
SECURE BOOT DEFICIENCIES

NTELIGEN

AUGUST 2020

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2020-150
VOLUME 2 of 2

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2020-150 VOL 2 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
MATTHEW P. SHAVER
Work Unit Manager

SCOTT D. PATRICK
Deputy Chief, Information Intelligence
Systems and Analysis Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUGUST 2020
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

NOV 2019 – JUN 2020
4. TITLE AND SUBTITLE

SECURE BOOT DEFICIENCIES
VOLUME 2 of 2

5a. CONTRACT NUMBER
FA8750-20-C-0539

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)
David Schloss
Mike Hike
Roman Grewal
Erik Carlson

5d. PROJECT NUMBER
E2DC

5e. TASK NUMBER
SB

5f. WORK UNIT NUMBER
DS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Nteligen
6716 Alexander Bell Dr Ste.120
Columbia, MD, 21146

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIEBA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2020-150 VOL 2
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# AFRL-2020-0021
Date Cleared: 04 AUG 2020
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This technical report captures the research effort into two deficiencies encountered while implementing Secure Boot
technology. The first deficiency discovered is that OpROMs will fail to load on a system that has custom Secure Boot
keys in its key variables and has removed all manufacturer keys from the key variables. The second deficiency is that
Secure Boot fails to validate the digital signatures of certificates within the Secure Boot key variables in standard Public
Key Infrastructure (PKI) certificate hierarchy operation. The technical details each deficiency clearly and expands the
research methodology applied to each. With the insights gained from our research, we make informed findings and
recommendations on how to mitigate each deficiency. Lastly, within this technical report, we present best practices on
how to implement Secure Boot technology.

15. SUBJECT TERMS
Secure Boot, OpROM Deficiency Research, Certificate Hierarchy Deficiency, Secure System Secure Boot
Implementation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
MATTHEW P. SHAVER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

42

i

TABLE OF CONTENTS
Section Page
LIST OF FIGURES……………………………………………………………………...……….iii
LIST OF TABLES…………………………………………………………………………..……iii
1.0 SUMMARY ... 1

2.0 INTRODUCTION ... 2

2.1 Introduction .. 2
2.1.1 Extensible Firmware Interface Files .. 2
2.1.2 3rd-party Option Read-Only Memory .. 5
2.1.3 Secure Boot Integrity Validation Process .. 5
2.1.4 Problem Discussion ... 6

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES ... 8

3.1 Secure Boot Research... 8
3.1.1 3rd-Party OpROM Deficiency Research Methodology .. 8
3.1.2 Secure Boot Certificate Hierarchy Deficiency Research Methodology 8
3.1.3 Secure Boot Operation and Specification Research Methodology 9
3.1.4 Commercial Vendor Research Methodology ... 9

4.0 RESULTS AND DISCUSSION .. 11

4.1 Research Results Summary .. 11
4.1.1 Secure Boot Operational Behavior .. 11
4.1.2 Microsoft Secure Boot Key Deployment ... 14
4.1.3 Hardware Vendor Results .. 15
4.1.4 Secure Boot Deficiency Results... 15
4.1.5 Attempts to sign OpROMs... 16

4.2 Secure Boot Analysis ... 19
4.2.1 Impacts during development .. 19
4.2.2 Operational impacts ... 20
4.2.3 Organizational impacts .. 20

4.3 Analysis of the technical aspects of a Secure Boot Implementation 20
4.3.1 Summary of improvements .. 20
4.3.2 Disadvantages and limitations ... 20
4.3.3 Alternatives and trade-offs considered .. 21

5.0 CONCLUSION .. 22

6.0 RECOMMENDATIONS ... 23
6.1.1 General Recommendations .. 23

7.0 References .. 24

ii

APPENDIX A – SECURE BOOT TEST PROCEDURES .. 25

A.1 Test Procedures to Reproduce Secure Boot Deficiencies .. 25
A.1.1 Secure Boot Deficiency Reproduction Requirements ... 25
A.1.2 Secure Boot Certificate Hierarchy Deficiency Reproduction Procedure 27
A.1.3 Third-party OpROM Deficiency Reproduction Procedure .. 29
A.1.4 Overwrite RAID Controller Firmware Procedures .. 30

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ... 36

iii

LIST OF FIGURES
Figure Page
Figure 1. EFI File Embedded Certificate Layout.. 3

Figure 2. PE File Format and Authenticode Signature Format .. 4

Figure 3. OpROM Header of an actual OpROM file.. 14

Figure 4. UEFI Authenticated Variable Data Format ... 18

Figure 5. Secure Boot Variable Authentication Flow ... 19

Figure 6. SSL PKI Chain of Trust Certificate Validation ... 19

LIST OF TABLES
Table Page
Table 1 Commerical Vendor Research Summary .. 10

Table 2 Recommended PCI Device Driver Layout .. 13

Table 3 Hardware Vendor Findings………………………………………………………………15
Table A-1 Requirement to Verification Objective……………………………………………….26
Table A-2 Secure Boot Certificate Hierarchy Deficiency Reproduction Procedure……………...27
Table A-3 Third-party OpROM Deficiency Reproduction Procedure……………………………29
Table A-4 Requirement to Verification Objective for RAID Controller…………………………31
Table A-5 Overwrite RAID Controller Firmware on Dell PowerEdge R740…………………….32
Table A-6 Overwrite RAID Controller Firmware on HPE DL380………………………………34

Approved for Public Release; Distribution Unlimited.
1

1.0 SUMMARY
In this technical report, we capture the research effort into two deficiencies encountered while
implementing Secure Boot for a secure system. The first deficiency discovered is that OpROMs
fail to load on a system that has custom Secure Boot keys in its key variables and has removed all
manufacturer keys from the key variables. The second deficiency is that, by design, Secure Boot
does not validate the digital signatures of certificates within the Secure Boot key variables in stand-
ard Public Key Infrastructure (PKI) certificate hierarchy operation. The technical details of each
deficiency are detailed further within this report. Additionally, this report expands upon the re-
search methodology applied to each deficiency. With the insights gained from our research, we
make informed findings and recommendations on how to mitigate each deficiency. Lastly, within
this technical report, we present best practices on how to implement Secure Boot within a secure
system.

Approved for Public Release; Distribution Unlimited.
2

2.0 INTRODUCTION

2.1 Introduction
Universal Extensible Firmware Interface (UEFI) is the standard interface platform that replaces
legacy basic input/output system (BIOS) in modern computer hardware. UEFI provides hosts com-
puters additional capabilities over legacy BIOS, one of which is Secure Boot. Secure Boot, when
enabled, provides a firmware-based boot integrity verification process that ensures the system is
operating in a known state and running known software after the boot cycle. This process is defined
and governed by the UEFI 2.8 Errata A specification published by the UEFI Forum. The UEFI
Forum is comprised of the world’s foremost researchers in academia, eminent computer scientists,
and technology industry leaders from more than 250 member companies, working to develop and
maintain the full suite of the UEFI and ACPI specifications. In this technical report, we aim to
detail our research into the two deficiencies highlighted within Secure Boot implementation within
secure systems. The paper begins by exploring the deficiencies identified. Next, details the re-
search methodologies. Lastly is a discussion of conclusions and recommendations regarding both
deficiencies.

2.1.1 Extensible Firmware Interface Files
UEFI uses a specific data type, known as Extensible Firmware Interface (EFI) files, to facilitate
the execution of applications and drivers. An application is software that boots an operating sys-
tem, whereas a driver provides the UEFI access to a device controller. EFI files use the Portable
Executable Common Object File Format (PE/COFF) for their structure. The digital signature of
the EFI file is embedded directly within the file itself. The PE header of the EFI file contains an
array of data directory pointers, the 5th of which is the pointer to a list of certificates, any of which
may contain a digital signature. The digital signatures within an EFI are in Microsoft Authenticode
digital signature format. When an EFI file is signed, it ignores specific fields within the PE format,
as indicated in the figure below. Since the Authenticode hash process ignores the certificate list
storing the embedded signature, this does not affect the hash value of the EFI file it is hashing. In
theory, multiple sources of authority can sign an EFI. In certain cases, a secure system vendor
might want to be the only Secure Boot signing authority for a system they develop.

Approved for Public Release; Distribution Unlimited.
3

Figure 1. EFI File Embedded Certificate Layout

Approved for Public Release; Distribution Unlimited.
4

Figure 2. PE File Format and Authenticode Signature Format

Approved for Public Release; Distribution Unlimited.
5

2.1.2 3rd-party Option Read-Only Memory
An important concept related to this research effort is 3rd-party Option Read-Only Memory
(OpROM). OpROM firmware can reside either within the UEFI BIOS or on a 3rd-party device
(i.e., an expansion card). When initialized, the system loads the OpROM into memory and registers
the 3rd-party device with the UEFI BIOS. EFIs for the 3rd-party devices reside within the structure
of their associated OpROMs, and these are the executable elements that perform the registration.
OpROMs referenced within this paper are strictly UEFI OpROMs and not legacy BIOS OpROMs.
Legacy BIOS OpROMs are firmware that works with the Personal Computer Advanced Technol-
ogy (PC-AT) system architecture. PC-AT is the system architecture of the majority of computers
before the release of the UEFI specification. Legacy BIOS OpROMs did not work with Secure
Boot and were not used when the issues calling for this research were encountered. Also note,
these are 3rd-party OpROMs, which means that the OpROM resides on an expansion card or device
that was not manufactured by the platform OEM, and thus the firmware of the OpROM was de-
veloped by a 3rd-party. For purposes of this paper, consider that the first party is the OEM, 2nd-
party is the equipment owner, and 3rd-party is an optional add-in equipment manufacturer.

2.1.3 Secure Boot Integrity Validation Process
Secure Boot provides system boot integrity validation by performing validation of the embedded
digital signature within an EFI file. Additionally, Secure Boot can validate an EFI before execution
by comparing it with a known hash value of the EFI file. If Secure Boot is enabled and either of
these mechanisms fails to validate the EFI file, then it will not be allowed to execute. UEFI firm-
ware has four authenticated variables that can store either PKI certificates or hash values used to
validate the EFIs. In Secure Boot, an authenticated variable is a UEFI variable that requires addi-
tional authentication data to be validated prior to being updated. Only with the appropriate authen-
tication data can Secure Boot variables be updated. The following provides further details on the
Secure Boot authenticated variables:

• Enrolled in the PK variable is a Distinguished Encoding Rules (DER) formatted X.509
certificate (PKpub), which has a corresponding RSA-2048 or greater private key (PKpriv)
stored by the platform vendor. The PKpriv digitally signs UEFI payloads that update the
PK variable or the KEK variable.

• The KEK is not a single X.509 certificate but a signature database variable that can store
one or more DER formatted X.509 certificates. Vendors of widely distributed bootable
software or firmware have hardware manufacturers deploy their certificates within the
KEK. Microsoft is one such example of an operating system vendor that works with
manufacturers to deploy their public KEK certificate widely so most systems can boot
Windows with ease if Secure Boot is enabled. The PKpriv is used to digitally sign UEFI
payloads that update the PK variable or the KEK variable.

• Signatures Database (db): The db stores the DER formatted X.509 certificates used to
validate the signature of bootable firmware and software. Additionally, the db can store
hash values of EFI files, which also can perform EFI execution validation. Like the
KEK, the db is a signature database variable. The KEKpriv or PKpriv is used to digitally
sign UEFI payloads that update the db variable.

Approved for Public Release; Distribution Unlimited.
6

• Forbidden Signatures Database (dbx): The dbx is a signature database variable that for-
bids the execution of EFIs. The dbx variable can store DER formatted X.509 certificates
or EFI file hashes. If an EFI attempts to execute using a certificate or hash contained in
the dbx, then execution of that EFI is halted. The KEKpriv or PKpriv is used to sign UEFI
payloads that update the db variable digitally.

There are two mechanisms in which the Secure Boot system can validate EFIs.
1. EFI signature validation: KEKpriv or dbpriv creates an embedded digital signature within

an EFI file. Upon boot, validation of an EFI file embedded digital signature will be per-
formed using the KEKpub or dbpub X.509 certificates. If either validates the digital signa-
ture, the EFI is allowed to continue execution.

2. EFI file hash validation: A hash of the EFI is generated and checked against the hash
values that are in either the KEK signature database or the db signature database. If the
hash value is in either signature database variable, the EFI file is allowed to continue ex-
ecution.

EFIs are also explicitly compared to the dbx as well. If an EFI is signed by a certificate or its hash
value is in the dbx, the EFI is not allowed to execute. During the boot process, EFI files are exe-
cuted from their respective devices with the OS EFIs launched from the hard drive boot sector and
OpROMs from the device firmware. Any EFI that has a valid signature or hash is allowed to boot.
Otherwise, the system boot continues without that device or OS enabled. Prohibiting invalid EFIs
from booting ensures that only approved and trusted software is executed during bootstrap.
By using Secure Boot, an administrator can guarantee that a device, if allowed to boot, has booted
into a known state using known and trusted EFI images validated by their signature or hash value,
which are approved by a recognized authority. Secure Boot based system integrity protects the
system from attacks where the bootable software or firmware in the boot chain has been covertly
or unintentionally modified to perform unanticipated actions or replaced with malware or unknown
bootable artifacts.

2.1.4 Problem Discussion

2.1.4.1 3rd-party OpROMs Deficiency
Secure Boot does not preclude systems from being booted by industry-standard software loads,
such as Windows or Red Hat Enterprise Linux, as long as the manufacturer loaded certificates are
present in the Secure Boot variables. Keeping manufacturer certificates and hashes in the signature
database variables would allow an attacker to boot the system into an alternate or vulnerable state,
allowing manipulation of the machine and resident data in unanticipated ways.
In secure systems, it is recommended to delete manufacturer deployed certificates and hashes from
the Secure Boot variables. After removal, certificates, and hashes that are generated by the secure
system vendor are added to the relevant Secure Boot variables. By doing this, the secure system
vendor can ensure that a system with Secure Boot enabled only boots software or firmware ap-
proved and signed by that vendor. The replacement of the certificates and hashes prevents a mali-
cious user from purposely altering the system or a misguided administrator from mistakenly mak-
ing unauthorized or unwise changes.
Following this guidance is an excellent approach to increasing the security posture of secure de-
vices. However, it does not account for 3rd-party OpROMs containing EFI drivers for 3rd-party

Approved for Public Release; Distribution Unlimited.
7

system devices. In this scenario, the removal of factory certificates and hashes (to prevent the
booting of images not signed by the secure system vendor) prevents the EFI drivers from these
OpROMs from being executed. In many cases, this renders the associated system devices unusable
by the secure system. This problem was discovered on a secure system development effort, by
removing the factory certificates and hashes from the Secure Boot KEK and db variables of a test
system and subsequently attempting system boot. Removal of the manufacturer certificates and
hashes resulted in the system failing to load several Hardware (HW) device OpROMs. These in-
cluded OpROMs for Small Computer System Interface (SCSI) based hard drives attached to a
Redundant Array of Independent Disks (RAID) controller and non-motherboard Network Inter-
face Cards. The result was that these devices were unavailable for use after system boot.
Further exasperating this issue is the lack of transparent methodologies by which to resign or gen-
erate hashes of the EFI drivers contained within these 3rd-party OpROMs. Device manufacturers
package the EFI drivers into their associated OpROMs and offer no clear or consistent methodol-
ogy for extraction and resigning when clearing Secure Boot variables of manufacturer certificates
and EFI hashes. Simply put, the 3rd-party manufacturers rely on the presence of established soft-
ware vendor’s Secure Boot certificates to sign their OpROMs

2.1.4.2 Secure Boot Certificate Hierarchy Deficiency
An issue unrelated to the 3rd-party OpROMs was encountered during Secure Boot implementation
on a secure system when replacing the values of the PK, KEK, and db. Based on the UEFI speci-
fication of Secure Boot, it was interpreted that the PK, KEK, and db form a PKI validation hierar-
chy, each validating its respective child before the certificates in those Secure Boot variables can
be used. Upon replacement of the PK, while keeping the hardware manufacturers' certificates in
the KEK and db signature database variables, it was found that the manufacturer certificates could
still be used to validate signed EFIs. According to our interpretation of Secure Boot operation
within the UEFI specification, this should have been prevented as the PK certificate did not sign
the KEK and db certificates. When this issue was first encountered, it was incongruent with our
interpretation of the Secure Boot specification and thus raised questions about the compliance of
UEFI implementations within hardware vendors. Later in this document, we will discuss how the
initial deficiency discovery ended up being based on our misinterpretation of the UEFI specifica-
tion.

Approved for Public Release; Distribution Unlimited.
8

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Secure Boot Research
The Secure Boot research project was undertaken to find more information about the breadth of
issues that exist while attempting to implement Secure Boot within a secure system. Through our
research methodology, we plan to understand the deficiencies as discussed and to develop a path
forward to improve UEFI specification and industry standards when implementing their UEFI
compliant solutions for secure systems.
Since the two deficiencies discovered were unrelated, we decided to separate each problem into
its own research effort. By decoupling the problems, it allowed us to work them in parallel and to
limit any blockers during research and testing. In sections 3.1.1 and 3.1.2, we expand on our re-
search approach for each of the deficiencies in greater detail.
It is of note that while we did separate the Secure Boot deficiencies into separate research efforts,
there were three related areas of interest examined to inform the outcome of our research. These
areas were deficiencies of Secure Boot operation and specification and Hardware Vendors Secure
Boot implementation. With the information gathered from these sources, we hope to come to a
better understanding of exactly how Secure Boot operates so we can make informed recommen-
dations on how to best implement Secure Boot within a secure system.

3.1.1 3rd-Party OpROM Deficiency Research Methodology
When considering the problem of 3rd-party OpROMs not booting under a custom Secure Boot
policy, it was essential to clearly state the problem and understand as much as possible regarding
how OpROMs are loaded during boot. From this stance, we were able to establish a defined test
procedure replicating the problem. Using controlled server hardware that is class equivalent to
secure systems, we created test procedures that emulate the removal of manufacturer loaded Secure
Boot certificates replacing them with in-house generated Secure Boot certificates. Once we were
able to replicate the OpROM boot issue, we sought to find a solution that allows OpROMs to boot
without having the manufacturer certificates loaded in the KEK or db signature database variables.
We took two different approaches to the development of a solution in the hopes of generating a
proof-of-concept before the end of the research effort. In APPENDIX A, we have listed all of our
testing procedures for flashing firmware onto PCI devices. Also, we have a test procedure for
booting a device using a custom Secure Boot policy to test if firmware signed by us could be
successfully booted. Lastly, with the body of knowledge gained, we generated a set of best prac-
tices related to Secure Boot implementation within a secure system.

3.1.2 Secure Boot Certificate Hierarchy Deficiency Research Methodology
When considering the Secure Boot certificate hierarchy deficiency, we saw the end goal of this
research area slightly differently than that of the OpROM issue. Where the OpROM issue osten-
sibly resulted in a proof-of-concept solution, the research around this deficiency could only result
in guidance to system hardware manufacturers. Our methodology on researching the certificate
hierarchy issue started similar to the OpROM issue but diverged when it came to replicating the
issue and best-practices creation. The approach taken was to fully understand how Secure Boot
certificates validate one another by reading UEFI specification documentation and through inter-
actions with the system hardware manufacturers. Once understood, we consulted with secure sys-
tem vendors to see if they had encountered this problem and determine what their solution if any,
might be. Lastly, with the body of knowledge gained, we planned to compile our findings and

Approved for Public Release; Distribution Unlimited.
9

provide them back to the system hardware manufacturers and Air Force Research Laboratory
(AFRL) as part of this final technical report.

3.1.3 Secure Boot Operation and Specification Research Methodology
In our research, it was critical to understand the raw fundamentals of how Secure Boot operates.
Understanding how Secure Boot works is the foundation of our findings and recommendations for
Secure Boot implementation within secure systems. A body of knowledge was built by researching
the Secure Boot specification, Microsoft Secure Boot implementation guidance, and UEFI tech-
nical forums. These materials helped us gain a complete understanding of Secure Boot EFI vali-
dation operations, Secure Boot key structure, EFI file structure, OpROM structure, and Secure
Boot variable authentication.

3.1.4 Commercial Vendor Research Methodology
Supplementing the knowledge gathered from the UEFI specification, we worked with commercial
vendors involved in the specification and implementation of Secure Boot. Both deficiencies
needed information from the vendors to establish informed findings and solutions. We worked
with Dell, Hewlett Packard Enterprise (HPE), and Microsoft. Microsoft was involved because they
were heavily involved in authoring and contributing to the UEFI specification. Microsoft also pro-
vides a widely distributed certificate for hardware vendors to include as a default KEK and db
certificate within the Secure Boot system. This allows Microsoft signed EFI images to boot with
little effort in when enabling Secure Boot on a system. Also, Microsoft maintains a service in
which 3rd-party developers can submit their EFI files to them to be digitally signed. Since we were
concerned with OpROM signing in this research effort, an attempt to reach out to Microsoft was
made.
Dell was involved since they are a major server hardware producer for secure systems that utilize
Secure Boot functionality. Both of the Secure Boot deficiencies were first encountered on a Dell
PowerEdge R640 server during secure system development. The research effort had access to a
Dell PowerEdge R740 server, which offers the Secure Boot capability through its UEFI architec-
ture. Using this server, we can replicate the exact deficiencies that were encountered while devel-
oping the secure system (See APPENDIX A for Secure Boot test procedures). Also, we worked
directly with Dell's technical support to get direct answers to our deficiency questions.
HPE was contacted since they are also a major server hardware producer for secure systems. HPE
also constructs its servers to the UEFI specification and offers the Secure Boot capability. One
pivotal intent during the research was to compare the Secure Boot capability of comparable secure
system hardware to frame our best-practices and recommendations more abstractly. There should
not be a limit on what platform vendor is chosen as long as they remain UEFI compliant. On this
project, we also investigated and ran test procedures (See APPENDIX A for Secure Boot test
procedures) against an HPE DL380 server. The HPE DL380 offered similar UEFI capabilities as
the Dell PowerEdge R740, so it was a good measure of how different UEFI architectures were
implemented. Additionally, HPE technical support made themselves available to us to ask detailed
questions about the Secure Boot deficiencies, as well.
Table 1 lists the commercial vendors that were contacted to further our knowledge of Secure Boot
and how it operates in their systems.

Approved for Public Release; Distribution Unlimited.
10

Table 1 Commerical Vendor Research Summary

Vendors Method of Research

Hewlett Packard Enterprise
(HPE)

Multiple discussions via conference call with HPE
engineers and emails were exchanged as well. Addi-
tional research was performed utilizing and HPE
DL380 server.

Dell

Multiple discussions via conference call with Dell
technical support and emails were exchanged with
their engineers. Additional research was performed
utilizing and Dell PowerEdge R740 server.

Microsoft

Attempts were made to contact Microsoft technical
support via phone and email, but we received no re-
sponse. Microsoft provided research material primar-
ily through its publicly accessible technical support
web pages, as listed in the Reference section (7.0).

Approved for Public Release; Distribution Unlimited.
11

4.0 RESULTS AND DISCUSSION

4.1 Research Results Summary
In this section, we present the results of our research into the two primary Secure Boot deficiencies
introduced in Section 2.0. The information gathered from UEFI specification, commercial vendors,
and secure system vendors, as part of our research methodology is presented.

4.1.1 Secure Boot Operational Behavior
This section provides detail on the operation and behavior of Secure Boot. As not to repeat the
information about Secure Boot operation presented in the Introduction (Section 2.0), this section
is meant to provide additional detail into areas that help build the foundation for our results and
recommendations going forward.

4.1.1.1 Secure Boot Modes
Secure Boot has different operating modes in which Secure Boot operations behave differently.
The two primary modes we are concerned with are Setup Mode and User Mode. Setup mode ef-
fectively means that Secure Boot is not enforcing any validation behavior and has turned off au-
thentication of Secure Boot key variables. User Mode is when Secure Boot is in EFI image vali-
dation enforcing mode and has enabled authentication of any operation that attempts to overwrite
a Secure Boot key variable.

4.1.1.2 Authenticated Variables and Signature Databases
In the introduction, we introduced the Secure Boot variables that are at the core of both deficien-
cies, the PK, the KEK, the db, and dbx. Through reading the UEFI specification, we learned more
about the structure of the Secure Boot variables and how they operate. All of the Secure Boot key
variables are authenticated variables. This means that to overwrite Secure Boot certificates if Se-
cure Boot is in User Mode, the payload containing the new certificates must be signed by a higher
tier Secure Boot private key. The following is the Secure Boot digital signature hierarchy for over-
writing Secure Boot variables:

• PK: Overwriting the PK variable while in User Mode requires that the old PK private key
signs the payload containing the new PK certificate.

• KEK: Overwriting the KEK signature database variable while in User Mode requires that
the current PK private key signs the payload containing the new KEK signature database.

• db: Overwriting the db signature database variable while in User Mode requires that the
payload containing the new db signature database is signed by the current KEK private
key or PK private key.

• dbx: Overwriting the dbx signature database variable while in User Mode requires that
the payload containing the new dbx signature database is signed by the current KEK pri-
vate key or PK private key.

The KEK, db, and dbx are all signature database variables. Signature databases are a versatile
Secure Boot construct that can contain many different forms of signature types. The signatures
described here are not digital signatures, but data that can be of any of the forms within the UEFI

Approved for Public Release; Distribution Unlimited.
12

signature type specification. Signatures are aggregated into lists, and the signature database vari-
able can contain many signature lists, each with its own type. The aggregate of signature lists al-
lows the KEK, db, and dbx to contain both DER-formatted X.509 certificates and hash values. In
the UEFI Specification 2.8, section 32.4.1 goes into greater detail about how signature databases
are formatted and lists all the types of signatures that are allowed within the signature data.

4.1.1.3 OpROMs
‘Table 2 Recommended PCI Device Driver Layout’ contains the recommended OpROM header
from the UEFI specification v2.8, Table 135. ‘Figure 4.1 OpROM Header of an actual OpROM
file’ contains a hex dump of the header from an actual OpROM file from Dell. Each section of the
OpROM header is labeled to its corresponding section in the OpROM header table. While inspect-
ing OpROM data in various drivers downloaded from Dell and HPE, different versions of the
Peripheral Component Interconnect (PCI) Expansion ROM (PCIR) Data Structure were encoun-
tered. In Table 3, items 16 and 17 have the values 0x0018 and 0x00, respectively. These values
correspond to version 2.2 of the PCIR Data Structure. A different file was encountered during our
research that matched version 3.0 of the PCIR Data Structure. The values in items 16 and 17 in the
version 3.0 PCIR data structure were 0x001c and 0x03, respectively. The significance of different
versions impacts how a digital signing solution would be implemented. Specific implementations
would require that a developer thoroughly inspect all OpROM headers to ensure as EFI data is
being extracted, the proper location within the OpROM is being inspected based on the PCI version
number.

Approved for Public Release; Distribution Unlimited.
13

Table 2 Recommended PCI Device Driver Layout

Approved for Public Release; Distribution Unlimited.
14

Figure 3. OpROM Header of an actual OpROM file

4.1.2 Microsoft Secure Boot Key Deployment
Per Microsoft Secure Boot online documentation, Microsoft works with hardware vendors to en-
sure that their certificates are deployed as default values in the KEK and db signature database
variables on vendor hardware. Deploying in this way assists with the boot of Microsoft and OEM
hardware booting if Secure Boot is enabled. Microsoft provides a service where they digitally sign
OEM firmware with their dbpriv key so the firmware can boot with the Microsoft dbpub certificate..
Controlling the PKI chain would be accomplished through the removal of default manufacturer-
provided certificates, replacing them with ones provided by the secure system vendor.

Approved for Public Release; Distribution Unlimited.
15

4.1.3 Hardware Vendor Results

Table 3 Hardware Vendor Findings

Vendors Findings

Hewlett Packard Enter-
prise (HPE)

HPE has proprietary boot software that functions simi-
larly to Secure Boot and was not investigated due to its
proprietary nature. Their proprietary boot solution was
specific to their hardware and did not involve Secure
Boot functionality. HPE has no current method of resign-
ing OpROMs that come from 3rd-party device manufac-
turers. However, HPE does have the ability to generate
hash values of pre-loaded EFIs found on the server. Addi-
tionally, HPE provides access to a UEFI Command Line
Interface (CLI) that can manipulate Secure Boot authenti-
cated variables.

Dell

Dell has no current method of resigning OpROMs that
come from 3rd-party device manufacturers. Dell has a
way to generate hash values of pre-loaded EFIs found on
the on GEN 14 or later servers. Dell’s solution is to have
the server boot into a Secure boot discovery mode. Boot-
ing, in this manner, allows the server to discover pre-
loaded EFIs, calculate their hash values, and add them to
the db signature database variable.

Microsoft
Microsoft was unresponsive to questions and was unable
to provide support to our Research into Secure Boot vul-
nerabilities.

4.1.4 Secure Boot Deficiency Results

4.1.4.1 3rd-Party OpROMs
The first deficiency discussed was the inability to re-sign 3rd party OpROMs with a custom key
when Secure Boot certificates and hashes deployed by the HW manufacturer are removed. The
research was done into how OpROMs could be loaded when Secure Boot is enabled, and a custom
Secure Boot key chain is used. The procedures for testing candidate solutions for resigning
OpROMs reside in Appendix A. The research was performed using a Dell PowerEdge R740 server
and HPE DL380 server with OpROMs that were downloaded off of their respective websites. The
OpROMs we experimented with were for a RAID controller on both manufacturers' system. The
Dell RAID controller is the PERC H730P adapter. The HPE RAID controller is the HPE Smart
Array P408 adapter. The UEFI specification contains a layout for the recommended data structure

Approved for Public Release; Distribution Unlimited.
16

of OpROMs. However, since the UEFI specification does not specify or maintain the OpROM
data structure format, there could be cases where a UEFI-compatible OpROM may not have the
structure designated in the UEFI specification. The OpROM data structure is maintained in the
PCI Firmware Specification, the latest version of which is 3.2. The PCI Device Driver Layout
structure allows the individual Portable Executable/Common Object File Format (PE/COFF im-
ages (EFI files)) to be found and extracted from an OpROM. Through extensive experimentation
using our test procedures in Appendix A, we attempted to create a proof-of-concept where we
extracted EFI data, resigned it, and then repackaged it back into the OpROM structure. Ostensibly
this should work since the signature data width is constantly given a designated digital signature
algorithm. Unfortunately, we were unable to produce a bootable solution where a repackaged
OpROM was able to boot under a customer Secure Boot certificate chain. We had difficulty in
determining the exact location within the OpROMs where we would need to overwrite the EFI
embedded digital signature bytes. We believe it is possible to develop a tool that can automatically
parse OpROMs for EFI data and applying a digital signature in the correct location within the EFI
data, but we were unable to develop this tool under this current research effort.
An alternative solution would be adding the hash values of the EFIs within approved OpROMs to
the db. Hashes are an acceptable means of validating a bootable piece of software or firmware
within Secure Boot. Hash values of bootable EFIs can be stored in the db variable. Dell and HPE
both have methods to calculate hash values of pre-loaded EFIs and add them to the db variable.
This means that if an OpROM has EFIs within, they can be hashed by UEFI firmware functional-
ity, and those hashes enrolled into the db variable of Secure Boot. HPE granted our research team
access to their firmware engineering staff to gain a deeper understanding of how they handle 3rd-
party device firmware signing. The HPE firmware engineering team offered to provide access to
a tool their team uses to dissect an OpROM and sign any interior PE/COFF image files (EFI files).
Access to this tool was not available until after we had concluded this research effort.

4.1.5 Attempts to sign OpROMs
Throughout this research effort, many attempts to manually sign the OpROMs were explored. Had
they been successful, this would have provided the first step towards a solution. Specifically, we
sought to unpackage UEFI capsules (the packages containing OpROMs and are used to install
OpROMs), sign the individual OpROMs, and repackage the UEFI capsule. Doing this would have
allowed removal of all manufacturer certificates from Secure Boot key variables without rehashing
the system. Ultimately, we were able to unpackage the OpROMs from the UEFI capsule, but any
attempts to sign or reinsert the OpROMs failed. An alternative solution would be to put the hashes
of the extracted OpROMs into the db and load the original OpROM from the vendor. Most UEFI
platforms come with a boot option to access the UEFI shell. The UEFI shell is a direct command-
line interface to the capabilities UEFI provides. Unfortunately, we were unable to perform the
OpROM hash enrollment through the UEFI BIOS or in the UEFI shell. The HPE DL380 server
that we used during testing allowed EFI hashes to be added to the db, but we were unable to extract
an OpROM and present it to the UEFI BIOS such that it would add the hash to the db. Also, we
could not manually insert a hash into the db or add one via the UEFI shell since this is not an
allowed feature of hash enrollment within Secure Boot. The Dell server that used in testing did not
have a UEFI shell option, and there was no mechanism to insert a hash into the db manually as
well.
Some 3rd-party tooling exists aimed at working with EFI images, and a specific tool does exist that
is intended to overwrite the digital signature of an EFI file. This tool is called sbsigntool and is

Approved for Public Release; Distribution Unlimited.
17

available through the Ubuntu apt package manager. We attempted to sign OpROMs using sbsign-
tool. The sbsigntool can sign an EFI image with a either KEKpriv or dbpriv keys from the Secure
Boot keychain, have Secure Boot recognize the signature, and load the EFI image. This tool can
detect signatures it applies, signs over top of them, and verify that a public certificate can be used
to validate the signature on the image. While this tool functions for EFI files, it was not effective
in overwriting the digital signatures within OpROMs.
Attempts at creating an OpROM resigning proof-of-concept were also made using tools from the
tianocore/edk2 project on GitHub. Tianocore is an Intel reference implementation of the UEFI
specification. Tianocore is frequently used by firmware developers to test if what they are creating
is UEFI compliant. Initially, we tried the Rsa2048Sha256Sign.py script from EDK 2 to resign an
OpROM. The tianocore wiki claims that this script is used to sign EFI images; however, we found
this script did not apply the signature onto the file in the correct location, and its output did not
match the output from sbsigntool. Additionally, this tool is unable to detect a signature that is
placed onto a file, despite having a decode feature. This tool was able to sign any file that was
provided, though attempts to re-sign a file using this tool would prepend the signature to the pre-
viously signed file, resulting in a file with two signatures.
Another tool that was experimented with was EfiRom, also a part of the tianocore/edk2 project on
GitHub. EfiRom is used to create a UEFI capsule from EFI images and OpROMs. Basic validation
of input files is performed, and OpROMs extracted from a UEFI capsule passed this validation,
indicating that the extraction process is correct. When this tool adds an EFI image to the UEFI
capsule, it prepends an OpROM header to the image, with each input file appended together into
a final UEFI capsule. However, when examining an OpROM from a vendor, there is extra un-
known data around the OpROM data within the vendor firmware file. Without a way to extract
and modify the unknown data to mesh correctly with the signed OpROM data, we are unable to
use this tool to create signed UEFI capsules.

4.1.5.1 Secure Boot Certificate Hierarchy
The other Secure Boot deficiency was that the PKI hierarchy within the Secure Boot certificates
did not appear to be validated upon import or use of the KEK or db. Verification of the removal
of the PKI chain has been performed on Dell PowerEdge R740 and HP DL380 servers. Initially,
the issue was found on a Dell PowerEdge R640 platform. The test procedures to replicate this
deficiency can be seen in section Appendix A. After discussing this issue further with the HPE
firmware engineering team, they have clarified an aspect of the Secure Boot specification that we
had misinterpreted. While Secure Boot does validate certificates that are imported into the authen-
ticated variables, it does it in a slightly different way than the widely fielded PKI infrastructure
most professionals use. Validation is not performed upon the use of the certificates in the Secure
Boot variables, but upon the enrollment of the Secure Boot variable certificate and hash payloads.
For Secure Boot to enroll new certificates and hash values in a variable, the payload providing the
certificates and hash values must be signed by the proper tier private key. The following is a sum-
mary of which private key associated with each Secure Boot certificate must be used to sign the
corresponding enrollment payload:

• PK Certificate Enrollment: The prior PK private key must sign the UEFI certificate
payload if the PK variable is not currently empty. Otherwise, the payload can be un-
signed.

Approved for Public Release; Distribution Unlimited.
18

• KEK Certificate or Hash Enrollment: The PK private key must sign the UEFI certifi-
cate payload to the KEK signature database variable.

• db Certificate or Hash Enrollment: The PK private key or KEK private key must sign
the UEFI certificate/hash payload to the db signature database variable.

• dbx Certificate or Hash Enrollment: The PK private key or KEK private key must sign
the UEFI certificate/hash payload to the dbx signature database variable.

These UEFI payloads are the validated elements, not the certificates themselves. Further analysis
of the portion of the UEFI specification that details the SetVariable() function provided a clearer
understanding that the Secure Boot key hierarchy is about authenticating payloads used to update
the Secure Boot variables rather than providing a digital signature chain within the variable data
directly. Specifically, the status codes in section 8.2.1 of the UEFI specification have a code called
EFI_SECURITY_VIOLATION. This code is raised if the payload provided in the SetVariable()
function does not pass the validation check carried out by the firmware. In conclusion, our inter-
pretation of the Secure Boot certificate validation was incorrect given our PKI validation assump-
tions; thus, this is not an issue within Secure Boot. We feel this could result in a “gotcha” moment
for secure system developers looking to understand the operation of the Secure Boot key hierarchy.
PKI is presented as being part of the root of trust within Secure Boot. While it does provide pro-
tection to the variable write access, it does not protect in the way web-based PKI certificate vali-
dation operations occur. The following figure shows the format of UEFI authenticated variable
input data, which can be used to update the PK, KEK, db, or dbx variables.

Figure 4. UEFI Authenticated Variable Data Format

The signature used to validate the incoming data is generated by a private key from a higher tier
Secure Boot register. The only time the data is validated is when this data format is used to update
a Secure Boot register, not upon use. See the following flow diagram to see which Secure Boot
certificate is used to validate Secure Boot variable input data.

Approved for Public Release; Distribution Unlimited.
19

Figure 5. Secure Boot Variable Authentication Flow

Conversely, the PKI validation used in SSL on the internet uses a hierarchy of certificates to en-
sure a certificate on the net is validated by a trusted entity on the internet. See the following fig-
ure that shows how this validation is achieved.

Figure 6. SSL PKI Chain of Trust Certificate Validation

Each time a certificate in SSL is used it will verify that the issuer signature is valid against the
issuer’s public X.509 certificate.
The language within the UEFI specification could be improved to make this clearer to the uniniti-
ated reader.

4.2 Secure Boot Analysis
This section discusses the impacts of a Secure Boot enabled system from development to deploy-
ment.

4.2.1 Impacts during development
Identifying and developing a method of resigning OpROMs within a secure system platform may
be quite time and budget consuming. Since we did not come to a proof-of-concept for an abstract
way of doing this for all OpROMs, it would require custom tooling to be created by the secure

Approved for Public Release; Distribution Unlimited.
20

system developers to be able to accomplish this. The same impact applies if the secure system
developers attempt an OpROM hashing solution. That being said, once the method of either of
these is found, vendor tooling could notionally be generated to reduce the impact of future OpROM
support. Though it should be of note that such a solution would likely be a risk against future
platform or vendor updates that are proprietary.

4.2.2 Operational impacts
The most significant impact of Secure Boot setup, deployment, and maintenance would be found
in the maintenance phase due to required downtime to replace Secure Boot certificates and hashes
in the Secure Boot variables. If a secure system relies on verifying OpROMs through embedded
digital signatures, certificates would need to be replaced due to certificate expiration. This could
be mitigated by giving certificates a long expiration period. If a secure system relies on the hash
enrollment solution for verifying OpROMs, each time a piece of firmware is upgraded, the entire
hash signature database would need to be overwritten in the Secure Boot db variable. Downtime
can be mitigated by having an adequate system failover structure wherein Secure Boot certificates
expiration dates are staggered. Firmware updates were not added as an operational impact because
these updates are already part of assumed downtime structure in existing secure system mainte-
nance.

4.2.3 Organizational impacts
Since the organization deploying the secure system does not need to maintain the keys, certificates,
or hashes for Secure Boot, there is no perceived impact to an organization deploying a secure
system. There is an impact on the secure system vendor as they must maintain a PKI solution that
maintains Secure Boot keys for the various models of secure systems they manufacture as well as
meeting the security requirements for each customer.

4.3 Analysis of the technical aspects of a Secure Boot Implementation
4.3.1 Summary of improvements
System boot integrity is more secure through proper setup, deployment, and maintenance of the
Secure Boot system on a UEFI enabled platform. The guidance for the use of this capability re-
quires the removal of all pre-loaded Secure Boot keys and that they are replaced with secure system
vendor-generated PKI keys, certificates, and hashes. This eliminates the risk of tampering during
shipment & secure system procurement and prevents commercial organizations (i.e., HW manu-
facturers) having their keys exposed, thus giving adversaries the ability to boot a malicious boot-
able software element on a secure system. It also prevents unwise or malicious boot actions per-
formed by a system administrator by preventing them from booting into an alternate state using
non-vendor supplied media.
Secure Boot allows EFI hashes to be used to validate bootable elements. In specific servers, it has
been shown that EFI hashes can be generated and enrolled in the db if they are pre-loaded onto the
system. Manufacturer loaded Secure Boot certificates, and hashes should first be removed from
the PK, KEK, and db, and then using mechanisms on the hardware, regenerate the hash values of
the loaded OpROMs.

4.3.2 Disadvantages and limitations
Development of new secure systems could be impacted if development teams are not experienced
in UEFI system boot concepts, or lack the appropriate tools to perform PKI signature generation

Approved for Public Release; Distribution Unlimited.
21

of UEFI boot elements. This research effort forced our team to dig into the depths of Secure Boot
specification to understand even some of the more basic concepts related to Secure Boot key man-
agement. Without that knowledge, the replacement of manufacturer keys with certificates main-
tained by the secure system developer could result in misinterpretation and misunderstanding of
how the key and certificate material is validated. Additionally, the lack of accessible and reliable
Secure Boot signing tools for OpROMs limits the effectiveness of development teams if they need
to use 3rd-party PCI devices critical to the operation of their secure system. At this time, there
appears no reliable and readily available way to sign OpROMs that come with these PCI devices.
Thus, it becomes quite problematic to boot them upon system startup when Secure Boot is enabled.

4.3.3 Alternatives and trade-offs considered
Alternatives to Secure Boot were not considered.

Approved for Public Release; Distribution Unlimited.
22

5.0 CONCLUSION
The research into Secure Boot demonstrates issues prevalent on multiple vendor platforms. The
PKI chain, when removed and replaced, does not allow for an operating system to boot due to the
inability to load OpROMs, and thus hard drives on RAID controllers would not likely be present.
The removal can also affect other 3rd-party PCI devices such as network interface cards as well.
Any device with an unsigned or invalid signature OpROM fails to load under the circumstance
mentioned. These issues can be reproduced on multiple commodity hardware platforms. At this
time, our research was unable to produce a proof-of-concept of a way to resign OpROMs to they
can boot with a custom Secure Boot policy. We believe it is possible that a tool to resign OpROMs
can be created, but requires additional investigation into the PCI firmware specification. It is pos-
sible to hash all OpROMs that are loaded into the system and enroll these hashes into the db Secure
Boot variable. This hash enrollment offers a solution to the OpROM issue but comes with limita-
tions as detailed in section 6.1.2.
The second issue encountered ended up being our misinterpretation of how the PKI chain within
Secure Boot validates certificate and hash enrollment into authenticated variables. That being said,
the UEFI specification could have made it more evident in the PK, KEK, db, and dbx enrollment
sections how the variable authentication functions. This was only clearly stated in the SetVaria-
ble() function definition of the specification. The Secure Boot section of the specification relating
to variable enrollments is quite general when it states how values are authenticated. The chain of
keys in Secure Boot is meant to validate UEFI payloads for child certificate and hash value enroll-
ment. This does not mean the data within the payload needs to be signed by the parent key, instead
the UEFI payload containing update values for the child Secure Boot variable. The signing of the
UEFI payload protects the Secure Boot variables from erroneous or malicious modification. Also,
the payload validation allows more certificates and hash values to be added to the variables than
just the ones being created by the secure system vendor, as long as the secure system vendor ap-
proves them with their private key. The validation structure maintains the same level of security
since it still requires the secure system vendor PKI solution to sign the certificates and hashes
being added to a Secure Boot authenticated variable (PK, KEK, db, or dbx).
Outreach to stakeholders is ongoing, with updates occurring daily. Nteligen has had modest suc-
cess with getting in contact with secure system vendors thus far, and continue to reach out until a
full understanding of each vendor’s usage of Secure Boot is determined.

Approved for Public Release; Distribution Unlimited.
23

6.0 RECOMMENDATIONS

6.1.1 General Recommendations
If possible, we recommended that all secure systems should use secure system vendor-generated
PKI certificate and hash material in Secure Boot authenticated variables for a given secure system
deployment. At this time, if 3rd-party OpROMs hinder the operation of a secure system in this
setup, it is recommended to use the EFI hash value enrollment solution to shed reliance on manu-
facturers deployed Secure Boot certificates.

Approved for Public Release; Distribution Unlimited.
24

7.0 REFERENCES

• https://uefi.org/about

• Unified Extensible Firmware Interface (UEFI) Specification. Version 2.8. March 2019

• https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-se-
cure-boot-key-creation-and-management-guidance

• "Microsoft Windows Authenticode Portable Executable Signature Format, Version 1.0”
heading at “Links to UEFI-Related Documents” (http://uefi.org/uefi).

• Yao, Jiewen, Zimmer, Vincent J. “A Tour Beyond BIOS Implementing UEFI Authenti-
cated Variables in SMM with EDKII”. Sept. 2014. Intel.

https://uefi.org/about
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance
http://uefi.org/uefi

Approved for Public Release; Distribution Unlimited.
25

APPENDIX A – SECURE BOOT TEST PROCEDURES

The following appendix provides test procedures used to replicate the Secure Boot deficiencies we
identified. In combination with that, we have provided test procedures that explain how to reset
the Dell and HPE server hardware back to a known good state as the procedures can involve over-
writing firmware. If we don’t have these procedures, the system could be in an invalid state ahead
of executing a new test.
Additionally, we have provided test procedures detailing how to test a Secure Boot deficiency
solution candidate against a specified server.

A.1 Test Procedures to Reproduce Secure Boot Deficiencies
The test procedures below reproduce the Secure Boot deficiencies on the Dell PowerEdge R740
and HPE DL380 servers. To research the deficiencies, a RAID controller was used as an exemplar
3rd-party device within a server that wouldn’t boot if Secure Boot is enabled.

A.1.1 Secure Boot Deficiency Reproduction Requirements
The verification points (VP) below identify when the proper state of the test procedure has been
reached to state if the Secure Boot deficiency has been reproduced accurately.

Verification Points
Each VP maps to a requirement. The requirement is a test plan concept we incorporated into the
structure of the procedures used to reproduce the Secure Boot deficiencies. In a traditional test
plan, each requirement is a contract requirement captured in a Requirements Traceability Verifi-
cation Matrix (RTVM). For this research effort, we created two requirements that represent the
end state of when a Secure Boot deficiency is reproduced. Each ID number should be associated
with the RTVM ID for each requirement, but since we do not have an RTVM for this effort, we
left these blank. The VP number is referenced within each Secure Boot deficiencies reproduction
procedure, indicating at which step the procedure should have reproduced the deficiency.

Approved for Public Release; Distribution Unlimited.
26

Table A-1 Requirement to Verification Objective

VP ID Requirement Verification
1. N/A Verify the trusted operating

system or bootable software
boots correctly.

Should not be able to boot into an unsigned
bootloader.

2. N/A Verify that bootable devices
are unavailable.

Should not be able to boot into unsigned de-
vices.

Approved for Public Release; Distribution Unlimited.
27

A.1.2. Secure Boot Certificate Hierarchy Deficiency Reproduction Procedure
 The following table contains procedures on how to reproduce the Secure Boot deficiency where
the Secure Boot certificate structure does not validate according to specification.

Table A-2 Secure Boot Certificate Hierarchy Deficiency Reproduction Procedure

Steps/
Test

Description Comment

1. Step Test Machine (Secureboot):
Install CentOS

2. Step Test Machine (Secureboot):
Verify all default certs are
available on PK, KEK, and
db.

In the case of non-default configuration, re-
vert all Secure Boot keys to the default con-
figuration.

3. Step Local Machine:
Generate the PK, KEK, and
db private keys and self-
signed certificates

$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN=SecBoot PK/" -keyout PK.key -out
PK.crt -days 3650 -nodes -sha256 -outform
PEM

$ openssl x509 -in PK.crt -out PK.cer -out-
form DER

$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN=SecBoot KEK/" -keyout KEK.key
-out KEK.crt -days 3650 -nodes -sha256 -out-
form PEM

$ openssl x509 -in KEK.crt -out KEK.cer -
outform DER

$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN=SecBoot DB/" -keyout DB.key -
out DB.crt -days 3650 -nodes -sha256 -out-
form PEM

$ openssl x509 -in DB.crt -out DB.cer -out-
form DER

Approved for Public Release; Distribution Unlimited.
28

The dbx is not created in this process since a
list of invalid EFI binaries has not been con-
sidered yet. Once this research has been per-
formed, the generation of the forbidden signa-
ture database is the equivalent of creating the
DB above.

4. Step Local Machine:
Create writable media that can
be read by the secure system
firmware.

Usually, this is FAT32.
Media types must be allowed by the secure
system deployment environment.

5. Step Test Machine (Secureboot):
Verify Secure Boot is disabled

1. Turn on UEFI enabled PC
2. Enter BIOS
3. Ensure Secure Boot is disabled (if not,

disable, reboot, and start from step 1)

6. Test Test Machine (Secureboot):
Load PK into UEFI

1. Delete the pre-loaded PK certificate
2. Import the generated PK certificate from

the media
3. Reboot
4. Enter UEFI BIOS
5. Enable Secure Boot
6. Reboot

7. VP 1 Test Machine (Secureboot):
Verify the trusted operating
system or bootable software
boots correctly

Expected: Should not be able to boot into un-
signed bootloader
Actual: Able to boot into the operating system

UEFI BIOS allows you to boot into boot-
loader with Microsoft PK missing.

Approved for Public Release; Distribution Unlimited.
29

A.1.3 Third-party OpROM Deficiency Reproduction Procedure
 The following table contains procedures on how to reproduce the Secure Boot deficiency when
OpROMs are not signed by the enabled KEK or db certificates and fail to load during boot.

Table A-3 Third-party OpROM Deficiency Reproduction Procedure

Steps/
Test

Description Comment

1. Step Test Machine (Secureboot):
Install CentOS

2. Step Test Machine (Secure boot):
Verify all default certs are
available on PK, KEK, and
db.

In the case of non-default configuration, re-
vert all signatures to the default configura-
tion.

3. Step Local Machine:
Generate the PK, KEK, and
db private keys and self-
signed certificates

$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN=SecBoot PK/" -keyout PK.key -out
PK.crt -days 3650 -nodes -sha256 -outform
PEM

$ openssl x509 -in PK.crt -out PK.cer -out-
form DER

$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN= SecBoot KEK/" -keyout KEK.key
-out KEK.crt -days 3650 -nodes -sha256 -out-
form PEM

$ openssl x509 -in KEK.crt -out KEK.cer -
outform DER

$ openssl req -new -x509 -newkey rsa:2048 -
subj "/CN= SecBoot DB/" -keyout DB.key -
out DB.crt -days 3650 -nodes -sha256 -out-
form PEM

$ openssl x509 -in DB.crt -out DB.cer -out-
form DER

30

The dbx is not created in this process since a
list of invalid EFI binaries has not been con-
sidered yet. Once this research has been per-
formed, the generation of the forbidden signa-
ture database is the equivalent of creating the
db above.

4. Step Local Machine:
Create writable media that can
be read by the secure system
firmware.

Usually, this is FAT32.
Media types must be allowed by the secure
system deployment environment.

5. Step Test Machine (Secureboot):
Verify Secure Boot is disabled

1. Turn on UEFI enabled PC
2. Enter BIOS
3. Ensure Secure Boot is disabled (if not,

disable, reboot, and start from step 1)

6. Test Test Machine (Secureboot):
Load PK into UEFI

1. Delete the pre-loaded PK certificate
2. Import the generated PK certificate from

the media

7. Step Test Machine (Secureboot):
Load KEK certificate into
UEFI

1. Delete the pre-loaded KEK certificate
2. Import the generated KEK certificate

from the media.

8. Step Test Machine (Secureboot):
Load DB certificate into UEFI

1. Delete the pre-loaded db certificate
2. Import the generated db certificate from

the media

9. Step Test Machine (Secureboot):
Enable Secure Boot

1. Reboot
2. Enter UEFI BIOS
3. Enable Secure Boot
4. Reboot

10. VP 2 Test Machine (Secureboot):
Verify bootable devices are
unavailable

Expected: Should not be able to boot into un-
signed devices
Actual: Should not be able to boot into un-
signed devices

Currently, there is no way to sign Options
ROMs.

A.1.4 Overwrite RAID Controller Firmware Procedures
 This test procedure details how to overwrite the RAID Controller firmware. This procedure was
created because a fundamental process on how to overwrite firmware on our candidate 3rd-party

Approved for Public Release; Distribution Unlimited.

Approved for Public Release; Distribution Unlimited.
31

test device (RAID controller) had to be set in stone. We did not want to enter a system state where
we did not know the version of the firmware of a device before executing a test of a proof-of-
concept solution. There are two VPs for this procedure since we created procedures that are spe-
cific to each of the hardware platforms we were testing on; both the Dell PowerEdge R740 and the
HPE DL380.

Verification Procedures
Table A-4 Requirement to Verification Objective for RAID Controller

VP ID Requirement Verification
1. Verify version overwrite of

RAID Controller firmware on
Dell PowerEdge R740

Verify version change

2. Verify version upgrade of
RAID Controller firmware on
HPE DL380

Verify version change

Approved for Public Release; Distribution Unlimited.
32

Overwrite RAID Controller Firmware on Dell Procedure

Table A-5 Overwrite RAID Controller Firmware on Dell PowerEdge R740

Steps
/Test

Description Comment

1. Step

Local Machine:
Download firmware BIN file

1. Visit DELL website
2. Locate the latest version of firmware

for RAID Controller
3. Download file

2. Step Local Machine:
Create USB Drive

1. Insert a USB drive into the computer
2. Right-click USB
3. Select format drive
4. Format to FAT32

Media types must be allowed by the secure
system deployment environment. The USB is
used for the storage of firmware files.

3. Step Local Machine:
Transfer BIN file into the
USB root directory

4. Step Test Machine (Secureboot):
Verify Secure Boot is disabled

1. Turn on UEFI enabled PC
2. On system boot, enter Ctrl-Alt-Del to

bring up the menu
3. Enter <F2> for System Setup
4. Enter “System BIOS”

5. Enter “System Security”

6. Set Secure Boot to “Disabled”

7. Click Finish

8. Enter Yes in Exit dialog

9. On system boot, enter Ctrl-Alt-Del to

bring up the menu

10. Enter <F2> for System Setup
11. Enter “System BIOS”

12. Enter “System Security”

13. Verify Secure Boot is “Disabled”
5. Step Test Machine (Secureboot):

Enter OS Shell
1. Wait for system boot
2. Boot off the hard drive

Approved for Public Release; Distribution Unlimited.
33

 3. At OS shell enter user credentials and
password

6. Test Test Machine (Secureboot):
Mount USB drive

1. Insert a USB drive into the server
2. Use “fdisk –l“ to list devices
3. Find /dev device mapping for USB drive

from the output
4. Create a mount directory
5. Mount <deviceName>

<mountDirectory>
7. Step Test Machine (Secureboot):

Execute BIN file

1. Change directory to <mountDirectory>
2. Copy BIN file to the user home
3. Shell execute BIN File

Note: Resolve package dependency errors

8. Step Test Machine (Secureboot):
Reboot into BIOS

1. Enter reboot in shell
2. On system boot, enter Ctrl-Alt-Del to

bring up the menu
3. Enter <F2> for System Setup
4. Enter “System BIOS”

9. VP 1 Test Machine (Secureboot):
Verify version upgrade of
RAID Controller firmware

1. Enter ‘Device Settings’
2. Enter Raid Controller Configuration
3. Enter ‘Controller Management’

Expected: Firmware version number
changed.
Actual: Firmware version number changed.

10. Step Test Machine (Secureboot):
Revert machine to known
good version

Repeat 3 – 10 with known good firmware ver-
sion to revert to clean slate.

Known good firmware:
RAID Controller:
Name: PERC H730P Adapter
Serial Number: 78800KH
Package Version: 25.5.0.0018
Firmware Version: 4.270.00-8112
NVDATA Version: 3.1511.00-0014

Expected: Firmware version number changed
to a known good state.
Actual: Firmware version number changed to
a known good state.

Approved for Public Release; Distribution Unlimited.
34

Overwrite RAID Controller Firmware on HPE Procedure
Table A-6 Overwrite RAID Controller Firmware on HPE DL380

Steps
/Test

Description Comment

1. Step Local Machine:
Download firmware RPM file

1. Visit HP website
2. Locate the latest version of firmware

for RAID Controller
4. Download file

2. Step Local Machine:
Create USB Drive

1. Insert the USB drive into the computer
2. Right-click USB
3. Select format drive
4. Format to FAT32

Media types must be allowed by the secure
system deployment environment. The USB is
used for the storage of firmware files.

3. Step Local Machine:
Transfer RPM file into the
USB root directory

4. Step Test Machine (Secureboot):
Verify Secure Boot is disabled

1. Turn on UEFI enabled PC
2. Enter <F9> for System Utilities
3. Enter <F1> for Continue
4. Enter “System Configuration”
5. Enter “BIOS/Platform Configuration”
6. Enter “Server Security”
7. Enter “Secure Boot Settings”
8. Set “Attempt Secure Boot” to “Disabled”

9. Enter “Commit Changes and Exit”

10. Click Exit
11. Enter <F12> Save Changes and Exit
12. Enter “Ok” in the popup dialog
13. Enter “Reboot” in the popup dialog
14. Wait for the machine to reboot

15. Enter <F9> for System Utilities
16. Enter <F1> for Continue
17. Enter “System Configuration”
18. Enter “BIOS/Platform Configuration”
19. Enter “Server Security”
20. Enter “Secure Boot Settings”
21. Verify “Attempt Secure Boot” is “Disa-

bled”

Approved for Public Release; Distribution Unlimited.
35

5. Step Test Machine (Secureboot):
Enter OS Shell

1. Wait for system boot
2. Boot off the hard drive
4. At OS shell enter user credentials and

password
6. Test Test Machine (Secureboot):

Mount USB drive

1. Insert a USB drive into the server
2. Use “fdisk –l“ to list devices
3. Find /dev device mapping for USB drive

from the output
4. Create a mount directory
5. Mount <deviceName>

<mountDirectory>
7. Step Test Machine (Secureboot):

Execute BIN file

1. Change directory to <mountDirectory>
2. Copy BIN file to the user home
3. Shell execute BIN File

Note: Resolve package dependency errors

8. Step Test Machine (Secureboot):
Reboot into BIOS

1. Enter reboot in shell
2. Enter <F9> for System Utilities

Note: To see whether or not the OpROM was
loaded, watch the checkbox on the lower right
part of the screen during the boot process. If a
check appears in the Smart Array box, the
OpRom was loaded

9. Step Test Machine (Secureboot):
Navigate to RAID controller
management

1. Enter System Information
2. Enter Firmware Information

10. VP 2 Test Machine (Secureboot):
Verify version upgrade of
RAID Controller firmware

Expected: HP SmartArray firmware version
number changed.
Actual: HP SmartArray firmware version
number changed.

11. Step Test Machine (Secureboot):
Revert machine to clean slate

Repeat 3 – 10 with desired --firmware ver-
sion-- to revert to clean slate.

Expected: Firmware version number changed
to the previous state.
Actual: Firmware version number changed to
the previous state.

Approved for Public Release; Distribution Unlimited.
36

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AFRL - Air Force Research Laboratory
AFT - Assured File Transfer
AGIS - Advanced Guard of Information Systems
BIOS - Basic Input/Output System
CONOPS - Concept of Operations
CVE - Common Vulnerabilities and Exposures
db - Signature Database
dbx - Forbidden Signature Database
EFI - Extensible Firmware Interface
GD - General Dynamics
HPE - Hewlett Packard Enterprise
HW - Hardware
KEK - Key Exchange Key
OpROM - Option Read Only Memory
OS - Operating systems
PE/COFF - Portable Executable Common Object File Format
PKI - Public Key Infrastructure
RAID - Redundant Array of Independent Disks
SCSI - Small Computer System Interface
UEFI - Universal Extensible Firmware Interface

	Table Of Contents
	List of Figures
	List of Tables
	1.0 Summary
	2.0 INTRODUCTION
	2.1 Introduction
	2.1.1 Extensible Firmware Interface Files
	2.1.2 3rd-party Option Read-Only Memory
	2.1.3 Secure Boot Integrity Validation Process
	2.1.4 Problem Discussion
	2.1.4.1 3rd-party OpROMs Deficiency
	2.1.4.2 Secure Boot Certificate Hierarchy Deficiency

	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Secure Boot Research
	3.1.1 3rd-Party OpROM Deficiency Research Methodology
	3.1.2 Secure Boot Certificate Hierarchy Deficiency Research Methodology
	3.1.3 Secure Boot Operation and Specification Research Methodology
	3.1.4 Commercial Vendor Research Methodology

	4.0 RESULTS AND DISCUSSION
	4.1 Research Results Summary
	4.1.1 Secure Boot Operational Behavior
	4.1.1.1 Secure Boot Modes
	4.1.1.2 Authenticated Variables and Signature Databases
	4.1.1.3 OpROMs

	4.1.2 Microsoft Secure Boot Key Deployment
	4.1.3 Hardware Vendor Results
	4.1.4 Secure Boot Deficiency Results
	4.1.4.1 3rd-Party OpROMs

	4.1.5 Attempts to sign OpROMs
	4.1.5.1 Secure Boot Certificate Hierarchy

	4.2 Secure Boot Analysis
	4.2.1 Impacts during development
	4.2.2 Operational impacts
	4.2.3 Organizational impacts

	4.3 Analysis of the technical aspects of a Secure Boot Implementation
	4.3.1 Summary of improvements
	4.3.2 Disadvantages and limitations
	4.3.3 Alternatives and trade-offs considered

	5.0 CONCLUSION
	6.0 RECOMMENDATIONS
	6.1.1 General Recommendations

	7.0 References
	APPENDIX A – SECURE Boot Test Procedures
	A.1 Test Procedures to Reproduce Secure Boot Deficiencies
	A.1.1 Secure Boot Deficiency Reproduction Requirements
	Verification Points

	A.1.2. Secure Boot Certificate Hierarchy Deficiency Reproduction Procedure
	A.1.2 Third-party OpROM Deficiency Reproduction Procedure
	A.1.3 Overwrite RAID Controller Firmware Procedures
	Verification Procedures
	Overwrite RAID Controller Firmware on Dell Procedure
	Overwrite RAID Controller Firmware on HPE Procedure

	List of Symbols, Abbreviations, and Acronyms

