the generation of the forbidden signa-
ture database is the equivalent of creating the 
db above. 

4. Step Local Machine: 
Create writable media that can 
be read by the secure system 
firmware. 

Usually, this is FAT32. 
Media types must be allowed by the secure 
system deployment environment. 

5. Step Test Machine (Secureboot):  
Verify Secure Boot is disabled 

1. Turn on UEFI enabled PC
2. Enter BIOS
3. Ensure Secure Boot is disabled (if not,

disable, reboot, and start from step 1)

6. Test Test Machine (Secureboot): 
Load PK into UEFI 

1. Delete the pre-loaded PK certificate
2. Import the generated PK certificate from

the media

7. Step Test Machine (Secureboot):  
Load KEK certificate into 
UEFI 

1. Delete the pre-loaded KEK certificate
2. Import the generated KEK certificate

from the media.

8. Step Test Machine (Secureboot):  
Load DB certificate into UEFI 

1. Delete the pre-loaded db certificate
2. Import the generated db certificate from

the media

9. Step Test Machine (Secureboot): 
Enable Secure Boot 

1. Reboot
2. Enter UEFI BIOS
3. Enable Secure Boot
4. Reboot

10. VP 2 Test Machine (Secureboot):  
Verify bootable devices are 
unavailable 

Expected: Should not be able to boot into un-
signed devices 
Actual: Should not be able to boot into un-
signed devices  

Currently, there is no way to sign Options 
ROMs. 

A.1.4  Overwrite RAID Controller Firmware Procedures
 This test procedure details how to overwrite the RAID Controller firmware. This procedure was 
created because a fundamental process on how to overwrite firmware on our candidate 3rd-party 
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test device (RAID controller) had to be set in stone. We did not want to enter a system state where 
we did not know the version of the firmware of a device before executing a test of a proof-of-
concept solution. There are two VPs for this procedure since we created procedures that are spe-
cific to each of the hardware platforms we were testing on; both the Dell PowerEdge R740 and the 
HPE DL380. 

Verification Procedures 
Table A-4 Requirement to Verification Objective for RAID Controller 

VP ID Requirement Verification 
1. Verify version overwrite of 

RAID Controller firmware on 
Dell PowerEdge R740 

Verify version change 

2. Verify version upgrade of 
RAID Controller firmware on 
HPE DL380 

Verify version change 
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Overwrite RAID Controller Firmware on Dell Procedure 
 

Table A-5 Overwrite RAID Controller Firmware on Dell PowerEdge R740 

# Steps
/Test 

Description Comment 

1.  Step 
 

Local Machine:  
Download firmware BIN file 
 

1. Visit DELL website  
2. Locate the latest version of firmware 

for RAID Controller 
3. Download file 

2.  Step Local Machine:  
Create USB Drive 
 

 
1. Insert a USB drive into the computer 
2. Right-click USB  
3. Select format drive 
4. Format to FAT32 

 
Media types must be allowed by the secure 
system deployment environment. The USB is 
used for the storage of firmware files. 

3.  Step Local Machine:  
Transfer BIN file into the 
USB root directory 

 
 

4.  Step Test Machine (Secureboot): 
Verify Secure Boot is disabled 
 

1. Turn on UEFI enabled PC 
2. On system boot, enter Ctrl-Alt-Del to 

bring up the menu 
3. Enter <F2> for System Setup 
4. Enter “System BIOS” 

5. Enter “System Security” 

6. Set Secure Boot to “Disabled” 

7. Click Finish 

8. Enter Yes in Exit dialog 

9. On system boot, enter Ctrl-Alt-Del to 

bring up the menu 

10. Enter <F2> for System Setup 
11. Enter “System BIOS” 

12. Enter “System Security” 

13. Verify Secure Boot is “Disabled” 
5.  Step Test Machine (Secureboot): 

Enter OS Shell 
1. Wait for system boot 
2. Boot off the hard drive 
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 3. At OS shell enter user credentials and 
password 

6.  Test Test Machine (Secureboot):  
Mount USB drive 
 

1. Insert a USB drive into the server 
2. Use “fdisk –l“ to list devices 
3. Find /dev device mapping for USB drive 

from the output 
4. Create a mount directory 
5. Mount <deviceName> 

<mountDirectory> 
7.  Step Test Machine (Secureboot):  

Execute BIN file 
 

1. Change directory to <mountDirectory> 
2. Copy BIN file to the user home 
3. Shell execute BIN File 
 
Note: Resolve package dependency errors 

8.  Step Test Machine (Secureboot):  
Reboot into BIOS 
 

1. Enter reboot in shell 
2. On system boot, enter Ctrl-Alt-Del to 

bring up the menu 
3. Enter <F2> for System Setup 
4. Enter “System BIOS” 

9.  VP 1 Test Machine (Secureboot):  
Verify version upgrade of 
RAID Controller firmware  

1. Enter ‘Device Settings’ 
2. Enter Raid Controller Configuration 
3. Enter ‘Controller Management’ 
 
Expected: Firmware version number 
changed. 
Actual: Firmware version number changed. 
 

10.  Step Test Machine (Secureboot):  
Revert machine to known 
good version  

 
Repeat 3 – 10 with known good firmware ver-
sion to revert to clean slate. 
 
Known good firmware: 
RAID Controller:  
Name: PERC H730P Adapter  
Serial Number: 78800KH  
Package Version: 25.5.0.0018  
Firmware Version: 4.270.00-8112  
NVDATA Version: 3.1511.00-0014 
 
Expected: Firmware version number changed 
to a known good state. 
Actual: Firmware version number changed to 
a known good state. 
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Overwrite RAID Controller Firmware on HPE Procedure 
Table A-6 Overwrite RAID Controller Firmware on HPE DL380 

# Steps
/Test 

Description Comment 

1.  Step Local Machine:  
Download firmware RPM file 
 

1. Visit HP website  
2. Locate the latest version of firmware 

for RAID Controller 
4. Download file 

2.  Step Local Machine:  
Create USB Drive 
 

1. Insert the USB drive into the computer 
2. Right-click USB  
3. Select format drive 
4. Format to FAT32 

 
Media types must be allowed by the secure 
system deployment environment. The USB is 
used for the storage of firmware files. 

3.  Step Local Machine:  
Transfer RPM file into the 
USB root directory 

 
 

4.  Step Test Machine (Secureboot): 
Verify Secure Boot is disabled 
 

1. Turn on UEFI enabled PC 
2. Enter <F9> for System Utilities 
3. Enter <F1> for Continue 
4. Enter “System Configuration” 
5. Enter “BIOS/Platform Configuration” 
6. Enter “Server Security” 
7. Enter “Secure Boot Settings” 
8. Set “Attempt Secure Boot” to “Disabled” 

9. Enter “Commit Changes and Exit” 

10. Click Exit 
11. Enter <F12> Save Changes and Exit 
12. Enter “Ok” in the popup dialog 
13. Enter “Reboot” in the popup dialog 
14. Wait for the machine to reboot 

15. Enter <F9> for System Utilities 
16. Enter <F1> for Continue 
17. Enter “System Configuration” 
18. Enter “BIOS/Platform Configuration” 
19. Enter “Server Security” 
20. Enter “Secure Boot Settings” 
21. Verify “Attempt Secure Boot” is “Disa-

bled” 



Approved for Public Release; Distribution Unlimited. 
35 

 

5.  Step Test Machine (Secureboot): 
Enter OS Shell 
 

1. Wait for system boot 
2. Boot off the hard drive 
4. At OS shell enter user credentials and 

password 
6.  Test Test Machine (Secureboot):  

Mount USB drive 
 

1. Insert a USB drive into the server 
2. Use “fdisk –l“ to list devices 
3. Find /dev device mapping for USB drive 

from the output 
4. Create a mount directory 
5. Mount <deviceName> 

<mountDirectory> 
7.  Step Test Machine (Secureboot):  

Execute BIN file 
 

1. Change directory to <mountDirectory> 
2. Copy BIN file to the user home 
3. Shell execute BIN File 
 
Note: Resolve package dependency errors 
 

8.  Step Test Machine (Secureboot):  
Reboot into BIOS 
 

1. Enter reboot in shell 
2. Enter <F9> for System Utilities 
 
Note: To see whether or not the OpROM was 
loaded, watch the checkbox on the lower right 
part of the screen during the boot process. If a 
check appears in the Smart Array box, the 
OpRom was loaded  

9.  Step Test Machine (Secureboot):  
Navigate to RAID controller 
management 
 

1. Enter System Information 
2. Enter Firmware Information 
 

10.  VP 2 Test Machine (Secureboot):  
Verify version upgrade of 
RAID Controller firmware  

Expected: HP SmartArray firmware version 
number changed. 
Actual: HP SmartArray firmware version 
number changed. 
 

11.  Step Test Machine (Secureboot):  
Revert machine to clean slate  

Repeat 3 – 10 with desired --firmware ver-
sion-- to revert to clean slate. 
 
Expected: Firmware version number changed 
to the previous state. 
Actual: Firmware version number changed to 
the previous state. 
 

 
 



Approved for Public Release; Distribution Unlimited. 
36 

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

AFRL - Air Force Research Laboratory  
AFT - Assured File Transfer  
AGIS - Advanced Guard of Information Systems  
BIOS - Basic Input/Output System  
CONOPS - Concept of Operations  
CVE - Common Vulnerabilities and Exposures 
db - Signature Database  
dbx - Forbidden Signature Database  
EFI - Extensible Firmware Interface  
GD - General Dynamics  
HPE - Hewlett Packard Enterprise  
HW - Hardware  
KEK - Key Exchange Key  
OpROM - Option Read Only Memory  
OS - Operating systems  
PE/COFF - Portable Executable Common Object File Format 
PKI - Public Key Infrastructure  
RAID - Redundant Array of Independent Disks  
SCSI - Small Computer System Interface  
UEFI - Universal Extensible Firmware Interface  
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